JP4055196B2 - Current detection device - Google Patents

Current detection device Download PDF

Info

Publication number
JP4055196B2
JP4055196B2 JP2003276046A JP2003276046A JP4055196B2 JP 4055196 B2 JP4055196 B2 JP 4055196B2 JP 2003276046 A JP2003276046 A JP 2003276046A JP 2003276046 A JP2003276046 A JP 2003276046A JP 4055196 B2 JP4055196 B2 JP 4055196B2
Authority
JP
Japan
Prior art keywords
current
voltage
alternating current
detection device
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003276046A
Other languages
Japanese (ja)
Other versions
JP2005037297A (en
Inventor
輝嗣 日間賀
Original Assignee
有限会社日間賀電子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社日間賀電子 filed Critical 有限会社日間賀電子
Priority to JP2003276046A priority Critical patent/JP4055196B2/en
Publication of JP2005037297A publication Critical patent/JP2005037297A/en
Application granted granted Critical
Publication of JP4055196B2 publication Critical patent/JP4055196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は電流トランスを用いた交流用の電流検出装置に関する。   The present invention relates to an alternating current detection device using a current transformer.

電流検出装置は種々の電気機器に用いられており、例えば、誘導電動機の電磁ブレーキを制御する電流検出装置は、誘導電動機に供給される交流電流が遮断されたことを検出すると、電磁ブレーキを制御して慣性で回転する誘導電動機を停止させる。また、機械的負荷が過大となったときに誘導電動機に流れる過大交流電流を検出、遮断して誘導電動機を保護する電流検出装置などもある。これら電流検出装置は、一般に電流トランスを用いて交流電流を検出している。   The current detection device is used in various electric devices. For example, the current detection device that controls the electromagnetic brake of the induction motor controls the electromagnetic brake when detecting that the alternating current supplied to the induction motor is cut off. Then, the induction motor that rotates by inertia is stopped. There is also a current detection device that detects and cuts off an excessive alternating current that flows through the induction motor when the mechanical load becomes excessive, thereby protecting the induction motor. These current detection devices generally detect an alternating current using a current transformer.

図8(a)にその例を示す従来の電流検出装置は、電流トランスT01の一次側コイルL01から二次側コイルL02へと電磁結合で誘起される二次側交流電圧(二次側電圧)を検出して、交流電流(一次側電流)Iaを検出する(例えば特許文献1参照)。上記二次側電圧は交流電流Iaで誘起される二次側交流電流(二次側電流)を負荷抵抗R01に流すことで得られる電圧であり、二次側電圧の波形は交流電流Iaの波形(正弦波)と略相似波形である。   FIG. 8A shows an example of a conventional current detection device in which a secondary AC voltage (secondary voltage) induced by electromagnetic coupling from the primary coil L01 to the secondary coil L02 of the current transformer T01. Is detected, and an alternating current (primary current) Ia is detected (see, for example, Patent Document 1). The secondary side voltage is a voltage obtained by flowing a secondary side alternating current (secondary side current) induced by the alternating current Ia through the load resistor R01, and the waveform of the secondary side voltage is the waveform of the alternating current Ia. (Sine wave) and a similar waveform.

ところで、電流検出装置では、電流トランスT01での電力損失を低減するため、一次側コイルL01の電圧降下は極力低い電圧に設定される。すると上記二次側電圧も低電圧となるため、従来の電流検出装置では、負荷抵抗R01の抵抗値を比較的低い値(例えば10オーム〜数百オーム)に設定する必要がある。こうした低電圧化は電流トランスT01及び電流検出装置の小型化、ローコスト化を図るためでもある。
特開昭61−248387号公報(第2頁、第2図)
By the way, in the current detection device, in order to reduce power loss in the current transformer T01, the voltage drop of the primary side coil L01 is set to a voltage as low as possible. Then, since the secondary side voltage also becomes a low voltage, in the conventional current detection device, it is necessary to set the resistance value of the load resistor R01 to a relatively low value (for example, 10 ohms to several hundreds ohms). Such a low voltage is also intended to reduce the size and cost of the current transformer T01 and the current detection device.
Japanese Patent Application Laid-Open No. 61-248387 (2nd page, FIG. 2)

従来の電流検出装置は、電流トランスT01の一次側コイルL01の巻き数を1ターンとして電圧降下(一次側電圧)を極力小さくする一方、一次側電圧を検出可能な電圧まで昇圧するため、二次側コイルL02の巻き数を例えば500ターンとしている((株)トーキン(登録商標)カレントトランス品名CT−05)。そして二次側コイルに接続される負荷抵抗R01を例えば10オーム(Ω)とし、一次側電流(正弦波)Iaが約1A(尖頭値、以下、電流・電圧は何れも尖頭値とする)である場合に(図8(b)参照)、負荷抵抗R01には、(1/500)×10=約20mV程度の二次側電圧が発生するようにしている(図8(c)参照)。負荷抵抗R01を100Ωとした場合でも、二次側電圧は約200mV程度であり、これを例えば1V以上にするには、二次側コイルL02の巻き数を約2500ターンとしなければならず、電流トランスT01が大型化しコストもアップする。   The conventional current detection device reduces the voltage drop (primary voltage) as much as possible by setting the number of turns of the primary coil L01 of the current transformer T01 to one turn, while increasing the primary voltage to a detectable voltage. The number of turns of the side coil L02 is set to 500 turns, for example (Tokin (registered trademark) current transformer product name CT-05). The load resistance R01 connected to the secondary coil is, for example, 10 ohms (Ω), and the primary current (sine wave) Ia is about 1 A (peak value, hereinafter, current and voltage are peak values). ) (See FIG. 8B), a secondary side voltage of about (1/500) × 10 = about 20 mV is generated in the load resistor R01 (see FIG. 8C). ). Even when the load resistance R01 is set to 100Ω, the secondary side voltage is about 200 mV, and in order to increase this to, for example, 1 V or more, the number of turns of the secondary side coil L02 must be about 2500 turns. The transformer T01 becomes larger and the cost increases.

即ち、従来の電流検出装置は、例えば1Aの電流を検出するために約20〜200mV程度の小振幅の二次側電圧を検出しなければならず、僅かな電圧差を検出できる比較回路、或いは増幅度の高い演算増幅器などが必要となる。こうした小振幅電気信号を扱う回路は、回路構成が複雑で電圧ドリフトの影響を受けやすく、電流検出装置のコストアップ、大型化などの問題が生じる。また負荷抵抗R01に発生する二次側電圧(例えば約200mV)をダイオード整流回路で直流に変換して検出する電流検出装置では、図8(d)に示すように、直流整流出力電圧がダイオードCD01の電圧降下の影響を受けるため(図8(d)の一点鎖線)、上記電圧ドリフトの影響は更に大きくなる。   That is, the conventional current detection device has to detect a secondary side voltage having a small amplitude of about 20 to 200 mV, for example, to detect a current of 1 A, or a comparison circuit that can detect a slight voltage difference, or An operational amplifier having a high amplification degree is required. A circuit that handles such a small-amplitude electric signal has a complicated circuit configuration and is easily affected by voltage drift, which causes problems such as an increase in cost and an increase in size of the current detection device. Further, in the current detection device that detects the secondary side voltage (for example, about 200 mV) generated in the load resistor R01 by converting it into a direct current with a diode rectifier circuit, as shown in FIG. Therefore, the influence of the voltage drift is further increased.

本発明は、上述の事情に鑑みてなされたものであり、コイルのターンの数を抑えた小形の電流トランスを用いることを前提とし、二次側電圧の検出に係る回路の構成が簡単であって、且つ、ドラフトの影響を受け難く、更に、コストを抑え、装置そのものが大型化とならない電流検出装置を提供することを目的とする。  The present invention has been made in view of the above circumstances, and is based on the assumption that a small current transformer with a reduced number of turns of the coil is used, and the configuration of a circuit related to detection of the secondary side voltage is simple. It is another object of the present invention to provide a current detection device that is not easily affected by the draft, further reduces costs, and does not increase the size of the device itself.

本発明は、上述の目的を達成するために、交流電流を電流トランスの一次側コイルに流すことにより前記電流トランスの二次側コイルに起電力を誘起させ、この起電力を検出して前記交流電流を検出する電流検出装置であって、パルスのピーク値が高い電圧を得ることを可能にする高負荷の抵抗値を用いて、前記二次側コイルに誘起する二次側交流電流を規制し、前記交流電流の極性が反転するときに、前記二次側コイルに一次側電流の値に対応してパルス状電圧を誘起させる前記電流トランスの二次側負荷と、 前記パルス状電圧の振幅が所定の振幅以上であることを検出する検出手段と、その検出手段が前記パルス状電圧の振幅が所定の振幅以上であることを検出したときに連続的な信号を出力する信号変換手段と、を備えたことを特徴とする電流検出装置である。
ここで、上記の高負荷抵抗とは、従来の電流検出装置において二次側の負荷抵抗は例えば10Ωといったように、一次側の電流を二次側に忠実に反映させて検出を行うために可能な限り小さい値に抑えられているが、二次側コイルで得られる電圧が負荷抵抗と電流との積にほぼ等しい関係であることから、二次側コイルで得られる電圧を検出し易い値とするために、従来の電流検出装置の二次側コイルにおける負荷抵抗に比して高い値の抵抗値であることを意味する。
In order to achieve the above-mentioned object, the present invention induces an electromotive force in the secondary coil of the current transformer by flowing an alternating current through the primary coil of the current transformer, and detects the electromotive force to detect the alternating current. A current detection device for detecting a current, which regulates a secondary side alternating current induced in the secondary side coil by using a resistance value of a high load that makes it possible to obtain a voltage having a high pulse peak value. When the polarity of the alternating current is reversed, the secondary load of the current transformer that induces a pulse voltage in the secondary coil corresponding to the value of the primary current, and the amplitude of the pulse voltage is Detection means for detecting that the amplitude is equal to or greater than a predetermined amplitude, and signal conversion means for outputting a continuous signal when the detection means detects that the amplitude of the pulse voltage is equal to or greater than the predetermined amplitude, With the features Current detecting device.
Here, the high load resistance described above is possible in order to perform detection by reflecting the current on the primary side faithfully on the secondary side, such as 10 Ω for the load resistance on the secondary side in the conventional current detection device. Although the voltage obtained by the secondary coil is almost equal to the product of the load resistance and the current, the voltage obtained by the secondary coil is easy to detect. This means that the resistance value is higher than the load resistance in the secondary coil of the conventional current detection device.

斯かる構成の電流検出装置では、本発明の二次側の負荷は従来の電流検出装置の二次側負荷より高い抵抗値(或いはインピーダンス)を有し、且つ、電流トランスの磁気コアが磁気飽和するように設定されている。このように、二次側の交流電流を規制することによって、磁気コアに生じる磁束は、交流電流の極性が反転するときの僅かな時間においてのみ急激に変化し、その他のときにおいては殆ど変化することはない。
従って、上記の極性が反転するときの急激な磁束の変化によってそれに対応したパルス状電圧が発生し、このパルス状電圧は従来の電流検出装置の電流トランスが発生する二次側電圧も格段と高い電圧が得られる。よって、従来の二次側電圧とは異なって、本発明で得られる二次側の交流電流は振幅の高いパルス状電圧であることから、検出手段は振幅の高いパルス状電圧を容易に検出することが可能となる。ここで、検出手段によって検出された二次側のパルス状電圧は、信号変換手段によって初期状態の周期よりも長い連続的な信号に変換されて出力されることになる。
In the current detection device having such a configuration, the secondary load of the present invention has a higher resistance value (or impedance) than the secondary load of the conventional current detection device, and the magnetic core of the current transformer is magnetically saturated. It is set to be. In this way, by regulating the secondary side alternating current, the magnetic flux generated in the magnetic core changes rapidly only in a short time when the polarity of the alternating current is reversed, and changes almost at other times. There is nothing.
Therefore, a sudden voltage change when the polarity is reversed generates a pulsed voltage corresponding to this, and this pulsed voltage is much higher than the secondary voltage generated by the current transformer of the conventional current detection device. A voltage is obtained. Therefore, unlike the conventional secondary side voltage, the secondary side alternating current obtained in the present invention is a pulse voltage with a high amplitude, and the detection means easily detects a pulse voltage with a high amplitude. It becomes possible. Here, the secondary pulse voltage detected by the detecting means is converted into a continuous signal longer than the period of the initial state by the signal converting means and outputted.

同様にして、本願の他の発明は、交流電流を電流トランスの一次側コイルに流すことにより前記電流トランスの二次側コイルに起電力を誘起させ、この起電力を検出して前記交流電流を検出する電流検出装置であって、パルスのピーク値が高い電圧を得ることを可能にする高負荷の抵抗値を用いて、前記二次側コイルに誘起する二次側交流電流を規制し、前記交流電流の極性が反転するときに、前記二次側コイルにパルス状電圧を誘起させ且つこのパルス状電圧の振幅が所定の振幅以上であることを検出する検出手段と、その検出手段が前記パルス状電圧の振幅が所定の振幅以上であることを検出したときに連続的な信号を出力する信号変換手段と、を備えた構成の電流検出装置である。
斯かる構成の発明では、前記検出手段の作用によって前記電流トランスの磁気コアが磁気飽和するが、上記第一の発明と同様に、本発明の二次側の負荷は従来の電流検出装置の二次側負荷より高い抵抗値(或いはインピーダンス)を有し、且つ、電流トランスの磁気コアが磁気飽和するように設定されている。
このように、二次側の交流電流を規制することによって、磁気コアに生じる磁束は、交流電流の極性が反転するときの僅かな時間においてのみ急激に変化し、その他のときにおいては殆ど変化することはない。
よって、従来の電流検出装置の電流トランスが発生する二次側電圧に比して、確実に十分に高い電圧を発生するので、斯かる電圧を検出するための回路は簡単な構成で済ませることが可能になっている。
Similarly, another invention of the present application induces an electromotive force in the secondary side coil of the current transformer by flowing an alternating current through the primary side coil of the current transformer, and detects the electromotive force to generate the alternating current. A current detection device for detecting, using a high load resistance value that enables obtaining a voltage having a high pulse peak value, and regulating a secondary side alternating current induced in the secondary side coil, Detecting means for inducing a pulse voltage in the secondary coil and detecting that the amplitude of the pulse voltage is equal to or greater than a predetermined amplitude when the polarity of the alternating current is reversed; And a signal converter that outputs a continuous signal when it is detected that the amplitude of the voltage is greater than or equal to a predetermined amplitude.
In the invention with such a configuration, the magnetic core of the current transformer is magnetically saturated by the action of the detection means. As in the first invention, the load on the secondary side of the invention is the same as that of the conventional current detection device. The resistance value (or impedance) is higher than that of the secondary load, and the magnetic core of the current transformer is set to be magnetically saturated.
In this way, by regulating the secondary side alternating current, the magnetic flux generated in the magnetic core changes rapidly only in a short time when the polarity of the alternating current is reversed, and changes almost at other times. There is nothing.
Therefore, a sufficiently high voltage is surely generated as compared with the secondary side voltage generated by the current transformer of the conventional current detection device. Therefore, a circuit for detecting such a voltage can be simply configured. It is possible.

前記検出手段が、前記パルス状電圧の正及び負極性パルスが所定の振幅以上であることを検出することにより、前記電流検出装置は、前記交流電流の周期の2分の1周期で発生する前記パルス状電圧により前記交流電流を迅速に検出することができる(請求項3)。前記検出手段が、前記パルス状電圧の正若しくは負極性パルスが所定の振幅以上であることを検出する前記電流検出装置は、簡易な回路構成で、前記交流電流の周期と等しい周期で発生する前記パルス状電圧により前記交流電流を検出できる(請求項3)。   When the detecting means detects that the positive and negative pulses of the pulse voltage are greater than or equal to a predetermined amplitude, the current detecting device is generated in a half cycle of the alternating current cycle. The alternating current can be quickly detected by the pulse voltage (Claim 3). The current detecting device for detecting that the positive or negative pulse of the pulse voltage is greater than or equal to a predetermined amplitude is generated by the detection means at a cycle equal to the cycle of the alternating current with a simple circuit configuration. The alternating current can be detected by a pulsed voltage.

以上のように、本発明の電流検出装置によれば、電流トランスの二次側交流電流を規制することにより、二次コイルの巻き数を増やすことなく、従来の電流検出装置の電流トランスが発生する二次側電圧よりも高い尖頭値電圧のパルス状電圧を得ることができる。従って、簡単な回路構成でドリフトの影響を受けることなく、また、電流検出器や電流トランスのコストアップや大型化などの問題を生じることなく容易に交流電流を検出(好ましくは迅速に交流電流を検出)することができるという効果が奏される。   As described above, according to the current detection device of the present invention, the current transformer of the conventional current detection device is generated without increasing the number of turns of the secondary coil by regulating the secondary side alternating current of the current transformer. Thus, a pulse voltage having a peak value voltage higher than the secondary side voltage can be obtained. Therefore, an AC current can be easily detected without being affected by drift with a simple circuit configuration, and without causing problems such as an increase in the cost and size of the current detector and current transformer (preferably an AC current is quickly detected). Detection).

以下、図面を参照して、本発明に係る電流検出装置を60ヘルツの商用交流電流を例として説明する。
(第1の実施形態)
本発明の第1の実施形態に係る電流検出装置を図1〜図4により説明する。図1(a)は第1の実施形態に係る電流検出装置の概略構成を、図1(b)〜(g)はその動作を説明するための波形図である。第1の実施形態に係るの電流検出装置は電流トランスT10、負荷抵抗(二次側負荷)R13,14、検出手段20及び信号変換手段30を有しており、電流トランスT10の一次側コイルL11には、誘導電動機などの図示しない電気機器への交流電流が流れるようになっている。
Hereinafter, with reference to the drawings, a current detection device according to the present invention will be described using a commercial alternating current of 60 Hz as an example.
(First embodiment)
A current detection apparatus according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a schematic configuration of the current detection device according to the first embodiment, and FIGS. 1B to 1G are waveform diagrams for explaining the operation thereof. The current detection device according to the first embodiment includes a current transformer T10, load resistors (secondary side loads) R13 and 14, detection means 20, and signal conversion means 30, and a primary side coil L11 of the current transformer T10. AC current flows to an electric device (not shown) such as an induction motor.

電流トランスT10は、例えば従来の電流トランスT01と同様に、一次側コイルの巻き数は1ターン、2次側コイルの巻き数は500ターンである。電流トランスT10の二次側コイルL12が有する第1の出力端子L12h及び第2の出力端子L12cの間に直列接続された負荷抵抗R13,R14は、二次側コイルL12に誘起する二次側交流電流を規制して、一次側コイルL11に流れる交流電流Iaの極性反転に伴い二次側コイルL12にパルス状電圧を誘起させる。なお負荷抵抗R13,14は夫々等しい抵抗値を有し、負荷抵抗R13,14の接続点(中点)は接地される。   In the current transformer T10, for example, similarly to the conventional current transformer T01, the number of turns of the primary side coil is 1 turn, and the number of turns of the secondary side coil is 500 turns. The load resistors R13 and R14 connected in series between the first output terminal L12h and the second output terminal L12c of the secondary coil L12 of the current transformer T10 are secondary AC that is induced in the secondary coil L12. The current is regulated, and a pulsed voltage is induced in the secondary side coil L12 as the polarity of the alternating current Ia flowing through the primary side coil L11 is reversed. The load resistors R13, 14 have the same resistance value, and the connection point (middle point) of the load resistors R13, 14 is grounded.

検出手段20は、二次側コイルL12に発生するパルス状電圧の振幅(尖頭値電圧)が所定の振幅以上であることを検出するとパルス信号を出力する。検出手段20の第1の入力端子21は二次側コイルL12の第1の出力端子L12hに接続され、検出手段20の第2の入力端子22は二次側コイルL12の第2の出力端子L12cに接続され、検出手段20の接地端子23及び24は接地される。出力端子25は検出手段20のパルス信号を出力する端子であり、出力端子25と接地端子24との間にはスイッチング動作をするトランジスタTR27が接続されており、電源端子26には検出手段20を作動させる電力が供給される。   When detecting means 20 detects that the amplitude (peak voltage) of the pulsed voltage generated in secondary coil L12 is greater than or equal to a predetermined amplitude, it outputs a pulse signal. The first input terminal 21 of the detection means 20 is connected to the first output terminal L12h of the secondary coil L12, and the second input terminal 22 of the detection means 20 is the second output terminal L12c of the secondary coil L12. And the ground terminals 23 and 24 of the detecting means 20 are grounded. The output terminal 25 is a terminal that outputs a pulse signal of the detection means 20. A transistor TR 27 that performs a switching operation is connected between the output terminal 25 and the ground terminal 24, and the detection means 20 is connected to the power supply terminal 26. Power to operate is supplied.

図1に示す信号変換手段30は、パルス入力端子31に入力された検出手段20のパルス信号を所定時間連続した信号に変換して連続信号出力端子32に出力する。
次に二次側電流の規制及びパルス状電圧の発生を図2、図3により説明する。
負荷抵抗R13,14の直列抵抗値の増加に伴い、電流トランスT10の磁気コアは小さな電流で磁気飽和するようになる。例えば、図2(a)に示す負荷抵抗R13,14の直列抵抗値を10KΩとした場合に、電流トランスT10の一次側コイルL11に1Aの交流電流Ia(図2(b))を流すと、電流トランスT10の磁気コアは飽和状態となり、交流電流Iaの極性が反転するとき(変極点)、二次側コイルL12には振幅(尖頭値)約1.8V(約3.6Vp−p)のパルス状電圧が発生する(図2(c))。
The signal conversion means 30 shown in FIG. 1 converts the pulse signal of the detection means 20 input to the pulse input terminal 31 into a signal continuous for a predetermined time and outputs it to the continuous signal output terminal 32.
Next, the regulation of the secondary current and the generation of the pulse voltage will be described with reference to FIGS.
As the series resistance value of the load resistors R13 and 14 increases, the magnetic core of the current transformer T10 becomes magnetically saturated with a small current. For example, when the series resistance value of the load resistors R13 and 14 shown in FIG. 2A is 10 KΩ, when a 1 A alternating current Ia (FIG. 2B) is passed through the primary coil L11 of the current transformer T10, When the magnetic core of the current transformer T10 is saturated and the polarity of the alternating current Ia is reversed (inflection point), the secondary coil L12 has an amplitude (peak value) of about 1.8 V (about 3.6 Vp-p). The pulse voltage is generated (FIG. 2C).

このパルス状電圧の発生を図3に示す電流トランスT10の磁気コアの磁気特性を用いて説明する。磁気コアの磁束密度が飽和している第1の飽和領域B1では、交流電流Iaが増減して起磁力Hが増減しても磁束密度はそれほど増減しない。やがて交流電流Iaが減少しゼロとなり更にIaの極性が反転するとき、起磁力Hの極性も反転し、磁束密度は瞬時に変化して第2の飽和状態(飽和領域B2)となるが、飽和領域B2でも、交流電流Iaの増減により磁束密度はそれほど増減しない。しかし飽和領域B1から飽和領域B2へと変化する第1の磁極反転領域Bd1では磁束密度は瞬時に変化し、二次側コイルL12にはパルス状電圧が発生する。同様に飽和領域B2から飽和領域B1へ変化する第2の磁極反転領域Bd2でも、二次側コイルL12にはパルス状電圧が発生する。これら磁極反転領域Bd1、Bd2では、磁束の増減方向が逆であるためパルス状電圧の極性は夫々異なる(図2(c)参照)。   The generation of this pulse voltage will be described using the magnetic characteristics of the magnetic core of the current transformer T10 shown in FIG. In the first saturation region B1 where the magnetic flux density of the magnetic core is saturated, the magnetic flux density does not increase or decrease so much even if the alternating current Ia increases or decreases and the magnetomotive force H increases or decreases. When the alternating current Ia eventually decreases to zero and the polarity of Ia further reverses, the polarity of the magnetomotive force H also reverses, and the magnetic flux density changes instantaneously to the second saturation state (saturation region B2). Even in the region B2, the magnetic flux density does not increase or decrease so much due to the increase or decrease of the alternating current Ia. However, in the first magnetic pole reversal region Bd1 that changes from the saturation region B1 to the saturation region B2, the magnetic flux density changes instantaneously, and a pulse voltage is generated in the secondary coil L12. Similarly, in the second magnetic pole inversion region Bd2 that changes from the saturation region B2 to the saturation region B1, a pulse voltage is generated in the secondary coil L12. In these magnetic pole reversal regions Bd1 and Bd2, the direction of increase / decrease of the magnetic flux is opposite, so the polarity of the pulse voltage is different (see FIG. 2C).

第1の実施形態に係る電流検出装置は、二次側コイルL12に発生する周波数60ヘルツ(周期約16.7mS)のパルス状電圧を全波整流することにより、図2(d)に示すように周波数120ヘルツ(周期約8.3mS)の正極性のパルスを得る。
即ち、二次側コイルL12の巻き数を増やすことなく(電流トランスT10を大型化することなく)、二次側コイルL12に大振幅の電圧(パルス状電圧)を発生させることができ、このパルス状電圧が所定値以上であることを検出することにより、交流電流Iaが所定値以上であることを容易に検出できる。また、上記パルス状電圧の周期は交流電流Iaの2分の1になるので、交流電流Iaの検出を迅速に行うことができる。
As shown in FIG. 2D, the current detection device according to the first embodiment performs full-wave rectification on a pulse voltage having a frequency of 60 Hertz (period: about 16.7 mS) generated in the secondary coil L12. And a positive pulse having a frequency of 120 Hz (period: about 8.3 mS) is obtained.
That is, a large amplitude voltage (pulse voltage) can be generated in the secondary coil L12 without increasing the number of turns of the secondary coil L12 (without increasing the size of the current transformer T10). It can be easily detected that the alternating current Ia is equal to or greater than the predetermined value by detecting that the voltage is equal to or greater than the predetermined value. Further, since the period of the pulse voltage is ½ of the alternating current Ia, the alternating current Ia can be detected quickly.

図4は前記電流トランス(CT−05)における実測波形を図示したものである。図4(a)は一次側電流(1A)の電流波形(正弦波)を示し、図4(b)は、負荷抵抗R13,14の直列抵抗値が10KΩの場合に、一次側電流を1Aとしたときの二次側電圧波形(尖頭値約1.8V)を示し、図4(c)に示す二次側電圧波形(尖頭値約6V)は一次側電流を100Aに増加したときのものである。   FIG. 4 shows the measured waveform in the current transformer (CT-05). 4A shows the current waveform (sine wave) of the primary current (1A), and FIG. 4B shows the primary current as 1A when the series resistance value of the load resistors R13 and 14 is 10 KΩ. The secondary side voltage waveform (peak value about 1.8V) is shown, and the secondary side voltage waveform (peak value about 6V) shown in FIG. 4C is obtained when the primary side current is increased to 100A. Is.

第1の実施形態に係る電流検出装置の一実施例(実施例1)を図5(a)に示す。
交流電流Iaが約1Aの場合には、電流トランスT10の二次側コイルL12に振幅(尖頭値)が約1.8Vのパルス状電圧が発生する。ここで、検出手段20の第1の入力端子21に接続されたダイオードCD28a(又は第2の入力端子22に接続されたCD28b)とトランジスタTR27とのベース・エミッタ間の順方向電圧の和は、通常1.4V程度である。従って、二次側コイルL12からダイオードCD28a(又はCD28b)を経由して、トランジスタTR27のベース・エミッタ、そして負荷抵抗R14(又はR13)へと電流が流れる。即ち、ダイオードCD28a、CD28bで全波整流された周期約8.3mSの正極性パルス(図5(a)のRec)でトランジスタTR27はスイッチング動作をして、検出手段20の出力端子25に、約8.3mS周期のパルス信号が出力される(図5(a)のOut)。
An example (Example 1) of the current detection device according to the first embodiment is shown in FIG.
When the alternating current Ia is about 1 A, a pulse voltage having an amplitude (peak value) of about 1.8 V is generated in the secondary coil L12 of the current transformer T10. Here, the sum of the forward voltages between the base and the emitter of the diode TR28a connected to the first input terminal 21 of the detection means 20 (or CD28b connected to the second input terminal 22) and the transistor TR27 is: Usually about 1.4V. Therefore, a current flows from the secondary coil L12 to the base / emitter of the transistor TR27 and the load resistor R14 (or R13) via the diode CD28a (or CD28b). That is, the transistor TR27 performs a switching operation with a positive pulse (Rec in FIG. 5A) having a period of about 8.3 mS, which is full-wave rectified by the diodes CD28a and CD28b, and is connected to the output terminal 25 of the detection means 20 at about A pulse signal having a period of 8.3 mS is output (Out in FIG. 5A).

信号変換手段30はリトリガブルの単安定マルチバイブレータを有し、パルス入力端子31に入力された上記パルス信号の前縁(パルス信号の立ち下がり)部でトリガされ、例えば9mSのパルス幅を有するパルスを発生する。すると出力端子25からパルス信号(周期約8.3mS)が連続的に出力される限り、信号変換手段30は連続信号出力端子32にハイレベル(H)の信号(例えば5V)を出力し続ける。ここで前記パルス幅は交流電流Iaの周期の2分の1(約8.3mS)以上必要であり、好ましくは交流電流Iaの周期(約16.7mS)以内に設定される。   The signal conversion means 30 has a retriggerable monostable multivibrator and is triggered at the leading edge (falling edge of the pulse signal) of the pulse signal input to the pulse input terminal 31, and for example, a pulse having a pulse width of 9 mS. appear. Then, as long as pulse signals (with a period of about 8.3 mS) are continuously output from the output terminal 25, the signal conversion means 30 continues to output a high level (H) signal (for example, 5 V) to the continuous signal output terminal 32. Here, the pulse width needs to be at least one half of the period of the alternating current Ia (about 8.3 mS), and is preferably set within the period of the alternating current Ia (about 16.7 mS).

例えば、交流電流Iaが0.5Aのときには、二次側コイルL12に発生するパルス状電圧は、ダイオードCD28a(又はCD28b)とトランジスタTR27とのベース・エミッタ間の順方向電圧の和である1.4Vよりも低くなり、トランジスタTR27をスイッチング動作させる電流は流れず、出力端子25にはパルス信号が出ない。即ち、交流電流Iaが所定値(例えば約1A)以上流れた場合にのみパルス信号が出力端子25に現れ、交流電流Iaの検出閾値(電流検出装置が検出できる最小電流値)は前記の所定値(例えば約1A)となる。   For example, when the alternating current Ia is 0.5 A, the pulse voltage generated in the secondary coil L12 is the sum of the forward voltages between the base and emitter of the diode CD28a (or CD28b) and the transistor TR27. The voltage becomes lower than 4 V, the current for switching the transistor TR27 does not flow, and no pulse signal is output to the output terminal 25. That is, the pulse signal appears at the output terminal 25 only when the alternating current Ia flows over a predetermined value (for example, about 1 A), and the detection threshold of the alternating current Ia (the minimum current value that can be detected by the current detection device) is the predetermined value. (For example, about 1A).

従って図1(b)に示すように、交流電流Iaが1A以上流れていた場合において、時刻t2に(時刻t2は時刻t1に遅れること約8.3mS以内とする)交流電流Iaが遮断された(又は0.5Aに減少した)ときには、図1(c)に示すように、検出手段20の出力端子25に出力されていたパルス信号は時刻t2以後出力されない。すると時刻t1以前にはハイレベル(H)であった信号変換手段30の連続信号出力端子32は、時刻t1から9mS経過後の時刻t3以後、ローレベル(L)の信号(例えば0V)へと変化する(図1(d)参照)。即ち、実施例1の電流検出装置による交流電流Ia(交流電流Iaの遮断又は減少)の検出は、信号変換手段30が発生するパルス幅の時間(例えば9mS)よりも遅れることはない。   Therefore, as shown in FIG. 1 (b), when the alternating current Ia is flowing 1A or more, the alternating current Ia is cut off at time t2 (time t2 is within about 8.3 mS that is delayed from time t1). When (or decreased to 0.5 A), as shown in FIG. 1C, the pulse signal output to the output terminal 25 of the detection means 20 is not output after time t2. Then, the continuous signal output terminal 32 of the signal conversion means 30 that was at the high level (H) before the time t1 is changed to a low level (L) signal (for example, 0 V) after the time t3 after 9 mS has elapsed from the time t1. Change (see FIG. 1D). That is, the detection of the alternating current Ia (interruption or reduction of the alternating current Ia) by the current detection device of the first embodiment is not delayed from the time of the pulse width generated by the signal conversion means 30 (for example, 9 mS).

また図1(e)に示すように、時刻t4(時刻t4は時刻t5に先行すること約8.3mS以内とする)において1Aの交流電流Iaが流れ始めた(又は0.5Aから1Aに増加した)ときには、図1(f)に示すように、時刻t5以後、出力端子25にパルス信号が連続的に出力される。すると時刻t5以前にはローレベル(L)を出力していた信号変換手段30の連続信号出力端子32は時刻t5からハイレベル(H)出力へと変化する(図1(g)参照)。即ち、実施例1の電流検出装置による交流電流Ia(交流電流Iaが流れ始めたこと又は増加したこと)の検出は、交流電流Iaの2分の1周期(約8.3mS)よりも遅れることはない。   As shown in FIG. 1 (e), 1 A of alternating current Ia started to flow (or increased from 0.5 A to 1 A at time t4 (time t4 is within about 8.3 mS preceding time t5). 1), the pulse signal is continuously output to the output terminal 25 after time t5, as shown in FIG. Then, the continuous signal output terminal 32 of the signal converting means 30 that output the low level (L) before time t5 changes from the time t5 to the high level (H) output (see FIG. 1 (g)). That is, the detection of the alternating current Ia (the alternating current Ia has started to flow or has increased) by the current detection device of the first embodiment is delayed from a half cycle (about 8.3 mS) of the alternating current Ia. There is no.

こうして実施例1の電流検出装置は、交流電流が所定値以上流れたことを交流電流の2分の1周期以内に検出でき、交流電流が所定値以下になったことを交流電流の2分の1〜1周期より遅れることなく迅速に検出できる。従って、実施例1の電流検出装置は、連続信号出力端子32の信号を交流電流Iaの検出信号として、電磁ブレーキの制御や誘導電動機の過負荷からの保護などを迅速に行うことができる。   In this way, the current detection device according to the first embodiment can detect that the alternating current has flowed to a predetermined value or more within a half cycle of the alternating current, and can detect that the alternating current has become a predetermined value or less. It can be detected quickly without delay from one to one cycle. Therefore, the current detection device according to the first embodiment can quickly perform control of the electromagnetic brake, protection from the overload of the induction motor, and the like using the signal of the continuous signal output terminal 32 as the detection signal of the alternating current Ia.

なお、二次側コイルL12に発生するパルス状電圧(図2(c))、及びパルス状電圧の整流電圧(図2(d))は振幅が大きいため(実施例1では交流電流Iaが1Aのとき1.8V)、これら電圧は比較回路(例えばコンパレータIC)などで容易に検出でき、検出手段20の構成は整流ダイオードとトランジスタによる構成に限定されない。また信号変換手段30は、リトリガブル単安定マルチバイブレータ以外のタイマ回路、パルスの有無を判定するマイクロプロセッサなどによっても実現可能であり、更に信号変換手段30の連続信号出力信号は、リレーの接点信号のような機械的要素の信号、又は光信号などであってもよく、前述の電圧信号出力に限定されない。一方、前述のような迅速な電流検出を必要としない場合には、信号変換手段30が発生するパルス幅を交流電流の周期以上に設定してもよく、或いは、検出手段20の出力端子25に出力されるパルス信号を、時定数を有する平滑回路等で直流電圧に変換するなどして、信号変換手段30を簡略化することもできる。   Note that the pulsed voltage generated in the secondary coil L12 (FIG. 2C) and the rectified voltage of the pulsed voltage (FIG. 2D) have a large amplitude (in Example 1, the AC current Ia is 1 A). In this case, these voltages can be easily detected by a comparison circuit (for example, a comparator IC), and the configuration of the detection means 20 is not limited to the configuration of a rectifier diode and a transistor. The signal conversion means 30 can also be realized by a timer circuit other than the retriggerable monostable multivibrator, a microprocessor for determining the presence or absence of a pulse, and the continuous signal output signal of the signal conversion means 30 is a relay contact signal. Such a signal may be a mechanical element signal or an optical signal, and is not limited to the voltage signal output described above. On the other hand, when the rapid current detection as described above is not required, the pulse width generated by the signal conversion means 30 may be set to be equal to or longer than the cycle of the alternating current, or the output terminal 25 of the detection means 20 may be set. The signal conversion means 30 can be simplified by converting the output pulse signal into a DC voltage by a smoothing circuit having a time constant.

図5(b)に示す電流検出装置(実施例2)は実施例1を変形したものであり、実施例1と同様の機能を有する構成要素には同一の符合を附しその説明を省略する。
検出手段20aは、検出手段20と同様な機能を有するが、二次側コイルL12から出力されるパルス状電圧をブリッジ接続されたダイオードCD28a〜CD28dを用いて全波整流する点で検出手段20と異なる。そしてトランジスタTR27をスイッチング動作させる電流が、二次側コイルL12からダイオードCD28c(又はCD28d)、トランジスタTR27のベース・エミッタ、そしてダイオードCD28b(又はCD28a)と流れたときに、検出手段20aの出力端子25には図5(a)のOutと同様なパルス信号(周期約8.3mS)が出力される。
The current detection device (embodiment 2) shown in FIG. 5B is a modification of the embodiment 1. Components having the same functions as those in the embodiment 1 are denoted by the same reference numerals, and the description thereof is omitted. .
The detection means 20a has the same function as the detection means 20, but is different from the detection means 20 in that the pulsed voltage output from the secondary coil L12 is full-wave rectified using the bridge-connected diodes CD28a to CD28d. Different. When the current for switching the transistor TR27 flows from the secondary coil L12 to the diode CD28c (or CD28d), the base / emitter of the transistor TR27, and the diode CD28b (or CD28a), the output terminal 25 of the detection means 20a. The same pulse signal (period approximately 8.3 mS) as that of Out in FIG.

実施例2では、パルス状電圧の尖頭値がダイオード二個分の順方向電圧とトランジスタTR27のベース・エミッタ間の順方向電圧との和(例えば2.1V)以上でなければトランジスタTR27はスイッチング動作をしないため、交流電流Iaの検出閾値は実施例1と異なった値となる。   In the second embodiment, the transistor TR27 is switched unless the peak value of the pulse voltage is equal to or greater than the sum (eg, 2.1 V) of the forward voltage of two diodes and the forward voltage between the base and emitter of the transistor TR27. Since the operation is not performed, the detection threshold value of the alternating current Ia is different from that in the first embodiment.

図5(c)に示す電流検出装置(実施例3)も実施例1を変形したものであり、実施例1と同様の機能を有する構成要素には同一の符合を附しその説明を省略する。
検出手段20bは、検出手段20と同様な機能を有するが、ベースを第1の入力端子21に接続したトランジスタTR27a、及びベースを第2の入力端子22に接続したトランジスタTR27bの2個のトランジスタを有する一方、整流ダイオードを有しない点で検出手段20と相違する。これらトランジスタTR27a、TR27bのコレクタは夫々出力端子25に接続される。
The current detection device (Embodiment 3) shown in FIG. 5C is also a modification of Embodiment 1, and components having the same functions as those in Embodiment 1 are denoted by the same reference numerals and description thereof is omitted. .
The detection means 20b has the same function as the detection means 20, but includes two transistors: a transistor TR27a whose base is connected to the first input terminal 21, and a transistor TR27b whose base is connected to the second input terminal 22. On the other hand, it differs from the detection means 20 in that it does not have a rectifier diode. The collectors of these transistors TR27a and TR27b are connected to the output terminal 25, respectively.

例えば、二次側コイルL12の第1の出力端子L12h側に0.7V以上の正極性のパルス状電圧が発生すると、第1の出力端子L12h、トランジスタTR27aのベース・エミッタ、負荷抵抗R14、そして二次側コイルL12の第2の出力端子L12cへと電流が流れ、第2の出力端子L12c側に0.7V以上の正極性のパルス状電圧が発生すると、第2の出力端子L12c、トランジスタTR27bのベース・エミッタ、負荷抵抗R13、そして第1の出力端子L12hへと電流が流れる。従って、検出手段20bは、図5(a)のOutと同様なパルス信号(周期約8.3mS)を出力する。   For example, when a positive pulse voltage of 0.7 V or more is generated on the first output terminal L12h side of the secondary coil L12, the first output terminal L12h, the base / emitter of the transistor TR27a, the load resistor R14, and When a current flows to the second output terminal L12c of the secondary coil L12 and a positive pulse voltage of 0.7 V or more is generated on the second output terminal L12c side, the second output terminal L12c and the transistor TR27b are generated. Current flows to the base / emitter, the load resistor R13, and the first output terminal L12h. Therefore, the detection means 20b outputs a pulse signal (period approximately 8.3 mS) similar to Out in FIG.

以上のように実施例3の電流検出装置では、パルス状電圧の尖頭値がトランジスタのベース・エミッタ間の順方向電圧(例えば0.7V)以上のとき、トランジスタTR27a、TR27bがスイッチング動作をするため、交流電流Iaの検出閾値は実施例1,2と異なった値となる。   As described above, in the current detection device according to the third embodiment, when the peak value of the pulse voltage is equal to or higher than the forward voltage (eg, 0.7 V) between the base and emitter of the transistor, the transistors TR27a and TR27b perform the switching operation. Therefore, the detection threshold value of the alternating current Ia is different from those in the first and second embodiments.

(第2の実施形態)
第2の実施形態に係る電流検出装置は、第1の実施形態に係る電流検出装置の負荷抵抗R13,14に代わり、電流検出手段が、交流電流Iaの変極点において、電流トランスT10の二次側コイルL12にパルス状電圧(図2(c))を発生させる。負荷抵抗R13,14を用いない第2の実施形態に係る電流検出装置では、第1の実施形態に係る電流検出装置に比べ、電流トランスT10の磁気コアはより小さな一次側電流で磁気飽和する。従って、交流電流Iaの検出の閾値を第1の実施形態に係る電流検出装置よりも小さい電流値とすることができる。
(Second Embodiment)
In the current detection device according to the second embodiment, instead of the load resistors R13 and 14 of the current detection device according to the first embodiment, the current detection means is a secondary of the current transformer T10 at the inflection point of the alternating current Ia. A pulse voltage (FIG. 2C) is generated in the side coil L12. In the current detection device according to the second embodiment that does not use the load resistors R13 and 14, the magnetic core of the current transformer T10 is magnetically saturated with a smaller primary current as compared with the current detection device according to the first embodiment. Therefore, the threshold value for detecting the alternating current Ia can be set to a current value smaller than that of the current detection device according to the first embodiment.

第2の実施形態に係る電流検出装置の一実施例(実施例4)を図6(a)に示す。第1の実施形態に係る電流検出装置と同様の機能を有する構成要素には同一の符合を附してその説明を省略する。
検出手段20と同様な機能を有する検出手段20cでは、ダイオードCD28aは接地端子23から第1の入力端子21へと順方向電流を流し、ダイオードCD28bは接地端子23から第2の入力端子22へと順方向電流を流す点で、また第1の入力端子21にベースを接続したトランジスタTR27a、第2の入力端子22にベースを接続したトランジスタTR27bを有する点で、そしてトランジスタTR27a、TR27bのコレクタは夫々出力端子25に接続されている点で検出手段20と相違する。
An example (Example 4) of the current detection device according to the second embodiment is shown in FIG. Components having the same functions as those of the current detection device according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the detection means 20c having the same function as the detection means 20, the diode CD28a causes a forward current to flow from the ground terminal 23 to the first input terminal 21, and the diode CD28b passes from the ground terminal 23 to the second input terminal 22. The transistor TR27a has a transistor TR27a having a base connected to the first input terminal 21, a transistor TR27b having a base connected to the second input terminal 22, and the collectors of the transistors TR27a and TR27b are respectively provided in terms of forward current flow. It differs from the detection means 20 in that it is connected to the output terminal 25.

例えば、二次側コイルL12の第1の出力端子L12h側に1.4V以上の正極性のパルス状電圧が発生すると、第1の出力端子L12h、トランジスタTR27aのベース・エミッタ、ダイオードCD28b、そして二次側コイルL12の第2の出力端子L12cへと電流が流れ、また第2の出力端子L12c側に1.4V以上の正極性のパルス状電圧が発生すると、第2の出力端子L12c、トランジスタTR27bのベース・エミッタ、ダイオードCD28a、そして第1の出力端子L12hへと電流が流れる。   For example, when a positive pulse voltage of 1.4 V or higher is generated on the first output terminal L12h side of the secondary coil L12, the first output terminal L12h, the base / emitter of the transistor TR27a, the diode CD28b, When a current flows to the second output terminal L12c of the secondary coil L12 and a positive pulse voltage of 1.4 V or more is generated on the second output terminal L12c side, the second output terminal L12c and the transistor TR27b are generated. Current flows to the base / emitter, the diode CD28a, and the first output terminal L12h.

以上のように実施例4の電流検出装置では、パルス状電圧の尖頭値がダイオード及びトランジスタTR27のベース・エミッタ間の順方向電圧の和(例えば1.4V)以上のとき、検出手段20cは図5(a)のOutと同様なパルス信号(周期約8.3mS)を出力する。   As described above, in the current detection device according to the fourth embodiment, when the peak value of the pulse voltage is equal to or greater than the sum of the forward voltage between the base and the emitter of the diode and the transistor TR27 (for example, 1.4 V), the detection unit 20c The same pulse signal (period approximately 8.3 mS) as that of Out in FIG. 5A is output.

図6(b)に示す電流検出装置(実施例5)は実施例4を変形したものであり、実施例1,4と同様の機能を有する構成要素には同一の符合を附しその説明を省略する。
また、検出手段20dは、実施例2の検出手段20aと同様な機能を有し、トランジスタTR27をスイッチング動作させる電流は、二次側コイルL12からダイオードCD28c(又はCD28d)、トランジスタTR27のベース・エミッタ、そしてダイオードCD28b(又はCD28a)へと流れ、検出手段20dの出力端子25には図5(a)のOutと同様なパルス信号(周期約8.3mS)が出力される。
The current detection device (Embodiment 5) shown in FIG. 6B is a modification of Embodiment 4, and components having the same functions as those in Embodiments 1 and 4 are denoted by the same reference numerals and the description thereof is omitted. Omitted.
The detecting means 20d has the same function as that of the detecting means 20a of the second embodiment, and the current for switching the transistor TR27 from the secondary coil L12 to the diode CD28c (or CD28d) and the base / emitter of the transistor TR27. Then, the signal flows to the diode CD28b (or CD28a), and a pulse signal (period approximately 8.3 mS) similar to the output Out in FIG. 5A is output to the output terminal 25 of the detection means 20d.

実施例5の電流検出装置では、パルス状電圧の尖頭値がダイオード二個分の順方向電圧とトランジスタTR27のベース・エミッタ間の順方向電圧との和(例えば2.1V)以上でなければトランジスタTR27はスイッチング動作をしないため、交流電流Iaの検出閾値は実施例4の電流検出装置よりも大きな値となる。   In the current detection device of the fifth embodiment, the peak value of the pulse voltage is not greater than or equal to the sum (for example, 2.1 V) of the forward voltage of two diodes and the forward voltage between the base and emitter of the transistor TR27. Since the transistor TR27 does not perform a switching operation, the detection threshold value of the alternating current Ia is larger than that of the current detection device of the fourth embodiment.

(第3の実施形態)
第3の実施形態に係る電流検出装置は、第1の実施形態に係る電流検出装置の整流回路を半波整流回路としたものであり、電流検出装置の回路構成を簡易化できる。第3の実施形態に係る電流検出装置は、第1の実施形態に係る電流検出装置の負荷抵抗R13,14に代わり負荷抵抗R13aを用いている(負荷抵抗R13aの抵抗値は、例えば負荷抵抗R13,14の直列抵抗値に等しい)。
(Third embodiment)
In the current detection device according to the third embodiment, the rectification circuit of the current detection device according to the first embodiment is a half-wave rectification circuit, and the circuit configuration of the current detection device can be simplified. The current detection device according to the third embodiment uses a load resistor R13a instead of the load resistors R13, 14 of the current detection device according to the first embodiment (the resistance value of the load resistor R13a is, for example, the load resistor R13). , 14 series resistance value).

第3の実施形態に係る電流検出装置の一実施例(実施例6)を図7(a)に示す。第1の実施形態に係る電流検出装置と同様の機能を有する構成要素には同一の符合を附してその説明を省略する。
実施例6では、負荷抵抗R13aは検出手段20eの第1の入力端子21及び接地端子23の間に接続されている。検出手段20eは、検出手段20と同様の機能を有するが、ダイオードはCD28のみであり第2の入力端子22を有していない。従って負荷抵抗R13aの両端に発生したパルス状電圧の正極性パルスのみがダイオードCD28で半波整流されてトランジスタTR27を駆動する。
An example (Example 6) of the current detection apparatus according to the third embodiment is shown in FIG. Components having the same functions as those of the current detection device according to the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the sixth embodiment, the load resistor R13a is connected between the first input terminal 21 and the ground terminal 23 of the detection means 20e. The detection means 20e has the same function as the detection means 20, but the diode is only the CD 28 and does not have the second input terminal 22. Therefore, only the positive pulse of the pulse voltage generated at both ends of the load resistor R13a is half-wave rectified by the diode CD28 to drive the transistor TR27.

実施例6では、パルス状電圧の尖頭値がダイオードCD28とトランジスタTR27のベース・エミッタ間の順方向電圧との和が(例えば1.4V)以上のとき、トランジスタTR27をスイッチング動作させる電流が二次側コイルL12からダイオードCD28、トランジスタTR27のベース・エミッタへと流れて、図5(a)のOutと同様なパルス信号が検出手段20eの出力端子25に出力される。但し、実施例6では、ダイオードCD28の整流出力波形は図2(e)のように交流電流Iaの周期と同じ約16.7msとなり、検出手段20eが出力するパルス信号も約16.7msとなる。従って、信号変換手段30は、パルス幅約16.7mS以上、例えば18mSのパルスを発生する必要がある。このように信号変換手段30が発生するパルスの幅は交流電流Iaの周期以上必要であり、好ましくは交流電流Iaの2周期以内に設定される。   In the sixth embodiment, when the peak value of the pulse voltage is the sum of the forward voltage between the diode CD28 and the base-emitter of the transistor TR27 (for example, 1.4 V) or more, the current for switching the transistor TR27 is two. Flowing from the secondary coil L12 to the diode CD28 and the base / emitter of the transistor TR27, a pulse signal similar to Out in FIG. 5A is output to the output terminal 25 of the detection means 20e. However, in Example 6, the rectified output waveform of the diode CD28 is about 16.7 ms which is the same as the period of the alternating current Ia as shown in FIG. 2E, and the pulse signal output from the detecting means 20e is also about 16.7 ms. . Therefore, the signal conversion means 30 needs to generate a pulse having a pulse width of about 16.7 mS or more, for example, 18 mS. Thus, the width of the pulse generated by the signal conversion means 30 needs to be equal to or longer than the cycle of the alternating current Ia, and is preferably set within two cycles of the alternating current Ia.

即ち上述の実施例6の電流検出装置によれば、簡易な回路構成で、交流電流が所定値以上流れたことを交流電流の周期内に検出でき、交流電流が所定値以下になったことを交流電流の1〜2周期より遅れることなく検出することができる。   That is, according to the current detection device of Example 6 described above, with a simple circuit configuration, it can be detected that the alternating current has flowed above a predetermined value within the period of the alternating current, and the alternating current has become below the predetermined value. Detection can be performed without delay from one to two cycles of the alternating current.

図7(b)に示す電流検出装置(実施例7)は実施例6を変形したものであり、実施例1,6の電流検出装置と同様の機能を有する構成要素には同一の符合を附しその説明を省略する。
実施例7では、検出手段20fは、実施例6の検出手段20eと同様の機能を有するが、ダイオードCD28を有しない点で検出手段20eと相違する。実施例7では、パルス状電圧の正極性の尖頭値がトランジスタTR27のベース・エミッタ間の順方向電圧(例えば0.7V)以上のとき、トランジスタTR27がスイッチング動作をするため、交流電流Iaの検出閾値は実施例6の電流検出装置よりも小さい値となる。また、実施例6と同じく検出手段20fからは交流電流Iaの周期と同じ周期(約16.7ms)のパルスが出力される。
The current detection device (Example 7) shown in FIG. 7B is a modification of Example 6, and the same reference numerals are given to components having the same functions as those of the current detection devices of Examples 1 and 6. The description is omitted.
In the seventh embodiment, the detection unit 20f has the same function as the detection unit 20e of the sixth embodiment, but is different from the detection unit 20e in that the diode CD28 is not provided. In the seventh embodiment, when the positive peak value of the pulse voltage is equal to or higher than the forward voltage (for example, 0.7 V) between the base and the emitter of the transistor TR27, the transistor TR27 performs the switching operation. The detection threshold value is smaller than that of the current detection device of the sixth embodiment. As in the sixth embodiment, a pulse having the same cycle (about 16.7 ms) as the cycle of the alternating current Ia is output from the detection means 20f.

なお実施例1〜7の何れの電流検出装置もトランジスタのベースにベース電流制限抵抗を直列接続してもよい。また本発明は上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で変形して実施することができる。   In any of the current detection devices of the first to seventh embodiments, a base current limiting resistor may be connected in series to the base of the transistor. The present invention is not limited to the above-described embodiment, and can be modified and implemented without departing from the spirit of the present invention.

本発明に係る第1の実施形態に係る電流検出装置の概略構成及びその動作と波形を示す図である。It is a figure which shows schematic structure of the electric current detection apparatus which concerns on 1st Embodiment based on this invention, its operation | movement, and a waveform. 本発明において電流トランスに流れる一次側電流(交流電流)と二次側電圧(パルス状電圧)の波形例を示す図である。It is a figure which shows the example of a waveform of the primary side current (alternating current) and the secondary side voltage (pulse-like voltage) which flow into a current transformer in this invention. 本発明における電流トランスの起磁力と磁束密度を説明する特性曲線である。It is a characteristic curve explaining the magnetomotive force and magnetic flux density of the current transformer in this invention. 本発明における電流トランスが発生するパルス状電圧の実測波形例を示す図である。It is a figure which shows the example of an actual measurement waveform of the pulse voltage which the current transformer in this invention generate | occur | produces. 図5(a)〜(c)は第1の実施形態に係る電流検出装置(実施例1〜3)の概略構成を示す図である。FIGS. 5A to 5C are diagrams showing a schematic configuration of the current detection device (Examples 1 to 3) according to the first embodiment. 図6(a)及び(b)は第2の実施形態に係る電流検出装置(実施例4及び5)の概略構成を示す図である。FIGS. 6A and 6B are diagrams showing a schematic configuration of a current detection device (Examples 4 and 5) according to the second embodiment. 図7(a)及び(b)は第3の実施形態に係る電流検出装置(実施例6及び7)の概略構成を示す図である。FIGS. 7A and 7B are diagrams showing a schematic configuration of a current detection device (Examples 6 and 7) according to the third embodiment. 従来の電流検出装置の概略構成例とその一次側電流及び二次側電圧の波形例を示す図である。It is a figure which shows the example of schematic structure of the conventional electric current detection apparatus, and the waveform example of the primary side electric current and secondary side voltage.

符号の説明Explanation of symbols

Ia 交流電流
T10 電流トランス
L11 電流トランスの一次側コイル
L12 電流トランスの二次側コイル
R13,14,13a 負荷抵抗(二次側負荷)
20,20a,20b,20c,20d,20e,20f 検出手段
30 信号変換手段
Ia AC current T10 Current transformer L11 Current transformer primary coil L12 Current transformer secondary coil R13, 14, 13a Load resistance (secondary load)
20, 20a, 20b, 20c, 20d, 20e, 20f Detection means 30 Signal conversion means

Claims (3)

交流電流を電流トランスの一次側コイルに流すことにより前記電流トランスの二次側コイルに起電力を誘起させ、この起電力を検出して前記交流電流を検出する電流検出装置であって、
パルスのピーク値が高い電圧を得ることを可能にする高負荷の抵抗値を用いて、前記二次側コイルに誘起する二次側交流電流を規制し、前記交流電流の極性が反転するときに、前記二次側コイルに一次側電流の値に対応してパルス状電圧を誘起させる前記電流トランスの二次側負荷と、
前記パルス状電圧の振幅が所定の振幅以上であることを検出する検出手段と、
その検出手段が前記パルス状電圧の振幅が所定の振幅以上であることを検出したときに連続的な信号を出力する信号変換手段と、
を備えたことを特徴とする電流検出装置。
An electric current is induced in the secondary coil of the current transformer by flowing an alternating current through the primary coil of the current transformer, and the alternating current is detected by detecting the electromotive force.
When the secondary side alternating current induced in the secondary side coil is regulated by using a high load resistance value that makes it possible to obtain a voltage having a high pulse peak value, and the polarity of the alternating current is reversed A secondary load of the current transformer that induces a pulsed voltage in the secondary coil corresponding to a value of the primary current;
Detecting means for detecting that the amplitude of the pulse voltage is equal to or greater than a predetermined amplitude;
Signal converting means for outputting a continuous signal when the detecting means detects that the amplitude of the pulsed voltage is equal to or greater than a predetermined amplitude; and
A current detection device comprising:
交流電流を電流トランスの一次側コイルに流すことにより前記電流トランスの二次側コイルに起電力を誘起させ、この起電力を検出して前記交流電流を検出する電流検出装置であって、
パルスのピーク値が高い電圧を得ることを可能にする高負荷の抵抗値を用いて、前記二次側コイルに誘起する二次側交流電流を規制し、前記交流電流の極性が反転するときに、前記二次側コイルにパルス状電圧を誘起させ且つこのパルス状電圧の振幅が所定の振幅以上であることを検出する検出手段と、
その検出手段が前記パルス状電圧の振幅が所定の振幅以上であることを検出したときに連続的な信号を出力する信号変換手段と、
を備えたことを特徴とする電流検出装置。
An electric current is induced in the secondary coil of the current transformer by flowing an alternating current through the primary coil of the current transformer, and the alternating current is detected by detecting the electromotive force.
When the secondary side alternating current induced in the secondary side coil is regulated by using a high load resistance value that makes it possible to obtain a voltage having a high pulse peak value, and the polarity of the alternating current is reversed Detecting means for inducing a pulsed voltage in the secondary coil and detecting that the amplitude of the pulsed voltage is equal to or greater than a predetermined amplitude;
A signal converting means for outputting a continuous signal when the detecting means detects that the amplitude of the pulsed voltage is equal to or greater than a predetermined amplitude; and
A current detection device comprising:
前記検出手段は、前記パルス状電圧の正及び負極性パルスが所定の振幅以上であることを検出する検出手段、又は、前記パルス状電圧の正若しくは負極性パルスが所定の振幅以上であることを検出する検出手段であることを特徴とする請求項1又は2に記載の電流検出装置。  The detecting means detects that the positive and negative pulses of the pulse voltage have a predetermined amplitude or more, or the positive or negative pulse of the pulse voltage has a predetermined amplitude or more. The current detection device according to claim 1, wherein the current detection device is detection means for detecting.
JP2003276046A 2003-07-17 2003-07-17 Current detection device Expired - Fee Related JP4055196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276046A JP4055196B2 (en) 2003-07-17 2003-07-17 Current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276046A JP4055196B2 (en) 2003-07-17 2003-07-17 Current detection device

Publications (2)

Publication Number Publication Date
JP2005037297A JP2005037297A (en) 2005-02-10
JP4055196B2 true JP4055196B2 (en) 2008-03-05

Family

ID=34212489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276046A Expired - Fee Related JP4055196B2 (en) 2003-07-17 2003-07-17 Current detection device

Country Status (1)

Country Link
JP (1) JP4055196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749503A (en) * 2012-07-27 2012-10-24 成都生辉电子科技有限公司 Industrial large-current intelligent detection device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102737A (en) * 2009-11-10 2011-05-26 Shindengen Electric Mfg Co Ltd Current detection circuit
JP5820164B2 (en) 2011-07-01 2015-11-24 東光東芝メーターシステムズ株式会社 Current detection device and watt-hour meter using the same
JP7126356B2 (en) 2018-02-26 2022-08-26 三菱電機株式会社 Electric discharge machine and electric discharge machine current detection circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749503A (en) * 2012-07-27 2012-10-24 成都生辉电子科技有限公司 Industrial large-current intelligent detection device

Also Published As

Publication number Publication date
JP2005037297A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
US5408401A (en) Power source circuit with a compact size and operating efficiently at low temperature
JP2010239774A (en) Zero-cross detection device
KR920013868A (en) Ground fault detector and ground fault detection method of inverter device
ATE199112T1 (en) DC-DC CONVERTER CIRCUIT
US9768701B2 (en) Synchronous rectifier control using sensing of alternating current component
JP4055196B2 (en) Current detection device
WO2015196672A1 (en) Auxiliary power source circuit with power factor correction circuit, and control method and device therefor
KR100543276B1 (en) Switching power supply
JP7300278B2 (en) PWM controller for switching power supply
JP2007195276A (en) Power unit
JP2533774Y2 (en) DC-DC converter
KR960012667A (en) Mutual Induction Reactor Power Saving Device
JP2604263B2 (en) Magnetron drive
JPH0866023A (en) Rectifier circuit employing semiconductor element with control electrode
JP2628899B2 (en) Inverter commutation failure detection device
JP4602118B2 (en) Motor load estimation device
JP2005073430A (en) Switching power supply
JP3548923B2 (en) Switching power supply
JP2681378B2 (en) DC-DC converter
JP2002153057A (en) Switching power circuit
KR100186481B1 (en) Power control apparatus for induction cooker
JP2005278357A (en) Power supply device
JPH07288975A (en) Switching power supply
JP4318372B2 (en) Switching power supply
RU2251188C1 (en) Device for limiting induction motor shaft torque

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061004

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees