JP4053315B2 - Manufacturing method of liquid crystal display device - Google Patents

Manufacturing method of liquid crystal display device Download PDF

Info

Publication number
JP4053315B2
JP4053315B2 JP2002052056A JP2002052056A JP4053315B2 JP 4053315 B2 JP4053315 B2 JP 4053315B2 JP 2002052056 A JP2002052056 A JP 2002052056A JP 2002052056 A JP2002052056 A JP 2002052056A JP 4053315 B2 JP4053315 B2 JP 4053315B2
Authority
JP
Japan
Prior art keywords
liquid crystal
manufacturing
crystal display
display device
spacer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002052056A
Other languages
Japanese (ja)
Other versions
JP2003255291A (en
Inventor
秀雄 大熊
祐蔵 藤田
智人 城内
勇男 牧
恵一郎 牧
光男 村石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IBM Japan Ltd
Nitto Co Ltd
Original Assignee
IBM Japan Ltd
Nitto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IBM Japan Ltd, Nitto Co Ltd filed Critical IBM Japan Ltd
Priority to JP2002052056A priority Critical patent/JP4053315B2/en
Publication of JP2003255291A publication Critical patent/JP2003255291A/en
Application granted granted Critical
Publication of JP4053315B2 publication Critical patent/JP4053315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板を有する液晶表示装置の製造方法に関する。
【0002】
【従来の技術】
従来の液晶表示装置の製造方法としては、例えば、米国のIBM社の発行する公開技報であるTDB(Technical Disclosure Bulletin)のJP820000133に示すものがある。この液晶表示装置の製造方法は、図9のフローチャートに示すように、その製造工程を大きく分けて、ガラス貼り合わせ工程90、切断工程91、液晶注入工程92、研磨工程93、偏光板貼付/検査工程94で構成されるものである。
【0003】
初めのガラス貼り合わせ工程90では、配向/ラビング工程(いずれも液晶の向きを整えるための処理)で液晶を封入するガラス面の処理を行い、シール塗布/組立工程、及び、封着工程で一対のガラス基板が液晶を入れる空間を設けて貼り合わされる(これを液晶セルと呼ぶ)。そして、切断工程91では、一対のガラス基板の縦横寸法が製品サイズに切断される。
【0004】
なお、一対のガラス基板(液晶セル)は、例えばノート型のパーソナルコンピュータの液晶表示パネルとして用いられる対角線の長さが14インチなどの長方形をなし、カラーの液晶表示装置の場合、上側にCF(カラーフィルター)基板、下側にTFT(薄膜トランジスタ)基板が用いられることが多い。この場合、図10に示すように、上側のCF基板1よりも下側のTFT基板2の長方形の2辺が少し大きく(例えば数mm)形成され、この少し大きく形成されてCF基板1からはみ出した部分21(以下、単板部または額縁と呼ぶ)に、液晶駆動用のドライバー8(半導体)がX方向、Y方向に複数個取付けられる。
【0005】
液晶注入工程92では、アニール工程(ガラス基板の内面に付着した不純物のガス抜き)、液晶3の注入工程、封止工程(液晶注入口を封止する)、洗浄/アニール工程、面取工程(切断したガラス基板の角部の加工)などが行われる。次に、研磨工程93では、単板部21に載せられたドライバー8を保護する保護膜の塗布工程、研磨装置150により一対のガラス基板を薄く研磨する薄型研磨工程(例えば、液晶セルの厚さ1.4mmのものを0.8mmにする)、保護膜の剥離工程などが行われる。そして、偏光板貼付工程94で偏光板(一方向のみに振動する光を通すフィルム)が貼り付けられ、最後に検査工程95に通して完了する。
【0006】
この従来の液晶表示装置の製造方法では、研磨工程93で研磨装置に取付けるまでの工程、及び、各工程間の移動が研磨前のセル厚さが厚い状態で行われるので、移動用治具の変更(段取り替え)をする必要がなく、また、破損の心配も少ないので、研磨工程を先に行うような他の従来の製造方法(例えば液晶の注入前に研磨工程を行う方法)に比べて有利なものとなっている。
【0007】
【発明が解決しようとする課題】
図9、10に示した従来の液晶表示装置の製造方法では、研磨工程93において単板部21で研磨荷重が逃げることにより、単板部21の厚さがばらつきやすい。特に、単板部21の角部22で研磨荷重が逃げやすいために、t1>t2>t3、及び、t1>t4>t5のようになる傾向がある。この単板部21にはドライバー8が取付けられるが、その取付の際に液晶につながっているTFT基板2側の端子とドライバー8の端子とを接続する必要がある。この接続方法としては、この業界でACF(Anisotropic Conductive Film)呼ばれる異方導電性のある接着テープを用いたACF接続が多く実施されている。
【0008】
しかし、単板部21の厚さがばらつくと、ACF接続する際の荷重を均等にかけにくくなり、ACF接着層中の導電粒子が均一に変形せず、電気接続の信頼性が低下する。すなわち、ACF接続が困難な場合が多くなり、ドライバー8の接続に不良を発生する可能性が高くなるという問題がある。
【0009】
本発明は、このような問題点を考慮してなされたもので、液晶駆動用のドライバーが取付けられるガラス基板の単板部の厚さをばらつきなく一定にすることができ、液晶駆動用のドライバーを確実に接続できる液晶表示装置の製造方法を提供することを主な課題とする。
【0010】
【課題を解決するための手段】
前述の課題を解決するため、本発明に係る液晶表示装置の製造方法は、次のような手段を採用する。
【0011】
即ち、請求項1に記載のように、大小一対のガラス基板を備えた液晶セルの縦横寸法を製品サイズに加工した後に液晶セルを薄型に研磨する液晶表示装置の製造方法であって、上記液晶セルにおける大きいガラス基板に、小さいガラス基板からはみ出して液晶駆動用ドライバーが装着される単板部を設けると共に、該単板部の小さいガラス基板側の面に、単板部に研磨加重を均等に作用させるためのスペーサ部材を配設して、液晶セルを研磨することを特徴とする。
【0012】
この手段では、製品サイズに加工された液晶セルの一方のガラス基板上にスペーサ部材が設けられてガラス基板と共に研磨され、研磨荷重がスペーサ部材を介して一方のガラス基板に伝えられる。
【0013】
また、本発明においては、上記単板部は、液晶セルの角部を含む部分に設けられていて、上記スペーサ部材が、該単板部における液晶セルの角部にあたる部分に設けられている
【0014】
この手段では、スペーサ部材は、研磨荷重の最も逃げやすい液晶セルの角部に設けられる。
【0015】
さらに、本発明においては、スペーサ部材の厚さは、小さいガラス基板の厚さとほぼ同等とすることができる。
【0016】
この手段では、他の場所の研磨荷重と同じ大きさの研磨荷重がスペーサ部材を介して一方のガラス基板に伝えられ、スペーサ部材は、スペーサ部材を設けない方のガラス基板と同じように研磨される。
【0017】
また、本発明においては、スペーサ部材は小さいガラス基板と同じ材料、若しくは同等の研磨特性を備えた材料とすることが望ましい。
【0018】
この手段では、スペーサ部材は、ガラス基板と同じ速度で研磨される。
【0019】
本発明においては、スペーサ部材は両面テープまたは接着剤で上記単板部に取付けられるものとすることができる。
【0020】
この手段では、スペーサ部材はガラス基板に固定され、研磨工程において取付位置が安定する。
【0021】
【発明の実施の形態】
以下、本発明に係る液晶表示装置の製造方法の形態を図面に基づいて説明する。
【0022】
図1〜図5は、本発明に係る液晶表示装置の製造方法の実施の形態(1)を示すものである。
【0023】
この実施の形態では、一対のガラス基板1、2が貼り合わされ、縦横寸法が製品サイズに加工され、液晶3が封入された後の研磨工程について、主にその製造方法を示している。
【0024】
この実施の形態の液晶表示装置の製造方法では、両面研磨装置100が使用される。この両面研磨装置100は、上定盤101と、上定盤駆動軸102と、下定盤111と、下定盤駆動軸112と、図示しない下定盤の支持台と、上定盤の上下動機構と、荷重付加装置などから構成される。そして、上定盤101と下定盤110は逆方向に回転し、その間に挟み込んだ加工対象物、ここでは液晶セル10を研磨するものである。通常、下定盤110の上には大型の遊星歯車機構が設けられ、遊星歯車機構のキャリアの上に複数個の加工対象物が置かれるタイプのものが使用されることが多い。
【0025】
液晶セル10は、一対のガラス基板1、2を備えており、カラーの液晶表示装置を構成する上側のガラス基板であるCF基板1と、CF基板1よりやや大きな下側のガラス基板であるTFT基板2と、これらの基板の間に設けられた僅かな隙間(数ミクロン程度)に注入された液晶3と、液晶3を封止し両基板を接着するシール4とからなっている。
【0026】
また、TFT基板2のCF基板1からはみ出した単板部21に、液晶を駆動するドライバー8がX方向、Y方向に複数個取付けられている。
【0027】
そして、この単板部21の角部22には、研磨のためのスペーサ部材5が設けられる。スペーサ部材5は、X方向に長さL1、幅L2の辺を、Y方向に長さL3、幅L4の辺を有する平面視L字型のブロック材であり、スペーサ部材5が設けられない方のガラス基板であるCF基板1の厚さtcfとほぼ同等の厚さtsを有している。なお、長さL1、L3はドライバー8にかからない範囲とし、幅L2、L4は単板部21の幅A、Bの半分以上であれば構わない。また、スペーサ部材5は両面テープまたは接着剤にてTFT基板2の単板部21に取付けられる。
【0028】
なお、スペーサ部材5の材料は、ガラス基板1または2と同じ材料が望ましいが、ガラス基板1または2に用いられるガラス材と同等の研磨特性(研磨により削れる速度)を備えた材料、例えば他の種類のガラス材、ガラス繊維含浸エポキシ材、金属(ステンレス材、アルミ材)などでも構わない。
【0029】
以上の構成による液晶表示装置の製造方法について以下に説明する。
【0030】
一対のガラス基板1、2が貼り合わされ(工程90)、縦横寸法が製品サイズに切断加工されて(工程91)、液晶が封入された(工程92)液晶セル10は、研磨工程11へと進む。
【0031】
研磨工程11では、初めに保護膜の塗布工程12で、ドライバー8が研磨液などで不具合を起こさないようにドライバー8の上から保護膜が塗布される。そして、スペーサ部材5がTFT基板2の単板部21の角部22に取付けられて(スペーサ部材の取付工程13)、両面研磨装置100の上定盤101と下定盤111の間に保護膜が塗布された液晶セル10がセットされ、研磨剤を含んだ研磨液が両面研磨装置100に流し込まれる。
【0032】
液晶セル10の下面23は下定盤111の上面113で支持され、液晶セル10の上面24は上定盤101の下面103に押し付けられるとともに、上定盤101の下面103でスペーサ部材5を押し付けながら上定盤101と下定盤110は逆方向に回転するので、液晶セル10の上下面23、24研磨され、薄型化される。
【0033】
このとき、上定盤101の荷重は、CF基板1とTFT基板2が重なっている部分に均一に作用することは当然ながら、TFT基板2の単板部21の角部22に対してもスペーサ部材5を介して上定盤101の荷重が作用する。ここで、単板部21の飛び出し長さA、Bは2mm程度で、一般に液晶セル10の縦寸法、横寸法に比べ1/100程度と小さいため、X方向、Y方向が重なり合う角部22(荷重の逃げが最も大きくなると考えられる場所)にスペーサ部材5を設けるだけで、単板部21全体に上定盤101の荷重をほぼ均一に作用させることが可能となる。これにより、X方向、Y方向における単板部21の厚さのばらつき(X方向については図5のt1〜t7の厚さのばらつき)をほとんどなくすことが可能となる。
【0034】
これにより、単板部21の厚さがばらつきがなくなるので、ドライバー81〜87の取付状態において、ACF接続の荷重が均等にかけられ、ACF接着層中の導電粒子が均一に変形して、電気接続の信頼性が高まる。すなわち、ACF接続が確実に行われ、ドライバー8の接続に不良を発生する可能性がなくなる。
【0035】
液晶セル10の厚さtc(=CF基板の厚さtcf+TFT基板の厚さttf)が研磨工程11で目標とする厚さまで薄型化されれば、スペーサ部材の除去工程15でスペーサ部材5を除去し、保護膜の剥離工程16でドライバー8の保護をしていた保護膜の剥離などが行われ、偏光板貼付工程94で偏光板が貼り付けられ、検査工程95を経て終了となる。
【0036】
この実施の形態によれば、製品サイズに加工された液晶セル10の一方のガラス基板2上にスペーサ部材5が設けられてガラス基板1と共に研磨され、研磨荷重がスペーサ部材5を介して一方のガラス基板2に伝えられるようにしたので、液晶駆動用のドライバー8が取付けられるガラス基板2の単板部21の厚さをばらつきなく一定にすることができる。
【0037】
また、スペーサ部材5は、研磨荷重の最も逃げやすい液晶セル10の角部22に設けられるようにしたので、小さなスペーサ部材5を設けるだけでガラス基板2の単板部21の厚さをばらつきなく一定にすることができる。
【0038】
なお、この形態では両面研磨装置100を使用したが、これに限定されるものではなく、片面研磨装置(図示しない)を用いて片面ずつ研磨することも可能である。
【0039】
また、液晶セル10はカラーの液晶表示装置としたが、白黒の液晶表示装置にも適用可能なことは当然である。
【0040】
図6は、本発明に係る液晶表示装置の製造方法の実施の形態(2)を示すものである。
【0041】
この液晶表示装置の製造方法は、実施の形態(1)に対し、スペーサ部材5の形状を変更したものである。その他は同様としている。
【0042】
このスペーサ部材5は、実施の形態(1)の平面視L字型のブロック材を直方体とし、実施の形態(1)と同様にTFT基板2の単板部21の角部22に取付けたものである。スペーサ部材5の幅L1、長さL2は角部22をほぼ覆うものであればよい。このように直方体のスペーサを設けるだけでもほとんど実施の形態(1)と同様に単板部21の厚さのばらつきをなくすことができる。
【0043】
この実施の形態によると、前述の実施の形態(1)とほぼ同様の作用、効果が奏される。
【0044】
図7は、本発明に係る液晶表示装置の製造方法の実施の形態(3)を示すものである。
【0045】
この液晶表示装置の製造方法は、実施の形態(1)に対し、スペーサ部材5の形状を変更したものである。その他は同様としている。
【0046】
このスペーサ部材5は、実施の形態(1)のL字型のブロック材の2つの辺(長さL1、L3)を単板部21のほぼ全体に延ばしている。なお、この2つの辺の幅L3、L4は単板部21の幅の半分以上あれば構わない。これにより、ほぼ完全に単板部21に上定盤101の荷重を均一に作用させることが可能となり、単板部21の厚さのばらつきをよりなくすことができる。また、このスペーサ部材5はドライバー8を下に敷いているが、通常の研磨における上定盤101の荷重が作用してもドライバー8に問題を起こす心配はない。
【0047】
この実施の形態によると、前述の実施の形態(1)と同様の作用、効果がより高く奏される。
【0048】
なお、スペーサ部材5は、上記各形態に示したような形状に限定されるものではなく、例えば円形などの形状でもよく、取付ける位置、数についても、例えば角部22を避けて複数個取付けることでも所定の効果を得られるものである。
【0049】
【実施例】
スペーサ部材5を設けない場合(従来の研磨工程93)と設けた場合(研磨工程11)で研磨を行い、TFT基板2の単板部21の厚さのばらつきを、X方向、及び、Y方向について比較した。
なお、液晶セル10などの各部寸法は、横254mm、縦191.9mm、CF基板の厚さ0.7mm(初期)、TFT基板の厚さ0.7mm(初期)、単板部21の幅A、B=2mm、スペーサ部材5の大きさ:L1=5mm、L3=15mm、L2=L4=2mm、スペーサ部材5の厚さ0.7mm(初期)とした。そして、研磨により液晶セルの厚さを0.8mm(片側0.4mm)まで薄くした。
また、ばらつきの比較は、X方向では、図5に示すように、単板部21の角部22から順にドライバー81の位置をX1、ドライバー82の位置をX2、…、ドライバー87の位置をX7とし、
単板部21の厚さの差を、(t1−t2)、(t2−t3)…のように、各ドライバー81〜87の両側の位置における厚さの差分で測定した。また、Y方向についても位置Y1〜位置Y3までを差分で測定した。
【0050】
その結果を図8に示す。この図から明らかなように、X方向では、単板部21の角部22に最も近い位置X1で厚さの差がCに示すように大きく低減されているのが分かる。また、Y方向でも、単板部21の角部22に最も近い位置Y1で厚さの差がDに示すように大きく低減されているのが分かる。これにより、単板部21の角部22にスペーサ部材5を設けることで、単板部21の厚さのばらつきを大きく低減できることが分かる。
【0051】
【発明の効果】
以上のように、本発明に係る液晶表示装置の製造方法は、製品サイズに加工された液晶セルの一方のガラス基板上にスペーサ部材が設けられてガラス基板と共に研磨され、研磨荷重がスペーサ部材を介して一方のガラス基板に伝えられるようにしたので、液晶駆動用のドライバーが取付けられるガラス基板の単板部の厚さをばらつきなく一定にすることができる。これにより、液晶駆動用のドライバーを確実に接続することが可能となるという効果がある。
【図面の簡単な説明】
【図1】 本発明に係る液晶表示装置の製造方法の実施の形態(1)を示す斜視図である。
【図2】 図1のU−U線断面図であり、左上図は部分拡大図である。
【図3】 本発明に係る液晶表示装置の製造方法の実施の形態(1)を示すフローチャートである。
【図4】 本発明に係る液晶表示装置の製造方法の実施の形態(1)を示す主要部品の斜視図である。
【図5】 図1のV矢視図である。
【図6】 本発明に係る液晶表示装置の製造方法の実施の形態(2)を示す主要部品の斜視図である。
【図7】 本発明に係る液晶表示装置の製造方法の実施の形態(3)を示す主要部品の斜視図である。
【図8】 本発明に係る液晶表示装置の製造方法の実施例による効果を示すグラフである。
【図9】 従来の液晶表示装置の製造方法を示すフローチャートである。
【図10】 従来の液晶表示装置の製造方法を示す図であり、(a)は正面断面図、(b)は主要部の斜視図である。
【符号の説明】
1 ガラス基板(CF基板)
2 ガラス基板(TFT基板)
3 液晶
4 シール
5 スペーサ部材
8 ドライバー
10 液晶セル
11 研磨工程
12 保護膜の塗布工程
13 スペーサ部材の取付工程
14 薄型研磨工程
15 保護膜の剥離工程
21 単板部
22 角部
23 下面
24 上面
81〜87 ドライバー
90 ガラス貼り合わせ工程
91 切断工程
92 液晶注入工程
93 研磨工程
94 偏光板貼付/検査工程
100 両面研磨装置
101 上定盤
102 上定盤駆動軸
103 下面
111 下定盤
112 下定盤駆動軸
113 上面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a liquid crystal display device having a glass substrate.
[0002]
[Prior art]
As a conventional method for manufacturing a liquid crystal display device, for example, there is a method disclosed in JP 820000133 of TDB (Technical Disclosure Bulletin) which is a public technical report issued by IBM Corporation of the United States. As shown in the flowchart of FIG. 9, the manufacturing method of this liquid crystal display device is roughly divided into the manufacturing steps, a glass laminating step 90, a cutting step 91, a liquid crystal injecting step 92, a polishing step 93, and a polarizing plate pasting / inspection. The process 94 is constituted.
[0003]
In the first glass bonding step 90, the glass surface that encloses the liquid crystal is treated in the orientation / rubbing step (both are treatments for adjusting the orientation of the liquid crystal), and a pair is applied in the seal coating / assembly step and the sealing step. The glass substrate is bonded to provide a space for liquid crystal (this is called a liquid crystal cell). In the cutting step 91, the vertical and horizontal dimensions of the pair of glass substrates are cut into product sizes.
[0004]
Note that the pair of glass substrates (liquid crystal cells) has a rectangular shape with a diagonal length of, for example, 14 inches used as a liquid crystal display panel of a notebook personal computer. In the case of a color liquid crystal display device, a CF ( A color filter substrate and a TFT (thin film transistor) substrate are often used on the lower side. In this case, as shown in FIG. 10, the two rectangular sides of the lower TFT substrate 2 are formed to be slightly larger (for example, several mm) than the upper CF substrate 1, and are formed to be slightly larger and protrude from the CF substrate 1. A plurality of drivers 8 (semiconductors) for driving liquid crystals are attached to the portion 21 (hereinafter referred to as a single plate portion or a frame) in the X direction and the Y direction.
[0005]
In the liquid crystal injection step 92, an annealing step (degassing impurities adhering to the inner surface of the glass substrate), a liquid crystal 3 injection step, a sealing step (sealing the liquid crystal inlet), a cleaning / annealing step, a chamfering step ( Processing of the corners of the cut glass substrate) is performed. Next, in the polishing step 93, a protective film application step for protecting the driver 8 placed on the single plate portion 21, and a thin polishing step for thinly polishing the pair of glass substrates by the polishing apparatus 150 (for example, the thickness of the liquid crystal cell). The thickness of 1.4 mm is changed to 0.8 mm), and a protective film peeling step is performed. Then, a polarizing plate (a film that transmits light that vibrates only in one direction) is attached in the polarizing plate attaching step 94, and finally the inspection step 95 is completed.
[0006]
In this conventional method for manufacturing a liquid crystal display device, the steps up to attaching to the polishing device in the polishing step 93 and the movement between the steps are performed in a state where the cell thickness before polishing is thick. There is no need to change (replacement), and there is less fear of breakage. Compared to other conventional manufacturing methods in which the polishing step is performed first (for example, the polishing step is performed before liquid crystal injection). It has become advantageous.
[0007]
[Problems to be solved by the invention]
In the conventional method for manufacturing a liquid crystal display device shown in FIGS. 9 and 10, the thickness of the single plate portion 21 is likely to vary because the polishing load escapes in the single plate portion 21 in the polishing step 93. In particular, since the polishing load easily escapes at the corner portion 22 of the single plate portion 21, there is a tendency that t1>t2> t3 and t1>t4> t5. The driver 8 is attached to the single plate portion 21, and it is necessary to connect the terminal on the TFT substrate 2 side connected to the liquid crystal and the terminal of the driver 8 at the time of attachment. As this connection method, ACF connection using an anisotropic conductive adhesive tape called ACF (Anisotropic Conductive Film) is often performed in this industry.
[0008]
However, when the thickness of the single plate portion 21 varies, it becomes difficult to apply a load at the time of ACF connection uniformly, the conductive particles in the ACF adhesive layer are not uniformly deformed, and the reliability of electrical connection is lowered. In other words, there are many cases where the ACF connection is difficult, and there is a problem that the possibility of occurrence of a failure in the connection of the driver 8 increases.
[0009]
The present invention has been made in consideration of such problems, and the thickness of the single plate portion of the glass substrate on which the driver for driving the liquid crystal is mounted can be made constant without variation, and the driver for driving the liquid crystal It is a main object to provide a method for manufacturing a liquid crystal display device that can be securely connected.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the method for manufacturing a liquid crystal display device according to the present invention employs the following means.
[0011]
That is, as described in claim 1, a method of manufacturing a liquid crystal display apparatus for polishing the liquid crystal cell after processing the horizontal and vertical dimensions of the liquid crystal cell having a pair of large and small glass substrates to product size thin, the A large glass substrate in the liquid crystal cell is provided with a single plate portion that protrudes from the small glass substrate and a driver for driving the liquid crystal is mounted , and the single plate portion is evenly polished on the small glass substrate side surface of the single plate portion. A liquid crystal cell is polished by disposing a spacer member to act on the liquid crystal.
[0012]
In this means, a spacer member is provided on one glass substrate of a liquid crystal cell processed into a product size and polished together with the glass substrate, and the polishing load is transmitted to one glass substrate through the spacer member.
[0013]
In the present invention, the single plate portion is provided in a portion including a corner portion of the liquid crystal cell, and the spacer member is provided in a portion corresponding to the corner portion of the liquid crystal cell in the single plate portion .
[0014]
In this means, the spacer member is provided at the corner of the liquid crystal cell where the polishing load is most likely to escape.
[0015]
Furthermore, in the present invention, the thickness of the spacer member can be made substantially equal to the thickness of the small glass substrate.
[0016]
With this means, a polishing load having the same magnitude as the polishing load at other locations is transmitted to one glass substrate through the spacer member, and the spacer member is polished in the same manner as the glass substrate without the spacer member. The
[0017]
In the present invention, the spacer member is preferably made of the same material as the small glass substrate or a material having the same polishing characteristics.
[0018]
By this means, the spacer member is polished at the same speed as the glass substrate.
[0019]
In this invention, a spacer member shall be attached to the said single-plate part with a double-sided tape or an adhesive agent.
[0020]
In this means, the spacer member is fixed to the glass substrate, and the mounting position is stabilized in the polishing process.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a mode of a method for manufacturing a liquid crystal display device according to the present invention will be described with reference to the drawings.
[0022]
FIGS. 1-5 shows Embodiment (1) of the manufacturing method of the liquid crystal display device based on this invention.
[0023]
In this embodiment, a manufacturing method is mainly shown for the polishing step after the pair of glass substrates 1 and 2 are bonded together, the vertical and horizontal dimensions are processed into the product size, and the liquid crystal 3 is sealed.
[0024]
In the manufacturing method of the liquid crystal display device of this embodiment, the double-side polishing apparatus 100 is used. The double-side polishing apparatus 100 includes an upper surface plate 101, an upper surface plate driving shaft 102, a lower surface plate 111, a lower surface plate driving shaft 112, a support table for a lower surface plate (not shown), and a vertical movement mechanism for the upper surface plate. And a load applying device. Then, the upper surface plate 101 and the lower surface plate 110 rotate in the opposite directions, and the object to be processed sandwiched therebetween, here, the liquid crystal cell 10 is polished. Usually, a large planetary gear mechanism is provided on the lower surface plate 110, and a type in which a plurality of workpieces are placed on the carrier of the planetary gear mechanism is often used.
[0025]
The liquid crystal cell 10 includes a pair of glass substrates 1 and 2, a CF substrate 1 that is an upper glass substrate constituting a color liquid crystal display device, and a TFT that is a lower glass substrate slightly larger than the CF substrate 1. It consists of a substrate 2, a liquid crystal 3 injected in a slight gap (about several microns) provided between these substrates, and a seal 4 that seals the liquid crystal 3 and bonds the substrates together.
[0026]
A plurality of drivers 8 for driving the liquid crystal are attached to the single plate portion 21 of the TFT substrate 2 protruding from the CF substrate 1 in the X and Y directions.
[0027]
And the spacer member 5 for grinding | polishing is provided in the corner | angular part 22 of this single plate part 21. As shown in FIG. The spacer member 5 is an L-shaped block member in plan view having a side having a length L1 and a width L2 in the X direction and a side having a length L3 and a width L4 in the Y direction, and the spacer member 5 is not provided. It has a thickness ts substantially equal to the thickness tcf of the CF substrate 1 which is a glass substrate. It should be noted that the lengths L1 and L3 are in a range that does not reach the driver 8, and the widths L2 and L4 may be any length that is at least half the widths A and B of the single plate portion 21. The spacer member 5 is attached to the single plate portion 21 of the TFT substrate 2 with a double-sided tape or an adhesive.
[0028]
The material of the spacer member 5 is preferably the same material as that of the glass substrate 1 or 2, but a material having polishing characteristics (speed at which polishing is performed) similar to that of the glass material used for the glass substrate 1 or 2, for example, other materials Any kind of glass material, glass fiber impregnated epoxy material, metal (stainless steel, aluminum material), etc. may be used.
[0029]
A method of manufacturing the liquid crystal display device having the above configuration will be described below.
[0030]
The pair of glass substrates 1 and 2 are bonded together (step 90), the vertical and horizontal dimensions are cut into a product size (step 91), and the liquid crystal is sealed (step 92). The liquid crystal cell 10 proceeds to the polishing step 11. .
[0031]
In the polishing step 11, first, in the protective film application step 12, a protective film is applied from above the driver 8 so that the driver 8 does not malfunction with the polishing liquid or the like. Then, the spacer member 5 is attached to the corner portion 22 of the single plate portion 21 of the TFT substrate 2 (spacer member attachment step 13), and a protective film is formed between the upper surface plate 101 and the lower surface plate 111 of the double-side polishing apparatus 100. The coated liquid crystal cell 10 is set, and a polishing liquid containing an abrasive is poured into the double-side polishing apparatus 100.
[0032]
The lower surface 23 of the liquid crystal cell 10 is supported by the upper surface 113 of the lower surface plate 111, and the upper surface 24 of the liquid crystal cell 10 is pressed against the lower surface 103 of the upper surface plate 101 while pressing the spacer member 5 with the lower surface 103 of the upper surface plate 101. Since the upper surface plate 101 and the lower surface plate 110 rotate in opposite directions, the upper and lower surfaces 23 and 24 of the liquid crystal cell 10 are polished and thinned.
[0033]
At this time, the load of the upper surface plate 101 acts uniformly on the portion where the CF substrate 1 and the TFT substrate 2 overlap with each other, and the spacer is also applied to the corner portion 22 of the single plate portion 21 of the TFT substrate 2. The load of the upper surface plate 101 acts through the member 5. Here, the protruding lengths A and B of the single plate portion 21 are about 2 mm, and are generally as small as about 1/100 compared to the vertical and horizontal dimensions of the liquid crystal cell 10, so that the corner portion 22 (X and Y directions overlap) It is possible to apply the load of the upper surface plate 101 almost uniformly on the entire single plate portion 21 only by providing the spacer member 5 at a place where the load escape is considered to be the largest. As a result, it is possible to almost eliminate variations in the thickness of the single plate portion 21 in the X direction and the Y direction (thickness variations in t1 to t7 in FIG. 5 in the X direction).
[0034]
Thereby, since the thickness of the single plate portion 21 is not varied, the load of the ACF connection is evenly applied in the mounted state of the drivers 81 to 87, and the conductive particles in the ACF adhesive layer are uniformly deformed, so that the electric connection Increased reliability. That is, the ACF connection is surely performed, and there is no possibility that a failure occurs in the connection of the driver 8.
[0035]
When the thickness tc (= CF substrate thickness tcf + TFT substrate thickness ttf) of the liquid crystal cell 10 is reduced to the target thickness in the polishing step 11, the spacer member 5 is removed in the spacer member removal step 15. Then, the protective film that was protecting the driver 8 in the protective film peeling step 16 is peeled off, the polarizing plate is stuck in the polarizing plate sticking step 94, and the inspection process 95 is completed.
[0036]
According to this embodiment, the spacer member 5 is provided on one glass substrate 2 of the liquid crystal cell 10 processed to the product size and polished together with the glass substrate 1, and the polishing load is passed through the spacer member 5 to one side. Since it is transmitted to the glass substrate 2, the thickness of the single plate portion 21 of the glass substrate 2 to which the driver 8 for driving the liquid crystal is attached can be made constant without variation.
[0037]
Further, since the spacer member 5 is provided at the corner portion 22 of the liquid crystal cell 10 where the polishing load is most easily escaped, the thickness of the single plate portion 21 of the glass substrate 2 can be made uniform only by providing the small spacer member 5. Can be constant.
[0038]
In this embodiment, the double-side polishing apparatus 100 is used. However, the present invention is not limited to this, and it is possible to perform single-side polishing using a single-side polishing apparatus (not shown).
[0039]
Further, although the liquid crystal cell 10 is a color liquid crystal display device, it is naturally applicable to a monochrome liquid crystal display device.
[0040]
FIG. 6 shows an embodiment (2) of a method for manufacturing a liquid crystal display device according to the present invention.
[0041]
In this liquid crystal display manufacturing method, the shape of the spacer member 5 is changed with respect to the embodiment (1). Others are the same.
[0042]
The spacer member 5 is a rectangular parallelepiped L-shaped block material of the embodiment (1), and is attached to the corner portion 22 of the single plate portion 21 of the TFT substrate 2 as in the embodiment (1). It is. The width L <b> 1 and the length L <b> 2 of the spacer member 5 need only cover the corner portion 22. Thus, even by providing a rectangular parallelepiped spacer, variation in the thickness of the single plate portion 21 can be eliminated almost as in the embodiment (1).
[0043]
According to this embodiment, substantially the same operations and effects as the above-described embodiment (1) are exhibited.
[0044]
FIG. 7 shows an embodiment (3) of a method for manufacturing a liquid crystal display device according to the present invention.
[0045]
In this liquid crystal display manufacturing method, the shape of the spacer member 5 is changed with respect to the embodiment (1). Others are the same.
[0046]
This spacer member 5 extends two sides (lengths L 1 and L 3) of the L-shaped block member of the embodiment (1) over almost the entire single plate portion 21. Note that the widths L3 and L4 of these two sides may be at least half the width of the single plate portion 21. As a result, the load of the upper platen 101 can be applied to the single plate portion 21 almost completely, and the thickness variation of the single plate portion 21 can be further eliminated. Further, although the spacer member 5 has the driver 8 underneath, there is no fear of causing a problem to the driver 8 even if the load of the upper surface plate 101 is applied in normal polishing.
[0047]
According to this embodiment, the same operations and effects as those of the above-described embodiment (1) can be achieved.
[0048]
The spacer member 5 is not limited to the shape shown in each of the above-described embodiments. For example, the spacer member 5 may have a circular shape. For example, a plurality of spacer members 5 may be attached while avoiding the corners 22. However, a predetermined effect can be obtained.
[0049]
【Example】
Polishing is performed when the spacer member 5 is not provided (conventional polishing step 93) and when the spacer member 5 is provided (polishing step 11), and variations in the thickness of the single plate portion 21 of the TFT substrate 2 are observed in the X direction and the Y direction. Compared.
The dimensions of the liquid crystal cell 10 and the like are 254 mm in width, 191.9 mm in length, the thickness of the CF substrate is 0.7 mm (initial), the thickness of the TFT substrate is 0.7 mm (initial), and the width A of the single plate portion 21. B = 2 mm, spacer member 5 size: L1 = 5 mm, L3 = 15 mm, L2 = L4 = 2 mm, and spacer member 5 thickness 0.7 mm (initial). Then, the thickness of the liquid crystal cell was reduced to 0.8 mm (0.4 mm on one side) by polishing.
Further, in the X direction, as shown in FIG. 5, in the X direction, the position of the driver 81 is X1, the position of the driver 82 is X2,..., And the position of the driver 87 is X7 in order from the corner 22 of the single plate portion 21. age,
The difference in thickness of the single plate portion 21 was measured by the difference in thickness at the positions on both sides of each driver 81 to 87 as (t1-t2), (t2-t3). Moreover, the position Y1 to the position Y3 was also measured with a difference in the Y direction.
[0050]
The result is shown in FIG. As is apparent from this figure, in the X direction, it can be seen that the thickness difference is greatly reduced as indicated by C at the position X1 closest to the corner portion 22 of the single plate portion 21. In the Y direction, it can be seen that the difference in thickness is greatly reduced as indicated by D at the position Y1 closest to the corner portion 22 of the single plate portion 21. Thus, it can be seen that by providing the spacer member 5 at the corner portion 22 of the single plate portion 21, variation in the thickness of the single plate portion 21 can be greatly reduced.
[0051]
【The invention's effect】
As described above, in the method for manufacturing a liquid crystal display device according to the present invention, a spacer member is provided on one glass substrate of a liquid crystal cell processed into a product size and polished together with the glass substrate. Therefore, the thickness of the single plate portion of the glass substrate to which the driver for driving the liquid crystal is attached can be made constant without variation. Accordingly, there is an effect that it is possible to reliably connect a driver for driving the liquid crystal.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment (1) of a method for manufacturing a liquid crystal display device according to the present invention.
FIG. 2 is a cross-sectional view taken along the line U-U in FIG. 1, and the upper left diagram is a partially enlarged view.
FIG. 3 is a flowchart showing an embodiment (1) of a method for manufacturing a liquid crystal display device according to the present invention.
FIG. 4 is a perspective view of main components showing an embodiment (1) of a method for manufacturing a liquid crystal display device according to the present invention.
FIG. 5 is a view taken in the direction of arrow V in FIG.
FIG. 6 is a perspective view of main parts showing an embodiment (2) of a method for manufacturing a liquid crystal display device according to the present invention.
FIG. 7 is a perspective view of main parts showing an embodiment (3) of a method for manufacturing a liquid crystal display device according to the present invention.
FIG. 8 is a graph showing an effect of an embodiment of a manufacturing method of a liquid crystal display device according to the present invention.
FIG. 9 is a flowchart showing a method for manufacturing a conventional liquid crystal display device.
10A and 10B are diagrams illustrating a conventional method for manufacturing a liquid crystal display device, in which FIG. 10A is a front sectional view, and FIG.
[Explanation of symbols]
1 Glass substrate (CF substrate)
2 Glass substrate (TFT substrate)
3 Liquid crystal 4 Seal 5 Spacer member 8 Driver 10 Liquid crystal cell 11 Polishing process 12 Protective film coating process 13 Spacer member attaching process 14 Thin polishing process 15 Protective film peeling process 21 Single plate part 22 Corner part 23 Lower surface 24 Upper surface 81 87 Driver 90 Glass bonding process 91 Cutting process 92 Liquid crystal injection process 93 Polishing process 94 Polarizing plate attaching / inspecting process 100 Double-side polishing apparatus 101 Upper surface plate 102 Upper surface plate driving shaft 103 Lower surface 111 Lower surface plate 112 Lower surface plate driving shaft 113 Upper surface

Claims (5)

大小一対のガラス基板を備えた液晶セルの縦横寸法を製品サイズに加工した後に液晶セルを薄型に研磨する液晶表示装置の製造方法であって、
上記液晶セルにおける大きいガラス基板に、小さいガラス基板からはみ出して液晶駆動用ドライバーが装着される単板部を設けると共に、該単板部の小さいガラス基板側の面に、単板部に研磨加重を均等に作用させるためのスペーサ部材を配設して、液晶セルを研磨することを特徴とする液晶表示装置の製造方法。
The liquid crystal cell after processing the horizontal and vertical dimensions of the liquid crystal cell having a pair of large and small glass substrates to product size method of manufacturing the liquid crystal display apparatus for polishing thin,
A large glass substrate in the liquid crystal cell is provided with a single plate portion that protrudes from the small glass substrate and a driver for driving the liquid crystal is mounted, and a polishing load is applied to the surface of the single plate portion on the small glass substrate side. A method of manufacturing a liquid crystal display device, characterized in that a liquid crystal cell is polished by providing a spacer member for evenly acting .
請求項1記載の液晶表示装置の製造方法において、上記単板部は、液晶セルの角部を含む部分に設けられていて、上記スペーサ部材が、該単板部における液晶セルの角部にあたる部分に設けられていることを特徴とする液晶表示装置の製造方法。2. The method of manufacturing a liquid crystal display device according to claim 1, wherein the single plate portion is provided in a portion including a corner portion of the liquid crystal cell, and the spacer member corresponds to a corner portion of the liquid crystal cell in the single plate portion. A method for manufacturing a liquid crystal display device, comprising: 請求項1または請求項2に記載の液晶表示装置の製造方法において、スペーサ部材の厚さは、小さいガラス基板の厚さとほぼ同等とすることを特徴とする液晶表示装置の製造方法。 3. The method for manufacturing a liquid crystal display device according to claim 1, wherein the spacer member has a thickness substantially equal to that of the small glass substrate . 請求項1〜3のいずれか記載の液晶表示装置の製造方法において、スペーサ部材は小さいガラス基板と同じ材料、若しくは同等の研磨特性を備えた材料とすることを特徴とする液晶表示装置の製造方法。4. The method of manufacturing a liquid crystal display device according to claim 1, wherein the spacer member is made of the same material as a small glass substrate or a material having equivalent polishing characteristics. . 請求項1〜4のいずれか記載の液晶表示装置の製造方法において、スペーサ部材は両面テープまたは接着剤で上記単板部に取付けられることを特徴とする液晶表示装置の製造方法。5. The method of manufacturing a liquid crystal display device according to claim 1, wherein the spacer member is attached to the single plate portion with a double-sided tape or an adhesive.
JP2002052056A 2002-02-27 2002-02-27 Manufacturing method of liquid crystal display device Expired - Fee Related JP4053315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002052056A JP4053315B2 (en) 2002-02-27 2002-02-27 Manufacturing method of liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052056A JP4053315B2 (en) 2002-02-27 2002-02-27 Manufacturing method of liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2003255291A JP2003255291A (en) 2003-09-10
JP4053315B2 true JP4053315B2 (en) 2008-02-27

Family

ID=28663863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052056A Expired - Fee Related JP4053315B2 (en) 2002-02-27 2002-02-27 Manufacturing method of liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4053315B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025200A (en) * 2005-07-15 2007-02-01 Toshiba Matsushita Display Technology Co Ltd Liquid crystal display element and manufacturing method thereof
JP4744250B2 (en) 2005-09-14 2011-08-10 株式会社岡本工作機械製作所 Double-side polishing apparatus and double-side polishing method for square substrate
JP2008083144A (en) * 2006-09-26 2008-04-10 Sony Corp Manufacturing method of liquid crystal panel

Also Published As

Publication number Publication date
JP2003255291A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US8233129B2 (en) Method of manufacturing liquid crystal display device including forming beveled sides of substrates forming liquid crystal panel
JP3645770B2 (en) Liquid crystal display
US8279391B2 (en) Liquid crystal display device with grounded by thermocompression bonding tape and double-side adhesive tape
JP5110349B2 (en) Liquid crystal display device and manufacturing method thereof
US20010001686A1 (en) Laminated glass substrate structure and its manufacture
JP2000252342A (en) Method for transporting thin plate and manufacture of liquid crystal panel
JP2008030316A (en) Method for sticking plate-shaped members
JP4053315B2 (en) Manufacturing method of liquid crystal display device
JP2001242448A (en) Method of removing polarizing plate and method of manufacturing liquid crystal device by using the method
JP2004101741A (en) Method for manufacturing display device, and display device
JPH0850282A (en) Production of display device
KR100491020B1 (en) Method of manufacturing flat display element
JP2003222887A (en) Liquid crystal display element
JP2004077640A (en) Method for manufacturing liquid crystal display element and device therefor
JP2003142176A (en) Anisotropic conductive film structure
JP2009157140A (en) Method of manufacturing liquid crystal display panel
JP3475105B2 (en) Manufacturing method of liquid crystal display device
KR19990041103A (en) Plastic Substrate Liquid Crystal Display Manufacturing Method
JP3661368B2 (en) Method for manufacturing liquid crystal panel, liquid crystal panel and electronic device
JPH10339883A (en) Thin film transistor type liquid crystal display device and manufacture therefor
JP2002296558A (en) Liquid crystal display panel and its protecting method
JP3769576B2 (en) Manufacturing method of liquid crystal display device
JP2003066402A5 (en)
JP2001033769A (en) Liquid crystal display panel
JP2001174832A (en) Method for manufacturing liquid crystal cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees