JP4052112B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP4052112B2
JP4052112B2 JP2002356818A JP2002356818A JP4052112B2 JP 4052112 B2 JP4052112 B2 JP 4052112B2 JP 2002356818 A JP2002356818 A JP 2002356818A JP 2002356818 A JP2002356818 A JP 2002356818A JP 4052112 B2 JP4052112 B2 JP 4052112B2
Authority
JP
Japan
Prior art keywords
outer peripheral
passage
partition member
peripheral passage
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002356818A
Other languages
Japanese (ja)
Other versions
JP2004190721A (en
Inventor
浩一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2002356818A priority Critical patent/JP4052112B2/en
Publication of JP2004190721A publication Critical patent/JP2004190721A/en
Application granted granted Critical
Publication of JP4052112B2 publication Critical patent/JP4052112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は、例えば自動車用エンジンマウントやボデーマウント等として採用され得る、内部に封入された非圧縮性流体の流動作用に基づいて防振効果を得るようにした流体封入式防振装置に関するものである。
【0002】
【背景技術】
従来から、振動伝達系を構成する部材間に装着される防振連結体乃至は防振支持体の一種として、ゴム弾性体の弾性変形に基づく防振効果だけでなく、内部に非圧縮性流体を封入せしめて振動入力時における非圧縮性流体の共振作用等の流動作用に基づく防振効果も利用するようにした流体封入式の防振装置が知られている。例えば、特許文献1,2,3等に記載されているものが、それである。
【0003】
【特許文献1】
特開昭57−9340号公報
【特許文献2】
特開平8−14311公報
【特許文献1】
特開平10−252813号公報
【0004】
このような流体封入式防振装置は、一般に、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結する一方、第二の取付部材で支持された仕切部材を挟んだ各一方の側に、壁部の一部が本体ゴム弾性体で構成されて振動入力時に圧力変動が惹起される受圧室と、壁部の一部が該可撓性膜で構成されて容積変化が容易に許容される平衡室を形成すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を形成した構造とされている。そして、振動入力時には、受圧室と平衡室の間に惹起される圧力変動に基づいてオリフィス通路を通じての流体流動が生ぜしめられることとなり、かかる流体の共振作用に基づいて有効な防振効果が発揮されることとなるのである。
【0005】
ところで、オリフィス通路を流動せしめられる流体の共振作用に基づく防振効果は、オリフィス通路が予めチューニングされた所定周波数域の振動に対して有効に発揮されることから、防振を目的とする振動周波数域に応じてオリフィス通路の断面積や長さ等を適当に調節してチューニングを施す必要がある。特に、オリフィス通路のチューニング自由度を充分に確保して、例えば自動車のシェイク振動等の低周波数域の振動に対しても有効な防振効果を得ることが出来るようにするためには、オリフィス通路の長さを充分に大きく設定できるようにすることが重要となる。
【0006】
そこで、前記特許文献1,2,3にも記載されているように、仕切部材の外径寸法を出来るだけ大きくして、その外周部分を周方向に延びるようにしてオリフィス通路を形成することが有効である。
【0007】
しかしながら、仕切部材は、略円筒形状をもって形成された第二の取付部材に嵌め込まれて軸直角方向に広がって配設されており、外周縁部を軸方向で挟持されることによって第二の取付部材に対して位置決め保持されるようになっていることから、仕切部材の最外周縁部にオリフィス通路を形成すると、仕切部材を防振装置に組み付けた状態下では、オリフィス通路における受圧室や平衡室への連通孔が、仕切部材を挟圧保持せしめる本体ゴム弾性体やその他の固定金具等によって狭窄されたり覆蓋されてしまうおそれがあった。
【0008】
また、仕切部材の防振装置への組付状態下でオリフィス通路の受圧室や平衡室への連通孔が開口状態とされていても、防振装置の装着状態下で自動車パワーユニット等の載荷重や振動荷重が及ぼされて本体ゴム弾性体が弾性変形せしめられることにより、オリフィス通路の特に受圧室への連通孔が、弾性変形した本体ゴム弾性体によって狭窄される場合があり、それによって、オリフィス通路を通じての流体流動が阻害されてしまうことから目的とする防振効果を安定して得ることが出来なくなるおそれがあったのである。
【0009】
【解決課題】
ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、受圧室と平衡室を仕切る仕切部材において、それら受圧室と平衡室を相互に連通するオリフィス通路を、充分な長さをもって形成することが出来ると共に、かかるオリフィス通路の連通状態が安定して維持され得て、オリフィス通路を流動せしめられる流体の共振作用等に基づく防振効果が有効に且つ安定して発揮され得る、新規な構造の流体封入式防振装置を提供することにある。
【0010】
【解決手段】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載され、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。
【0011】
(本発明の態様1)
本発明の態様1は、第一の取付部材を、筒状の第二の取付部材の一方の開口部側に離隔位置せしめて、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結することにより該第二の取付部材の該一方の開口部を流体密に閉塞すると共に、該第二の取付部材の他方の開口部を可撓性膜で流体密に閉塞する一方、該本体ゴム弾性体と該可撓性膜の対向面間で該第二の取付部材の中心軸に略直交して広がる仕切部材を配設せしめて、該仕切部材の外周縁部を該第二の取付部材によって固定的に支持せしめることにより、該仕切部材を挟んだ一方の側において壁部の一部が該本体ゴム弾性体で構成されて振動入力時に圧力変動が惹起される受圧室を形成すると共に、該仕切部材を挟んだ他方の側において壁部の一部が該可撓性膜で構成されて容積変化が容易に許容される平衡室を形成し、それら受圧室と平衡室を相互に連通するオリフィス通路を該仕切部材によって形成した流体封入式防振装置において、前記仕切部材の外周縁部を軸方向両側から挟持せしめて前記第二の取付部材に対して軸方向に位置決め保持せしめる一方、該仕切部材の外周縁部に沿って周方向に延びる外周通路と、該外周通路の一方の端部から該仕切部材の内周側に延び出して該外周通路の内周側に沿って周方向に延びる第一の内周通路と、該第一の内周通路の周方向両端部の周方向対向部間で該第一の内周通路が形成されていない部分を利用して該外周通路の他方の端部から該仕切部材の内周側に向かって延び出した第二の内周通路とを、それぞれ形成し、該外周通路の一方の端部から延び出した該第一の内周通路の通路先端部に第一の連通孔を設けて該第一の内周通路の先端部を前記受圧室と前記平衡室の一方に連通せしめると共に、該外周通路の他方の端部から延び出した該第二の内周通路の通路先端部に第二の連通孔を設けて該第二の内周通路の先端部を該受圧室と該平衡室の他方に連通せしめることによって前記オリフィス通路を構成してなり、且つ、前記仕切部材の外周縁部をそれぞれ周方向に一周弱の長さで延びる複数の環状路を該仕切部材の軸方向で複数段に重ね合わせて設けると共に、それら複数の環状路を互いに直列的に接続することにより、該仕切部材の外周縁部を周方向に一周以上の長さで延びる形態をもって、前記外周通路を形成したことを、特徴とする。
【0012】
このような本態様に従う構造とされた流体封入式防振装置においては、仕切部材において最も長さを有利に確保出来る外周縁部を周方向に延びるように形成された外周通路によってオリフィス通路の通路長さを充分に大きく設定することが可能となる。しかも、かかるオリフィス通路における受圧室および平衡室への連通孔は、何れも、第一及び第二の内周通路によって仕切部材の外周縁部よりも内周側に離隔位置せしめられることから、仕切部材の外周縁部を軸方向に挟持せしめて仕切部材を第二の取付部材に対して強固に位置決め支持せしめることが出来ると共に、仕切部材において、軸方向で挟持される外周縁部を内周側に避けた位置に、オリフィス通路の受圧室や平衡室への連通孔を位置せしめることが可能となる。
【0013】
それ故、オリフィス通路の受圧室や平衡室への連通孔の開口面積を、仕切部材の組付状態下においても安定して設定確保せしめつつ、オリフィス通路の長さを充分に大きく設定することが出来るのであり、それによって、オリフィス通路のチューニング自由度が大きく確保されると共に、オリフィス通路を流動せしめられる流体の共振作用等に基づく所期の防振効果を安定して有効に得ることが可能となるのである。
【0014】
また、例えば、仕切部材の外周縁部における軸方向一方の側を、本体ゴム弾性体の外周縁部を押圧せしめて軸方向に支持せしめた構造を採用した場合であっても、オリフィス通路の受圧室への連通孔を仕切部材の内周側に位置せしめることによって、外部からの振動や荷重の入力に際して本体ゴム弾性体が弾性変形せしめられてオリフィス通路の受圧室への連通孔を狭窄乃至は閉塞することを回避できるのであり、オリフィス通路を一定の連通状態に常時保つことが出来ることから、外力の作用に拘わらず、オリフィス通路を流動せしめられる流体の共振作用等に基づく所期の防振効果を安定して得ることが可能となるのである。
さらに、本態様においては、仕切部材の外径サイズひいては第二の取付部材における筒状部の外径サイズを大型化することなく、オリフィス通路の通路長さを一層大きく設定することが出来るのであり、それによって、オリフィス通路のチューニング自由度の更なる拡大が図られ得る。
(本発明の態様2)
本発明の態様2は、第一の取付部材を、筒状の第二の取付部材の一方の開口部側に離隔位置せしめて、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結することにより該第二の取付部材の該一方の開口部を流体密に閉塞すると共に、該第二の取付部材の他方の開口部を可撓性膜で流体密に閉塞する一方、該本体ゴム弾性体と該可撓性膜の対向面間で該第二の取付部材の中心軸に略直交して広がる仕切部材を配設せしめて、該仕切部材の外周縁部を該第二の取付部材によって固定的に支持せしめることにより、該仕切部材を挟んだ一方の側において壁部の一部が該本体ゴム弾性体で構成されて振動入力時に圧力変動が惹起される受圧室を形成すると共に、該仕切部材を挟んだ他方の側において壁部の一部が該可撓性膜で構成されて容積変化が容易に許容される平衡室を形成し、それら受圧室と平衡室を相互に連通するオリフィス通路を該仕切部材によって形成した流体封入式防振装置において、前記仕切部材の外周縁部を軸方向両側から挟持せしめて前記第二の取付部材に対して軸方向に位置決め保持せしめる一方、該仕切部材の外周縁部に沿って周方向に延びる外周通路と、該外周通路の一方の端部から該仕切部材の内周側に延び出して該外周通路の内周側に沿って周方向に延びる第一の内周通路と、該第一の内周通路の周方向両端部の周方向対向部間で該第一の内周通路が形成されていない部分を利用して該外周通路の他方の端部から該仕切部材の内周側に向かって延び出した第二の内周通路とを、それぞれ形成し、該外周通路の一方の端部から延び出した該第一の内周通路の通路先端部に第一の連通孔を設けて該第一の内周通路の先端部を前記受圧室と前記平衡室の一方に連通せしめると共に、該外周通路の他方の端部から延び出した該第二の内周通路の通路先端部に第二の連通孔を設けて該第二の内周通路の先端部を該受圧室と該平衡室の他方に連通せしめることによって前記オリフィス通路を構成してなり、且つ、前記外周通路が、前記仕切部材の外周面に開口して周方向に延びる周方向溝を前記第二の取付部材の筒状部で流体密に覆蓋することによって形成されていることを、特徴とする。
このような本態様に従う構造とされた流体封入式防振装置においては、仕切部材の最外周縁部に外周通路を形成することが可能となり、オリフィス通路の通路長さを一層有利に確保することが出来る。しかも、第二の取付部材の筒状部を壁部の一部に利用して外周通路が形成されることから、外周通路を形成する仕切部材の構造を簡略化することも可能となる。
【0015】
なお、上述の態様1及び2において採用される外周通路や第一及び第二の内周通路の具体的形態や長さ等は、要求される防振性能や装置サイズ等に応じて適宜に決定されるものであって特に限定されるものでなく、例えば以下に記載する如き幾つかの態様に従う構造が、何れも好適に採用され得る。
【0016】
(本発明の態様
本発明の態様は、前記態様に係る流体封入式防振装置において、前記仕切部材の外周縁部を周方向に延びると共に周上の一カ所において仕切壁で分断されることにより、周方向に一周弱の長さで延びる形態をもって、前記外周通路を形成したことを、特徴とする。
【0018】
(本発明の態様4)
本発明の態様4は、前記態様1乃至3の何れかに係る流体封入式防振装置において、前記第一の内周通路および前記第二の内周通路の少なくとも一方を、前記外周通路の一方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成したことを、特徴とする。このような本態様においては、外周通路と内周通路によって略多重の形態をもって周方向に延びるオリフィス通路を形成することが可能となり、面積の限定された仕切部材においてオリフィス通路の通路長さを一層大きく設定することが出来、オリフィス通路のチューニング自由度の更なる拡大が実現され得る。
【0019】
(本発明の態様5)
本発明の態様5は、前記態様に係る流体封入式防振装置において、前記第一の内周通路を、前記外周通路の周方向一方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成する一方、前記第二の内周通路を、該外周通路の周方向他方の端部から前記仕切壁に沿って前記仕切部材の略中央に向かって延びる形態をもって形成したことを、特徴とする。このような本態様に従えば、仕切部材の軸方向で単一の層構造において、外周通路と第一及び第二の内周通路を全体として大きな通路長さをもって、優れたスペース効率で形成することが可能となる。
【0020】
(本発明の態様6)
本発明の態様6は、前記態様に係る流体封入式防振装置であって、前記仕切部材の前記受圧室側において、前記第一の内周通路を、前記外周通路の一方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成する一方、該仕切部材の前記平衡室側において、前記第二の内周通路を、前記外周通路の他方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成することにより、それら第一の内周通路と第二の内周通路を該仕切部材の軸方向に重ね合わせて形成したことを、特徴とする。このような本態様に従えば、仕切部材の軸方向で複数の層構造において、外周通路と第一及び第二の内周通路を形成することが出来るのであり、それによって、オリフィス通路全体として一層大きな通路長さを設定することが可能となる。
【0021】
(本発明の態様7)
本発明の態様7は、前記態様1乃至6の何れかに係る流体封入式防振装置において、前記外周通路と前記第一及び第二の内周通路を前記仕切部材の外周部分に形成する一方、該仕切部材の中央部分に可動ゴム板を変位乃至は変形可能に配設せしめて、該可動ゴム板の一方の面に前記受圧室の圧力が及ぼされると共に、該可動ゴム板の他方の面に前記平衡室の圧力が及ぼされるようにしたことを、特徴とする。このような本態様においては、可動ゴム板の弾性変形乃至は変位に基づいて、オリフィス通路のチューニング周波数よりも高周波数域の振動入力時における受圧室の圧力変動が軽減乃至は吸収されることにより、高周波数域の防振性能が向上され得る。特に、オリフィス通路を形成しても長さを充分に確保し難い仕切部材の中央部分に可動ゴム板が配設されることから、オリフィス通路の通路長さの設定自由度を充分に確保しつつ、効率的な配設スペースをもって可動ゴム板を仕切部材に組み付けることが出来るのである。
【0023】
【発明の実施形態】
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
【0024】
先ず、図1には、本発明に係る流体封入式防振装置の一実施形態としての自動車用エンジンマウント10が、示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で連結された構造を有しており、図面上に明示はされていないが、自動車のパワーユニットとボデーの間に装着されてパワーユニットをボデーに対して防振支持せしめるようになっている。なお、以下の説明中、上下方向とは、原則として図1中の上下方向をいうものとする。
【0025】
より詳細には、第一の取付金具12は、逆円錐台形状を呈しており、軸方向上側の大径部外周縁には、外周側に向かって広がるフランジ状部18が一体形成されている。また、第一の取付金具12には、大径側端面に開口して中心軸上で延びるねじ穴20が設けられており、このねじ穴20に螺着される固定ボルト(図示せず)によって、第一の取付金具12が、図示しないパワーユニットに固定的に取り付けられるようになっている。
【0026】
また、第二の取付金具14は、全体として大径の略円筒形状を有しており、軸方向上側の開口周縁部には、外周側に向かって広がるフランジ部22が一体形成されている。なお、かかる第二の取付金具14は、例えば図示しないブラケットが外嵌固定されて、該ブラケットを介して、図示しない自動車のボデーに固定的に取り付けられるようになっている。そして、この第二の取付金具14の軸方向上側の開口部側に上述の第一の取付金具12が配設されており、第二の取付金具12の略中心軸上で、第二の取付金具14の上側開口部から上方に飛び出して、第一の取付金具12が第二の取付金具14から離隔位置せしめられている。
【0027】
更にまた、本体ゴム弾性体16は、全体として大径の略円錐台形状を有しており、大径側端面には、逆向きの略すり鉢状の凹所24が形成されている。そして、この本体ゴム弾性体16の小径側端部には、第一の取付金具12が、軸方向に差し込まれた状態で加硫接着されており、第一の取付金具12のフランジ状部18が、本体ゴム弾性体16の小径側端面に重ね合わされて固着されている。また、本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14が外挿状態で重ね合わされて加硫接着されている。而して、第二の取付金具14の軸方向上側の開口部が、本体ゴム弾性体16によって流体密に覆蓋されている。
【0028】
一方、第二の取付金具14の軸方向下側の開口部には、可撓性膜としてのダイヤフラム26が配設されている。このダイヤフラム26は薄肉のゴム弾性膜で形成されており、弾性変形が容易に許容されるように充分な弛みを持ち、外力が及ぼされていない自由状態下で中央部分か大きく軸方向に湾曲せしめられた略円板形状とされている。また、ダイヤフラム26の外周縁部には、第二の取付金具14よりも充分に短い軸方向長さの嵌着筒金具28が加硫接着されている。
【0029】
そして、嵌着筒金具28が、第二の取付金具14の軸方向下側の開口部に嵌め込まれており、第二の取付金具14が絞り加工等で縮径されることによって、かかる嵌着金具28が第二の取付金具14に対して嵌着固定されている。これにより、ダイヤフラム26が、第二の取付金具14の軸方向下側の開口部で、略軸直角方向に広がって配設されており、第二の取付金具14の軸方向下側の開口部がダイヤフラム26によって流体密に覆蓋されている。
【0030】
これにより、第二の取付金具14の内部には、本体ゴム弾性体16とダイヤフラム26の対向面間において、外部空間から遮断された密閉状の封入領域30が形成されており、この封入領域30に非圧縮性流体が充填されている。なお、かかる封入流体としては、後述するオリフィス通路を通じての流体の共振作用等の流動作用が有効に発揮されるように、粘度が0.1Pa・s以下の低粘性流体であって、例えば水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等が好適に採用され得る。
【0031】
さらに、封入領域30には、仕切部材32が収容配置されている。この仕切部材32は、略ハット形状の溝金具34と、略円環板形状の蓋金具36によって構成されている。
【0032】
溝金具34は、図2にも示されているように、下方に向かって開口する逆カップ形状の中央嵌合部38に対して、その開口周縁部から径方向外方に向かって広がる円環板形状を有する鍔状部40が一体形成されている。更に、鍔状部40には、幅方向中央部分において上方に向かって突出して周方向に一周弱の長さで延びる隔壁42が突設されている。また、隔壁42の周方向両端部の間には、中央嵌合部38の外周面から径方向外方に延び出して鍔状部40の外周縁に至る仕切壁44が、鍔状部40上に突設されていると共に、隔壁42の周方向一端部は、径方向に延びる端壁46によって中央嵌合部38の外周面に対して一体的に接続されている。更に、隔壁42の内周側には、端壁46で行き止まりとされた周方向一方の端部に位置して、鍔状部40に連通孔48が貫設されている。
【0033】
一方、蓋金具36は、平坦な円環板形状を有しており、中央部分には大径の嵌着孔50が形成されている。また、嵌着孔50の周上の一カ所には、外周側に広がる切欠形状の連通窓52が形成されている。
【0034】
そして、図4にも示されているように、かかる蓋金具36は、溝金具34に対して上方から軸方向で重ね合わされており、嵌着孔50において、溝金具34の中央嵌合部38に対して密着状態で外嵌固定されている。また、かかる組付状態下、蓋金具36は、溝金具34における隔壁42,仕切壁44および端壁46の各突出先端面に対して、それらの全面に亘って密着状態で重ね合わされている。更にまた、蓋金具36は、溝金具34に対して周方向で位置合わせされており、連通窓52が、溝金具34における仕切壁44と端壁46の周方向対向面間に開口位置せしめられている。
【0035】
このようにして溝金具34と蓋金具36を固定的に組み合わせて構成された仕切部材32においては、溝金具34の鍔状部に、中央嵌合部38や隔壁42,仕切壁44,端壁46によって協働して形成されて周方向に延びる溝状部分が蓋金具36で覆蓋されており、以て、全体として一つの内部通路60が形成されている。即ち、仕切部材32には、鍔状部40と蓋金具36の対向面間において、隔壁42の外周側を周方向に一周弱の長さで延びる外周通路54が、仕切部材32の外周縁部において外周面に開口する構造をもって形成されている。また、外周通路54の一方の端部から仕切壁44に沿って隔壁42の端部から内方に回り込み、周方向に折り返して隔壁42の内周側に至り、周壁42の内周側を周方向に一周弱の長さで端壁46に至るまで延びることによって、外周通路54の一方の端部から連続して内周側に延びる第一の内周通路56が形成されている。更にまた、外周通路54の他方の端部から仕切壁44にそって隔壁42の端部から内方に回り込み、仕切壁44と端壁42の対向面間において中央嵌合部38に至るまで延びることによって、外周通路54の他方の端部から連続して径方向内方に向かって内周側に延びる第二の内周通路58が形成されている。
【0036】
そして、これら外周通路54と第一及び第二の内周通路56,58が相互に直列的に接続されていることにより、全体として、仕切部材32の外周部分を周方向に一周以上の長さで延びる内部通路60が形成されている。また、この内部通路60は、一方の端部(第一の内周通路56側の端部)において、連通孔48を通じて仕切部材32の下面に開口せしめられている一方、他方の端部(第二の内周通路58側の端部)において、連通窓52を通じて仕切部材32の上面に開口せしめられている。
【0037】
このような構造とされた仕切部材32は、本体ゴム弾性体16が加硫接着された第二の取付金具14に対して、その軸方向下側の開口部から嵌め込まれて、第二の取付金具14の軸方向中間部分において軸直角方向に広がって配設されている。そして、第二の取付金具14が絞り加工等で縮径されて、第二の取付金具14が仕切部材32の外周面に嵌着固定されることにより、仕切部材32が第二の取付金具14に対して嵌着固定されている。
【0038】
なお、第二の取付金具14に対する縮径処理は、第二の取付金具14に仕切部材32と嵌着筒金具28を嵌め込んだ後に実施することにより、それら仕切部材32と嵌着筒金具28を同時に第二の取付金具14に嵌着固定せしめることが望ましい。また、第二の取付金具14の内周面には、略全面を覆うシールゴム層62が、本体ゴム弾性体16と一体形成されており、仕切部材32や嵌着筒金具28と第二の取付金具14との嵌着部位が、かかるシールゴム層62で流体密にシールされている。
【0039】
また、図5に単品図が示されているように、第一及び第二の取付金具12,14を備えた本体ゴム弾性体16とシールゴム層62の一体加硫成形品64には、仕切部材32が嵌め込まれる第二の取付金具14の内周面において、本体ゴム弾性体16の下端外周縁部とシールゴム層62の上端縁部との境界部分において、周方向の全周に亘って連続して延びる環状の段差66が形成されている。そして、図1,4に示されているように、第二の取付金具14に嵌着された仕切部材32は、上面の外周縁部が段差66に重ね合わされて、第二の取付金具14に対する軸方向上方への変位が阻止された状態で組み付けられている。
【0040】
また一方、第二の取付金具14の軸方向下側の開口周縁部には、僅かに内方に突出する環状の係止部68が形成されている。そして、この係止部68が、第二の取付金具14に内挿されて嵌着固定された嵌着筒金具28の軸方向下端面に対して係止されることにより、嵌着筒金具28の軸方向外方への抜け出しが強固に阻止されている。更に、かかる嵌着筒金具28の軸方向上端面は、第二の取付金具14に嵌め込まれた仕切部材32の下面の外周縁部に対して重ね合わされている。これにより、仕切部材32の下面は、嵌着筒金具28を介して係止部68によって位置決めされており、第二の取付金具14に対する軸方向下方への変位が阻止された状態で組み付けられている。
【0041】
而して、仕切部材32が第二の取付金具14に組み付けられて封入領域30内に配設されることにより、かかる封入領域30が仕切部材32によって仕切られて上下に二分されており、以て、仕切部材32の上側に受圧室70が形成されていると共に、仕切部材32の下側に平衡室72が形成されている。受圧室70は、壁部の一部が本体ゴム弾性体16で構成されており、第一の取付金具12と第二の取付金具14の間への振動入力時に本体ゴム弾性体16の弾性変形に伴って圧力変動が及ぼされるようになっている。一方、平衡室72は、壁部の一部がダイヤフラム26で構成されており、ダイヤフラム26の変形に基づいて容積変化が容易に許容されることにより、圧力変動が速やかに解消されるようになっている。
【0042】
また、仕切部材32においては、外周通路54における仕切部材32の外周面上での開口が全周に亘って第二の取付金具14で流体密に覆蓋されている。更に、内部通路60の一方の端部が連通窓52を通じて受圧室70に接続されていると共に、内部通路60の他方の端部が連通孔48を通じて平衡室72に接続されている。これにより、受圧室70と平衡室72を相互に連通せしめて、それら両室70,72間での流体流動を許容するオリフィス通路74が形成されている。
【0043】
このような構造とされたエンジンマウント10においては、自動車への装着状態下、第一及び第二の取付金具12,14の略中心軸方向に振動が入力されると、受圧室70と平衡室72の間に惹起される相対的な圧力変動に基づいてオリフィス通路74を通じての流体流動が生ぜしめられることとなり、かかる流体の共振作用に基づいて、例えばシェイクに対する高減衰効果や、アイドリング振動に対する低動ばね効果等が発揮されて、有効な防振性能が実現可能となる。
【0044】
そこにおいて、本実施形態のエンジンマウント10では、周方向長さの大きい仕切部材32の外周部分を、周方向に一周以上の長さで延びるようにオリフィス通路74が形成されていることから、オリフィス通路74の通路長さの設定自由度が大きく確保され得るのであり、オリフィス通路74の通路長さや通路断面積の設定に基づくオリフィス通路74のチューニング自由度が充分に確保され得る。
【0045】
しかも、かかるエンジンマウント10では、仕切部材32がその外周縁部を軸方向に挟持されて第二の取付金具14に取り付けられていることから、第二の取付金具14を第二の取付金具14に対して充分な位置決め強度をもって組み付けることが出来るのであり、それ故、例えば衝撃的な大荷重が及ぼされて受圧室70に惹起された過大な正圧や負圧が仕切部材32の一方の面に作用せしめられた場合でも、仕切部材32が強固に支持されて安定した防振性能が発揮され得ることとなる。
【0046】
さらに、仕切部材32におけるオリフィス通路74は、その受圧室70や平衡室72への開口部としての連通孔48および連通窓52が、何れも、第一及び第二の内周通路56,58により、仕切部材の外周縁部から径方向内方に離れた位置に設定されていることから、例えば段差66や嵌着筒金具28の仕切部材32に対する重ね合わせ部位を内方に避けた位置に、それら連通孔48と連通窓52が設けられる。それ故、仕切部材32を軸方向に充分に大きな保持面をもって支持せしめて、第二の取付金具14に対して仕切部材32を強固に固定することが可能となると共に、連通孔48や連通窓52が段差66や弾性変形せしめられた本体ゴム弾性体16で狭窄されたり覆蓋されることを防止せしめて、オリフィス通路74の受圧室70や平衡室72への連通部位おける開口面積を充分に大きく且つ安定して確保することが出来るのであり、以て、目的とするオリフィス通路74による防振効果を有効に且つ安定して得ることが可能となるのである。
【0047】
以上、本発明の第一の実施形態について詳述してきたが、これはあくまでも例示であって、本発明は係る実施形態における具体的な記載によって、何等、限定的に解釈されるものでない。
【0048】
特に、仕切部材に形成されてオリフィス通路を構成する外周通路や第一及び第二の内周通路の具体的構造は、要求される防振特性やマウントサイズ等に応じて多様な形態を採用し得るものであり、その具体的な形態の幾つかを、図7〜11に例示して、簡単に説明する。なお、図7〜11において、上述の第一の実施形態と同様な構造とされた部材および部位については、それぞれ、図中に、第一の実施形態と同じ符号を付することにより、それらの詳細な説明を省略する。
【0049】
すなわち、図6に示された仕切部材の溝金具76においては、第一の実施形態における第一の内周通路56を、更に内周側に向かって渦巻形状をもって延ばすことにより、仕切部材の略中央部分に連通孔48が形成されている。このような本態様においては、仕切部材の全体を一層巧く利用して、より長いオリフィス通路を形成することが可能となる。
【0050】
また、図7〜8に示された仕切部材82の溝金具78においては、第一の実施形態と同様な外周通路54の周方向両端部に接続された第一及び第二の内周通路56,58が、何れも、仕切壁44に沿って隔壁42の端部から内方に回り込み、周方向に折り返して隔壁42の内周側に至り、周壁42の内周側を周方向に延びるように形成されている。また、隔壁42と中央嵌合部38の外周壁部との間には、隔壁42の周方向中間部分において径方向に延びる内側隔壁80が形成されており、この内側隔壁80によって隔壁42と中央嵌合部38の間の溝が仕切られている。これにより、第一及び第二の内周通路56は、隔壁42の周方向両端部からそれぞれ内側隔壁80に至るまで周方向に略半周弱の長さで形成されている。
【0051】
更に、図7〜8に示された仕切部材82には、溝金具78における中央嵌合部38の先端面において、上面に開口する円形の収容凹所84が形成されている一方、蓋金具36が略円板形状とされて、該蓋金具36の中央部分で収容凹所84が覆蓋されている。また、かかる収容凹所84には、収容凹所84よりも一回り小さな外形寸法を有する可動ゴム板86が収容配置されている。更にまた、収容凹所84の上下の壁部には、通孔88,90が形成されており、これらの通孔88,90を通じて、受圧室70と平衡室72の各内圧が、可動ゴム板86の上面と下面にそれぞれ及ぼされるようになっている。
【0052】
このような構造とされた仕切部材82を採用すれば、オリフィス通路92の受圧室70や平衡室72への開口部の連通面積を安定して確保しつつ、オリフィス通路92の長さを充分に大きく設定することが出来、第一の実施形態と同様な効果が何れも有効に発揮され得るのであり、また、それに加えて、収容凹所84内での可動ゴム板86の変位に基づいて、オリフィス通路92が実質的に閉塞状態となる高周波数域での受圧室70の圧力変動が吸収乃至は軽減され得て、高周波数域での防振効果の向上が図られ得るのである。
【0053】
また、図9〜11に示された仕切部材94においては、溝金具78の外周縁部の上面と下面にそれぞれ周方向に延びる略二重の隔壁106,108が突設されており、それによって、外周縁部を周方向に一周弱の長さで延びる上側外周通路96と下側外周通路98が形成されている。そして、これら上下の外周通路96,98が各一端部において接続孔100で相互に直列的に接続されることにより、全体として仕切部材94の外周縁部を周方向に2周程度の長さで2層構造をもって延びる外周通路が形成されている。更にまた、上側外周通路96の端部と、下側外周通路98の端部には、第一の内周通路102と第二の内周通路104が接続されており、それぞれ、外周通路96,98の端部から内方に回り込み、周方向に折り返して外周通路96,98の各内周側を周方向に略平行に一周弱の長さで延びるように形成されている。要するに、第一の内周通路102と第二の内周通路104は、2層構造をもって形成されており、上側外周通路96と下側外周通路98の各内周側に位置して設けられている。
【0054】
そして、かかる溝金具78には、それぞれ円環板形状を呈する上下の蓋金具110,112が重ね合わされて固定的に組み付けられており、これら上下の蓋金具110,112で溝金具78における上下の外周通路96,98と第一及び第二の内周通路102,104が何れも流体密に覆蓋されることによって、全体として一つのオリフィス通路114が形成されている。
【0055】
また、溝金具78の中央部分には、中央透孔116が形成されていると共に、この中央透孔116内に軸直角方向に広がる可動ゴム板118が配設されており、可動ゴム板118外周面が中央透孔116の内周面に加硫接着されて流体密に閉塞されている。
【0056】
このような構造とされた本実施形態の仕切部材94においては、オリフィス通路114を、仕切部材94の内部で軸方向に多層構造をもって形成したことにより、仕切部材94の大径化を抑えつつ、オリフィス通路114の長さを一層大きく設定することが可能となり、オリフィス通路114のチューニング自由度の一層の向上が実現され得る。また、仕切部材94の中央透孔116に配設された可動ゴム板118の弾性変形に基づいて、例えばオリフィス通路114のチューニング周波数を超えた高周波数域の振動入力時における受圧室70の小振幅な圧力変動が吸収され得ることから、前記図7〜8に示された可動ゴム板(86)を備えた構造と同様に、高周波数域の防振性能の向上も、併せて実現可能となる。
【0057】
また、図面には示されていないが、本発明は、例示の如き受動タイプの流体封入式防振装置の他、例えば特開平10−196708号公報等に開示されている能動タイプの流体封入式防振装置に対しても同様に適用することが出来る。
【0058】
その他、一々列挙はしないが、本発明は当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
【0059】
【発明の効果】
上述の説明から明らかなように、本発明に従う構造とされた流体封入式防振装置においては、仕切部材の外周縁部を軸方向で挟持することにより第二の取付部材に対して精度良く強固に位置決めすることが出来ると共に、仕切部材の外周部分を利用して充分な長さのオリフィス通路を効率的に形成することが可能となる。しかも、オリフィス通路の受圧室や平衡室への連通孔は、仕切部材の外周縁部から内周側に離隔位置して形成されることから、かかる連通孔が、仕切部材に対する軸方向での挟持部分や本体ゴム弾性体などによって狭窄されたり覆蓋されるようなことがなく、オリフィス通路を通じての流体の流動作用に基づく所期の防振効果が安定して発揮され得るのである。
【図面の簡単な説明】
【図1】本発明の第一の実施形態としてのエンジンマウントを示す縦断面図である。
【図2】図1に示されたエンジンマウントを構成する溝金具を示す平面図である。
【図3】図1に示されたエンジンマウントを構成する蓋金具を示す平面図である。
【図4】図1に示されたエンジンマウントを構成する仕切部材を示す縦断面説明図であって、図2におけるIV−IV断面に相当する図である。
【図5】図1に示されたエンジンマウントを構成する本体ゴム弾性体の一体加硫成形品を示す縦断面図である。
【図6】図1に示されたエンジンマウントにおいて採用され得る溝金具の別の態様を示す、図2に対応する平面図である。
【図7】図1に示されたエンジンマウントにおいて採用され得る仕切部材の別の態様を示す横断面図であって、図8におけるVII −VII 断面に対応する図である。
【図8】図7におけるVIII−VIII断面に相当する縦断説明図である。
【図9】図1に示されたエンジンマウントにおいて採用され得る溝金具の別の態様を示す、図2に対応する平面図である。
【図10】図9に示された溝金具の底面図である。
【図11】図9に示された溝金具を用いて構成された仕切部材を示す、図4に対応する縦断面説明図である。
【符号の説明】
10 エンジンマウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
26 ダイヤフラム
32 仕切部材
48 連通孔
52 連通窓
54 外周通路
56 第一の内周通路
58 第二の内周通路
60 内部通路
70 受圧室
72 平衡室
74 オリフィス通路
[0001]
【Technical field】
The present invention relates to a fluid filled type vibration damping device that can be adopted as, for example, an automobile engine mount or a body mount, and obtains a vibration damping effect based on a flow action of an incompressible fluid sealed inside. is there.
[0002]
[Background]
Conventionally, as a kind of anti-vibration coupling body or anti-vibration support body mounted between members constituting a vibration transmission system, not only an anti-vibration effect based on elastic deformation of a rubber elastic body but also an incompressible fluid inside. There is known a fluid-filled type vibration isolator that uses a vibration-proofing effect based on a fluid action such as a resonance action of an incompressible fluid at the time of vibration input. For example, those described in Patent Documents 1, 2, 3 and the like.
[0003]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 57-9340
[Patent Document 2]
Japanese Patent Laid-Open No. 8-14311
[Patent Document 1]
Japanese Patent Laid-Open No. 10-252813
[0004]
Such a fluid-filled vibration isolator generally connects the first mounting member and the second mounting member with a main rubber elastic body, while holding the partition member supported by the second mounting member. On the side, a part of the wall part is made of a rubber elastic body, and a pressure receiving chamber in which pressure fluctuation is caused when vibration is input, and a part of the wall part is made of the flexible film so that the volume can be easily changed. In addition, a structure is formed in which an equilibrium chamber that is allowed to be formed is formed, and an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber is formed. At the time of vibration input, fluid flow through the orifice passage is generated based on pressure fluctuation caused between the pressure receiving chamber and the equilibrium chamber, and effective vibration isolation effect is exhibited based on the resonance action of the fluid. It will be done.
[0005]
By the way, the vibration isolation effect based on the resonance action of the fluid flowing through the orifice passage is effectively exhibited against vibrations in a predetermined frequency range in which the orifice passage is tuned in advance. It is necessary to perform tuning by appropriately adjusting the cross-sectional area and length of the orifice passage according to the area. In particular, in order to ensure a sufficient degree of tuning freedom of the orifice passage and to obtain an effective vibration-proofing effect even for low-frequency vibrations such as automobile shake vibrations, the orifice passage It is important to be able to set a sufficiently large length.
[0006]
Therefore, as described in Patent Documents 1, 2, and 3, it is possible to form the orifice passage so that the outer diameter of the partition member is as large as possible and the outer peripheral portion extends in the circumferential direction. It is valid.
[0007]
However, the partition member is fitted into the second mounting member formed in a substantially cylindrical shape and is disposed so as to extend in the direction perpendicular to the axis, and the second peripheral mounting is performed by clamping the outer peripheral edge portion in the axial direction. Since the orifice passage is formed in the outermost peripheral edge portion of the partition member because it is positioned and held with respect to the member, the pressure receiving chamber and the equilibrium in the orifice passage are in a state where the partition member is assembled to the vibration isolator. There is a possibility that the communication hole to the chamber may be narrowed or covered by the main rubber elastic body that holds the partition member under pressure and other fixing fittings.
[0008]
In addition, even when the pressure passage chamber to the pressure receiving chamber or the equilibrium chamber of the orifice passage is in an open state when the partition member is assembled to the vibration isolator, the load on the automobile power unit or the like is still in the mounted state of the vibration isolator. When the main rubber elastic body is elastically deformed due to the vibration load, the communication hole of the orifice passage, particularly to the pressure receiving chamber, may be constricted by the elastic main rubber elastic body. Since the fluid flow through the passage is obstructed, there is a possibility that the intended vibration isolation effect cannot be obtained stably.
[0009]
[Solution]
Here, the present invention has been made in the background as described above, and the problem to be solved is a partition member that partitions the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber and the equilibrium chamber communicate with each other. The orifice passage can be formed with a sufficient length, the communication state of the orifice passage can be stably maintained, and an anti-vibration effect based on the resonance action of the fluid flowing through the orifice passage is effective. An object of the present invention is to provide a fluid-filled vibration isolator having a novel structure that can be exhibited stably and stably.
[0010]
[Solution]
Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. In addition, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized on the basis of.
[0011]
(Aspect 1 of the present invention)
  According to the first aspect of the present invention, the first mounting member is spaced apart from the one opening side of the cylindrical second mounting member, and the first mounting member and the second mounting member are elasticized to the main body. The one opening of the second mounting member is fluid-tightly closed by connecting with a body, and the other opening of the second mounting member is fluid-tightly closed with a flexible membrane, A partition member that extends substantially perpendicular to the central axis of the second mounting member is disposed between the opposing surfaces of the main rubber elastic body and the flexible membrane, and the outer peripheral edge of the partition member is moved to the second surface. Is fixedly supported by the mounting member to form a pressure receiving chamber in which a part of the wall portion is composed of the main rubber elastic body on one side of the partition member and pressure fluctuation is caused when vibration is input. In addition, a part of the wall portion is formed of the flexible film on the other side across the partition member. In the fluid-filled type vibration damping device in which an equilibrium passage in which volume change is easily allowed is formed and an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber with each other is formed by the partition member, the outer peripheral edge of the partition member is An outer peripheral passage that is clamped from both sides in the axial direction to be positioned and held in the axial direction with respect to the second mounting member, and an outer peripheral passage that extends in the circumferential direction along the outer peripheral edge of the partition member, and one end of the outer peripheral passage A first inner peripheral passage extending from the inner peripheral side of the partition member to the inner peripheral side of the outer peripheral passage and extending circumferentially along the inner peripheral side of the outer peripheral passage; A second inner peripheral passage extending from the other end of the outer peripheral passage toward the inner peripheral side of the partition member using a portion where the first inner peripheral passage is not formed between the portions; Each of the first and second ends extending from one end of the outer peripheral passage. A first communication hole is provided at the front end of the inner peripheral passage so that the front end of the first inner peripheral passage communicates with one of the pressure receiving chamber and the equilibrium chamber, and from the other end of the outer peripheral passage. The orifice is provided by providing a second communication hole at the leading end of the extended second inner peripheral passage and allowing the leading end of the second inner peripheral passage to communicate with the other of the pressure receiving chamber and the equilibrium chamber. Composing a passageAnd a plurality of annular passages each extending along the circumferential direction of the outer circumferential edge of the partition member with a length of a little less than one round in a plurality of stages in the axial direction of the partition member. Are connected in series with each other to form the outer peripheral passage with a form in which the outer peripheral edge of the partition member extends in the circumferential direction with a length of one or more rounds.This is a feature.
[0012]
In the fluid-filled type vibration isolator having the structure according to this aspect, the passage of the orifice passage is formed by the outer peripheral passage formed so as to extend in the circumferential direction at the outer peripheral edge portion that can advantageously ensure the length of the partition member. The length can be set sufficiently large. In addition, since the communication holes to the pressure receiving chamber and the equilibrium chamber in the orifice passage are both separated from the outer peripheral edge of the partition member by the first and second inner peripheral passages, The outer peripheral edge of the member can be clamped in the axial direction to firmly position and support the partition member with respect to the second mounting member, and the outer peripheral edge of the partition member held in the axial direction can be Therefore, it is possible to locate the communication hole to the pressure receiving chamber or the equilibrium chamber of the orifice passage at a position avoided.
[0013]
Therefore, the length of the orifice passage can be set sufficiently large while the opening area of the communication hole of the orifice passage to the pressure receiving chamber and the equilibrium chamber is stably set even in the assembled state of the partition member. As a result, a large degree of freedom in tuning the orifice passage can be secured, and the desired vibration isolation effect based on the resonance action of the fluid that can flow through the orifice passage can be stably and effectively obtained. It becomes.
[0014]
  Further, for example, even when a structure in which one side in the axial direction of the outer peripheral edge of the partition member is supported by pressing the outer peripheral edge of the main rubber elastic body in the axial direction is adopted, By positioning the communication hole for the chamber on the inner peripheral side of the partition member, the rubber elastic body of the main body is elastically deformed when an external vibration or load is input, thereby narrowing the communication hole to the pressure receiving chamber of the orifice passage. Since blockage can be avoided and the orifice passage can always be maintained in a constant communication state, the desired vibration isolation based on the resonant action of the fluid that can flow through the orifice passage regardless of the action of external force. The effect can be obtained stably.
Furthermore, in this aspect, the passage length of the orifice passage can be set even larger without increasing the outer diameter size of the partition member and hence the outer diameter size of the cylindrical portion of the second mounting member. As a result, the degree of freedom in tuning the orifice passage can be further expanded.
(Aspect 2 of the present invention)
According to the second aspect of the present invention, the first mounting member is spaced apart from the one opening side of the cylindrical second mounting member, and the first mounting member and the second mounting member are elasticized to the main body. The one opening of the second mounting member is fluid-tightly closed by connecting with a body, and the other opening of the second mounting member is fluid-tightly closed with a flexible membrane, A partition member that extends substantially perpendicular to the central axis of the second mounting member is disposed between the opposing surfaces of the main rubber elastic body and the flexible membrane, and the outer peripheral edge of the partition member is moved to the second surface. Is fixedly supported by the mounting member to form a pressure receiving chamber in which a part of the wall portion is composed of the main rubber elastic body on one side of the partition member and pressure fluctuation is caused when vibration is input. In addition, a part of the wall portion is formed of the flexible film on the other side across the partition member. In the fluid-filled type vibration damping device in which an equilibrium passage in which volume change is easily allowed is formed and an orifice passage that communicates the pressure receiving chamber and the equilibrium chamber with each other is formed by the partition member, the outer peripheral edge of the partition member is An outer peripheral passage that is clamped from both sides in the axial direction to be positioned and held in the axial direction with respect to the second mounting member, and an outer peripheral passage that extends in the circumferential direction along the outer peripheral edge of the partition member, and one end of the outer peripheral passage A first inner peripheral passage extending from the inner peripheral side of the partition member to the inner peripheral side of the outer peripheral passage and extending circumferentially along the inner peripheral side of the outer peripheral passage; A second inner peripheral passage extending from the other end of the outer peripheral passage toward the inner peripheral side of the partition member using a portion where the first inner peripheral passage is not formed between the portions; Each of the first and second ends extending from one end of the outer peripheral passage. A first communication hole is provided at the front end of the inner peripheral passage so that the front end of the first inner peripheral passage communicates with one of the pressure receiving chamber and the equilibrium chamber, and from the other end of the outer peripheral passage. The orifice is provided by providing a second communication hole at the leading end of the extended second inner peripheral passage and allowing the leading end of the second inner peripheral passage to communicate with the other of the pressure receiving chamber and the equilibrium chamber. By forming a passage, and the outer peripheral passage is fluid-tightly covered with a cylindrical portion of the second mounting member in a circumferential groove that opens in the outer peripheral surface of the partition member and extends in the circumferential direction. It is formed.
In the fluid-filled type vibration isolator having the structure according to this aspect, it is possible to form an outer peripheral passage at the outermost peripheral edge portion of the partition member, and to secure the passage length of the orifice passage more advantageously. I can do it. In addition, since the outer peripheral passage is formed by using the cylindrical portion of the second mounting member as a part of the wall portion, the structure of the partition member that forms the outer peripheral passage can be simplified.
[0015]
  In addition,Aspects 1 and 2 aboveThe specific shape and length of the outer peripheral passage and the first and second inner peripheral passages adopted in the above are determined as appropriate according to the required vibration-proof performance, device size, etc., and are particularly limited. However, for example, any of the structures according to some embodiments as described below can be suitably employed.
[0016]
(Aspect of the present invention3)
  Aspects of the invention3Is the aspect2In the fluid-filled vibration isolator according to the present invention, the outer peripheral edge of the partition member extends in the circumferential direction and is divided by a partition wall at one place on the circumference, thereby extending the circumferential direction with a length of less than one round. The outer peripheral passage is formed.
[0018]
(Aspect 4 of the present invention)
  Aspect 4 of the present invention is the aspect 1 described above.Any one of 3In the fluid filled type vibration damping device according to claim 1, at least one of the first inner peripheral passage and the second inner peripheral passage is folded back in the circumferential direction from one end portion of the outer peripheral passage, and the inner periphery of the outer peripheral passage is The side is formed with a form extending in the circumferential direction along the outer peripheral passage. In this aspect, the outer peripheral passage and the inner peripheral passage can form an orifice passage extending in the circumferential direction in a substantially multiple form, and the passage length of the orifice passage can be further increased in the partition member having a limited area. It can be set large, and further expansion of the degree of freedom of tuning of the orifice passage can be realized.
[0019]
(Aspect 5 of the present invention)
  Aspect 5 of the present invention is the above aspect.3In the fluid filled type vibration damping device according to claim 1, the first inner peripheral passage is folded back in the circumferential direction from one circumferential end of the outer peripheral passage, and the inner peripheral side of the outer peripheral passage is surrounded along the outer peripheral passage. The second inner peripheral passage is formed with a form extending in the direction from the other end in the circumferential direction of the outer peripheral passage along the partition wall toward the substantially center of the partition member. Is a feature. According to this aspect, in the single layer structure in the axial direction of the partition member, the outer peripheral passage and the first and second inner peripheral passages are formed with a large passage length as a whole and with excellent space efficiency. It becomes possible.
[0020]
(Aspect 6 of the present invention)
  Aspect 6 of the present invention is the above aspect.1In the fluid-filled vibration isolator according to claim 1, on the pressure receiving chamber side of the partition member, the first inner peripheral passage is folded back in the circumferential direction from one end of the outer peripheral passage. While the circumferential side is formed with a form extending in the circumferential direction along the outer peripheral passage, the second inner peripheral passage is formed in the circumferential direction from the other end of the outer peripheral passage on the equilibrium chamber side of the partition member. By folding back and forming the inner peripheral side of the outer peripheral passage with a form extending in the circumferential direction along the outer peripheral passage, the first inner peripheral passage and the second inner peripheral passage are overlapped in the axial direction of the partition member. It is characterized by being formed together. According to this aspect, the outer peripheral passage and the first and second inner peripheral passages can be formed in a plurality of layer structures in the axial direction of the partition member. It is possible to set a large passage length.
[0021]
(Aspect 7 of the present invention)
Aspect 7 of the present invention is the fluid filled type vibration damping device according to any one of the aspects 1 to 6, wherein the outer peripheral passage and the first and second inner peripheral passages are formed in an outer peripheral portion of the partition member. The movable rubber plate is disposed in a central portion of the partition member so as to be displaceable or deformable, and the pressure of the pressure receiving chamber is applied to one surface of the movable rubber plate, and the other surface of the movable rubber plate It is characterized in that the pressure in the equilibration chamber is applied. In this aspect, the pressure fluctuation in the pressure receiving chamber at the time of vibration input at a frequency higher than the tuning frequency of the orifice passage is reduced or absorbed based on the elastic deformation or displacement of the movable rubber plate. The anti-vibration performance in the high frequency range can be improved. In particular, since the movable rubber plate is disposed in the central portion of the partition member, which is difficult to secure a sufficient length even when the orifice passage is formed, the degree of freedom in setting the passage length of the orifice passage is sufficiently secured. The movable rubber plate can be assembled to the partition member with an efficient arrangement space.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
[0024]
First, FIG. 1 shows an automobile engine mount 10 as an embodiment of a fluid filled type vibration damping device according to the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are connected by a main rubber elastic body 16. Although not clearly shown in the drawings, the power unit is mounted between the power unit and the body of the automobile so that the power unit is supported by the body against vibration. In the following description, the vertical direction means the vertical direction in FIG. 1 in principle.
[0025]
More specifically, the first mounting member 12 has an inverted frustoconical shape, and a flange-shaped portion 18 that extends toward the outer peripheral side is integrally formed on the outer periphery of the large-diameter portion on the upper side in the axial direction. . Further, the first mounting bracket 12 is provided with a screw hole 20 that opens to the end surface on the large diameter side and extends on the central axis, and a fixing bolt (not shown) that is screwed into the screw hole 20. The first mounting bracket 12 is fixedly attached to a power unit (not shown).
[0026]
Further, the second mounting bracket 14 has a generally cylindrical shape with a large diameter as a whole, and a flange portion 22 that extends toward the outer peripheral side is integrally formed at the opening peripheral portion on the upper side in the axial direction. For example, a bracket (not shown) is externally fitted and fixed to the second mounting bracket 14 and is fixedly attached to an automobile body (not shown) via the bracket. The first mounting bracket 12 is disposed on the opening side on the upper side in the axial direction of the second mounting bracket 14, and the second mounting bracket 12 is mounted on the substantially central axis of the second mounting bracket 12. The first mounting bracket 12 protrudes upward from the upper opening of the bracket 14 and is positioned away from the second mounting bracket 14.
[0027]
Furthermore, the main rubber elastic body 16 as a whole has a large-diameter substantially truncated cone shape, and a reverse-shaped substantially mortar-shaped recess 24 is formed on the end surface on the large-diameter side. The first mounting bracket 12 is vulcanized and bonded to the small-diameter end of the main rubber elastic body 16 in a state of being inserted in the axial direction, and the flange-shaped portion 18 of the first mounting bracket 12 is attached. Is overlapped and fixed to the end surface on the small diameter side of the main rubber elastic body 16. The second mounting bracket 14 is overlapped and vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16 in an extrapolated state. Thus, the opening on the upper side in the axial direction of the second mounting bracket 14 is fluid-tightly covered with the main rubber elastic body 16.
[0028]
On the other hand, a diaphragm 26 as a flexible film is disposed in the opening portion on the lower side in the axial direction of the second mounting bracket 14. The diaphragm 26 is formed of a thin rubber elastic film, has a sufficient slack so that elastic deformation can be easily allowed, and the central portion is largely bent in the axial direction under a free state where no external force is exerted. It is made into the substantially disc shape made. Further, a fitting cylinder fitting 28 having an axial length sufficiently shorter than that of the second mounting bracket 14 is vulcanized and bonded to the outer peripheral edge portion of the diaphragm 26.
[0029]
The fitting tube fitting 28 is fitted into the opening on the lower side in the axial direction of the second fitting 14, and the fitting is performed by reducing the diameter of the second fitting 14 by drawing or the like. The metal fitting 28 is fitted and fixed to the second mounting metal fitting 14. As a result, the diaphragm 26 is disposed so as to extend substantially in the direction perpendicular to the axis at the opening on the lower side in the axial direction of the second mounting bracket 14, and the opening on the lower side in the axial direction of the second mounting bracket 14. Is covered with a diaphragm 26 in a fluid-tight manner.
[0030]
As a result, a sealed enclosure region 30 that is blocked from the external space is formed between the opposing surfaces of the main rubber elastic body 16 and the diaphragm 26 inside the second mounting bracket 14. Is filled with an incompressible fluid. The sealed fluid is a low-viscosity fluid having a viscosity of 0.1 Pa · s or less so that a fluid action such as a resonance action of the fluid through an orifice passage, which will be described later, is effectively performed. Alkylene glycol, polyalkylene glycol, silicone oil and the like can be suitably employed.
[0031]
Further, a partition member 32 is accommodated in the enclosing region 30. The partition member 32 is configured by a substantially hat-shaped groove fitting 34 and a substantially annular plate-shaped lid fitting 36.
[0032]
As shown in FIG. 2, the groove fitting 34 is an annular ring that spreads radially outward from the peripheral edge of the opening with respect to the center fitting portion 38 having an inverted cup shape that opens downward. A plate-like portion 40 having a plate shape is integrally formed. Further, the rib-shaped portion 40 is provided with a partition wall 42 protruding upward at the central portion in the width direction and extending in the circumferential direction with a length of a little less than one round. Further, a partition wall 44 extending radially outward from the outer peripheral surface of the central fitting portion 38 to reach the outer peripheral edge of the bowl-shaped portion 40 is provided between both circumferential ends of the partition wall 42 on the bowl-shaped portion 40. And one end in the circumferential direction of the partition wall 42 is integrally connected to the outer peripheral surface of the central fitting portion 38 by an end wall 46 extending in the radial direction. Further, on the inner peripheral side of the partition wall 42, a communication hole 48 is provided through the flange-shaped portion 40 so as to be positioned at one end in the circumferential direction which is a dead end by the end wall 46.
[0033]
On the other hand, the lid fitting 36 has a flat annular plate shape, and a large-diameter fitting hole 50 is formed in the center portion. Further, a notch-shaped communication window 52 extending to the outer peripheral side is formed at one place on the circumference of the fitting hole 50.
[0034]
As shown in FIG. 4, the lid fitting 36 is overlapped with the groove fitting 34 in the axial direction from above, and in the fitting hole 50, the center fitting portion 38 of the groove fitting 34. The outer fitting is fixed in close contact. Further, under such an assembled state, the lid fitting 36 is overlapped with the protruding front end surfaces of the partition wall 42, the partition wall 44, and the end wall 46 of the groove fitting 34 so as to be in close contact with each other. Furthermore, the lid fitting 36 is aligned with the groove fitting 34 in the circumferential direction, and the communication window 52 is positioned between the circumferential facing surfaces of the partition wall 44 and the end wall 46 in the groove fitting 34. ing.
[0035]
Thus, in the partition member 32 configured by fixedly combining the groove fitting 34 and the lid fitting 36, the central fitting portion 38, the partition wall 42, the partition wall 44, and the end wall are formed on the bowl-shaped portion of the groove fitting 34. A groove-like portion formed in cooperation with 46 and extending in the circumferential direction is covered with a lid fitting 36, and thus, one internal passage 60 is formed as a whole. That is, the partition member 32 has an outer peripheral passage 54 extending between the opposing surfaces of the hook-shaped portion 40 and the lid fitting 36 on the outer peripheral side of the partition wall 42 with a length of a little less than one round in the circumferential direction. In FIG. 2, the structure is formed with an opening on the outer peripheral surface. In addition, from one end of the outer peripheral passage 54, it goes inward from the end of the partition wall 42 along the partition wall 44, turns back in the circumferential direction, reaches the inner peripheral side of the partition wall 42, and surrounds the inner peripheral side of the peripheral wall 42. A first inner peripheral passage 56 extending continuously from one end of the outer peripheral passage 54 to the inner peripheral side is formed by extending to the end wall 46 with a length of slightly less than one turn in the direction. Furthermore, the other end of the outer peripheral passage 54 wraps inward from the end of the partition wall 42 along the partition wall 44, and extends to the center fitting portion 38 between the opposing surfaces of the partition wall 44 and the end wall 42. As a result, a second inner peripheral passage 58 extending inward in the radial direction from the other end of the outer peripheral passage 54 to the inner peripheral side is formed.
[0036]
The outer peripheral passage 54 and the first and second inner peripheral passages 56 and 58 are connected in series with each other, so that the outer peripheral portion of the partition member 32 has a length of one or more rounds in the circumferential direction as a whole. An internal passage 60 extending in the direction is formed. In addition, the internal passage 60 is opened at the lower surface of the partition member 32 through the communication hole 48 at one end (the end on the first inner peripheral passage 56 side), while the other end (the first end) In the second inner peripheral passage 58 side end), the upper surface of the partition member 32 is opened through the communication window 52.
[0037]
The partition member 32 having such a structure is fitted into the second mounting bracket 14 to which the main rubber elastic body 16 is vulcanized and bonded, from the opening on the lower side in the axial direction, so that the second mounting The metal fitting 14 is disposed so as to spread in a direction perpendicular to the axis at an intermediate portion in the axial direction of the metal fitting 14. Then, the diameter of the second mounting bracket 14 is reduced by drawing or the like, and the second mounting bracket 14 is fitted and fixed to the outer peripheral surface of the partition member 32, whereby the partition member 32 is fixed to the second mounting bracket 14. It is fixed by fitting.
[0038]
In addition, the diameter reduction process with respect to the 2nd attachment metal fitting 14 is implemented after fitting the partition member 32 and the fitting cylinder metal fitting 28 in the 2nd attachment metal fitting 14, and these partition members 32 and the fitting cylinder fitting 28 are attached. At the same time, it is desirable to fit and fix to the second mounting bracket 14. In addition, a seal rubber layer 62 that covers substantially the entire surface is formed integrally with the main rubber elastic body 16 on the inner peripheral surface of the second mounting bracket 14, and the partition member 32 and the fitting tube bracket 28 are connected to the second mounting bracket 14. The fitting portion with the metal fitting 14 is fluid-tightly sealed with the seal rubber layer 62.
[0039]
In addition, as shown in a single product diagram in FIG. 5, the integral vulcanization molded product 64 of the main rubber elastic body 16 and the seal rubber layer 62 including the first and second mounting brackets 12 and 14 includes a partition member. In the inner peripheral surface of the second mounting bracket 14 into which 32 is fitted, at the boundary portion between the outer peripheral edge of the lower end of the main rubber elastic body 16 and the upper end edge of the seal rubber layer 62, it is continuous over the entire circumference. An annular step 66 extending in the direction is formed. As shown in FIGS. 1 and 4, the partition member 32 fitted to the second mounting bracket 14 has the upper peripheral edge overlapped with the step 66, so that It is assembled in a state in which the upward displacement in the axial direction is prevented.
[0040]
On the other hand, an annular locking portion 68 that slightly protrudes inward is formed on the opening peripheral edge portion on the lower side in the axial direction of the second mounting bracket 14. Then, the engaging portion 68 is engaged with the lower end surface in the axial direction of the fitting tube fitting 28 inserted and fixed in the second mounting fitting 14, thereby fitting the fitting tube fitting 28. Is prevented from slipping out in the axial direction. Further, the upper end surface in the axial direction of the fitting tube fitting 28 is overlapped with the outer peripheral edge of the lower surface of the partition member 32 fitted into the second mounting fitting 14. As a result, the lower surface of the partition member 32 is positioned by the locking portion 68 via the fitting tube fitting 28, and is assembled in a state in which displacement downward in the axial direction with respect to the second attachment fitting 14 is prevented. Yes.
[0041]
Thus, the partition member 32 is assembled to the second mounting member 14 and disposed in the enclosure region 30, so that the enclosure region 30 is partitioned by the partition member 32 and divided into two parts. A pressure receiving chamber 70 is formed above the partition member 32, and an equilibrium chamber 72 is formed below the partition member 32. A part of the wall portion of the pressure receiving chamber 70 is composed of the main rubber elastic body 16, and the main rubber elastic body 16 is elastically deformed when vibration is input between the first mounting bracket 12 and the second mounting bracket 14. As a result, pressure fluctuations are exerted. On the other hand, a part of the wall portion of the equilibrium chamber 72 is constituted by the diaphragm 26, and the volume change is easily allowed based on the deformation of the diaphragm 26, so that the pressure fluctuation is quickly eliminated. ing.
[0042]
Further, in the partition member 32, the opening on the outer peripheral surface of the partition member 32 in the outer peripheral passage 54 is covered fluid-tightly by the second mounting bracket 14 over the entire periphery. Further, one end of the internal passage 60 is connected to the pressure receiving chamber 70 through the communication window 52, and the other end of the internal passage 60 is connected to the equilibrium chamber 72 through the communication hole 48. As a result, the pressure receiving chamber 70 and the equilibrium chamber 72 are communicated with each other, and an orifice passage 74 that allows fluid flow between the chambers 70 and 72 is formed.
[0043]
In the engine mount 10 having such a structure, when vibration is input in the direction of the substantially central axis of the first and second mounting brackets 12 and 14 in the mounted state in the automobile, the pressure receiving chamber 70 and the equilibrium chamber The fluid flow through the orifice passage 74 is generated based on the relative pressure fluctuation caused during the period 72, and based on the resonance action of the fluid, for example, a high damping effect on the shake and a low vibration against the idling vibration are generated. A dynamic spring effect or the like is exhibited, and effective vibration isolation performance can be realized.
[0044]
Therefore, in the engine mount 10 of the present embodiment, the orifice passage 74 is formed so as to extend the outer peripheral portion of the partition member 32 having a large circumferential length by one or more rounds in the circumferential direction. A large degree of freedom in setting the passage length of the passage 74 can be secured, and a sufficient degree of freedom in tuning the orifice passage 74 based on the setting of the passage length of the orifice passage 74 and the passage cross-sectional area can be secured.
[0045]
Moreover, in the engine mount 10, since the partition member 32 is attached to the second mounting member 14 with the outer peripheral edge thereof being sandwiched in the axial direction, the second mounting member 14 is attached to the second mounting member 14. Therefore, for example, an excessive positive pressure or negative pressure generated in the pressure receiving chamber 70 due to a shocking large load is applied to one surface of the partition member 32. Even in the case of acting on the partition member 32, the partition member 32 is firmly supported, and stable vibration isolation performance can be exhibited.
[0046]
Further, the orifice passage 74 in the partition member 32 has a communication hole 48 and a communication window 52 as openings to the pressure receiving chamber 70 and the equilibrium chamber 72, both of which are defined by the first and second inner peripheral passages 56 and 58. Since it is set at a position radially inward from the outer peripheral edge of the partition member, for example, at a position avoiding the overlapping portion with respect to the partition member 32 of the step 66 or the fitting tube fitting 28 inward, These communication holes 48 and communication windows 52 are provided. Therefore, the partition member 32 can be supported with a sufficiently large holding surface in the axial direction so that the partition member 32 can be firmly fixed to the second mounting bracket 14, and the communication hole 48 and the communication window can be provided. 52 is prevented from being constricted or covered with the step 66 or the elastic rubber body 16 that is elastically deformed, and the opening area of the orifice passage 74 in the communication portion to the pressure receiving chamber 70 and the equilibrium chamber 72 is sufficiently large. In addition, it can be ensured stably, so that it is possible to effectively and stably obtain the anti-vibration effect by the target orifice passage 74.
[0047]
The first embodiment of the present invention has been described in detail above. However, this is merely an example, and the present invention is not construed as being limited by the specific description in the embodiment.
[0048]
In particular, the specific structure of the outer peripheral passage and the first and second inner peripheral passages that are formed in the partition member and constitute the orifice passage adopt various forms depending on the required vibration isolation characteristics, mount size, etc. Some of the specific forms will be briefly described with reference to FIGS. In addition, about the member and site | part made into the structure similar to the above-mentioned 1st embodiment in FIGS. 7-11, respectively, by attaching | subjecting the same code | symbol as 1st embodiment in a figure, those Detailed description is omitted.
[0049]
That is, in the groove member 76 of the partition member shown in FIG. 6, the first inner peripheral passage 56 in the first embodiment is further extended in a spiral shape toward the inner peripheral side, thereby substantially reducing the partition member. A communication hole 48 is formed in the central portion. In this aspect, it is possible to form a longer orifice passage by making better use of the entire partition member.
[0050]
Moreover, in the groove metal fitting 78 of the partition member 82 shown by FIGS. 7-8, the 1st and 2nd inner peripheral path 56 connected to the circumferential direction both ends of the outer periphery path 54 similar to 1st embodiment. , 58 wrap around inward from the end of the partition wall 42 along the partition wall 44, turn back in the circumferential direction to reach the inner peripheral side of the partition wall 42, and extend in the circumferential direction on the inner peripheral side of the peripheral wall 42. Is formed. Further, an inner partition wall 80 is formed between the partition wall 42 and the outer peripheral wall portion of the center fitting portion 38 so as to extend in the radial direction at a middle portion in the circumferential direction of the partition wall 42. A groove between the fitting portions 38 is partitioned. Thus, the first and second inner peripheral passages 56 are formed with a length of a little less than a half circumference in the circumferential direction from both circumferential ends of the partition wall 42 to the inner partition wall 80.
[0051]
Further, the partition member 82 shown in FIGS. 7 to 8 is formed with a circular receiving recess 84 opened on the upper surface at the front end surface of the central fitting portion 38 in the groove metal 78, while the lid metal 36. Is substantially disk-shaped, and the housing recess 84 is covered with the central portion of the lid fitting 36. In addition, a movable rubber plate 86 having an outer dimension slightly smaller than that of the accommodation recess 84 is accommodated in the accommodation recess 84. Furthermore, through holes 88 and 90 are formed in the upper and lower wall portions of the housing recess 84, and the internal pressures of the pressure receiving chamber 70 and the equilibrium chamber 72 are transferred through these through holes 88 and 90 to the movable rubber plate. It extends to the upper and lower surfaces of 86, respectively.
[0052]
If the partition member 82 having such a structure is employed, the orifice passage 92 has a sufficient length while stably securing the communication area of the opening to the pressure receiving chamber 70 and the equilibrium chamber 72 of the orifice passage 92. It can be set large, and all of the same effects as in the first embodiment can be effectively exhibited. In addition, based on the displacement of the movable rubber plate 86 in the housing recess 84, The pressure fluctuation of the pressure receiving chamber 70 in the high frequency region where the orifice passage 92 is substantially closed can be absorbed or reduced, and the vibration isolation effect in the high frequency region can be improved.
[0053]
Further, in the partition member 94 shown in FIGS. 9 to 11, substantially double partition walls 106, 108 extending in the circumferential direction are respectively provided on the upper surface and the lower surface of the outer peripheral edge portion of the groove metal 78, thereby An upper outer peripheral passage 96 and a lower outer peripheral passage 98 are formed extending the outer peripheral edge in the circumferential direction with a length of a little less than one round. Then, the upper and lower outer peripheral passages 96 and 98 are connected in series with each other through the connection hole 100 at each one end, so that the outer peripheral edge of the partition member 94 has a length of about two rounds in the circumferential direction as a whole. An outer peripheral passage extending with a two-layer structure is formed. Furthermore, a first inner peripheral passage 102 and a second inner peripheral passage 104 are connected to the end of the upper outer peripheral passage 96 and the end of the lower outer peripheral passage 98, respectively. It is formed so as to go inward from the end of 98 and to be folded back in the circumferential direction so that the inner circumferential side of each of the outer peripheral passages 96 and 98 extends substantially parallel to the circumferential direction with a length of less than one round. In short, the first inner peripheral passage 102 and the second inner peripheral passage 104 are formed in a two-layer structure, and are provided on the inner peripheral sides of the upper outer peripheral passage 96 and the lower outer peripheral passage 98. Yes.
[0054]
Then, the upper and lower lid fittings 110 and 112 each having an annular plate shape are overlapped and fixedly assembled to the groove fitting 78, and the upper and lower lid fittings 110 and 112 are attached to the upper and lower lid fittings 110 and 112, respectively. The outer peripheral passages 96 and 98 and the first and second inner peripheral passages 102 and 104 are both fluid-tightly covered to form a single orifice passage 114 as a whole.
[0055]
Further, a central through hole 116 is formed in the central portion of the groove metal 78, and a movable rubber plate 118 extending in the direction perpendicular to the axis is disposed in the central through hole 116. The surface is vulcanized and bonded to the inner peripheral surface of the central through-hole 116 and closed fluid-tightly.
[0056]
In the partition member 94 of the present embodiment having such a structure, the orifice passage 114 is formed with a multilayer structure in the axial direction inside the partition member 94, thereby suppressing an increase in the diameter of the partition member 94. It becomes possible to set the length of the orifice passage 114 to be larger, and further improvement in the degree of freedom of tuning of the orifice passage 114 can be realized. Further, based on the elastic deformation of the movable rubber plate 118 disposed in the central through hole 116 of the partition member 94, for example, the small amplitude of the pressure receiving chamber 70 at the time of vibration input in a high frequency range exceeding the tuning frequency of the orifice passage 114. Since a large pressure fluctuation can be absorbed, an improvement in the vibration isolating performance in the high frequency range can be realized together with the structure provided with the movable rubber plate (86) shown in FIGS. .
[0057]
Further, although not shown in the drawings, the present invention is not limited to the passive type fluid-filled vibration isolator as illustrated, for example, an active-type fluid-filled type disclosed in Japanese Patent Laid-Open No. 10-196708. The same can be applied to a vibration isolator.
[0058]
In addition, although not enumerated one by one, the present invention can be carried out in an embodiment to which various changes, modifications, improvements, etc. are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.
[0059]
【The invention's effect】
As is clear from the above description, in the fluid-filled vibration isolator having the structure according to the present invention, the outer peripheral edge of the partition member is clamped in the axial direction so as to be strong against the second mounting member with high accuracy. And an orifice passage having a sufficient length can be efficiently formed by utilizing the outer peripheral portion of the partition member. In addition, since the communication hole of the orifice passage to the pressure receiving chamber and the equilibrium chamber is formed to be spaced from the outer peripheral edge of the partition member to the inner peripheral side, the communication hole is sandwiched in the axial direction with respect to the partition member. The desired vibration-proofing effect based on the fluid flow action through the orifice passage can be stably exhibited without being constricted or covered by the portion or the main rubber elastic body.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an engine mount as a first embodiment of the present invention.
2 is a plan view showing a groove fitting constituting the engine mount shown in FIG. 1; FIG.
FIG. 3 is a plan view showing a lid fitting constituting the engine mount shown in FIG. 1;
4 is a longitudinal cross-sectional explanatory view showing a partition member constituting the engine mount shown in FIG. 1 and corresponding to a IV-IV cross section in FIG. 2;
FIG. 5 is a longitudinal sectional view showing an integrally vulcanized molded product of a main rubber elastic body constituting the engine mount shown in FIG. 1;
6 is a plan view corresponding to FIG. 2, showing another embodiment of a groove fitting that can be employed in the engine mount shown in FIG. 1;
7 is a cross-sectional view showing another embodiment of a partition member that can be employed in the engine mount shown in FIG. 1, and is a view corresponding to a VII-VII cross section in FIG.
FIG. 8 is a longitudinal explanatory view corresponding to a VIII-VIII cross section in FIG. 7;
9 is a plan view corresponding to FIG. 2, showing another embodiment of a groove fitting that can be employed in the engine mount shown in FIG. 1. FIG.
10 is a bottom view of the grooved fitting shown in FIG. 9. FIG.
11 is a longitudinal cross-sectional explanatory view corresponding to FIG. 4, showing a partition member configured using the grooved fitting shown in FIG. 9;
[Explanation of symbols]
10 Engine mount
12 First mounting bracket
14 Second mounting bracket
16 Body rubber elastic body
26 Diaphragm
32 Partition member
48 communication hole
52 communication window
54 Peripheral passage
56 First inner passage
58 Second inner passage
60 Internal passage
70 Pressure receiving chamber
72 Balance room
74 Orifice passage

Claims (8)

第一の取付部材を、筒状の第二の取付部材の一方の開口部側に離隔位置せしめて、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結することにより該第二の取付部材の該一方の開口部を流体密に閉塞すると共に、該第二の取付部材の他方の開口部を可撓性膜で流体密に閉塞する一方、該本体ゴム弾性体と該可撓性膜の対向面間で該第二の取付部材の中心軸に略直交して広がる仕切部材を配設せしめて、該仕切部材の外周縁部を該第二の取付部材によって固定的に支持せしめることにより、該仕切部材を挟んだ一方の側において壁部の一部が該本体ゴム弾性体で構成されて振動入力時に圧力変動が惹起される受圧室を形成すると共に、該仕切部材を挟んだ他方の側において壁部の一部が該可撓性膜で構成されて容積変化が容易に許容される平衡室を形成し、それら受圧室と平衡室を相互に連通するオリフィス通路を該仕切部材によって形成した流体封入式防振装置において、
前記仕切部材の外周縁部を軸方向両側から挟持せしめて前記第二の取付部材に対して軸方向に位置決め保持せしめる一方、該仕切部材の外周縁部に沿って周方向に延びる外周通路と、該外周通路の一方の端部から該仕切部材の内周側に延び出して該外周通路の内周側に沿って周方向に延びる第一の内周通路と、該第一の内周通路の周方向両端部の周方向対向部間で該第一の内周通路が形成されていない部分を利用して該外周通路の他方の端部から該仕切部材の内周側に向かって延び出した第二の内周通路とを、それぞれ形成し、該外周通路の一方の端部から延び出した該第一の内周通路の通路先端部に第一の連通孔を設けて該第一の内周通路の先端部を前記受圧室と前記平衡室の一方に連通せしめると共に、該外周通路の他方の端部から延び出した該第二の内周通路の通路先端部に第二の連通孔を設けて該第二の内周通路の先端部を該受圧室と該平衡室の他方に連通せしめることによって前記オリフィス通路を構成してなり、且つ、
前記仕切部材の外周縁部をそれぞれ周方向に一周弱の長さで延びる複数の環状路を該仕切部材の軸方向で複数段に重ね合わせて設けると共に、それら複数の環状路を互いに直列的に接続することにより、該仕切部材の外周縁部を周方向に一周以上の長さで延びる形態をもって、前記外周通路を形成したことを特徴とする流体封入式防振装置。
The first mounting member is positioned at one opening side of the cylindrical second mounting member, and the first mounting member and the second mounting member are connected by a main rubber elastic body. The one opening of the second mounting member is fluid-tightly closed, and the other opening of the second mounting member is fluid-tightly closed by a flexible membrane, while the main rubber elastic body and the A partition member extending substantially orthogonal to the central axis of the second mounting member is disposed between the opposing surfaces of the flexible membrane, and the outer peripheral edge of the partition member is fixedly fixed by the second mounting member. By supporting it, a part of the wall portion is formed of the main rubber elastic body on one side across the partition member to form a pressure receiving chamber in which pressure fluctuation is caused when vibration is input, and the partition member is On the other side of the sandwich, part of the wall is made of the flexible membrane, making volume change easy Forming a balancing chamber which is volume of the fluid filled type vibration damping device formed by partition member an orifice passage communicating with each other equilibrium chamber with pressure receiving chamber,
An outer peripheral passage extending in the circumferential direction along the outer peripheral edge of the partition member, while holding the outer peripheral edge of the partition member from both sides in the axial direction and positioning and holding the second mounting member in the axial direction; A first inner peripheral passage extending from one end of the outer peripheral passage to the inner peripheral side of the partition member and extending in the circumferential direction along the inner peripheral side of the outer peripheral passage; and The part where the first inner peripheral passage is not formed between the circumferentially opposite ends of both ends in the circumferential direction extends from the other end of the outer peripheral passage toward the inner peripheral side of the partition member. A second inner peripheral passage is formed, and a first communication hole is provided at a distal end portion of the first inner peripheral passage extending from one end portion of the outer peripheral passage. The front end of the peripheral passage communicates with one of the pressure receiving chamber and the equilibrium chamber and extends from the other end of the outer peripheral passage. The orifice passage is formed by providing a second communication hole at the distal end portion of the second inner peripheral passage and allowing the distal end portion of the second inner peripheral passage to communicate with the other of the pressure receiving chamber and the equilibrium chamber. Comprising, and
A plurality of annular passages each extending the outer peripheral edge of the partition member in a circumferential direction with a length of a little less than one round are provided in a plurality of stages in the axial direction of the partition member, and the plurality of annular passages are connected in series with each other. A fluid-filled type vibration damping device , wherein the outer peripheral passage is formed by connecting the outer peripheral edge of the partition member so as to extend in the circumferential direction with a length of one or more rounds .
第一の取付部材を、筒状の第二の取付部材の一方の開口部側に離隔位置せしめて、それら第一の取付部材と第二の取付部材を本体ゴム弾性体で連結することにより該第二の取付部材の該一方の開口部を流体密に閉塞すると共に、該第二の取付部材の他方の開口部を可撓性膜で流体密に閉塞する一方、該本体ゴム弾性体と該可撓性膜の対向面間で該第二の取付部材の中心軸に略直交して広がる仕切部材を配設せしめて、該仕切部材の外周縁部を該第二の取付部材によって固定的に支持せしめることにより、該仕切部材を挟んだ一方の側において壁部の一部が該本体ゴム弾性体で構成されて振動入力時に圧力変動が惹起される受圧室を形成すると共に、該仕切部材を挟んだ他方の側において壁部の一部が該可撓性膜で構成されて容積変化が容易に許容される平衡室を形成し、それら受圧室と平衡室を相互に連通するオリフィス通路を該仕切部材によって形成した流体封入式防振装置において、
前記仕切部材の外周縁部を軸方向両側から挟持せしめて前記第二の取付部材に対して軸方向に位置決め保持せしめる一方、該仕切部材の外周縁部に沿って周方向に延びる外周通路と、該外周通路の一方の端部から該仕切部材の内周側に延び出して該外周通路の内周側に沿って周方向に延びる第一の内周通路と、該第一の内周通路の周方向両端部の周方向対向部間で該第一の内周通路が形成されていない部分を利用して該外周通路の他方の端部から該仕切部材の内周側に向かって延び出した第二の内周通路とを、それぞれ形成し、該外周通路の一方の端部から延び出した該第一の内周通路の通路先端部に第一の連通孔を設けて該第一の内周通路の先端部を前記受圧室と前記平衡室の一方に連通せしめると共に、該外周通路の他方の端部から延び出した該第二の内周通路の通路先端部に第二の連通孔を設けて該第二の内周通路の先端部を該受圧室と該平衡室の他方に連通せしめることによって前記オリフィス通路を構成してなり、且つ、
前記外周通路が、前記仕切部材の外周面に開口して周方向に延びる周方向溝を前記第二の取付部材の筒状部で流体密に覆蓋することによって形成されていることを特徴とする流体封入式防振装置。
The first mounting member is positioned at one opening side of the cylindrical second mounting member, and the first mounting member and the second mounting member are connected by a main rubber elastic body. The one opening of the second mounting member is fluid-tightly closed, and the other opening of the second mounting member is fluid-tightly closed by a flexible membrane, while the main rubber elastic body and the A partition member extending substantially orthogonal to the central axis of the second mounting member is disposed between the opposing surfaces of the flexible membrane, and the outer peripheral edge of the partition member is fixedly fixed by the second mounting member. By supporting it, a part of the wall portion is formed of the main rubber elastic body on one side across the partition member to form a pressure receiving chamber in which pressure fluctuation is caused when vibration is input, and the partition member is On the other side of the sandwich, part of the wall is made of the flexible membrane, making volume change easy Forming a balancing chamber which is volume of the fluid filled type vibration damping device formed by partition member an orifice passage communicating with each other equilibrium chamber with pressure receiving chamber,
An outer peripheral passage extending in the circumferential direction along the outer peripheral edge of the partition member, while holding the outer peripheral edge of the partition member from both sides in the axial direction and positioning and holding the second mounting member in the axial direction; A first inner peripheral passage extending from one end of the outer peripheral passage to the inner peripheral side of the partition member and extending in the circumferential direction along the inner peripheral side of the outer peripheral passage; and The part where the first inner peripheral passage is not formed between the circumferentially opposite ends of both ends in the circumferential direction extends from the other end of the outer peripheral passage toward the inner peripheral side of the partition member. A second inner peripheral passage is formed, and a first communication hole is provided at a distal end portion of the first inner peripheral passage extending from one end portion of the outer peripheral passage. The front end of the peripheral passage communicates with one of the pressure receiving chamber and the equilibrium chamber and extends from the other end of the outer peripheral passage. The orifice passage is formed by providing a second communication hole at the distal end portion of the second inner peripheral passage and allowing the distal end portion of the second inner peripheral passage to communicate with the other of the pressure receiving chamber and the equilibrium chamber. Comprising, and
The peripheral passageway, characterized in that it is formed by fluid-tightly closed circumferential groove extending in the opening to the circumferential direction on the outer peripheral surface of the partition member in the cylindrical portion of the second mounting member Fluid-filled vibration isolator.
前記仕切部材の外周縁部を周方向に延びると共に周上の一カ所において仕切壁で分断されることにより、周方向に一周弱の長さで延びる形態をもって、前記外周通路を形成した請求項に記載の流体封入式防振装置。 3. The outer peripheral passage is formed in such a manner that the outer peripheral edge portion of the partition member extends in the circumferential direction and is divided by a partition wall at one place on the circumference so as to extend with a length of slightly less than one round in the circumferential direction. The fluid-filled vibration isolator described in 1. 前記第一の内周通路および前記第二の内周通路の少なくとも一方を、前記外周通路の一方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成した請求項1乃至3の何れかに記載の流体封入式防振装置。At least one of the first inner circumferential path and the second inner circumferential path is folded back in the circumferential direction from one end of the outer circumferential path, and the inner circumferential side of the outer circumferential path is circumferentially along the outer circumferential path. The fluid-filled type vibration damping device according to claim 1 , wherein the fluid-filled type vibration damping device is formed with a shape extending in a straight line. 前記第一の内周通路を、前記外周通路の周方向一方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成する一方、前記第二の内周通路を、該外周通路の周方向他方の端部から前記仕切壁に沿って前記仕切部材の略中央に向かって延びる形態をもって形成した請求項に記載の流体封入式防振装置。While forming the first inner peripheral passage in a circumferential direction from one end portion in the circumferential direction of the outer peripheral passage and extending the inner peripheral side of the outer peripheral passage in the circumferential direction along the outer peripheral passage, The fluid-filled vibration isolating apparatus according to claim 3 , wherein the second inner peripheral passage is formed with a form extending from the other circumferential end of the outer peripheral passage along the partition wall toward a substantially center of the partition member. apparatus. 前記仕切部材の前記受圧室側において、前記第一の内周通路を、前記外周通路の一方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成する一方、該仕切部材の前記平衡室側において、前記第二の内周通路を、前記外周通路の他方の端部から周方向に折り返して該外周通路の内周側を該外周通路に沿って周方向に延びる形態をもって形成することにより、それら第一の内周通路と第二の内周通路を該仕切部材の軸方向に重ね合わせて形成した請求項に記載の流体封入式防振装置。On the pressure receiving chamber side of the partition member, the first inner peripheral passage is folded back in the circumferential direction from one end portion of the outer peripheral passage, and the inner peripheral side of the outer peripheral passage is circumferentially along the outer peripheral passage. On the other hand, on the equilibrium chamber side of the partition member, the second inner peripheral passage is folded back in the circumferential direction from the other end of the outer peripheral passage so that the inner peripheral side of the outer peripheral passage is the outer periphery. The fluid sealing according to claim 1 , wherein the first inner passage and the second inner passage are overlapped in the axial direction of the partition member by being formed with a shape extending in the circumferential direction along the passage. Type vibration isolator. 前記外周通路と前記第一及び第二の内周通路を前記仕切部材の外周部分に形成する一方、該仕切部材の中央部分に可動ゴム板を変位乃至は変形可能に配設せしめて、該可動ゴム板の一方の面に前記受圧室の圧力が及ぼされると共に、該可動ゴム板の他方の面に前記平衡室の圧力が及ぼされるようにした請求項1乃至6の何れかに記載の流体封入式防振装置。  The outer peripheral passage and the first and second inner peripheral passages are formed in the outer peripheral portion of the partition member, and a movable rubber plate is disposed in the central portion of the partition member so as to be displaceable or deformable. 7. The fluid sealing according to claim 1, wherein the pressure of the pressure receiving chamber is exerted on one surface of the rubber plate and the pressure of the equilibrium chamber is exerted on the other surface of the movable rubber plate. Type vibration isolator. 前記外周通路と前記第一及び第二の内周通路が、何れも、同じ軸直角方向の平面上に形成されている請求項1乃至の何れかに記載の流体封入式防振装置。The fluid-filled vibration isolator according to any one of claims 1 to 7 , wherein the outer peripheral passage and the first and second inner peripheral passages are both formed on the same plane perpendicular to the axis.
JP2002356818A 2002-12-09 2002-12-09 Fluid filled vibration isolator Expired - Fee Related JP4052112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356818A JP4052112B2 (en) 2002-12-09 2002-12-09 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356818A JP4052112B2 (en) 2002-12-09 2002-12-09 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2004190721A JP2004190721A (en) 2004-07-08
JP4052112B2 true JP4052112B2 (en) 2008-02-27

Family

ID=32757044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356818A Expired - Fee Related JP4052112B2 (en) 2002-12-09 2002-12-09 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP4052112B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346189B2 (en) * 2019-09-17 2023-09-19 株式会社プロスパイラ Vibration isolator

Also Published As

Publication number Publication date
JP2004190721A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4228219B2 (en) Fluid filled vibration isolator
JP3539067B2 (en) Fluid-filled mounting device
JP2924244B2 (en) Fluid-filled mounting device
JP3826768B2 (en) Fluid filled vibration isolator
JP3603651B2 (en) Manufacturing method of fluid filled type vibration damping device
JP3414245B2 (en) Fluid filled type vibration damping device
JP2010031989A (en) Fluid-sealed vibration control device
JPH06307491A (en) Liquid enclosed type vibration proofing mount
JP3721856B2 (en) Fluid filled vibration isolator
JP3729107B2 (en) Fluid filled vibration isolator
JP2001343045A (en) Air pressure excited and fluid-filled vibration isolator
JP2002327788A (en) Vibrationproof device sealed with fluid
JP3767323B2 (en) Fluid filled vibration isolator
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP3714239B2 (en) Fluid filled vibration isolator
JP3572995B2 (en) Fluid-filled vibration isolator
JPH05272575A (en) Fluid-sealed mounting device
JP4052112B2 (en) Fluid filled vibration isolator
JPH0771506A (en) Ff type automobile engine supporting device
JPH11101294A (en) Fluid-filled mount device
JPH0389043A (en) Fluid-filled vibration isolating mount
JP3899981B2 (en) Fluid filled vibration isolator
JP2516487B2 (en) Fluid-filled mounting device
JPH0729317Y2 (en) Fluid-filled mounting device
JP2008240890A (en) Fluid-filling type vibration-proof device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4052112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees