JP4052381B2 - Resin coat molding method - Google Patents

Resin coat molding method Download PDF

Info

Publication number
JP4052381B2
JP4052381B2 JP2002226535A JP2002226535A JP4052381B2 JP 4052381 B2 JP4052381 B2 JP 4052381B2 JP 2002226535 A JP2002226535 A JP 2002226535A JP 2002226535 A JP2002226535 A JP 2002226535A JP 4052381 B2 JP4052381 B2 JP 4052381B2
Authority
JP
Japan
Prior art keywords
resin
bag
mold
resin layer
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002226535A
Other languages
Japanese (ja)
Other versions
JP2004066546A (en
Inventor
徹 金子
禎孝 梅元
清人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2002226535A priority Critical patent/JP4052381B2/en
Publication of JP2004066546A publication Critical patent/JP2004066546A/en
Application granted granted Critical
Publication of JP4052381B2 publication Critical patent/JP4052381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、型の一面に樹脂を塗布して樹脂層を形成し、前記樹脂層の樹脂を繊維強化材に含浸させて加熱硬化させる樹脂コート成形法に関する。
【0002】
【従来の技術】
従来、繊維強化複合材料の製造にはプリプレグが用いられている。プリプレグは、繊維強化材に熱硬化性樹脂を含浸し、手作業で容易に取扱うことができる程度に硬化反応を進めた成形材料である。主として、炭素繊維、ボロン繊維、アラミド繊維などの繊維強化材とエポキシ系の樹脂を用いて構成したプリプレグが用いられている。
【0003】
プリプレグの成形は、型の内面に敷設した複数枚のプリプレグを加圧下で加熱硬化させることにより行う。プリプレグはその構造から表面にタックがあり、積層する際にプリプレグ間にエアーを噛み込む。このため、外部から十分加圧することなく大気圧で加圧成形を行う真空バッグ成形の場合には、得られる成形品中にはエアーの残存によるボイドが発生し、成形品の物性が低下してしまうという問題がある。
【0004】
このようなボイドの発生を防止するものとして、国際公開WO00/27632には、樹脂層の少なくとも一面に繊維強化材を積重した成形材料が開示されている。また、特開平5−269909号公報には、プリプレグに代えて繊維強化材と熱硬化性樹脂の樹脂フィルムを用いる方法も開示されている。この方法は、繊維強化材と樹脂フィルムを積重した後加熱して樹脂フィルムの樹脂を繊維強化材に含浸させるとともに硬化させ成形品とする。
【0005】
これらの成形材料を用いる方法は、従来のプリプレグと比較してボイドの発生を抑制することができる。また、オートクレーブのような特別な装置を必要とせず、硬化炉を使用した真空バッグ成形で容易に成形品を得ることができ、低い製造コストで製品が得られる利点がある。しかし、成形材料として用いる樹脂はフィルム化する必要があり、使用できる樹脂が制限される。また、室温でフィルムの形状を保持するため低温で保存を行う必要があるほか、樹脂のライフが短い等その取扱いは困難である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、取扱いが困難な樹脂フィルムを必要とせず、エアーの残存によるボイドが発生しない成形法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決する本発明は、以下に記載するものである。
【0008】
〔1〕 型の一面上に樹脂層を形成し、前記樹脂層に繊維強化材シートを積重した後、積重した繊維強化材シート上にバッグを重ねると共に当該バッグ周縁を型に気密にシールしてバッグと型との間を排気し、加熱することにより樹脂層の樹脂を繊維強化材シートに含浸させ硬化させる樹脂コート成形法。
【0009】
〔2〕 型の一面上に樹脂層を形成し、前記樹脂層に繊維強化材シートを積重した後、積重した繊維強化材シート上にバッグを重ねると共に当該バッグ周縁を型の他面を被覆した他のバッグに気密にシールし、次いでバッグと型との間を排気し、加熱することにより樹脂層の樹脂を繊維強化材シートに含浸させ硬化させる樹脂コート成形法。
【0010】
〔3〕 型の一面上に樹脂層を形成し、前記樹脂層に繊維強化材シートを積重した後、積重した繊維強化材シート上にバッグを重ねると共に当該バッグ周縁を型に気密にシールしてバッグと型との間を排気し、オートクレーブで加圧下加熱することにより樹脂層の樹脂を繊維強化材シートに含浸させ硬化させる樹脂コート成形法。
【0011】
〔4〕 型の一面上に樹脂層を形成し、前記樹脂層に繊維強化材シートを積重した後、積重した繊維強化材シート上にバッグを重ねると共に当該バッグ周縁を型の他面を被覆した他のバッグに気密にシールし、次いでバッグと型との間を排気し、オートクレーブで加圧下加熱することにより樹脂層の樹脂を繊維強化材シートに含浸させ硬化させる樹脂コート成形法。
【0012】
〔5〕 樹脂層の形成を刷毛塗り法又は噴霧法により行う〔1〕乃至〔4〕のいずれかに記載の樹脂コート成形法。
【0013】
〔6〕 樹脂層を形成する樹脂の25℃における粘度が100Pa・s〜半固形であり、成形加熱時に粘度が0.1〜10Pa・sに減少する〔1〕乃至〔4〕のいずれかに記載の樹脂コート成形法。
【0014】
【発明の実施の形態】
樹脂層を形成する樹脂としては、通常用いられる熱硬化性樹脂が使用できる。具体的には、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等が挙げられ、本発明においてはこれらの樹脂の混合物を使用することもできる。繊維強化複合材料を用途とする場合には、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂組成物が好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤等が含まれていてもよい。
【0015】
樹脂の硬化温度は、60〜180℃となるよう調製することが好ましく、70〜130℃に調製することがより好ましい。
【0016】
25℃における樹脂粘度は、型に塗布した樹脂の液だれを防止するため100Pa・s〜半固形であることが好ましい。
【0017】
また、成形加熱時に樹脂粘度が0.1〜10Pa・sに粘度減少するものが好ましい。かかる粘度を有する樹脂は、型に塗布する際に好適に用いることができる。
【0018】
繊維強化材シートとしては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等の強化繊維が使用できる。中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。また、これらの繊維強化材シートの形態は、一方向に引き揃えたもの又は多方向に引き揃えたもの、織物、編物、不織布等の任意の加工品が利用できる。
【0019】
繊維強化材シートの目付は200〜3000g/m2が好ましく、400〜2000g/m2がより好ましい。
【0020】
以下、図1を参照して本発明の樹脂コート成形法について説明する。
【0021】
まず、型2の一面に沿って所要の厚さまで型に樹脂を塗布して樹脂層4を形成し、樹脂層4上に繊維強化材シート6を積重する(図1(a))。型は特に制限がなく公知のものが使用できる。
【0022】
型に樹脂層を形成する方法としては、刷毛塗り法、噴霧法等の任意の形成法を用いることができる。樹脂層の樹脂量は、積重する繊維強化材と樹脂層の樹脂量を加えた重量の35〜55%とすることが好ましい。
【0023】
また、型上に形成する樹脂層は、室温で適度なタック性を有することが好ましい。適度なタック性を有する樹脂層は繊維強化材を積重する際に作業性を高めることができ好適である。
【0024】
室温で適度なタック性を有する樹脂層を形成する方法としては、高粘度の樹脂を加熱して低粘度とし型に塗布後、常温に戻すことにより適度なタック性を有する樹脂層とする方法、低粘度樹脂を型に塗布し、加熱時に繊維強化材に含浸する程度に樹脂を部分的に重合させることにより適度なタック性を有する樹脂層とする方法、樹脂のチキソトロピー性を利用して適度のタック性を有する樹脂層とする方法等を挙げることができる。
【0025】
繊維強化材シート6を積重した後、バッグ8を繊維強化材に重ねて配置してバッグ8の周縁を型2と気密にシールし、密封する(図1(b))。バッグを用いて繊維強化材シートを密封した後、型2とバッグ8間の気体を排気して減圧にする(図1(c))。型とバッグ間を減圧にすることによりバッグが変形し、繊維強化材は型上に形成された樹脂層に密着する。
【0026】
バッグの材質は特に制限されず、通常用いられる公知のものを使用することができる。更に、バッグの形状としては特に制限されず、型や目的とする成形品の形状によりシート状、袋状等の形状を適宜選択して用いることができる。また、バッグのシールは減圧により繊維強化材が型上に形成した樹脂層に密着するように行うことができればよい。例えば、バッグをシーラントで型に直接シールする方法、繊維強化材を積重した型を袋状のバッグに挿入しバッグ周縁を型にシールする方法、繊維強化材上に重ねて配置した一のバッグと型の他面に配置した他のバッグをシーラントで気密にシールする方法等を例示できる。バッグ同士をシールして型全体をバッグで覆う方法は、型を貫通する治具取付け孔があって型に直接シールしても密封できない場合や、型が通気性材料で形成されている場合等に特に有効である。
【0027】
その後、バッグ8で密封された樹脂層4及び繊維強化材シート6をオーブン又はオートクレーブで加熱することにより繊維強化樹脂層13からなる成形品12を得る(図1(d))。加熱を行うことにより樹脂層の樹脂を繊維強化材シートに十分含浸させ、硬化させて成形品とすることができる。加熱温度は60〜200℃が好ましい。また、オートクレーブを用いる場合には、加圧圧力は0.1〜0.5MPaとすることが好ましい。オーブン又はオートクレーブで処理を行う際には、型とバッグ間の気体を排気した後又は排気しながら処理を行うことが好ましい。
【0028】
更に、本発明の成形法においては発泡コア材を内部に挿入してもよい。発泡コア材を使用した成形法の一例を図2に示す。
【0029】
型28上に樹脂を塗布して樹脂層14aを形成し、繊維強化材シート16a、発泡コア材24を敷設する。更に発泡コア材24上に樹脂を塗布して樹脂層14bを形成し、この樹脂層上に繊維強化材シート16bを敷設する(図2(a))。その後、バッグ18で密封した後、図1に示す場合と同様にバッグ内を減圧し、加熱成形を行い、繊維強化樹脂層26a、26b、発泡コア材24からなる成形品22を得る(図2(b))。発泡コア材としては、ウレタンフォーム、塩化ビニルフォーム、ポリメタアクリルイミドフォーム、アクリルフォーム、フェノールフォーム、ポリスチレンフォーム等が例示できる。また、バルサ材等も使用できる。
【0030】
なお、本発明の樹脂コート成形法においては、成形品の用途に応じてゲルコートを使用してもよい。ゲルコートを使用する場合には、離型処理を行った型上にゲルコートを塗布してゲルコート層を形成し、ゲルコート層上に樹脂層を形成する。ゲルコート層は室温で又は加熱により重合させゲル化し、繊維強化材には含浸せず成形品の表面に残るため、成形品の表面を滑らかにすることができる。ゲルコートを塗布する場合には通常噴霧法、刷毛塗り法が用いられる。上記樹脂層の形成においても噴霧法又は刷毛塗り法を用いればゲルコート層と樹脂層の形成は同じ設備で行うことができ生産性の点で好ましい。
【0031】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
【0032】
実施例1
80℃に加熱したエピコート834(ジャパンエポキシレジン社製)を80質量部、エピコート1001(ジャパンエポキシレジン社製)を20質量部、アンカー1040(エアープロダクツジャパン社製)を5質量部計量、混錬し、離型処理した平らなアルミ板の上に、1500g/m2になるように刷毛で塗布した。その後、塗布した樹脂が室温に戻り、適度なタックを生じた後、寸法500mm×500mmにカットした炭素繊維織物W−3101(東邦テナックス社製)を10枚積層し、その上にピールクロスを積層した。その後、積層した材料全体をナイロンバッグ(WRIGHTLON #7400、AIRTECH社製)で覆い、型とナイロンバッグをシーラントテープでシールし、バッグ内を真空ポンプで減圧した。
【0033】
その後、硬化炉で130℃、2時間、真空ポンプで減圧しながら加熱硬化し、板厚2.2mmのCFRP板を得た。
【0034】
【発明の効果】
本発明の成形法は、型上に樹脂層を形成しその上に繊維強化材を積重した後加熱することにより樹脂層の樹脂を繊維強化材シートに含浸させるので、樹脂をフィルム化する必要がない。このため、従来のように半硬化状態の樹脂フィルムの状態を使用時期まで保つため低温保存する必要がなく、調合した樹脂をすぐに使用できるため取扱いが容易で、樹脂ライフの点で有利である。真空バッグ成形を行っても従来のプリプレグのようなボイドを生じることがなく、高品位の成形品が得られる。
【図面の簡単な説明】
【図1】 本発明の成形法の一例を示すフロー図で、(a)は樹脂層を形成し繊維強化材を積重した状態を示す断面図、(b)は繊維強化材をバッグと型との間にシールした状態を示す断面図、(c)はバッグと型との間を排気した状態を示す断面図、(d)は樹脂を含浸させ成形品とした状態を示す断面図である。
【図2】 本発明の成形法の他の例を示すフロー図で、発泡コア材を用いた成形法を示す図である。
【符号の説明】
2、28 型
4、14a、14b 樹脂層
6、16a、16b 繊維強化材シート
8、18 バッグ
10、20 シーラント
12、22 成形品
13、26a、26b 繊維強化樹脂層
24 発泡コア材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin coat molding method in which a resin layer is formed by applying a resin to one surface of a mold, and a fiber reinforcing material is impregnated with a resin of the resin layer and heat-cured.
[0002]
[Prior art]
Conventionally, prepregs are used for the production of fiber-reinforced composite materials. A prepreg is a molding material in which a fiber reinforced material is impregnated with a thermosetting resin and has undergone a curing reaction to such an extent that it can be easily handled by hand. A prepreg composed mainly of a fiber reinforcing material such as carbon fiber, boron fiber, or aramid fiber and an epoxy resin is used.
[0003]
The prepreg is formed by heat-curing a plurality of prepregs laid on the inner surface of the mold under pressure. The prepreg has a tack on the surface due to its structure, and air is caught between the prepregs when laminating. For this reason, in the case of vacuum bag molding in which pressure molding is performed at atmospheric pressure without sufficiently applying pressure from the outside, voids due to residual air are generated in the resulting molded product, and the physical properties of the molded product are reduced. There is a problem of end.
[0004]
In order to prevent the generation of such voids, International Publication WO 00/27632 discloses a molding material in which a fiber reinforcing material is stacked on at least one surface of a resin layer. Japanese Patent Application Laid-Open No. 5-269909 also discloses a method using a fiber film and a resin film of a thermosetting resin instead of the prepreg. In this method, a fiber reinforcing material and a resin film are stacked and then heated to impregnate the resin of the resin film into the fiber reinforcing material and cured to obtain a molded product.
[0005]
The methods using these molding materials can suppress the generation of voids as compared with conventional prepregs. Further, there is an advantage that a special product such as an autoclave is not required and a molded product can be easily obtained by vacuum bag molding using a curing furnace, and the product can be obtained at a low production cost. However, the resin used as the molding material must be formed into a film, and the usable resin is limited. Moreover, in order to maintain the shape of the film at room temperature, it is necessary to store it at a low temperature, and it is difficult to handle the resin because its life is short.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a molding method that does not require a resin film that is difficult to handle and does not generate voids due to remaining air.
[0007]
[Means for Solving the Problems]
The present invention for solving the above problems is described below.
[0008]
[1] A resin layer is formed on one surface of a mold, a fiber reinforcement sheet is stacked on the resin layer, a bag is stacked on the stacked fiber reinforcement sheet, and the periphery of the bag is hermetically sealed to the mold Then, a resin coat molding method in which the fiber reinforcing material sheet is impregnated and cured by evacuating and heating between the bag and the mold.
[0009]
[2] After forming a resin layer on one surface of the mold and stacking a fiber reinforcing material sheet on the resin layer, a bag is stacked on the stacked fiber reinforcing material sheet, and the periphery of the bag is attached to the other surface of the mold. A resin coat molding method in which a fiber-reinforced material sheet is impregnated with a resin of a resin layer and cured by air-tightly sealing to another covered bag, then exhausting between the bag and the mold and heating.
[0010]
[3] A resin layer is formed on one surface of the mold, and a fiber reinforcing material sheet is stacked on the resin layer, and then a bag is stacked on the stacked fiber reinforcing material sheet and the periphery of the bag is hermetically sealed to the mold A resin coat molding method in which the space between the bag and the mold is evacuated and heated under pressure in an autoclave so that the resin of the resin layer is impregnated into the fiber reinforcing material sheet and cured.
[0011]
[4] After forming a resin layer on one surface of the mold and stacking a fiber reinforcing material sheet on the resin layer, a bag is stacked on the stacked fiber reinforcing material sheet, and the periphery of the bag is attached to the other surface of the mold. A resin coat molding method in which a fiber reinforcing material sheet is impregnated with a resin of a resin layer and cured by evacuating between the bag and the mold and then heating under pressure in an autoclave.
[0012]
[5] The resin coat molding method according to any one of [1] to [4], wherein the resin layer is formed by a brush coating method or a spraying method.
[0013]
[6] The viscosity of the resin forming the resin layer at 25 ° C. is 100 Pa · s to semi-solid, and the viscosity is reduced to 0.1 to 10 Pa · s during molding heating. The resin coat molding method as described.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As the resin for forming the resin layer, a commonly used thermosetting resin can be used. Specifically, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicon resin, maleimide resin, vinyl ester resin, cyanate ester resin, resin obtained by prepolymerizing maleimide resin and cyanate ester resin, etc. In the present invention, a mixture of these resins can also be used. When a fiber reinforced composite material is used, an epoxy resin composition excellent in heat resistance, elastic modulus, and chemical resistance is preferable. These thermosetting resins may contain a curing agent, a curing accelerator and the like.
[0015]
The curing temperature of the resin is preferably adjusted to 60 to 180 ° C, more preferably 70 to 130 ° C.
[0016]
The resin viscosity at 25 ° C. is preferably 100 Pa · s to semi-solid in order to prevent dripping of the resin applied to the mold.
[0017]
Moreover, the thing whose resin viscosity reduces to 0.1-10 Pa.s at the time of shaping | molding heating is preferable. A resin having such a viscosity can be suitably used when applied to a mold.
[0018]
As the fiber reinforcing material sheet, reinforcing fibers such as carbon fibers, glass fibers, aramid fibers, boron fibers, metal fibers and the like can be used. Among these, carbon fiber, glass fiber, and aramid fiber are preferable. Moreover, as for the form of these fiber reinforcement material sheets, arbitrary processed goods, such as what was arranged in one direction or those arranged in multiple directions, a woven fabric, a knitted fabric, and a nonwoven fabric, can be utilized.
[0019]
Basis weight of the fibrous reinforcement sheet is preferably 200~3000g / m 2, 400~2000g / m 2 is more preferable.
[0020]
The resin coat molding method of the present invention will be described below with reference to FIG.
[0021]
First, a resin is applied to the mold to a required thickness along one surface of the mold 2 to form the resin layer 4, and the fiber reinforcing material sheets 6 are stacked on the resin layer 4 (FIG. 1A). There is no particular limitation on the mold, and known molds can be used.
[0022]
As a method for forming the resin layer on the mold, any forming method such as a brush coating method or a spraying method can be used. The resin amount of the resin layer is preferably 35 to 55% of the total weight of the fiber reinforcing material to be stacked and the resin amount of the resin layer.
[0023]
Moreover, it is preferable that the resin layer formed on a type | mold has an appropriate tackiness at room temperature. A resin layer having an appropriate tackiness is preferable because it improves workability when stacking fiber reinforcing materials.
[0024]
As a method of forming a resin layer having an appropriate tackiness at room temperature, a method of heating a high-viscosity resin to a low viscosity and applying it to a mold, and then returning to room temperature to obtain a resin layer having an appropriate tackiness, Applying a low-viscosity resin to the mold and partially polymerizing the resin to such an extent that the fiber reinforcing material is impregnated when heated, a method for forming a resin layer having an appropriate tackiness, and utilizing the thixotropic property of the resin Examples thereof include a method for forming a resin layer having tackiness.
[0025]
After the fiber reinforcing material sheets 6 are stacked, the bag 8 is placed on the fiber reinforcing material, and the periphery of the bag 8 is hermetically sealed with the mold 2 and sealed (FIG. 1B). After sealing the fiber reinforcement sheet with the bag, the gas between the mold 2 and the bag 8 is exhausted to reduce the pressure (FIG. 1 (c)). By reducing the pressure between the mold and the bag, the bag is deformed, and the fiber reinforcement adheres to the resin layer formed on the mold.
[0026]
The material of the bag is not particularly limited, and commonly used known materials can be used. Furthermore, the shape of the bag is not particularly limited, and a sheet shape, a bag shape, or the like can be appropriately selected and used depending on the shape of the mold or the target molded product. The bag may be sealed so that the fiber reinforcing material can be brought into close contact with the resin layer formed on the mold by decompression. For example, a method of directly sealing a bag to a mold with a sealant, a method of inserting a mold in which fiber reinforcements are stacked into a bag-like bag and sealing the periphery of the bag to the mold, and a single bag placed on top of the fiber reinforcement And a method of hermetically sealing other bags disposed on the other surface of the mold with a sealant. The method of sealing the bags together and covering the entire mold with the bag is when there is a jig mounting hole that penetrates the mold and cannot be sealed even when directly sealed to the mold, or when the mold is made of a breathable material, etc. Is particularly effective.
[0027]
Thereafter, the resin layer 4 sealed with the bag 8 and the fiber reinforcing material sheet 6 are heated in an oven or an autoclave to obtain a molded product 12 composed of the fiber reinforced resin layer 13 (FIG. 1 (d)). By heating, the resin of the resin layer is sufficiently impregnated into the fiber reinforcing material sheet and cured to form a molded product. The heating temperature is preferably 60 to 200 ° C. Moreover, when using an autoclave, it is preferable that a pressurization pressure shall be 0.1-0.5 Mpa. When processing in an oven or an autoclave, it is preferable to perform the processing after or while exhausting the gas between the mold and the bag.
[0028]
Furthermore, in the molding method of the present invention, a foam core material may be inserted inside. An example of a molding method using a foam core material is shown in FIG.
[0029]
Resin is applied onto the mold 28 to form the resin layer 14a, and the fiber reinforcing material sheet 16a and the foam core material 24 are laid. Further, a resin is applied on the foam core material 24 to form a resin layer 14b, and a fiber reinforcing material sheet 16b is laid on the resin layer (FIG. 2A). Then, after sealing with the bag 18, the inside of the bag is decompressed and heat-molded in the same manner as shown in FIG. 1 to obtain a molded product 22 composed of the fiber reinforced resin layers 26a and 26b and the foamed core material 24 (FIG. 2). (B)). Examples of the foam core material include urethane foam, vinyl chloride foam, polymethacrylimide foam, acrylic foam, phenol foam, and polystyrene foam. Also, balsa material can be used.
[0030]
In the resin coat molding method of the present invention, a gel coat may be used according to the use of the molded product. When the gel coat is used, the gel coat is applied on the mold subjected to the release treatment to form a gel coat layer, and the resin layer is formed on the gel coat layer. The gel coat layer is polymerized and gelled at room temperature or by heating, and remains on the surface of the molded product without being impregnated with the fiber reinforcement, so that the surface of the molded product can be made smooth. When a gel coat is applied, a spray method or a brush coating method is usually used. In the formation of the resin layer, if the spraying method or the brush coating method is used, the gel coat layer and the resin layer can be formed with the same equipment, which is preferable in terms of productivity.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0032]
Example 1
80 parts by mass of Epicoat 834 (manufactured by Japan Epoxy Resin Co., Ltd.) heated to 80 ° C., 20 parts by mass of Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.), and 5 parts by mass of Anchor 1040 (manufactured by Air Products Japan) are kneaded. And it apply | coated with the brush so that it might become 1500 g / m < 2 > on the flat aluminum plate which carried out the mold release process. Then, after the applied resin returned to room temperature and produced an appropriate tack, 10 sheets of carbon fiber fabric W-3101 (manufactured by Toho Tenax Co., Ltd.) cut to a size of 500 mm × 500 mm were laminated, and a peel cloth was laminated thereon. did. Thereafter, the entire laminated material was covered with a nylon bag (WRIGHTLON # 7400, manufactured by AIRTECH), the mold and the nylon bag were sealed with a sealant tape, and the inside of the bag was decompressed with a vacuum pump.
[0033]
Thereafter, it was cured by heating in a curing furnace at 130 ° C. for 2 hours while reducing the pressure with a vacuum pump to obtain a CFRP plate having a thickness of 2.2 mm.
[0034]
【The invention's effect】
In the molding method of the present invention, a resin layer is formed on a mold, a fiber reinforcing material is stacked thereon, and then heated to impregnate the resin of the resin layer into the fiber reinforcing material sheet. There is no. For this reason, it is not necessary to store at low temperature in order to keep the state of the semi-cured resin film until the time of use as in the past, and it is easy to handle because the prepared resin can be used immediately, which is advantageous in terms of resin life. . Even if vacuum bag molding is performed, voids unlike conventional prepregs are not generated, and a high-quality molded product can be obtained.
[Brief description of the drawings]
FIG. 1 is a flow chart showing an example of a molding method of the present invention, in which (a) is a cross-sectional view showing a state in which a resin layer is formed and fiber reinforcing materials are stacked, and (b) is a fiber reinforcing material that is a bag and a mold. FIG. 4C is a cross-sectional view showing a state in which the space between the bag and the mold is evacuated, and FIG. 4D is a cross-sectional view showing a state in which a molded product is impregnated with resin. .
FIG. 2 is a flowchart showing another example of the molding method of the present invention, and is a diagram showing a molding method using a foamed core material.
[Explanation of symbols]
2, 28 Mold 4, 14a, 14b Resin layer 6, 16a, 16b Fiber reinforcement sheet 8, 18 Bag 10, 20 Sealant 12, 22 Molded product 13, 26a, 26b Fiber reinforced resin layer 24 Foam core material

Claims (5)

型の一面上に60〜200℃における粘度が0.1〜10Pa・sのエポキシ樹脂を塗布又は噴霧することにより樹脂層を形成し、前記樹脂層に目付200〜3000g/mの炭素繊維シートを積重した後、積重した炭素繊維シート上にバッグを重ねると共に当該バッグ周縁を型に気密にシールしてバッグと型との間を排気し、加熱することにより樹脂層の樹脂を炭素繊維シートに含浸させ硬化させる樹脂コート成形法であって、樹脂層の樹脂量が炭素繊維シートと樹脂層の樹脂量を加えた重量の35〜55%である樹脂コート成形法。A carbon fiber sheet having a basis weight of 200 to 3000 g / m 2 is formed on one surface of the mold by applying or spraying an epoxy resin having a viscosity of 0.1 to 10 Pa · s at 60 to 200 ° C. After stacking the bags, the bag is stacked on the stacked carbon fiber sheets, the periphery of the bag is hermetically sealed to the mold, the space between the bag and the mold is exhausted, and the resin in the resin layer is heated by carbon fiber. A resin coat molding method in which a sheet is impregnated and cured, wherein the resin amount of the resin layer is 35 to 55% of the total weight of the carbon fiber sheet and the resin layer. 樹脂層を形成するエポキシ樹脂の硬化温度が60〜180℃に調製された請求項1に記載の樹脂コート成形法。  The resin coat molding method according to claim 1, wherein the curing temperature of the epoxy resin forming the resin layer is adjusted to 60 to 180 ° C. エポキシ樹脂が、硬化剤、硬化促進剤を含む請求項1に記載の樹脂コート成形法。  The resin coat molding method according to claim 1, wherein the epoxy resin contains a curing agent and a curing accelerator. 加熱温度が60〜200℃である請求項1に記載の樹脂コート成形法。  The resin coat molding method according to claim 1, wherein the heating temperature is 60 to 200 ° C. 型の一面上にゲルコートを塗布した後室温で又は加熱により前記ゲルコートを重合させてゲルコート層を形成し、前記ゲルコート層上に60〜200℃における粘度が0.1〜10Pa・sのエポキシ樹脂を塗布又は噴霧することにより樹脂層を形成し、前記樹脂層に目付200〜3000g/mの炭素繊維シートを積重した後、積重した炭素繊維シート上にバッグを重ねると共に当該バッグ周縁を型に気密にシールしてバッグと型との間を排気し、加熱することにより樹脂層の樹脂を炭素繊維シートに含浸させ硬化させる樹脂コート成形法であって、樹脂層の樹脂量が炭素繊維シートと樹脂層の樹脂量を加えた重量の35〜55%である樹脂コート成形法。After the gel coat is applied on one surface of the mold, the gel coat is polymerized at room temperature or by heating to form a gel coat layer, and an epoxy resin having a viscosity of 0.1 to 10 Pa · s at 60 to 200 ° C. is formed on the gel coat layer. A resin layer is formed by coating or spraying, a carbon fiber sheet having a basis weight of 200 to 3000 g / m 2 is stacked on the resin layer, and then a bag is stacked on the stacked carbon fiber sheet and the periphery of the bag is molded. Is a resin coat molding method in which the carbon fiber sheet is impregnated and cured by heating, exhausting between the bag and the mold, and heating, and the amount of resin in the resin layer is the carbon fiber sheet And a resin coat molding method of 35 to 55% of the total weight of the resin layer.
JP2002226535A 2002-08-02 2002-08-02 Resin coat molding method Expired - Fee Related JP4052381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002226535A JP4052381B2 (en) 2002-08-02 2002-08-02 Resin coat molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002226535A JP4052381B2 (en) 2002-08-02 2002-08-02 Resin coat molding method

Publications (2)

Publication Number Publication Date
JP2004066546A JP2004066546A (en) 2004-03-04
JP4052381B2 true JP4052381B2 (en) 2008-02-27

Family

ID=32013845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002226535A Expired - Fee Related JP4052381B2 (en) 2002-08-02 2002-08-02 Resin coat molding method

Country Status (1)

Country Link
JP (1) JP4052381B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753151B1 (en) 2005-04-22 2007-08-30 삼성전자주식회사 Operational amplifier for output buffer and signal processing circuit using thereof
JP5144010B2 (en) * 2005-10-06 2013-02-13 三菱レイヨン株式会社 Manufacturing method of fiber reinforced plastic panel
JP2007098819A (en) * 2005-10-06 2007-04-19 Mitsubishi Rayon Co Ltd Manufacturing method of sandwich panel

Also Published As

Publication number Publication date
JP2004066546A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
AU674051B2 (en) A composite molding apparatus and method for high pressure co-cure molding of lightweight honeycomb core composite articles having ramped surfaces utilizing low density, stabilized ramped honeycomb cores and product formed thereby
CN104812556B (en) Method for forming shaped preform
JP5054258B2 (en) Molding material
JP2004510842A (en) Sheet (SMC) molding compound with vented structure for trapped gas
JP2673566B2 (en) Semi-rigid tools and methods for forming complex composite articles
CA3011973A1 (en) Fabrication of complex-shaped composite structures
WO2020003609A1 (en) Method for molding composite material structure
JPWO2012066805A1 (en) Method for producing fiber-reinforced plastic molded body, preform and method for producing the same, and adhesive film
JP4458739B2 (en) Manufacturing method of molded products
JP4052381B2 (en) Resin coat molding method
JP2004035604A (en) Semi-impregnated prepreg
JPH08118381A (en) Manufacture of cfrp molded product
JP2004058609A (en) Method for manufacturing laminated sheet
JP2020163584A (en) Manufacturing method of sandwich molded product
JP2004058608A (en) Method for manufacturing hollow molded article
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
JP2002248694A (en) Method for molding fiber reinforced composite material
JP2004249527A (en) Resin transfer molding method and method for manufacturing sandwich laminate
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
JP2004299178A (en) Resin transfer molding method
JP2004058610A (en) Semi-impregnated prepreg and molding method using this prepreg
EP1145824A2 (en) Method for reinforcing manufactured articles made of plastic, stone-like or metallic material
JP2003305741A (en) Manufacturing method for laminated structure
JP2006130731A (en) Manufacturing method of fiber reinforced resin molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees