JP2004058610A - Semi-impregnated prepreg and molding method using this prepreg - Google Patents

Semi-impregnated prepreg and molding method using this prepreg Download PDF

Info

Publication number
JP2004058610A
JP2004058610A JP2002223748A JP2002223748A JP2004058610A JP 2004058610 A JP2004058610 A JP 2004058610A JP 2002223748 A JP2002223748 A JP 2002223748A JP 2002223748 A JP2002223748 A JP 2002223748A JP 2004058610 A JP2004058610 A JP 2004058610A
Authority
JP
Japan
Prior art keywords
semi
fiber
prepreg
impregnated prepreg
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002223748A
Other languages
Japanese (ja)
Other versions
JP2004058610A5 (en
Inventor
Toru Kaneko
金子 徹
Sadataka Umemoto
梅元 禎孝
Kiyoto Sasaki
佐々木 清人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2002223748A priority Critical patent/JP2004058610A/en
Publication of JP2004058610A publication Critical patent/JP2004058610A/en
Publication of JP2004058610A5 publication Critical patent/JP2004058610A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg from which a molded product free from residual air and reduced in voids is manufactured, and a manufacturing method using this prepreg. <P>SOLUTION: This semi-impregnated prepreg 1 is composed of a thermosetting resin film 5 and fiber-reinforcing materials 2 and 3 laminated on at least one side of the film 5 and has a projecting fibrous part 9 formed on at least a part of the peripheral end part S of the semi-impregnated prepreg 1. The thermosetting resin film 5 may use a carrier. The prepreg is best-suited for use in vacuum bag molding and autoclave molding processes. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、周端部に突出繊維部を有し、熱硬化性樹脂フィルムに繊維強化材を積重して貼着したセミ含浸プリプレグ及び当該プリプレグを用いた成形方法に関する。
【0002】
【従来の技術】
プリプレグは、繊維強化材に熱硬化性樹脂を含浸し、手作業で容易に取扱うことができる程度に硬化反応を進めた成形材料である。主として、炭素繊維、ボロン繊維、アラミド繊維などの繊維強化材とエポキシ系の樹脂を用いて構成したプリプレグが用いられている。
【0003】
プリプレグの成形は、型に敷設した複数枚のプリプレグを加圧下で加熱硬化させることにより行う。プリプレグを成形する方法としては、弾性を有する柔軟なバッグを用いる方法としてオートクレーブ成形法、真空バッグ成形法、内圧バッグ成形法等が用いられる。
【0004】
オートクレーブ成形法、真空バッグ成形法においては、まず型に敷設したプリプレグ上にバッグを重ねてプリプレグを密封し、真空ポンプ等を用いてバッグ内の排気を行う。大気圧下でバッグ内の排気を行うとバッグが型に密着してエアの排出が妨げられる。この場合はバッグと型との間にエア溜りが形成され、これが取り残されるため、この残存したエアを強制的に抜く操作が必要となる。
【0005】
更に、プリプレグはその構造から表面にタックがあり、積層する際にプリプレグ間にエアを噛み込む。外部から十分加圧することなく大気圧で加圧成形を行う真空バッグ成形はオートクレーブ等の設備を必要としないため低い製造コストで容易に成形品を得ることができるが、プリプレグのタックが原因となって得られる成形品にはエアの残存によるボイドが生じ、成形品の物性が低下してしまうという問題がある。
【0006】
このようなボイドの発生を防止するものとして、国際公開WO00/27632には、樹脂層の少なくとも一面に繊維強化材を積重した成形材料が開示されている。また、特開平5−269909号公報には、プリプレグに代えて繊維強化材と熱硬化性樹脂の樹脂フィルムを用いる方法も開示されている。この方法は、繊維強化材と樹脂フィルムを積重した後加熱して樹脂フィルムの樹脂を繊維強化材に含浸させるとともに硬化させ成形品とする。
【0007】
これらの成形材料を用いる方法は、外部から加圧を行うオートクレーブ成形を行わなくてもある程度はボイドの発生を抑制することができる。しかしながら、従来のプリプレグに比較すれば少ないものの、ボイドやピンホールが生じることは避けられない。
【0008】
【発明が解決しようとする課題】
本発明の目的は、特に真空バッグ成形により成形を行う場合において、大気圧下でバッグ内の排気性が高く、繊維強化材の中にエアが残存せず、更に繊維強化材の中にボイドが少ない成形品を得ることができるセミ含浸プリプレグ及び成形方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明は、以下に記載するものである。
【0010】
〔1〕 熱硬化性樹脂フィルムと、その少なくとも一面に貼着した繊維強化材とからなるセミ含浸プリプレグであって、前記セミ含浸プリプレグの周端部の少なくとも一部に突出繊維部を有するセミ含浸プリプレグ。
【0011】
〔2〕 突出繊維部が、繊維強化材を構成する繊維が繊維強化材から伸長したものである〔1〕に記載のセミ含浸プリプレグ。
【0012】
〔3〕 熱硬化性樹脂フィルムがキャリアの少なくとも一面に樹脂層を形成したものである〔1〕又は〔2〕に記載のセミ含浸プリプレグ。
【0013】
〔4〕 突出繊維部が、キャリアを構成する繊維がキャリアから伸長したものである〔3〕に記載のセミ含浸プリプレグ。
【0014】
〔5〕 熱硬化性樹脂フィルムと、その少なくとも一面に貼着した繊維強化材と、前記フィルム又は繊維強化材よりも大寸のシート状繊維とからなるセミ含浸プリプレグであって、前記セミ含浸プリプレグの周端部の少なくとも一部にシート状繊維の突出繊維部を形成してなるセミ含浸プリプレグ。
【0015】
〔6〕 〔1〕乃至〔5〕のいずれかに記載のセミ含浸プリプレグを用いて真空バッグ成形を行う成形方法。
【0016】
〔7〕 〔1〕乃至〔5〕のいずれかに記載のセミ含浸プリプレグを用いてオートクレーブ成形を行う成形方法。
【0017】
【発明の実施の形態】
図1は、本発明のセミ含浸プリプレグの一例の概略断面図を示す。セミ含浸プリプレグ1は、熱硬化性樹脂フィルム5に繊維強化材2及び3を貼着してなる。セミ含浸プリプレグ1は繊維強化材2及び3を構成する繊維が周端部Sで切断されることなく伸長した突出繊維部9を有している。
【0018】
繊維強化材2及び3は、熱硬化性樹脂フィルム5の樹脂が含浸した樹脂含浸層7及び樹脂が含浸していない未含浸層8からなる。セミ含浸プリプレグ1は表面までは樹脂が含浸しておらず、プリプレグの表面にタックが生じることがない。
【0019】
繊維強化材としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、金属繊維等の通常のプリプレグに用いる強化繊維が使用できる。中でも、炭素繊維、ガラス繊維、アラミド繊維が好ましい。これらの繊維強化材の形態は突出繊維部を引き出すことができる形態であれば特に制限されず、例えば一方向に引き揃えたもの又は多方向に引き揃えたもの、織物等が利用できる。中でも、織物を用いる場合には織物のタテ糸、ヨコ糸を伸長させ突出繊維部として容易に利用することができ好ましい。
【0020】
繊維強化材から伸長する突出繊維部の長さは10〜100mmが好ましく、10〜50mmがより好ましい。
【0021】
本発明のセミ含浸プリプレグにおいては、繊維強化材の目付は200〜3000g/mが好ましく、400〜2000g/mがより好ましい。
【0022】
図1に示すように熱硬化性樹脂フィルムの両面に繊維強化材を貼着してセミ含浸プリプレグとする場合は、繊維強化材2及び3はそれぞれが面対称の織物であるか、又は熱硬化性樹脂フィルム5に対して互いに面対称の織物であることが好ましい。面対称又は互いに面対称の織物とすることにより、繊維強化材を積重した際にプリプレグの反りを防止することができる。
【0023】
面対称の織物又は互いに面対称とすることができる織物としては、多軸織物を挙げることができる。多軸織物とは、一方向に引き揃えたシート状の繊維強化材を角度を変えて積層し、ナイロン糸、ポリエステル糸、ガラス繊維糸等で編んだ織物をいう。
【0024】
面対称の多軸織物の例としては、〔+45/−45/−45/+45〕、〔0/+45/−45/−45/+45/0〕等を挙げることができる。互いに面対称となる多軸織物の組合わせとしては、例えば〔+45/−45〕及び〔−45/+45〕、〔0/+45/−45〕及び〔−45/+45/0〕、〔+45/0/−45/90〕及び〔90/−45/0/+45〕等を挙げることができる。一方向に引き揃えた繊維強化材を積層する角度はこれらに限定されず、任意の角度とすることができる。
【0025】
多軸織物の厚さは用途により適宜選択するものであるが、通常0.2〜3mmが好ましい。
【0026】
熱硬化性樹脂フィルムに用いる樹脂は、通常のプレプリグ製造に用いる熱硬化性樹脂が使用できる。具体的には、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ポリウレタン樹脂、シリコン樹脂、マレイミド樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、マレイミド樹脂とシアン酸エステル樹脂を予備重合した樹脂等が挙げられ、本発明においてはこれらの樹脂の混合物を使用することもできる。繊維強化複合材料を用途とする場合には、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂組成物が好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤等が含まれていてもよい。
【0027】
熱硬化性樹脂の硬化温度は、60〜180℃となるよう調製することが好ましく、70〜130℃に調製することがより好ましい。
【0028】
樹脂フィルムの樹脂量は、セミ含浸プリプレグ全重量に対して35〜55%とすることが好ましい。
【0029】
樹脂フィルムに用いる熱硬化性樹脂は、常温である程度の形状保持能を有する程度に高分子化したプレポリマーで、加熱時に粘度が0.1〜10Pa・sに減少するものが好ましい。
【0030】
また、熱硬化性樹脂フィルムの取扱い性を高めるため、熱硬化性樹脂フィルムにキャリアを使用することが好ましい。キャリアの片面又は両面に樹脂層を形成した熱硬化性樹脂フィルムは保形性が付与され取扱い性に優れる。キャリアとしては、ガラス繊維シート、炭素繊維シート、アラミド繊維シート、ポリエステルシート、ポリエチレンシート、セルロース繊維シートを用いることができる。
【0031】
図2は本発明のセミ含浸プリプレグの他の例を示すものである。この例にあっては、樹脂フィルムは、キャリア16と、キャリア16上に形成された樹脂層14及び15からなる。樹脂フィルムはほぼ中央にシート状のキャリア16を介装し、突出繊維部19はキャリア16を構成する繊維が周端部Sから伸長している。
【0032】
図2に示すセミ含浸プリプレグにおいて、繊維強化材、熱硬化性樹脂フィルム、キャリアは上記と同様のものを使用する。突出繊維部は、単繊維状、織物状、不織布状のいずれであってもよい。
【0033】
なお、図1及び2は樹脂フィルムの両面に繊維強化材を積重し貼着した場合を示すが、片面のみに積重してもよい。
【0034】
本発明のセミ含浸プリプレグは周端部に突出繊維部を有していればよく、突出繊維部は繊維強化材又はキャリア由来のものに制限されず、別途突出繊維部を準備しこれを挟み込むようにして形成してもよい。
【0035】
また、熱硬化性樹脂フィルムと、その少なくとも一面に貼着した繊維強化材と、前記フィルム又は繊維強化材よりも大寸のシート状繊維とからなるセミ含浸プリプレグとし、周端部の少なくとも一部にシート状繊維の突出繊維部を形成してもよい。
【0036】
突出繊維部はセミ含浸プリプレグの周縁の一部に存在すればよいが、周縁全てにわたり存在させることがより効果的であり好ましい。
【0037】
本発明のセミ含浸プリプレグは、後述する真空バッグ成形法、オートクレーブ成形法において、バッグと型との間の空気を排気して減圧にする際に突出繊維部がエアーブリーダーのような効果を発揮して効果的に繊維強化材内のエアを抜くことができる。
【0038】
本発明のセミ含浸プリプレグの製造方法は、熱硬化性樹脂フィルムの片面又は両面に繊維強化材を積重し、0.01〜0.5MPaで加圧下、25〜100℃で0.1〜5分間加熱することにより製造することができる。図2のように熱硬化性樹脂フィルムのほぼ中央にキャリアを介装したプリプレグは、キャリアの両面に樹脂層を形成し、更にこの樹脂層に繊維強化材を貼着することにより製造する。
【0039】
繊維強化材への熱硬化性樹脂フィルムの樹脂の含浸は、プリプレグ表面まで樹脂が含浸しない程度であれば良いが、繊維強化材の厚さの0〜70%が好ましく、5〜50%とすることがより好ましい。
【0040】
以下、図3を参照して本発明のセミ含浸プリプレグを用いた成形方法について説明する。
【0041】
まず型24の一面上に繊維強化材2a及び3aと、熱硬化性樹脂フィルム5aとからなるセミ含浸プリプレグ1aを敷設する。セミ含浸プリプレグ1aを敷設した後、バッグ20を重ねて配置し、バッグ20の周縁をシーラント22で型24と気密にシールし、密封する(図3(a))。
【0042】
バッグの材質は特に制限されず、通常用いられる公知のものを使用することができる。更に、バッグの形状としては特に制限されず、型や目的とする成形品の形状によりシート状、袋状等の形状を適宜選択して用いることができる。また、バッグのシールは減圧によりセミ含浸プリプレグが型に密着するように行うことができればよい。例えば、図3に示すようにバッグをシーラントで型に直接シールする方法、セミ含浸プリプレグを敷設した型を袋状のバッグに挿入しバッグ周縁を型にシールする方法、セミ含浸プリプレグ上に重ねて配置した一のバッグと型の他面に配置した他のバッグをシーラントで気密にシールする方法等を例示できる。バッグ同士をシールして型全体をバッグで覆う方法は、治具取付け孔があって型に直接シールしても密封できない場合や、型が通気性材料で形成されている場合等に特に有効である。
【0043】
バッグを用いてセミ含浸プリプレグを密封した後、型24とバッグ20間の気体を排気して減圧にする(図3(b))。型24とバッグ22間を減圧にすることにより、バッグが変形してセミ含浸プリプレグ1aは型24に密着する。このバッグの変形に伴って突出繊維部9aはバッグ20と型24との間に挟まれて空気の流路を確保し、エア溜りやボイドを防止する。
【0044】
更に、オーブン(真空バッグ成形)又はオートクレーブ(オートクレーブ成形)を用いて加熱することにより熱硬化性樹脂フィルムを溶融し、繊維強化材に熱硬化性樹脂を含浸させる。更に繊維強化材に含浸させた熱硬化性樹脂を加熱硬化させ硬化層26、28として成形品30を得る(図3(c))。オーブン等による加熱温度は60〜180℃が好ましい。オートクレーブを用いた場合の加圧圧力は0.1〜0.5MPaが好ましい。また、型24とバッグ22間の気体を排気しながらこれらの処理を行うことが好ましい。
【0045】
【実施例】
以下、実施例により本発明を更に詳細に説明する。
【0046】
実施例1
エピコート828(ジャパンエポキシレジン社製)を80質量部、エピコート1001(ジャパンエポキシレジン社製)を20質量部、ジシアンジアミド(ジャパンエポキシレジン社製)を5質量部、3−(3,4−ジクロロフェニル)−1,1−ジメチルユリア(保士谷化学工業社製)を5質量部計量し、70℃でロールミルで混錬し、樹脂組成物を得た。その後、70℃でドクターブレード法により樹脂目付1000g/m、幅1000mmの樹脂フィルムを作製し、樹脂フィルムの片面に幅1100mmのガラス繊維からなるネット状織物のクレネットG1100(クラボウ社製)を貼り付け、キャリア付き樹脂フィルムを得た。尚、キャリアは両端が樹脂塗布部より幅50mmづつ張り出すようにした。
【0047】
キャリア付き樹脂フィルムの両面に、炭素繊維HTA−12K(東邦テナックス社製)を使用した幅1000mmの多軸織物(〔0/+45/−45〕:CF目付 600g/m)と幅1000mmの多軸織物(〔−45/+45/0〕:CF目付 600g/m)とを70℃に加熱した加熱ローラーで、圧力0.1MPaで2m/分の速度で貼り合わせ、両端に幅50mmの繊維突出部を有する〔0/+45/−45〕/樹脂フィルム/〔−45/+45/0〕のセミ含浸プリプレグを得た。
【0048】
離型処理をした平らなアルミ板の上に、幅1100mm×長さ500mmの上記セミ含浸プリプレグ〔0/+45/−45〕/樹脂フィルム/〔−45/+45/0〕を積層し、その上にピールクロスを積層した。その後、積層した材料全体をナイロンバッグ(WRIGHTLON #7400、AIRTECH社製)で覆い、型とナイロンバッグをシーラントテープでシールし、バッグ内を真空ポンプで減圧した。
【0049】
その後、硬化炉で130℃、2時間、真空ポンプで減圧しながらセミ含浸プリプレグを加熱硬化し、板厚1.5mmのCFRP板を得た。CFRP板の内部を超音波探傷装置で検査した結果、内部にボイドは無く、良好な板が得られた。
【0050】
実施例2
エピコート828(ジャパンエポキシレジン社製)を80質量部、エピコート1001(ジャパンエポキシレジン社製)を20質量部、ジシアンジアミド(ジャパンエポキシレジン社製)を5質量部、3−(3,4−ジクロロフェニル)−1,1−ジメチルユリア(保士谷化学工業社製)を5質量部計量し、70℃でロールミルで混錬し、樹脂組成物を得た。その後、70℃でドクターブレード法により樹脂目付1000g/mの樹脂フィルムを作製した。樹脂目付1000g/mの樹脂フィルムを2枚重ね、樹脂目付2000g/m、幅1000mmのの樹脂フィルムを得た。
【0051】
炭素繊維HTA−12K(東邦テナックス社製)を使用した幅1000mmの多軸織物(〔0/+45/−45〕:CF目付 600g/m)と幅1000mmの多軸織物(〔−45/+45/0〕:CF目付 600g/m)の間に幅1100mmのガラス繊維からなるネット状織物のクレネットG1100(クラボウ社製)を挟み込み、厚み方向をポリエステル糸でステッチし、両端に幅50mmの突出繊維部付き織物を得た。
【0052】
樹脂フィルムの両面に、上記突出繊維部付き織物を70℃に加熱した加熱ローラーで、圧力0.1MPaで2m/分の速度で貼り合わせ、両端に幅50mmの突出繊維部を有する幅1100mmのセミ含浸プリプレグを得た。
【0053】
その後、離型処理をした平らなアルミ板の上に、幅1100mm×長さ500mmにカットした上記セミ含浸プリプレグを積層し、その上にピールクロスを積層した。積層した材料全体をナイロンバッグ(WRIGHTLON #7400、AIRTECH社製)で覆い、型とナイロンバッグをシーラントテープでシールし、バッグ内を真空ポンプで減圧した。
【0054】
その後、硬化炉で130℃、2時間、真空ポンプで減圧しながらセミ含浸プリプレグを加熱硬化し、板厚2.8mmのCFRP板を得た。CFRP板の内部を超音波探傷装置で検査した結果、内部にボイドは無く、良好な板が得られた。
【0055】
比較例1
エピコート828(ジャパンエポキシレジン社製)を80質量部、エピコート1001(ジャパンエポキシレジン社製)を20質量部、ジシアンジアミド(ジャパンエポキシレジン社製)を5質量部、3−(3,4−ジクロロフェニル)−1,1−ジメチルユリア(保士谷化学工業社製)を5質量部計量し、70℃でロールミルで混錬し、樹脂組成物を得た。その後、70℃でドクターブレード法により樹脂目付1000g/mの樹脂フィルムを作製し、樹脂フィルムを得た。
【0056】
樹脂フィルムの両面に、炭素繊維HTA−12K(東邦テナックス社製)を使用した多軸織物(〔0/+45/−45〕:CF目付 600g/m)と(〔−45/+45/0〕:CF目付 600g/m)とを70℃に加熱した加熱ローラーで、圧力0.1MPaで2m/分の速度で貼り合わせ、〔0/+45/−45〕/樹脂フィルム/〔−45/+45/0〕のセミ含浸プリプレグを得た。
【0057】
離型処理をした平らなアルミ板の上に、幅1000mm×長さ500mmの上記セミ含浸プリプレグ〔0/+45/−45〕/樹脂フィルム/〔−45/+45/0〕を積層し、その上にピールクロスを積層した。その後、積層した材料全体をナイロンバッグ(WRIGHTLON #7400、AIRTECH社製)で覆い、型とナイロンバッグをシーラントテープでシールし、バッグ内を真空ポンプで減圧した。
【0058】
その後、硬化炉で130℃、2時間、真空ポンプで減圧しながらセミ含浸プリプレグを加熱硬化し、板厚1.5mmのCFRP板を得た。CFRP板の内部を超音波探傷装置で検査した結果、内部に4mmのボイドが5箇所発生した。
【0059】
【発明の効果】
本発明のセミ含浸プリプレグは、周端部に突出繊維部を有し、バッグを用いてプリプレグを密封して減圧にする際に突出繊維部がエアの流路を確保するためプリプレグ内部のエアが抜けやすく、ボイドの少ない成形品を得ることができ、真空バッグ成形、オートクレーブ成形において好適である。
【図面の簡単な説明】
【図1】本発明のセミ含浸プリプレグの一例を示す概略断面図である。
【図2】本発明のセミ含浸プリプレグの他の例を示す概略断面図である。
【図3】本発明のセミ含浸プリプレグを用いた成形方法の一例を示すフロー図で、(a)はプリプレグをバッグと型との間にシールした状態を示す断面図、(b)はバッグと型との間を排気した状態を示す断面図、(c)は樹脂を含浸させ成形品とした状態を示す断面図である。
【符号の説明】
1、1a、10  セミ含浸プリプレグ
2、3、12、13  繊維強化材
5  熱硬化性樹脂フィルム
7、17  樹脂含浸層
8、18  未含浸層
9、9a、19  突出繊維部
14、15  樹脂層
16  キャリア
20  バッグ
22  シーラント
24  型
26、28  硬化層
30  成形品
S  周端部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a semi-impregnated prepreg having a protruding fiber portion at a peripheral end thereof, and laminating and attaching a fiber reinforcing material to a thermosetting resin film, and a molding method using the prepreg.
[0002]
[Prior art]
A prepreg is a molding material obtained by impregnating a fiber reinforced material with a thermosetting resin and proceeding a curing reaction to such an extent that it can be easily handled manually. A prepreg mainly composed of a fiber reinforcing material such as carbon fiber, boron fiber, and aramid fiber and an epoxy-based resin is used.
[0003]
The prepreg is formed by heating and curing a plurality of prepregs laid in a mold under pressure. As a method for forming a prepreg, an autoclave forming method, a vacuum bag forming method, an internal pressure bag forming method, or the like is used as a method using a flexible bag having elasticity.
[0004]
In the autoclave molding method and the vacuum bag molding method, first, a bag is placed on a prepreg laid on a mold to seal the prepreg, and the inside of the bag is evacuated using a vacuum pump or the like. If the inside of the bag is evacuated under the atmospheric pressure, the bag comes into close contact with the mold and the discharge of air is hindered. In this case, an air pocket is formed between the bag and the mold, and the air pocket is left behind, so that an operation of forcibly removing the remaining air is required.
[0005]
Further, the prepreg has a tack on its surface due to its structure, and air is trapped between the prepregs when laminating. Vacuum bag molding, in which pressure molding is performed at atmospheric pressure without sufficient external pressure, does not require equipment such as an autoclave, so molded products can be easily obtained at low manufacturing cost. The resulting molded article has a problem that voids are generated due to remaining air, and the physical properties of the molded article are reduced.
[0006]
As a device for preventing the generation of such voids, WO 00/27632 discloses a molding material in which a fiber reinforcing material is stacked on at least one surface of a resin layer. Also, Japanese Patent Application Laid-Open No. 5-269909 discloses a method using a resin film of a fiber reinforced material and a thermosetting resin instead of a prepreg. In this method, a fiber reinforced material and a resin film are stacked and then heated to impregnate the resin of the resin film into the fiber reinforced material and harden to obtain a molded product.
[0007]
The method using these molding materials can suppress generation of voids to some extent without performing autoclave molding in which pressure is applied from the outside. However, it is inevitable that voids and pinholes are generated, although the number is smaller than that of the conventional prepreg.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a high degree of exhaustability in the bag under atmospheric pressure, especially when forming by vacuum bag forming, air does not remain in the fiber reinforced material, and voids are formed in the fiber reinforced material. An object of the present invention is to provide a semi-impregnated prepreg and a molding method capable of obtaining a small molded product.
[0009]
[Means for Solving the Problems]
The present invention that solves the above-mentioned problems is described below.
[0010]
[1] A semi-impregnated prepreg comprising a thermosetting resin film and a fiber reinforcing material stuck on at least one surface thereof, wherein the semi-impregnated prepreg has a protruding fiber portion on at least a part of a peripheral end portion of the semi-impregnated prepreg. Prepreg.
[0011]
[2] The semi-impregnated prepreg according to [1], wherein the protruding fiber portion is one in which fibers constituting the fiber reinforced material extend from the fiber reinforced material.
[0012]
[3] The semi-impregnated prepreg according to [1] or [2], wherein the thermosetting resin film has a resin layer formed on at least one surface of a carrier.
[0013]
[4] The semi-impregnated prepreg according to [3], wherein the protruding fiber portion is one in which fibers constituting the carrier extend from the carrier.
[0014]
[5] A semi-impregnated prepreg comprising a thermosetting resin film, a fiber reinforcing material stuck on at least one surface thereof, and sheet-like fibers larger than the film or the fiber reinforcing material, wherein the semi-impregnated prepreg is A semi-impregnated prepreg formed by forming a protruding fiber portion of a sheet-like fiber on at least a part of a peripheral end of the prepreg.
[0015]
[6] A molding method for performing vacuum bag molding using the semi-impregnated prepreg according to any one of [1] to [5].
[0016]
[7] A molding method for performing autoclave molding using the semi-impregnated prepreg according to any one of [1] to [5].
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a schematic cross-sectional view of an example of the semi-impregnated prepreg of the present invention. The semi-impregnated prepreg 1 is formed by attaching fiber reinforcements 2 and 3 to a thermosetting resin film 5. The semi-impregnated prepreg 1 has a protruding fiber portion 9 in which the fibers constituting the fiber reinforcements 2 and 3 extend without being cut at the peripheral end S.
[0018]
The fiber reinforcements 2 and 3 include a resin-impregnated layer 7 impregnated with the resin of the thermosetting resin film 5 and an unimpregnated layer 8 not impregnated with the resin. The semi-impregnated prepreg 1 is not impregnated with the resin up to the surface, and no tack is generated on the surface of the prepreg.
[0019]
As the fiber reinforcement, carbon fiber, glass fiber, aramid fiber, boron fiber, metal fiber, and other reinforcing fibers used in ordinary prepregs can be used. Among them, carbon fiber, glass fiber and aramid fiber are preferred. The form of these fiber reinforced materials is not particularly limited as long as the protruding fiber portion can be drawn out, and for example, ones aligned in one direction, ones aligned in multiple directions, and a woven fabric can be used. Among them, when a woven fabric is used, the warp yarn and the weft yarn of the woven fabric can be easily extended and used as a protruding fiber portion, which is preferable.
[0020]
The length of the protruding fiber portion extending from the fiber reinforcing material is preferably from 10 to 100 mm, more preferably from 10 to 50 mm.
[0021]
In semi-impregnated prepreg of the present invention, the basis weight of the fibrous reinforcement is preferably 200~3000g / m 2, 400~2000g / m 2 is more preferable.
[0022]
As shown in FIG. 1, when a fiber-reinforced material is stuck on both sides of a thermosetting resin film to form a semi-impregnated prepreg, the fiber-reinforced materials 2 and 3 are each a plane-symmetric woven fabric, or are thermoset. It is preferable that the fabrics are plane-symmetric with respect to the conductive resin film 5. By using plane-symmetric or plane-symmetric textiles, it is possible to prevent the prepreg from warping when the fiber reinforced material is stacked.
[0023]
As a plane-symmetric fabric or a fabric which can be made plane-symmetric with respect to each other, a multiaxial fabric can be mentioned. The multiaxial woven fabric refers to a woven fabric obtained by laminating sheet-like fiber reinforced materials aligned in one direction at different angles and knitting them with nylon yarn, polyester yarn, glass fiber yarn, or the like.
[0024]
Examples of plane-symmetric multiaxial fabrics include [+ 45 / -45 / -45 / + 45] and [0 / + 45 / -45 / -45 / + 45/0]. Examples of combinations of multiaxial fabrics that are symmetrical to each other include [+ 45 / −45] and [−45 / + 45], [0 / + 45 / −45], [−45 / + 45/0], and [+ 45 / 0 / -45 / 90] and [90 / -45 / 0 / + 45]. The angle at which the fiber reinforced materials aligned in one direction are stacked is not limited to these, and may be any angle.
[0025]
The thickness of the multiaxial woven fabric is appropriately selected depending on the application, but is preferably 0.2 to 3 mm.
[0026]
As the resin used for the thermosetting resin film, a thermosetting resin used for normal prepreg production can be used. Specifically, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, polyurethane resin, silicone resin, maleimide resin, vinyl ester resin, cyanate ester resin, resin obtained by pre-polymerizing maleimide resin and cyanate ester resin, etc. In the present invention, a mixture of these resins can also be used. When a fiber-reinforced composite material is used, an epoxy resin composition having excellent heat resistance, elastic modulus, and chemical resistance is preferable. These thermosetting resins may contain a curing agent, a curing accelerator, and the like.
[0027]
The curing temperature of the thermosetting resin is preferably adjusted to 60 to 180 ° C, more preferably 70 to 130 ° C.
[0028]
The resin content of the resin film is preferably 35 to 55% based on the total weight of the semi-impregnated prepreg.
[0029]
The thermosetting resin used for the resin film is preferably a prepolymer that has been polymerized to an extent having a certain shape retention ability at room temperature, and has a viscosity of 0.1 to 10 Pa · s when heated.
[0030]
Further, in order to enhance the handleability of the thermosetting resin film, it is preferable to use a carrier for the thermosetting resin film. A thermosetting resin film in which a resin layer is formed on one or both surfaces of a carrier is provided with shape retention and is excellent in handleability. As the carrier, a glass fiber sheet, a carbon fiber sheet, an aramid fiber sheet, a polyester sheet, a polyethylene sheet, and a cellulose fiber sheet can be used.
[0031]
FIG. 2 shows another example of the semi-impregnated prepreg of the present invention. In this example, the resin film includes a carrier 16 and resin layers 14 and 15 formed on the carrier 16. The resin film has a sheet-like carrier 16 interposed substantially in the center, and the fibers constituting the carrier 16 extend from the peripheral end S of the protruding fiber portion 19.
[0032]
In the semi-impregnated prepreg shown in FIG. 2, the same fiber reinforced material, thermosetting resin film, and carrier as described above are used. The protruding fiber portion may have any of a single fiber shape, a woven shape, and a non-woven shape.
[0033]
Although FIGS. 1 and 2 show the case where the fiber reinforcing material is stacked on both sides of the resin film and attached, it may be stacked only on one side.
[0034]
The semi-impregnated prepreg of the present invention may have a protruding fiber portion at the peripheral end portion, and the protruding fiber portion is not limited to a fiber reinforcing material or a carrier-derived material, and a separately protruding fiber portion is prepared and sandwiched. It may be formed as follows.
[0035]
Further, a thermosetting resin film, a fiber-reinforced material attached to at least one surface thereof, and a semi-impregnated prepreg composed of a sheet-like fiber larger than the film or the fiber-reinforced material, and at least a part of a peripheral end portion. Alternatively, a protruding fiber portion of the sheet-like fiber may be formed.
[0036]
The protruding fiber portion may be present at a part of the periphery of the semi-impregnated prepreg, but it is more effective and preferable to exist over the entire periphery.
[0037]
The semi-impregnated prepreg of the present invention exerts an effect like an air bleeder when a vacuum bag molding method and an autoclave molding method described below are used to exhaust the air between the bag and the mold and reduce the pressure. Thus, air in the fiber reinforced material can be effectively removed.
[0038]
The method for producing a semi-impregnated prepreg of the present invention comprises laminating a fiber reinforcing material on one side or both sides of a thermosetting resin film, and applying a pressure of 0.01 to 0.5 MPa and a pressure of 25 to 100 ° C. It can be manufactured by heating for minutes. As shown in FIG. 2, a prepreg in which a carrier is interposed substantially at the center of a thermosetting resin film is manufactured by forming a resin layer on both surfaces of the carrier and further attaching a fiber reinforcing material to the resin layer.
[0039]
The impregnation of the resin of the thermosetting resin film into the fiber reinforced material only needs to be such that the resin does not impregnate the prepreg surface, but is preferably 0 to 70% of the thickness of the fiber reinforced material, and is 5 to 50%. Is more preferable.
[0040]
Hereinafter, a molding method using the semi-impregnated prepreg of the present invention will be described with reference to FIG.
[0041]
First, a semi-impregnated prepreg 1a composed of fiber reinforcing materials 2a and 3a and a thermosetting resin film 5a is laid on one surface of a mold 24. After laying the semi-impregnated prepreg 1a, the bags 20 are placed one on top of the other, and the periphery of the bag 20 is hermetically sealed with the mold 24 with a sealant 22 (FIG. 3A).
[0042]
The material of the bag is not particularly limited, and a commonly used known material can be used. Furthermore, the shape of the bag is not particularly limited, and a shape such as a sheet shape or a bag shape can be appropriately selected and used depending on the shape of a mold and a target molded product. Further, the bag may be sealed as long as the semi-impregnated prepreg can be tightly adhered to the mold under reduced pressure. For example, as shown in FIG. 3, a method of directly sealing a bag to a mold with a sealant, a method of laying a semi-impregnated prepreg in a bag-like bag and sealing the periphery of the bag to the mold, and a method of stacking on a semi-impregnated prepreg For example, a method of hermetically sealing one arranged bag and another bag arranged on the other surface of the mold with a sealant can be exemplified. The method of sealing the bags and covering the entire mold with the bag is particularly effective when there is a jig mounting hole and it is not possible to seal even if the mold is directly sealed, or when the mold is formed of a breathable material. is there.
[0043]
After the semi-impregnated prepreg is sealed using the bag, the gas between the mold 24 and the bag 20 is exhausted to reduce the pressure (FIG. 3B). By reducing the pressure between the mold 24 and the bag 22, the bag is deformed and the semi-impregnated prepreg 1a comes into close contact with the mold 24. With the deformation of the bag, the protruding fiber portion 9a is interposed between the bag 20 and the mold 24 to secure an air flow path and prevent air accumulation and voids.
[0044]
Further, the thermosetting resin film is melted by heating using an oven (vacuum bag molding) or an autoclave (autoclave molding), and the fiber reinforcing material is impregnated with the thermosetting resin. Further, the thermosetting resin impregnated in the fiber reinforcement is cured by heating to obtain molded articles 30 as cured layers 26 and 28 (FIG. 3C). The heating temperature in an oven or the like is preferably from 60 to 180 ° C. The pressurizing pressure when using an autoclave is preferably 0.1 to 0.5 MPa. Further, it is preferable to perform these processes while exhausting the gas between the mold 24 and the bag 22.
[0045]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0046]
Example 1
80 parts by mass of Epicoat 828 (manufactured by Japan Epoxy Resin), 20 parts by mass of Epicoat 1001 (manufactured by Japan Epoxy Resin), 5 parts by mass of dicyandiamide (manufactured by Japan Epoxy Resin), 3- (3,4-dichlorophenyl) 5 parts by mass of -1,1-dimethylurea (manufactured by Houshiya Chemical Industry Co., Ltd.) was weighed and kneaded at 70 ° C. with a roll mill to obtain a resin composition. Thereafter, a resin film having a resin weight of 1000 g / m 2 and a width of 1000 mm was prepared at 70 ° C. by a doctor blade method, and a net-shaped woven fabric made of glass fiber having a width of 1100 mm, Clenet G1100 (manufactured by Kurabo Industries) was formed on one surface of the resin film. By sticking, a resin film with a carrier was obtained. In addition, both ends of the carrier protruded from the resin-coated portion by 50 mm in width.
[0047]
A 1000 mm wide multiaxial woven fabric ([0 / + 45 / -45]: CF basis weight 600 g / m 2 ) using carbon fiber HTA-12K (manufactured by Toho Tenax Co., Ltd.) on both surfaces of a resin film with a carrier and a 1000 mm wide A shaft fabric ([−45 / + 45/0]: CF basis weight: 600 g / m 2 ) is bonded at a pressure of 0.1 MPa at a speed of 2 m / min with a heating roller heated to 70 ° C., and a fiber having a width of 50 mm at both ends. A semi-impregnated prepreg of [0 / + 45 / -45] / resin film / [-45 / + 45/0] having a protrusion was obtained.
[0048]
The semi-impregnated prepreg [0 / + 45 / -45] / resin film / [-45 / + 45/0] having a width of 1100 mm and a length of 500 mm is laminated on a flat aluminum plate subjected to a mold release treatment. Was laminated with a peel cloth. Thereafter, the entire laminated material was covered with a nylon bag (WRIGTLON # 7400, manufactured by AIRTECH), the mold and the nylon bag were sealed with a sealant tape, and the inside of the bag was evacuated with a vacuum pump.
[0049]
Thereafter, the semi-impregnated prepreg was heated and cured in a curing furnace at 130 ° C. for 2 hours while reducing the pressure with a vacuum pump to obtain a 1.5 mm-thick CFRP plate. As a result of inspecting the inside of the CFRP plate with an ultrasonic flaw detector, there was no void inside, and a good plate was obtained.
[0050]
Example 2
80 parts by mass of Epicoat 828 (manufactured by Japan Epoxy Resin), 20 parts by mass of Epicoat 1001 (manufactured by Japan Epoxy Resin), 5 parts by mass of dicyandiamide (manufactured by Japan Epoxy Resin), 3- (3,4-dichlorophenyl) 5 parts by mass of -1,1-dimethylurea (manufactured by Houshiya Chemical Industry Co., Ltd.) was weighed and kneaded at 70 ° C. with a roll mill to obtain a resin composition. Thereafter, a resin film having a resin weight of 1000 g / m 2 was prepared at 70 ° C. by a doctor blade method. Two resin films each having a resin weight of 1000 g / m 2 were stacked to obtain a resin film having a resin weight of 2000 g / m 2 and a width of 1000 mm.
[0051]
A 1000 mm wide multiaxial woven fabric ([0 / + 45 / -45]: CF basis weight 600 g / m 2 ) and a 1000 mm wide multiaxial woven fabric ([−45 / + 45) using carbon fiber HTA-12K (manufactured by Toho Tenax Co., Ltd.) / 0]: Clenet G1100 (manufactured by Kurabo Co., Ltd.), a net-like woven fabric made of glass fibers having a width of 1100 mm, is sandwiched between CF fabric weights of 600 g / m 2 ), and is stitched with a polyester yarn in the thickness direction. A woven fabric with a protruding fiber portion was obtained.
[0052]
On both surfaces of the resin film, the above-mentioned woven fabric with a protruding fiber portion is adhered at a pressure of 0.1 MPa at a speed of 2 m / min with a heating roller heated to 70 ° C. An impregnated prepreg was obtained.
[0053]
Thereafter, the semi-impregnated prepreg cut into a width of 1100 mm and a length of 500 mm was laminated on a flat aluminum plate subjected to a release treatment, and a peel cloth was laminated thereon. The whole laminated material was covered with a nylon bag (WRIGTLON # 7400, manufactured by AIRTECH), the mold and the nylon bag were sealed with a sealant tape, and the inside of the bag was evacuated with a vacuum pump.
[0054]
Thereafter, the semi-impregnated prepreg was heated and cured in a curing furnace at 130 ° C. for 2 hours while reducing the pressure with a vacuum pump to obtain a CFRP plate having a plate thickness of 2.8 mm. As a result of inspecting the inside of the CFRP plate with an ultrasonic flaw detector, there was no void inside, and a good plate was obtained.
[0055]
Comparative Example 1
80 parts by mass of Epicoat 828 (manufactured by Japan Epoxy Resin), 20 parts by mass of Epicoat 1001 (manufactured by Japan Epoxy Resin), 5 parts by mass of dicyandiamide (manufactured by Japan Epoxy Resin), 3- (3,4-dichlorophenyl) 5 parts by mass of -1,1-dimethylurea (manufactured by Houshiya Chemical Industry Co., Ltd.) was weighed and kneaded at 70 ° C. with a roll mill to obtain a resin composition. Thereafter, a resin film having a resin weight of 1000 g / m 2 was prepared at 70 ° C. by a doctor blade method to obtain a resin film.
[0056]
A multiaxial woven fabric ([0 / + 45 / -45]: CF basis weight 600 g / m 2 ) using carbon fiber HTA-12K (manufactured by Toho Tenax Co., Ltd.) on both surfaces of the resin film and ([−45 / + 45/0]) : CF weight: 600 g / m 2 ) with a heating roller heated to 70 ° C. at a pressure of 0.1 MPa at a speed of 2 m / min, [0 / + 45 / −45] / resin film / [− 45 / + 45] / 0] was obtained.
[0057]
The semi-impregnated prepreg [0 / + 45 / -45] / resin film / [-45 / + 45/0] having a width of 1000 mm and a length of 500 mm was laminated on a flat aluminum plate subjected to a mold release treatment. Was laminated with a peel cloth. Thereafter, the entire laminated material was covered with a nylon bag (WRIGTLON # 7400, manufactured by AIRTECH), the mold and the nylon bag were sealed with a sealant tape, and the inside of the bag was evacuated with a vacuum pump.
[0058]
Thereafter, the semi-impregnated prepreg was heated and cured in a curing furnace at 130 ° C. for 2 hours while reducing the pressure with a vacuum pump to obtain a CFRP plate having a thickness of 1.5 mm. As a result of inspecting the inside of the CFRP plate with an ultrasonic flaw detector, five 4 mm 2 voids were generated inside.
[0059]
【The invention's effect】
The semi-impregnated prepreg of the present invention has a protruding fiber portion at the peripheral end, and when the prepreg is sealed and depressurized using a bag, the protruding fiber portion secures a flow path of air, so that air inside the prepreg is reduced. A molded product that is easy to come off and has few voids can be obtained, and is suitable for vacuum bag molding and autoclave molding.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a semi-impregnated prepreg of the present invention.
FIG. 2 is a schematic sectional view showing another example of the semi-impregnated prepreg of the present invention.
FIG. 3 is a flowchart showing an example of a molding method using the semi-impregnated prepreg of the present invention, where (a) is a cross-sectional view showing a state in which the prepreg is sealed between a bag and a mold, and (b) is a sectional view showing the bag. FIG. 3 is a cross-sectional view showing a state where the space between the mold and the mold is exhausted, and FIG.
[Explanation of symbols]
1, 1a, 10 Semi-impregnated prepreg 2, 3, 12, 13 Fiber reinforcement 5 Thermosetting resin film 7, 17 Resin impregnated layer 8, 18 Non-impregnated layer 9, 9a, 19 Protruding fiber portion 14, 15 Resin layer 16 Carrier 20 Bag 22 Sealant 24 Mold 26, 28 Hardened layer 30 Molded product S Peripheral end

Claims (7)

熱硬化性樹脂フィルムと、その少なくとも一面に貼着した繊維強化材とからなるセミ含浸プリプレグであって、前記セミ含浸プリプレグの周端部の少なくとも一部に突出繊維部を有するセミ含浸プリプレグ。A semi-impregnated prepreg comprising a thermosetting resin film and a fiber reinforcing material adhered to at least one surface thereof, wherein the semi-impregnated prepreg has a protruding fiber portion at least at a part of a peripheral end of the semi-impregnated prepreg. 突出繊維部が、繊維強化材を構成する繊維が繊維強化材から伸長したものである請求項1に記載のセミ含浸プリプレグ。2. The semi-impregnated prepreg according to claim 1, wherein the protruding fiber portion is one in which the fibers constituting the fiber reinforcing material extend from the fiber reinforcing material. 3. 熱硬化性樹脂フィルムがキャリアの少なくとも一面に樹脂層を形成したものである請求項1又は2に記載のセミ含浸プリプレグ。The semi-impregnated prepreg according to claim 1 or 2, wherein the thermosetting resin film has a resin layer formed on at least one surface of a carrier. 突出繊維部が、キャリアを構成する繊維がキャリアから伸長したものである請求項3に記載のセミ含浸プリプレグ。4. The semi-impregnated prepreg according to claim 3, wherein the protruding fiber portion is a fiber in which a fiber constituting the carrier extends from the carrier. 熱硬化性樹脂フィルムと、その少なくとも一面に貼着した繊維強化材と、前記フィルム又は繊維強化材よりも大寸のシート状繊維とからなるセミ含浸プリプレグであって、前記セミ含浸プリプレグの周端部の少なくとも一部にシート状繊維の突出繊維部を形成してなるセミ含浸プリプレグ。A thermosetting resin film, a semi-impregnated prepreg comprising a fiber reinforced material stuck on at least one surface thereof, and sheet-like fibers larger than the film or the fiber reinforced material, wherein the semi-impregnated prepreg has a peripheral end. A semi-impregnated prepreg formed by forming a protruding fiber portion of a sheet-like fiber on at least a part of the portion. 請求項1乃至5のいずれかに記載のセミ含浸プリプレグを用いて真空バッグ成形を行う成形方法。A molding method for performing vacuum bag molding using the semi-impregnated prepreg according to any one of claims 1 to 5. 請求項1乃至5のいずれかに記載のセミ含浸プリプレグを用いてオートクレーブ成形を行う成形方法。A molding method for performing autoclave molding using the semi-impregnated prepreg according to any one of claims 1 to 5.
JP2002223748A 2002-07-31 2002-07-31 Semi-impregnated prepreg and molding method using this prepreg Pending JP2004058610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223748A JP2004058610A (en) 2002-07-31 2002-07-31 Semi-impregnated prepreg and molding method using this prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223748A JP2004058610A (en) 2002-07-31 2002-07-31 Semi-impregnated prepreg and molding method using this prepreg

Publications (2)

Publication Number Publication Date
JP2004058610A true JP2004058610A (en) 2004-02-26
JP2004058610A5 JP2004058610A5 (en) 2005-09-22

Family

ID=31943431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223748A Pending JP2004058610A (en) 2002-07-31 2002-07-31 Semi-impregnated prepreg and molding method using this prepreg

Country Status (1)

Country Link
JP (1) JP2004058610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130873A (en) * 2004-11-09 2006-05-25 Universal Shipbuilding Corp Frp sandwich molded product and its manufacturing method
KR101495506B1 (en) * 2013-03-15 2015-02-26 다이텍연구원 Method of manufacturing eyeglass frame based on prepreg

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130873A (en) * 2004-11-09 2006-05-25 Universal Shipbuilding Corp Frp sandwich molded product and its manufacturing method
JP4494168B2 (en) * 2004-11-09 2010-06-30 ユニバーサル造船株式会社 FRP sandwich molding and manufacturing method thereof
KR101495506B1 (en) * 2013-03-15 2015-02-26 다이텍연구원 Method of manufacturing eyeglass frame based on prepreg

Similar Documents

Publication Publication Date Title
AU761069C (en) Moulding materials
KR101260088B1 (en) Reinforcing woven fabric and process for producing the same
JP4941798B2 (en) Partially impregnated prepreg
JP4899692B2 (en) Reinforcing fiber fabric and method for producing the same
JP3911410B2 (en) Manufacturing method for composite products
TW201433433A (en) Method for forming shaped preform
WO1990008802A1 (en) New prepreg and composite molding, and production of composite molding
WO2014147222A2 (en) Improvements in or relating to fibre reinforced composites
JP4989822B2 (en) Manufacturing method of prepreg
JP4458739B2 (en) Manufacturing method of molded products
JP4670313B2 (en) Method for shaping reinforcing fiber base material for FRP molding
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
JP2004035604A (en) Semi-impregnated prepreg
JP6717105B2 (en) Method for producing fiber-reinforced resin molding
WO2004037505A1 (en) Prepreg and method of manufacturing the prepreg
JP2004058610A (en) Semi-impregnated prepreg and molding method using this prepreg
JP2004058609A (en) Method for manufacturing laminated sheet
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JP2004058608A (en) Method for manufacturing hollow molded article
JPH0872200A (en) Composite molding
JP4558398B2 (en) Composite material with smooth surface
JP4052381B2 (en) Resin coat molding method
JP2004299178A (en) Resin transfer molding method
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material
JP2002248694A (en) Method for molding fiber reinforced composite material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612