JPH0866023A - Rectifier circuit employing semiconductor element with control electrode - Google Patents

Rectifier circuit employing semiconductor element with control electrode

Info

Publication number
JPH0866023A
JPH0866023A JP17930792A JP17930792A JPH0866023A JP H0866023 A JPH0866023 A JP H0866023A JP 17930792 A JP17930792 A JP 17930792A JP 17930792 A JP17930792 A JP 17930792A JP H0866023 A JPH0866023 A JP H0866023A
Authority
JP
Japan
Prior art keywords
switching element
semiconductor element
control pole
control
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17930792A
Other languages
Japanese (ja)
Other versions
JP3226115B2 (en
Inventor
Hidekazu Shimada
英一 島田
Yasuo Kii
康夫 木井
Yoshio Suzuki
義雄 鈴木
Naoki Murakami
直樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Origin Electric Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Origin Electric Co Ltd
Priority to JP17930792A priority Critical patent/JP3226115B2/en
Publication of JPH0866023A publication Critical patent/JPH0866023A/en
Application granted granted Critical
Publication of JP3226115B2 publication Critical patent/JP3226115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE: To protect a semiconductor element with control electrode and a first switching element against breakdown by turning the semiconductor element with control electrode on/off using a voltage, induced in a transformer through a second switching element, as a control signal. CONSTITUTION: When the average value of pulse width detection voltages reaches a control reference value, a control circuit 12 provides a drive circuit 13 with a signal for turning OFF a second switching element 10 which is thereby turned OFF. Consequently, delivery of a signal to the control electrode of a semiconductor element 3 is interrupted. Since the control electrode of a semiconductor element 3 is not biased forward by an externally connected power supply 9 even if a choke coil is cut off, the semiconductor element 3 is protected against breakdown due to erroneous function and thereby a first switching element 1 is protected against breakdown due to saturation of the transformer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は,FETのような制御極
付半導体素子をコンバータの整流回路に用いて,整流回
路の高速,低損失化を図るようにした制御極付半導体素
子を用いた整流回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a semiconductor device with a control pole such as an FET in a rectifier circuit of a converter to achieve a high speed and low loss of the rectifier circuit. Regarding the rectifier circuit.

【従来の技術】図11は従来の制御極付半導体素子を用
いた整流回路を説明するための図である。同図におい
て,1はFETのような第1のスイッチング素子,2は
1次巻線N1 及び2次巻線N2 を有するトランス,3は
FETのような制御極付半導体素子,4は該制御極付半
導体素子の寄生ダイオード,5はフライホイールダイオ
ード,6はチョークコイル,7はコンデンサ,8は負荷
であり,この回路に,別途外部接続電源9が並列接続さ
れている。次にこの回路の動作を説明する。第1のスイ
ッチング素子1がオンすると,直流電源(図示せず)か
らトランス2の1次巻線N1 に電圧が印加される。従っ
て2次巻線N2 に・印側がプラスになるように電圧が誘
起する。制御極付半導体素子の寄生ダイオード4,続い
て制御極付半導体素子3がオンし,チョークコイル6,
コンデンサ7,負荷8にエネルギを供給する。次に,第
1のスイッチング素子1がオフすると,トランス2の2
次巻線N2 にフライバック電圧が発生する。この電圧に
よって制御極付半導体素子3及び制御極付半導体素子の
寄生ダイオード4がカットオフとなり,フライホイール
ダイオード5がオンし,チョークコイル6の電流を連続
して流す。次に第1のスイッチング素子1がオンし,以
下同様の動作を繰り返す。また,外部接続電源9からも
負荷8にエネルギを供給する。
2. Description of the Related Art FIG. 11 is a diagram for explaining a conventional rectifier circuit using a semiconductor device with a control electrode. In the figure, 1 is a first switching element such as an FET, 2 is a transformer having a primary winding N 1 and a secondary winding N 2 , 3 is a semiconductor element with a control pole such as FET, and 4 is the semiconductor element with a control pole. A parasitic diode of a semiconductor element with a control pole, 5 is a flywheel diode, 6 is a choke coil, 7 is a capacitor, 8 is a load, and an external connection power supply 9 is separately connected in parallel to this circuit. Next, the operation of this circuit will be described. When the first switching element 1 is turned on, a voltage is applied from the DC power supply (not shown) to the primary winding N 1 of the transformer 2. Therefore, the voltage is induced in the secondary winding N 2 so that the mark side becomes positive. The parasitic diode 4 of the semiconductor element with the control pole 4, the semiconductor element 3 with the control pole subsequently turned on, and the choke coil 6,
Energy is supplied to the capacitor 7 and the load 8. Next, when the first switching element 1 is turned off, the transformer 2
A flyback voltage is generated in the next winding N 2 . By this voltage, the semiconductor element with control pole 3 and the parasitic diode 4 of the semiconductor element with control pole are cut off, the flywheel diode 5 is turned on, and the current of the choke coil 6 is continuously supplied. Next, the first switching element 1 is turned on, and the same operation is repeated thereafter. Energy is also supplied to the load 8 from the externally connected power supply 9.

【発明が解決しようとする課題】しかし,このような従
来の制御極付半導体素子を用いた整流回路にあっては,
制御極付半導体素子3の制御極とチョークコイル6とが
接続されているので,整流回路の出力電圧に比較して並
列接続された外部接続電源9の電圧が高いと,負荷8が
軽くなるに従って,外部接続電源9の負荷分担が多くな
り整流回路の負荷分担が少なくなって,チョークコイル
6がカットオフする。このため,外部接続電源9によっ
て制御極付半導体素子3の制御極が順バイアス状態とな
って,制御極付半導体素子3が誤動作し,オンする。こ
の結果,外部接続電源9からトランス2の2次巻線
2 ,制御極付半導体素子3を通して短絡電流Is が通
流して制御極付半導体素子3が破壊すると共に,トラン
ス2が飽和して第1のスイッチング素子1が破壊すると
いう問題があった。
However, in such a conventional rectifier circuit using a semiconductor element with a control electrode,
Since the control pole of the semiconductor element with control pole 3 and the choke coil 6 are connected, when the voltage of the externally connected power supply 9 connected in parallel is higher than the output voltage of the rectifier circuit, the load 8 becomes lighter. The load sharing of the externally connected power supply 9 increases and the load sharing of the rectifier circuit decreases, and the choke coil 6 cuts off. Therefore, the external connection power supply 9 causes the control pole of the semiconductor element with control pole 3 to be in a forward bias state, causing the semiconductor element with control pole 3 to malfunction and turn on. As a result, the short-circuit current I s flows from the externally connected power source 9 through the secondary winding N 2 of the transformer 2 and the semiconductor element 3 with control pole, the semiconductor element 3 with control pole is destroyed, and the transformer 2 is saturated. There is a problem that the first switching element 1 is destroyed.

【課題を解決するための手段】本発明は以上の欠点を除
去するために,第1のスイッチング素子をオンオフさ
せ,トランスを介して交流電圧を取り出し,該交流電圧
を整流素子で整流し,チョークコイルとコンデンサとで
平滑する回路において,上記整流素子として制御極付半
導体素子を用い,該制御極付半導体素子の制御信号とし
て第2のスイッチング素子を介して上記トランスに生ず
る電圧を用いると共に,上記第2のスイッチング素子を
制御することにより上記制御極付半導体素子をオンまた
はオフさせることを特徴とする制御極付半導体素子を用
いた整流回路を提供するものである。
In order to eliminate the above drawbacks, the present invention turns on / off the first switching element, extracts an AC voltage through a transformer, rectifies the AC voltage with a rectifying element, and a choke. In a circuit for smoothing with a coil and a capacitor, a semiconductor element with a control pole is used as the rectifying element, and a voltage generated in the transformer via a second switching element is used as a control signal for the semiconductor element with a control pole. The present invention provides a rectifier circuit using a semiconductor element with a control pole, which is characterized in that the semiconductor element with a control pole is turned on or off by controlling a second switching element.

【実施例】図1は本発明の一実施例を説明するための図
であり,図2はその動作を説明するための図である。先
ず,図1により構成を説明すると,トランス2の2次巻
線N2 とチョークコイル6の接続点と制御極付半導体素
子3の制御極間には,トランジスタのような第2のスイ
ッチング素子10が接続される。該第2のスイッチング
素子10のオンオフを制御する信号は,第1のスイッチ
ング素子1の制御極に挿入されている検出回路11から
制御回路12及び駆動回路13を介して,第2のスイッ
チング素子10の制御極に伝達される。次に図1及び図
2によりこの回路の動作を説明する。第1のスイッチン
グ素子1がオンすると,直流電源(図示せず)からトラ
ンス2の1次巻線N1 に電圧が印加される。従って2次
巻線N2 に・印側がプラスになるように電圧が誘起す
る。制御極付半導体素子の寄生ダイオード4,続いて制
御極付半導体素子3がオンし,チョークコイル6,コン
デンサ7,負荷8にエネルギを供給する。次に,第1の
スイッチング素子1がオフすると,トランス2の2次巻
線N2 にフライバック電圧が発生する。この電圧によっ
て制御極付半導体素子3及び制御極付半導体素子の寄生
ダイオード4がカットオフとなり,フライホイールダイ
オード5がオンし,チョークコイル6の電流を連続して
流す。次に第1のスイッチング素子1がオンし,以下同
様の動作を繰り返す。また,外部接続電源9からも負荷
8にエネルギを供給する。このような動作状態の時に,
負荷8を通流する電流が少なくなると,図2(a)に示
すように第1のスイッチング素子1を駆動する駆動信号
のパルス幅が狭くなる。図2(b)に示すように検出回
路11が検出するパルス幅検出電圧の平均電圧値が制御
基準値に達すると,制御回路12は図2(c)に示すよ
うな第2のスイッチング素子10をオフさせる信号を駆
動回路13に伝達し,該駆動回路13は図2(d)に示
すように第2のスイッチング素子10をオフさせる。第
2のスイッチング素子10がオフすることにより,制御
極付半導体素子3の制御極への信号が図2(e)に示す
ように遮断される。従って,チョークコイル6がカット
オフしても,そのために外部接続電源9によって制御極
付半導体素子3の制御極が順バイアス状態になることは
なく,制御極付半導体素子3の誤動作による制御極付半
導体素子3の破壊が防止されると共に,トランス2の飽
和による第1のスイッチング素子1の破壊も防止され
る。また,負荷8を通流する電流が多くなると,図2
(a)に示すように第1のスイッチング素子を駆動する
駆動信号のパルス幅が広くなる。図2(b)に示すよう
に,検出回路11が検出するパルス幅検出電圧の平均電
圧値が制御基準値に達すると,制御回路12は図2
(c)に示すような第2のスイッチング素子10をオン
させる信号を駆動回路13に伝達し,該駆動回路13は
図2(d)に示すように第2のスイッチング素子10を
オンさせる。第2のスイッチング素子10がオンするこ
とにより,制御極付半導体素子3の制御極へ図2(e)
に示すように信号が再び伝達され,通常の動作状態に復
帰する。図3は本発明の他の一実施例を説明するための
図であり,図4はその動作を説明するための図である。
先ず,図3により構成を説明すると,トランス2の2次
巻線N2 とチョークコイル6の接続点と制御極付半導体
素子3の制御極間には,第2のスイッチング素子10が
接続される。該第2のスイッチング素子10のオンオフ
を制御する信号は,出力電流の通流路に挿入されている
検出回路11から制御回路12及び駆動回路13を介し
て,第2のスイッチング素子10の制御極に伝達され
る。次に図3及び図4によりこの回路の動作を説明す
る。第1のスイッチング素子1がオンし,トランス2の
2次巻線N2 に・印側がプラスになるように電圧が誘起
すると,制御極付半導体素子の寄生ダイオード4,続い
て制御極付半導体素子3がオンし,チョークコイル6,
コンデンサ7,負荷8にエネルギを供給する。次に,第
1のスイッチング素子1がオフすると,トランス2の2
次巻線N2 にフライバック電圧が発生し,この電圧によ
って制御極付半導体素子3及び制御極付半導体素子の寄
生ダイオード4がカットオフとなり,フライホイールダ
イオード5がオンし,チョークコイル6の電流を連続し
て流す。次に第1のスイッチング素子1がオンし,以下
同様の動作を繰り返す。また,外部接続電源9からも負
荷8にエネルギを供給する。このような動作状態の時
に,負荷8を通流する電流が少なくなると,図4(a)
に示すように第1のスイッチング素子1を駆動する駆動
信号のパルス幅が狭くなる。図4(b)に示すように検
出回路11が検出する出力電流検出値が制御基準値に達
すると,制御回路12は図4(c)に示すような第2の
スイッチング素子10をオフさせる信号を駆動回路13
に伝達し,該駆動回路13は図4(d)に示すように第
2のスイッチング素子10をオフさせる。第2のスイッ
チング素子10がオフすることにより,制御極付半導体
素子3の制御極への信号が図4(e)に示すように遮断
される。従って,チョークコイル6がカットオフして
も,そのために外部接続電源9によって制御極付半導体
素子3の制御極が順バイアス状態になることはなく,制
御極付半導体素子3の誤動作による制御極付半導体素子
3の破壊が防止されると共に,トランス2の飽和による
第1のスイッチング素子1の破壊も防止される。また,
負荷8を通流する電流が多くなると,図4(a)に示す
ように第1のスイッチング素子を駆動する駆動信号のパ
ルス幅が広くなる。図4(b)に示すように,検出回路
11が検出する出力電流検出値が制御基準値に達する
と,制御回路12は図4(c)に示すような第2のスイ
ッチング素子10をオンさせる信号を駆動回路13に伝
達し,該駆動回路13は図4(d)に示すように第2の
スイッチング素子10をオンさせる。第2のスイッチン
グ素子10がオンすることにより,制御極付半導体素子
3の制御極へ図4(e)に示すように信号が再び伝達さ
れ,通常の動作状態に復帰する。図5は本発明の他の一
実施例を説明するための図であり,図6はその動作を説
明するための図である。先ず,図5により構成を説明す
ると,トランス2の2次巻線N2 とチョークコイル6の
接続点と制御極付半導体素子3の制御極間には,第2の
スイッチング素子10が接続される。チョークコイル6
の2次巻線の電圧を検出して得られる第2のスイッチン
グ素子10のオンオフを制御する信号は,制御回路12
及び駆動回路13を介して,第2のスイッチング素子1
0の制御極に伝達される。次に図5及び図6によりこの
回路の動作を説明する。第1のスイッチング素子1がオ
ンし,トランス2の2次巻線N2 に・印側がプラスにな
るように電圧が誘起すると,制御極付半導体素子の寄生
ダイオード4,続いて制御極付半導体素子3がオンし,
チョークコイル6,コンデンサ7,負荷8にエネルギを
供給する。次に,第1のスイッチング素子1がオフする
と,トランス2の2次巻線N2 にフライバック電圧が発
生し,この電圧によって制御極付半導体素子3及び制御
極付半導体素子の寄生ダイオード4がカットオフとな
り,フライホイールダイオード5がオンし,チョークコ
イル6の電流を連続して流す。次に第1のスイッチング
素子1がオンし,以下同様の動作を繰り返す。また,外
部接続電源9からも負荷8にエネルギを供給する。この
ような動作状態の時に,図6(a)に示すように負荷8
を通流する電流が少なくなると,図6(b)に示すよう
にチョークコイル6を通流する電流が少なくなり,図6
(c)に示すように第1のスイッチング素子1を駆動す
る駆動信号のパルス幅が狭くなって,図6(d)に示す
ようにチョークコイル6の検出電圧のパルス幅も狭くな
る。図6(d)に示す電圧を波形整形した図6(e)に
示すような電圧の平均電圧値が図6(f)に示すように
制御基準値に達すると,制御回路12は図6(g)に示
すような第2のスイッチング素子10をオフさせる信号
を駆動回路13に伝達し,該駆動回路13は図6(h)
に示すように第2のスイッチング素子10をオフさせ
る。第2のスイッチング素子10がオフすることによ
り,制御極付半導体素子3の制御極への信号が図6
(i)に示すように遮断される。従って,チョークコイ
ル6がカットオフしても,そのために外部接続電源9に
よって制御極付半導体素子3の制御極が順バイアス状態
になることはなく,制御極付半導体素子3の誤動作によ
る制御極付半導体素子3の破壊が防止されると共に,ト
ランス2の飽和による第1のスイッチング素子1の破壊
も防止される。また,図6(a)に示すように負荷8を
通流する電流が多くなると,図6(b)に示すようにチ
ョークコイル6を通流する電流が多くなり,図6(c)
に示すように第1のスイッチング素子1を駆動する駆動
信号のパルス幅が広くなって,図6(d)に示すように
チョークコイル6の検出電圧のパルス幅も広くなる。図
6(d)に示す電圧を波形整形した図6(e)に示すよ
うな電圧の平均電圧値が図6(f)に示すように制御基
準値に達すると,制御回路12は図6(g)に示すよう
な第2のスイッチング素子10をオンさせる信号を駆動
回路13に伝達し,該駆動回路13は図6(h)に示す
ように第2のスイッチング素子10をオンさせる。第2
のスイッチング素子10がオンすることにより,制御極
付半導体素子3の制御極へ図6(i)に示すように信号
が再び伝達され,通常の動作状態に復帰する。図7は本
発明の他の一実施例を説明するための図であり,図8は
その動作を説明するための図である。先ず,図7により
構成を説明すると,トランス2の2次巻線N2 とチョー
クコイル6の接続点と制御極付半導体素子3の制御極間
には,第2のスイッチング素子10が接続される。該第
2のスイッチング素子10のオンオフを制御する信号
は,入力電流の通流路に挿入されている検出回路11か
ら制御回路12及び駆動回路13を介して,第2のスイ
ッチング素子10の制御極に伝達される。次に図7及び
図8によりこの回路の動作を説明する。第1のスイッチ
ング素子1がオンし,トランス2の2次巻線N2 に・印
側がプラスになるように電圧が誘起すると,制御極付半
導体素子の寄生ダイオード4,続いて制御極付半導体素
子3がオンし,チョークコイル6,コンデンサ7,負荷
8にエネルギを供給する。次に,第1のスイッチング素
子1がオフすると,トランス2の2次巻線N2 にフライ
バック電圧が発生し,この電圧によって制御極付半導体
素子3及び制御極付半導体素子の寄生ダイオード4がカ
ットオフとなり,フライホイールダイオード5がオン
し,チョークコイル6の電流を連続して流す。次に第1
のスイッチング素子1がオンし,以下同様の動作を繰り
返す。また,外部接続電源9からも負荷8にエネルギを
供給する。第1のスイッチング素子1の制御極には図8
(a)に示すようなパルスが印加されており,図8
(b)に示す入力電流値が制御基準値以上の場合に,図
8(c)に示すように入力電流パルスの立ち上がり時に
入力電流よりも僅かにパルス幅の広いワンショットのパ
ルスを発生し,図8(d)に示すように入力電流パルス
の立ち下がり時に入力電流よりも僅かにパルス幅の広い
ワンショットのパルスを発生すると共に,図8(c)及
び図8(d)に示すパルスのORをとって得られた図8
(e)に示す制御信号を制御回路12が駆動回路13に
伝達し,駆動回路13は第2のスイッチング素子10を
駆動し,制御する。このような動作状態の時に,負荷8
を通流する電流が少なくなると,図8(a)に示すよう
に第1のスイッチング素子1を駆動する駆動信号のパル
ス幅が狭くなって,図8(b)に示すように検出回路1
1を通流する入力電流も少なくなる。図8(b)に示す
入力電流値が制御基準値未満になると,図8(b)及び
図8(b)に示すようにワンショットのパルスを発生し
なくなり,制御回路12は図8(e)に示すような第2
のスイッチング素子10をオフさせる信号を駆動回路1
3に伝達し,該駆動回路13は図8(f)に示すように
第2のスイッチング素子10をオフさせる。第2のスイ
ッチング素子10がオフすることにより,制御極付半導
体素子3の制御極への信号が図8(g)に示すように遮
断される。従って,チョークコイル6がカットオフして
も,そのために外部接続電源9によって制御極付半導体
素子3の制御極が順バイアス状態になることはなく,制
御極付半導体素子3の誤動作による制御極付半導体素子
3の破壊が防止されると共に,トランス2の飽和による
第1のスイッチング素子1の破壊も防止される。また,
負荷8を通流する電流が多くなると,図8(a)に示す
ように第1のスイッチング素子1を駆動する駆動信号の
パルス幅が広くなって,図8(b)に示すように検出回
路11を通流する入力電流も多くなる。図8(b)に示
す入力電流値が制御基準値以上になると,図8(b)及
び図8(b)に示すようにワンショットのパルスを発生
し始め,制御回路12は図8(e)に示すような第2の
スイッチング素子10をオンさせる信号を駆動回路13
に伝達し,該駆動回路13は図8(f)に示すように第
2のスイッチング素子10をオンさせる。第2のスイッ
チング素子10がオンすることにより,制御極付半導体
素子3の制御極へ図8(g)に示すように信号が再び伝
達され,通常の動作状態に復帰する。図9は本発明の他
の一実施例を説明するための図であり,図10はその動
作を説明するための図である。先ず,図9により構成を
説明すると,トランス2の2次巻線N2 とチョークコイ
ル6の接続点と制御極付半導体素子3の制御極間には,
第2のスイッチング素子10が接続される。該第2のス
イッチング素子10のオンオフを制御する信号は,第1
のスイッチング素子1の制御極に挿入されている検出回
路11から駆動回路13を介して第2のスイッチング素
子10の制御極に伝達される。次に図9及び図10によ
りこの回路の動作を説明する。第1のスイッチング素子
1がオンし,トランス2の2次巻線N2 に・印側がプラ
スになるように電圧が誘起すると,制御極付半導体素子
の寄生ダイオード4,続いて制御極付半導体素子3がオ
ンし,チョークコイル6,コンデンサ7,負荷8にエネ
ルギを供給する。次に,第1のスイッチング素子1がオ
フすると,トランス2の2次巻線N2 にフライバック電
圧が発生し,この電圧によって制御極付半導体素子3及
び制御極付半導体素子の寄生ダイオード4がカットオフ
となり,フライホイールダイオード5がオンし,チョー
クコイル6の電流を連続して流す。次に第1のスイッチ
ング素子1がオンし,以下同様の動作を繰り返す。ま
た,外部接続電源9からも負荷8にエネルギを供給す
る。このような動作状態の時に,負荷8を通流する電流
が少なくなると,図10(a)に示すように第1のスイ
ッチング素子1を駆動する駆動信号のパルス幅が狭くな
る。検出回路11は図10(a)に示すパルス幅の狭く
なった駆動信号を検出して駆動回路13に伝達し,駆動
回路13はこの信号に従って第2のスイッチング素子1
0を駆動する。このように,負荷8を通流する電流が少
なくなっても,第2のスイッチング素子10はオンオフ
を繰り返しているので,制御極付半導体素子3の制御極
への信号は図10(c)に示すようになり,制御極付半
導体素子3はオンオフを繰り返す。従って,チョークコ
イル6がカットオフしても,そのために外部接続電源9
によって制御極付半導体素子3の制御極が順バイアス状
態になることはなく,制御極付半導体素子3の誤動作に
よる制御極付半導体素子3の破壊が防止されると共に,
トランス2の飽和による第1のスイッチング素子1の破
壊も防止される。また,負荷8を通流する電流が多くな
ると,図10(a)に示すように第1のスイッチング素
子1を駆動する駆動信号のパルス幅が広くなる。検出回
路11は図10(a)に示すパルス幅の広くなった駆動
信号を検出して駆動回路13に伝達し,駆動回路13は
この信号に従って第2のスイッチング素子10を駆動す
る。このようにして,第2のスイッチング素子10はオ
ンオフを繰り返すので,制御極付半導体素子3の制御極
への信号は図10(c)に示すようになり,制御極付半
導体素子3はオンオフを繰り返す。
1 is a diagram for explaining an embodiment of the present invention, and FIG. 2 is a diagram for explaining the operation thereof. First, explaining the structure by Figure 1, the control machining gap of the secondary winding N 2 and the connection point between the control Kiwametsuki semiconductor device 3 of the choke coil 6 of the transformer 2, the second switching element such as a transistor 10 Are connected. A signal for controlling ON / OFF of the second switching element 10 is transmitted from the detection circuit 11 inserted in the control pole of the first switching element 1 to the second switching element 10 via the control circuit 12 and the drive circuit 13. Is transmitted to the control pole of. Next, the operation of this circuit will be described with reference to FIGS. When the first switching element 1 is turned on, a voltage is applied from the DC power supply (not shown) to the primary winding N 1 of the transformer 2. Therefore, the voltage is induced in the secondary winding N 2 so that the mark side becomes positive. The parasitic diode 4 of the semiconductor element with a control pole, and subsequently the semiconductor element 3 with a control pole are turned on to supply energy to the choke coil 6, the capacitor 7 and the load 8. Next, when the first switching element 1 is turned off, a flyback voltage is generated in the secondary winding N 2 of the transformer 2. By this voltage, the semiconductor element with control pole 3 and the parasitic diode 4 of the semiconductor element with control pole are cut off, the flywheel diode 5 is turned on, and the current of the choke coil 6 is continuously supplied. Next, the first switching element 1 is turned on, and the same operation is repeated thereafter. Energy is also supplied to the load 8 from the externally connected power supply 9. In such an operating state,
When the current flowing through the load 8 decreases, the pulse width of the drive signal for driving the first switching element 1 becomes narrow as shown in FIG. When the average voltage value of the pulse width detection voltage detected by the detection circuit 11 reaches the control reference value as shown in FIG. 2B, the control circuit 12 causes the second switching element 10 as shown in FIG. Is transmitted to the drive circuit 13, and the drive circuit 13 turns off the second switching element 10 as shown in FIG. When the second switching element 10 is turned off, the signal to the control pole of the semiconductor element 3 with a control pole is cut off as shown in FIG. Therefore, even if the choke coil 6 is cut off, the control pole of the semiconductor element 3 with control pole is not forward biased by the externally connected power supply 9, and the control pole with semiconductor element 3 with control pole is malfunctioned. The breakdown of the semiconductor element 3 is prevented, and the breakdown of the first switching element 1 due to the saturation of the transformer 2 is also prevented. In addition, when the current flowing through the load 8 increases, as shown in FIG.
As shown in (a), the pulse width of the drive signal for driving the first switching element becomes wider. As shown in FIG. 2B, when the average voltage value of the pulse width detection voltage detected by the detection circuit 11 reaches the control reference value, the control circuit 12 operates as shown in FIG.
A signal for turning on the second switching element 10 as shown in (c) is transmitted to the drive circuit 13, and the drive circuit 13 turns on the second switching element 10 as shown in FIG. 2 (d). When the second switching element 10 is turned on, the second switching element 10 is turned on to the control pole of the semiconductor element 3 with a control pole.
The signal is transmitted again as shown in, and the normal operation state is restored. FIG. 3 is a diagram for explaining another embodiment of the present invention, and FIG. 4 is a diagram for explaining the operation thereof.
First, explaining the structure by Figure 3, the control machining gap of the secondary winding N 2 and the connection point between the control Kiwametsuki semiconductor device 3 of the choke coil 6 of the transformer 2, the second switching element 10 is connected . The signal for controlling the on / off of the second switching element 10 is transmitted from the detection circuit 11 inserted in the flow path of the output current through the control circuit 12 and the drive circuit 13 to the control pole of the second switching element 10. Be transmitted to. Next, the operation of this circuit will be described with reference to FIGS. When the first switching element 1 is turned on and a voltage is induced in the secondary winding N 2 of the transformer 2 such that the mark side becomes positive, the parasitic diode 4 of the semiconductor element with control pole, and subsequently the semiconductor element with control pole 3 turns on, choke coil 6,
Energy is supplied to the capacitor 7 and the load 8. Next, when the first switching element 1 is turned off, the transformer 2
A flyback voltage is generated in the next winding N 2 , and the voltage causes the semiconductor element with control pole 3 and the parasitic diode 4 of the semiconductor element with control pole to be cut off, the flywheel diode 5 to be turned on, and the current of the choke coil 6 to be turned on. To flow continuously. Next, the first switching element 1 is turned on, and the same operation is repeated thereafter. Energy is also supplied to the load 8 from the externally connected power supply 9. When the current flowing through the load 8 decreases in such an operating state, as shown in FIG.
As shown in, the pulse width of the drive signal for driving the first switching element 1 becomes narrow. When the detected output current value detected by the detection circuit 11 reaches the control reference value as shown in FIG. 4B, the control circuit 12 outputs a signal for turning off the second switching element 10 as shown in FIG. 4C. Drive circuit 13
Then, the drive circuit 13 turns off the second switching element 10 as shown in FIG. 4 (d). When the second switching element 10 is turned off, the signal to the control pole of the semiconductor element 3 with a control pole is cut off as shown in FIG. Therefore, even if the choke coil 6 is cut off, the control pole of the semiconductor element 3 with control pole is not forward biased by the externally connected power supply 9, and the control pole with semiconductor element 3 with control pole is malfunctioned. The breakdown of the semiconductor element 3 is prevented, and the breakdown of the first switching element 1 due to the saturation of the transformer 2 is also prevented. Also,
As the current flowing through the load 8 increases, the pulse width of the drive signal for driving the first switching element becomes wider as shown in FIG. As shown in FIG. 4B, when the output current detection value detected by the detection circuit 11 reaches the control reference value, the control circuit 12 turns on the second switching element 10 as shown in FIG. 4C. The signal is transmitted to the drive circuit 13, and the drive circuit 13 turns on the second switching element 10 as shown in FIG. When the second switching element 10 is turned on, the signal is transmitted again to the control pole of the semiconductor element 3 with control pole as shown in FIG. 4 (e), and the normal operation state is restored. FIG. 5 is a diagram for explaining another embodiment of the present invention, and FIG. 6 is a diagram for explaining the operation thereof. First, explaining the structure by 5, the control machining gap of the secondary winding N 2 and the connection point between the control Kiwametsuki semiconductor device 3 of the choke coil 6 of the transformer 2, the second switching element 10 is connected . Choke coil 6
The signal for controlling the on / off of the second switching element 10 obtained by detecting the voltage of the secondary winding of
And the second switching element 1 via the drive circuit 13.
0 is transmitted to the control pole. Next, the operation of this circuit will be described with reference to FIGS. When the first switching element 1 is turned on and a voltage is induced in the secondary winding N 2 of the transformer 2 such that the mark side becomes positive, the parasitic diode 4 of the semiconductor element with control pole, and subsequently the semiconductor element with control pole 3 turns on,
Energy is supplied to the choke coil 6, the capacitor 7, and the load 8. Next, when the first switching element 1 is turned off, a flyback voltage is generated in the secondary winding N 2 of the transformer 2, and this voltage causes the semiconductor element with control pole 3 and the parasitic diode 4 of the semiconductor element with control pole to be generated. It is cut off, the flywheel diode 5 is turned on, and the current of the choke coil 6 is continuously supplied. Next, the first switching element 1 is turned on, and the same operation is repeated thereafter. Energy is also supplied to the load 8 from the externally connected power supply 9. In such an operating state, as shown in FIG.
When the current flowing through the choke coil 6 decreases, the current flowing through the choke coil 6 decreases as shown in FIG.
As shown in FIG. 6C, the pulse width of the drive signal for driving the first switching element 1 becomes narrower, and as shown in FIG. 6D, the pulse width of the detection voltage of the choke coil 6 also becomes narrower. When the average voltage value of the voltage shown in FIG. 6 (e) obtained by waveform shaping the voltage shown in FIG. 6 (d) reaches the control reference value as shown in FIG. 6 (f), the control circuit 12 causes the control circuit 12 A signal for turning off the second switching element 10 as shown in g) is transmitted to the drive circuit 13, and the drive circuit 13 outputs the signal shown in FIG.
As shown in, the second switching element 10 is turned off. When the second switching element 10 is turned off, the signal to the control pole of the semiconductor element 3 with a control pole is changed to that shown in FIG.
It is shut off as shown in (i). Therefore, even if the choke coil 6 is cut off, the control pole of the semiconductor element 3 with control pole is not forward biased by the externally connected power supply 9, and the control pole with semiconductor element 3 with control pole is malfunctioned. The breakdown of the semiconductor element 3 is prevented, and the breakdown of the first switching element 1 due to the saturation of the transformer 2 is also prevented. Further, as the current flowing through the load 8 increases as shown in FIG. 6 (a), the current flowing through the choke coil 6 also increases as shown in FIG. 6 (b).
As shown in FIG. 6A, the pulse width of the drive signal for driving the first switching element 1 becomes wider, and as shown in FIG. 6D, the pulse width of the detection voltage of the choke coil 6 also becomes wider. When the average voltage value of the voltage shown in FIG. 6 (e) obtained by waveform shaping the voltage shown in FIG. 6 (d) reaches the control reference value as shown in FIG. 6 (f), the control circuit 12 causes the control circuit 12 A signal for turning on the second switching element 10 as shown in g) is transmitted to the drive circuit 13, and the drive circuit 13 turns on the second switching element 10 as shown in FIG. Second
When the switching element 10 is turned on, the signal is again transmitted to the control pole of the semiconductor element 3 with control pole as shown in FIG. 6 (i), and the normal operation state is restored. FIG. 7 is a diagram for explaining another embodiment of the present invention, and FIG. 8 is a diagram for explaining the operation thereof. First, explaining the structure by 7, the control machining gap of the secondary winding N 2 and the connection point between the control Kiwametsuki semiconductor device 3 of the choke coil 6 of the transformer 2, the second switching element 10 is connected . The signal for controlling the on / off of the second switching element 10 is transmitted from the detection circuit 11 inserted in the flow path of the input current through the control circuit 12 and the drive circuit 13 to the control pole of the second switching element 10. Be transmitted to. Next, the operation of this circuit will be described with reference to FIGS. When the first switching element 1 is turned on and a voltage is induced in the secondary winding N 2 of the transformer 2 such that the mark side becomes positive, the parasitic diode 4 of the semiconductor element with control pole, and subsequently the semiconductor element with control pole 3 is turned on to supply energy to the choke coil 6, the capacitor 7 and the load 8. Next, when the first switching element 1 is turned off, a flyback voltage is generated in the secondary winding N 2 of the transformer 2, and this voltage causes the semiconductor element with control pole 3 and the parasitic diode 4 of the semiconductor element with control pole to be generated. It is cut off, the flywheel diode 5 is turned on, and the current of the choke coil 6 is continuously supplied. Then the first
The switching element 1 is turned on, and the same operation is repeated thereafter. Energy is also supplied to the load 8 from the externally connected power supply 9. The control pole of the first switching element 1 is shown in FIG.
A pulse as shown in FIG.
When the input current value shown in (b) is greater than or equal to the control reference value, a one-shot pulse having a pulse width slightly wider than the input current is generated at the rising of the input current pulse as shown in FIG. 8 (c). As shown in FIG. 8 (d), a one-shot pulse having a pulse width slightly wider than the input current is generated at the fall of the input current pulse, and at the same time as the pulse shown in FIG. 8 (c) and FIG. 8 (d). Figure 8 obtained by taking the OR
The control circuit 12 transmits the control signal shown in (e) to the drive circuit 13, and the drive circuit 13 drives and controls the second switching element 10. In such an operating state, the load 8
When the current flowing therethrough is reduced, the pulse width of the drive signal for driving the first switching element 1 is narrowed as shown in FIG. 8A, and the detection circuit 1 is fed as shown in FIG. 8B.
The input current flowing through 1 also decreases. When the input current value shown in FIG. 8 (b) becomes less than the control reference value, one-shot pulse is no longer generated as shown in FIGS. 8 (b) and 8 (b), and the control circuit 12 causes ) As shown in
A signal for turning off the switching element 10 of the driving circuit 1
3 and the drive circuit 13 turns off the second switching element 10 as shown in FIG. 8 (f). When the second switching element 10 is turned off, the signal to the control pole of the semiconductor element 3 with a control pole is cut off as shown in FIG. 8 (g). Therefore, even if the choke coil 6 is cut off, the control pole of the semiconductor element 3 with control pole is not forward biased by the externally connected power supply 9, and the control pole with semiconductor element 3 with control pole is malfunctioned. The breakdown of the semiconductor element 3 is prevented, and the breakdown of the first switching element 1 due to the saturation of the transformer 2 is also prevented. Also,
When the current flowing through the load 8 increases, the pulse width of the drive signal for driving the first switching element 1 becomes wider as shown in FIG. 8A, and the detection circuit as shown in FIG. The input current flowing through 11 also increases. When the input current value shown in FIG. 8 (b) becomes equal to or higher than the control reference value, a one-shot pulse starts to be generated as shown in FIGS. 8 (b) and 8 (b), and the control circuit 12 causes FIG. Signal for turning on the second switching element 10 as shown in FIG.
Then, the drive circuit 13 turns on the second switching element 10 as shown in FIG. When the second switching element 10 is turned on, a signal is transmitted again to the control pole of the semiconductor element 3 with control pole as shown in FIG. 8 (g), and the normal operation state is restored. FIG. 9 is a diagram for explaining another embodiment of the present invention, and FIG. 10 is a diagram for explaining the operation thereof. First, the configuration will be described with reference to FIG. 9. Between the connection point of the secondary winding N 2 of the transformer 2 and the choke coil 6 and the control pole of the semiconductor element 3 with control pole,
The second switching element 10 is connected. The signal for controlling the on / off of the second switching element 10 is the first
Is transmitted from the detection circuit 11 inserted in the control pole of the switching element 1 to the control pole of the second switching element 10 via the drive circuit 13. Next, the operation of this circuit will be described with reference to FIGS. When the first switching element 1 is turned on and a voltage is induced in the secondary winding N 2 of the transformer 2 such that the mark side becomes positive, the parasitic diode 4 of the semiconductor element with control pole, and subsequently the semiconductor element with control pole 3 is turned on to supply energy to the choke coil 6, the capacitor 7 and the load 8. Next, when the first switching element 1 is turned off, a flyback voltage is generated in the secondary winding N 2 of the transformer 2, and this voltage causes the semiconductor element with control pole 3 and the parasitic diode 4 of the semiconductor element with control pole to be generated. It is cut off, the flywheel diode 5 is turned on, and the current of the choke coil 6 is continuously supplied. Next, the first switching element 1 is turned on, and the same operation is repeated thereafter. Energy is also supplied to the load 8 from the externally connected power supply 9. When the current flowing through the load 8 decreases in such an operating state, the pulse width of the drive signal for driving the first switching element 1 becomes narrow as shown in FIG. The detection circuit 11 detects the drive signal with the narrow pulse width shown in FIG. 10A and transmits it to the drive circuit 13, and the drive circuit 13 follows the signal and outputs the second switching element 1
Drive 0. As described above, even when the current flowing through the load 8 decreases, the second switching element 10 is repeatedly turned on and off, so that the signal to the control pole of the semiconductor element with control pole 3 is shown in FIG. As shown in the figure, the semiconductor device 3 with a control electrode is repeatedly turned on and off. Therefore, even if the choke coil 6 is cut off, the external connection power source 9
As a result, the control pole of the semiconductor element with control pole 3 is not in a forward bias state, and the semiconductor element with control pole 3 is prevented from being broken due to malfunction of the semiconductor element with control pole 3.
The destruction of the first switching element 1 due to the saturation of the transformer 2 is also prevented. Further, when the current flowing through the load 8 increases, the pulse width of the drive signal for driving the first switching element 1 becomes wider as shown in FIG. The detection circuit 11 detects the drive signal having the wider pulse width shown in FIG. 10A and transmits it to the drive circuit 13, and the drive circuit 13 drives the second switching element 10 in accordance with this signal. Since the second switching element 10 is repeatedly turned on and off in this manner, the signal to the control pole of the semiconductor element 3 with a control pole becomes as shown in FIG. 10C, and the semiconductor element 3 with a control pole turns on and off. repeat.

【発明の効果】以上述べたように,本発明によれば,並
列接続運転を行っても,軽負荷時に外部接続電源によっ
て制御極付半導体素子の制御極が順バイアス状態になる
ことはなく,制御極付半導体素子の誤動作による制御極
付半導体素子の破壊が防止されると共に,トランスの飽
和による第1のスイッチング素子の破壊も防止される。
As described above, according to the present invention, even if the parallel connection operation is performed, the control pole of the semiconductor element with the control pole is not forward biased by the externally connected power source when the load is light. The destruction of the semiconductor element with the control pole due to the malfunction of the semiconductor element with the control pole is prevented, and the destruction of the first switching element due to the saturation of the transformer is also prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための図である。FIG. 1 is a diagram for explaining an embodiment of the present invention.

【図2】本発明の一実施例を説明するための図である。FIG. 2 is a diagram for explaining an example of the present invention.

【図3】本発明の一実施例を説明するための図である。FIG. 3 is a diagram for explaining an example of the present invention.

【図4】本発明の一実施例を説明するための図である。FIG. 4 is a diagram for explaining an example of the present invention.

【図5】本発明の一実施例を説明するための図である。FIG. 5 is a diagram for explaining one embodiment of the present invention.

【図6】本発明の一実施例を説明するための図である。FIG. 6 is a diagram for explaining an example of the present invention.

【図7】本発明の一実施例を説明するための図である。FIG. 7 is a diagram for explaining an example of the present invention.

【図8】本発明の一実施例を説明するための図である。FIG. 8 is a diagram for explaining an example of the present invention.

【図9】本発明の一実施例を説明するための図である。FIG. 9 is a diagram for explaining an example of the present invention.

【図10】本発明の一実施例を説明するための図であ
る。
FIG. 10 is a diagram for explaining an example of the present invention.

【図11】従来例を説明するための図である。FIG. 11 is a diagram for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1…第1のスイッチング素子 2…トランス 3…制御極付半導体素子 4…制御極付半導体素子の寄生ダイオード 5…フライホイールダイオード 6…チョークコ
イル 7…コンデンサ 8…負荷 9…外部接続電源 10…第2のスイ
ッチング素子 11…検出回路 12…制御回路 13…駆動回路
DESCRIPTION OF SYMBOLS 1 ... 1st switching element 2 ... Transformer 3 ... Semiconductor element with a control pole 4 ... Parasitic diode of a semiconductor element with a control pole 5 ... Flywheel diode 6 ... Choke coil 7 ... Capacitor 8 ... Load 9 ... External power supply 10 ... 2 switching element 11 ... Detection circuit 12 ... Control circuit 13 ... Drive circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 義雄 東京都豊島区高田1丁目18番1号 オリジ ン電気株式会社内 (72)発明者 村上 直樹 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshio Suzuki 1-18-1 Takada, Toshima-ku, Tokyo Inside Origin Electric Co., Ltd. (72) Inventor Naoki Murakami 1-1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Date Inside Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1のスイッチング素子をオンオフさ
せ,トランスを介して交流電圧を取り出し,該交流電圧
を整流素子で整流し,チョークコイルとコンデンサとで
平滑する回路において, 上記整流素子として制御極付半導体素子を用い,該制御
極付半導体素子の制御信号として第2のスイッチング素
子を介して上記トランスに生ずる電圧を用いると共に,
上記第2のスイッチング素子を制御することにより上記
制御極付半導体素子をオンまたはオフさせることを特徴
とする制御極付半導体素子を用いた整流回路。
1. A circuit in which a first switching element is turned on and off, an AC voltage is taken out through a transformer, the AC voltage is rectified by a rectifying element, and smoothed by a choke coil and a capacitor, and the control pole is used as the rectifying element. And a voltage generated in the transformer via the second switching element is used as a control signal for the semiconductor element with a control pole.
A rectifier circuit using a semiconductor element with a control pole, wherein the semiconductor element with a control pole is turned on or off by controlling the second switching element.
【請求項2】 上記第1のスイッチング素子を駆動する
駆動信号により上記第2のスイッチング素子を制御する
ことを特徴とする請求項1記載の制御極付半導体素子を
用いた整流回路。
2. A rectifier circuit using a semiconductor element with a control electrode according to claim 1, wherein the second switching element is controlled by a drive signal for driving the first switching element.
【請求項3】 出力電流を検出して得られた信号により
上記第2のスイッチング素子を制御することを特徴とす
る請求項1記載の制御極付半導体素子を用いた整流回
路。
3. A rectifier circuit using a semiconductor element with a control electrode according to claim 1, wherein the second switching element is controlled by a signal obtained by detecting an output current.
【請求項4】 上記チョークコイルの2次巻線の電圧を
検出して得られた信号により上記第2のスイッチング素
子を制御することを特徴とする請求項1記載の制御極付
半導体素子を用いた整流回路。
4. The semiconductor device with a control pole according to claim 1, wherein the second switching element is controlled by a signal obtained by detecting the voltage of the secondary winding of the choke coil. There was a rectifier circuit.
【請求項5】 入力電流を検出して得られた信号により
上記第2のスイッチング素子を制御することを特徴とす
る請求項1記載の制御極付半導体素子を用いた整流回
路。
5. A rectifier circuit using a semiconductor device with a control electrode according to claim 1, wherein the second switching device is controlled by a signal obtained by detecting an input current.
JP17930792A 1992-06-12 1992-06-12 Rectifier circuit using semiconductor element with control pole Expired - Lifetime JP3226115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17930792A JP3226115B2 (en) 1992-06-12 1992-06-12 Rectifier circuit using semiconductor element with control pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17930792A JP3226115B2 (en) 1992-06-12 1992-06-12 Rectifier circuit using semiconductor element with control pole

Publications (2)

Publication Number Publication Date
JPH0866023A true JPH0866023A (en) 1996-03-08
JP3226115B2 JP3226115B2 (en) 2001-11-05

Family

ID=16063544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17930792A Expired - Lifetime JP3226115B2 (en) 1992-06-12 1992-06-12 Rectifier circuit using semiconductor element with control pole

Country Status (1)

Country Link
JP (1) JP3226115B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322532A (en) * 1996-05-28 1997-12-12 Origin Electric Co Ltd Power supply circuit
WO2005025043A1 (en) * 2003-09-02 2005-03-17 Sanken Electric Co., Ltd. Synchronous commutation dc-dc converter
JP2013503427A (en) * 2009-08-25 2013-01-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multichannel lighting unit and driver for supplying current to the light source of the multichannel lighting unit
JP2017046437A (en) * 2015-08-26 2017-03-02 コーセル株式会社 Switching power supply

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322532A (en) * 1996-05-28 1997-12-12 Origin Electric Co Ltd Power supply circuit
WO2005025043A1 (en) * 2003-09-02 2005-03-17 Sanken Electric Co., Ltd. Synchronous commutation dc-dc converter
US7330365B2 (en) 2003-09-02 2008-02-12 Sanken Electric Co., Ltd. Synchronous commutation DC-DC converter
JP2013503427A (en) * 2009-08-25 2013-01-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Multichannel lighting unit and driver for supplying current to the light source of the multichannel lighting unit
JP2017046437A (en) * 2015-08-26 2017-03-02 コーセル株式会社 Switching power supply

Also Published As

Publication number Publication date
JP3226115B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
KR20010036172A (en) Pulsewidth modulation signal generator and switching mode power supply using pulsewidth modulation signal generator
KR20010006312A (en) Switch-mode power supply with over-current protection
KR101069795B1 (en) Electric power converter
JPH0866023A (en) Rectifier circuit employing semiconductor element with control electrode
US4066916A (en) Transistor drive circuits
US20200403518A1 (en) Method and system of driving an electrically controlled switch with a snubber capacitor
JP3155715B2 (en) Self-excited switching power supply circuit
JPH08251919A (en) Self-excited converter
JPS64917B2 (en)
JP2002165445A (en) Power supply unit
JP4318372B2 (en) Switching power supply
JP2002010634A (en) Switching power supply device
US5898580A (en) Dc/dc converter with a protection circuit
JP3373194B2 (en) Switching power supply
KR0129031Y1 (en) Over-current protective circuits
KR100283461B1 (en) Circuit For Drive And FeedBack Of Switching Power Supply
JPS597479A (en) Power source for welding
KR0119799B1 (en) Ringing choke converter made big moss transistor
JPH0442774A (en) Switching power unit
JP2854755B2 (en) Switching power supply
JPS61277374A (en) Current limit circuit for switching regulator
JPH07163145A (en) Overcurrent protector for switching regulator
JPH0474929B2 (en)
JPH01234048A (en) Output control circuit for ringing choke converter
JPH0530736A (en) Switching power supply

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11