JP4050772B1 - Measuring method and measuring device for straightness of fine metal wire - Google Patents

Measuring method and measuring device for straightness of fine metal wire Download PDF

Info

Publication number
JP4050772B1
JP4050772B1 JP2006335034A JP2006335034A JP4050772B1 JP 4050772 B1 JP4050772 B1 JP 4050772B1 JP 2006335034 A JP2006335034 A JP 2006335034A JP 2006335034 A JP2006335034 A JP 2006335034A JP 4050772 B1 JP4050772 B1 JP 4050772B1
Authority
JP
Japan
Prior art keywords
wire
straightness
meandering
curve
metal wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006335034A
Other languages
Japanese (ja)
Other versions
JP2008147523A (en
Inventor
利孝 三村
満生 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP2006335034A priority Critical patent/JP4050772B1/en
Priority to TW096146410A priority patent/TWI348538B/en
Priority to SG200718388-2A priority patent/SG144047A1/en
Priority to MYPI20072208A priority patent/MY144721A/en
Priority to CN2007101989800A priority patent/CN101201242B/en
Application granted granted Critical
Publication of JP4050772B1 publication Critical patent/JP4050772B1/en
Publication of JP2008147523A publication Critical patent/JP2008147523A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45111Tin (Sn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45116Lead (Pb) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45155Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/4516Iron (Fe) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45164Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45184Tungsten (W) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04944th Group
    • H01L2924/04941TiN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Wire Bonding (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

【課題】ボンディングワイヤのーニングの原因となるワイヤ曲がりを簡単且つ正確に測定評価する。
【解決手段】試供ワイヤを垂下し、垂下方向に垂直方向から撮影し、撮影像から求めた曲線の蛇行度をループ長さの2〜25倍の長さに区切って評価する。
リーニングに影響するワイヤの曲がりは、曲線を挟む平行線の間隔から蛇行幅として把握されるが、長周期のうねる曲がりは蛇行幅は大きくてもリーニングには影響せず、リーニングに影響する曲率半径の小さい曲がりはループ長さと関連して上記の区間における蛇行幅として把握される。
ワイヤの撮影区画は、機器の精度に合わせて試供ワイヤを長さ方向に区切り、幅方向に拡大した画像を2値データとして処理して、連続曲線として評価する。
【選択図】 図3
Measurement and evaluation of wire bending that causes bonding wire erosion with ease and accuracy.
A sample wire is suspended and photographed from a direction perpendicular to the drooping direction, and the meandering degree of a curve obtained from the photographed image is divided into 2 to 25 times the loop length and evaluated.
The bending of the wire that affects the leaning is grasped as the meandering width from the interval between the parallel lines that sandwich the curve, but the long-period waviness does not affect the leaning even if the meandering width is large, and the radius of curvature that affects the leaning Bend is understood as the meandering width in the above section in relation to the loop length.
In the wire shooting section, the test wire is divided in the length direction in accordance with the accuracy of the device, and the image enlarged in the width direction is processed as binary data and evaluated as a continuous curve.
[Selection] Figure 3

Description

本発明は、ワイヤボンディングなどのように一定長毎に切断した細線両端を接合して使用するための線引き加工された金属細線の真直性の測定方法及び測定装置に関し、線径が0.007〜0.1mm、特に0.015〜0.025mmの範囲にある金属細線の真直性の測定方法および測定装置に関する。   The present invention relates to a method and an apparatus for measuring the straightness of a thin metal wire that has been drawn for joining and using both ends of a thin wire cut at a certain length, such as wire bonding, and the wire diameter is 0.007 to The present invention relates to a method and an apparatus for measuring straightness of a fine metal wire in a range of 0.1 mm, particularly 0.015 to 0.025 mm.

従来から線引き加工された金属細線は、スプールに巻回されて取引され、使用時に一定長に切断して使用される。このような形態で取り扱われる金属細線は、電気部品のリードや検知器のリード、自動車タイヤのビードワイヤ、および半導体装置用の接続ワイヤ、例えば電子回路素子や回路基板を接続するためのバンプワイヤやボンディングワイヤなどがあり、極く一般的な形態である。このような金属細線は、その用途に応じてAu、Ag、Pd、Pt、Al、Cu、Fe、Ni、Pb、Sn、W等の金属またはこれらの元素を主成分とする合金が使用され、これらの鋳塊が太線から細線へ連続して線引き加工され、必要に応じて、伸線の前・中・後に熱処理をされている。
この金属細線の蛇行形状は、重力下で金属細線を吊り下げ、目視するという方法(特開平11−190604号)で簡便に測定でき、その結果から蛇行幅が大きい金属細線ほど真直性が悪く、不良品を形成しやすいとされていた。
Conventionally, a thin metal wire that has been drawn is traded by being wound around a spool, and is cut into a predetermined length before use. The fine metal wires handled in such a form include electrical component leads, detector leads, automobile tire bead wires, and connection wires for semiconductor devices, such as bump wires and bonding wires for connecting electronic circuit elements and circuit boards. It is a very common form. Depending on the application, such fine metal wires use metals such as Au, Ag, Pd, Pt, Al, Cu, Fe, Ni, Pb, Sn, and W, or alloys containing these elements as main components. These ingots are continuously drawn from a thick line to a thin line, and heat-treated before, during and after wire drawing as necessary.
The meandering shape of this fine metal wire can be easily measured by suspending and visually observing the fine metal wire under gravity (Japanese Patent Laid-Open No. 11-190604). As a result, the fine metal wire having a larger meander width is less straight, It was said that it was easy to form defective products.

しかし、目視による場合、個人差などにより測定値にばらつきがあり、定量的な評価が困難であった。そこで、出願人は、金属細線を先端から所定長さだけ引き出させ、この対象材料に照明を施して、この対象材料を撮像し、この撮像した画像をコンピュータ処理によって真直性を評価する評価装置を開発して先に提案した(特許文献1:特開2002−124534号公報)。この評価装置は、3次元の金属細線の形状を2次元の写真画像に投影し、好ましくは、金属細線が連続した線であることから、投影された画像の不撮影箇所を連結して蛇行曲線として補正して認識するものである。この評価装置による測定結果と目視した場合の測定結果とを比較すると、真直性測定値のばらつきを大幅に抑制することができた。(同公報5ページの表1の実施例5、6、10〜12および比較例1、2参照。)。
さらに、特開2006−86174号(特許文献2)には、特許文献1の評価方法では、「金属細線を垂下すると、金属細線の自重により、(中略)金属細線が有する蛇行形状に変形することが困難(特許文献2第3段落)」という理由から、「金属細線の少なくとも一端を自由端とした状態で液体上に浮かせ、該液体の液面上での前記金属細線の形状をもとに該金属細線の真直性を評価する(特許文献2第5段落)」評価方法および装置が開示されている。
特開2002−124534号公報 特開2006−86174号公報
However, in the case of visual observation, the measurement values vary due to individual differences and quantitative evaluation is difficult. Therefore, the applicant draws out a thin metal wire from the tip by a predetermined length, illuminates the target material, images the target material, and evaluates the straightness of the captured image by computer processing. It was developed and proposed earlier (Patent Document 1: Japanese Patent Laid-Open No. 2002-124534). This evaluation device projects the shape of a three-dimensional fine metal wire onto a two-dimensional photographic image, and preferably, since the fine metal wire is a continuous line, the non-photographed portions of the projected image are connected to form a meandering curve. It corrects and recognizes as. When the measurement result obtained by this evaluation apparatus was compared with the measurement result obtained by visual observation, it was possible to significantly suppress variations in straightness measurement values. (See Examples 5, 6, 10-12 and Comparative Examples 1 and 2 in Table 1 on page 5).
Further, in the evaluation method disclosed in Japanese Patent Application Laid-Open No. 2006-86174 (Patent Document 2), the evaluation method of Patent Document 1 states that “when a thin metal wire is suspended, it is deformed into a meandering shape possessed by the thin metal wire due to its own weight. For the reason that it is difficult (patent document 2 third paragraph), “based on the shape of the metal thin wire on the liquid surface of the liquid, floating on the liquid with at least one end of the metal thin wire as a free end. An evaluation method and apparatus for evaluating the straightness of the thin metal wire (Patent Document 2, fifth paragraph) is disclosed.
JP 2002-124534 A JP 2006-86174 A

ところが、これらの真直性評価装置による測定方法であっても次のような課題が残っていた。
まず、特許文献1の場合について説明する。金属細線が細く、3次元的に変形しているため、乱反射等によって均一なコントラストの撮影画像が得にくかった。このため、金属細線の撮像にバックグラウンドと識別ができない背景部分が発生し、蛇行曲線の作成時にエラーが多く発生していた。特に、金属細線が径0.1mm以下と細くなっていけばいくほど蛇行曲線の識別が困難となり、エラーがより多く発生していた。
また、照明条件が良く、均一に撮影された画像であっても、蛇行曲線を作成する場合は金属細線と背景部分とで ±2 pix程度の誤差が発生する。例えば、475万画素(縦2,500pix×横1,900pix)のカメラを用いて長さ30cmの領域を撮影する場合、カメラの測定精度が120μm/pixであっても上記の誤差によって最大4pxiのの誤差が発生し、換算すると480μmの誤差が発生していた。
しかも、連続伸線された金属細線は、本来真直性の差は小さく、判定すべき蛇行幅としてほとんどが10pxi以内の差を比較するため、真直性が高くなればなるほどその蛇行の大小をモニタ画面で確認することが困難であった。
However, the following problems remain even in the measurement method using these straightness evaluation apparatuses.
First, the case of Patent Document 1 will be described. Since the fine metal wire is thin and deformed three-dimensionally, it is difficult to obtain a photographed image with uniform contrast due to irregular reflection or the like. For this reason, a background portion that cannot be distinguished from the background occurs in the imaging of the fine metal wire, and many errors occur when the meandering curve is created. In particular, as the metal thin wire becomes thinner to a diameter of 0.1 mm or less, it becomes difficult to identify the meandering curve, and more errors occur.
Moreover, even when the image is well-illuminated and the image is taken uniformly, when a meandering curve is created, an error of about ± 2 pixix occurs between the metal thin line and the background portion. For example, when shooting a 30 cm long region using a camera with 4.75 million pixels (vertical 2,500 pix × horizontal 1,900 pix), even if the measurement accuracy of the camera is 120 μm / pix, the maximum error of 4 pxi An error of 480 μm occurred when converted.
In addition, the difference in straightness is small for the continuously drawn thin metal wires, and most of the meandering widths to be judged are compared within 10 pxi. Therefore, the higher the straightness, the larger the size of the meandering. It was difficult to confirm with.

次に特許文献2について説明する。特許文献2の実施例で示される、純水が張られた液体保持容器に、直径が18μmで長さが350mmの金線を浮かべようとしても、そもそもスプールから取り出された金線は3次元的に蛇行しているため2次元の水平面に浮かべることは困難である。たとえこのような金線を浮かべることができたとしても、表面張力によって金線が液体保持容器の側壁に吸い寄せられ、撮像装置に対して金線が所定の方向・位置を保つことは困難であり、生産現場に適用するには実用的ではない。しかも、両端を切断しているため切断時の応力が金線端部の曲がり量となって現われるため(特許文献2第21段落参照)、切断時の曲がり量を測定しているのか金線自体の真直性を測定しているのか、その評価が困難である。
このように、特許文献1、及び2の測定方法や評価方法では、測定のための撮影条件において発生する誤差が回避できなかった。
Next, Patent Document 2 will be described. Even if an attempt is made to float a gold wire having a diameter of 18 μm and a length of 350 mm in a liquid holding container filled with pure water as shown in the example of Patent Document 2, the gold wire taken out from the spool is three-dimensional in the first place. It is difficult to float on a two-dimensional horizontal plane. Even if such a gold wire can be floated, the gold wire is attracted to the side wall of the liquid holding container by the surface tension, and it is difficult to keep the gold wire in a predetermined direction and position with respect to the imaging device. It is not practical to apply to production sites. Moreover, since both ends are cut, the stress at the time of cutting appears as the amount of bending at the end of the gold wire (see Patent Document 2, paragraph 21), so whether the amount of bending at the time of cutting is being measured? It is difficult to evaluate whether or not straightness is measured.
As described above, the measurement method and the evaluation method disclosed in Patent Documents 1 and 2 cannot avoid errors that occur in the photographing conditions for measurement.

しかも、特開2002−124534号公報(特許文献1)で定義される蛇行幅が小さい金属細線であっても、スプールから繰出して一定長に切断してボンディングを行なうというこのような操作を多数回行なう内、予期しない形状に変形して不良品となることがあった。特に、半導体装置に使用するボンディングワイヤの場合は、一つの半導体装置に数百〜数千の接続箇所があるうちで1箇所の不良で他のすべての接続箇所が利用不能になってしまうため致命的な欠陥となってしまっていた。このような不良は、ワイヤ曲がりやリーニングと呼ばれ、蛇行幅が小さい金属細線であっても発生することから、これまでの測定方法や評価方法では金属細線を切断して接合する前にその良否を判定することができなかった。
具体的にはリーニング不良とは、ボンディングワイヤの溶融ボールを半導体チップのAlパッドへ接合して第一ボンドを形成した後、キャピラリ−によりボンディングワイヤを繰出してループを描いた時に第一ボンドの付け根近傍で生じるボンディングワイヤの異常な傾きである。このリーニング不良は隣り合うワイヤ間隔が狭まり、接近しすぎるために発生するものである。近年、ピッチ間隔が100μmから35μmへと急速にファインピッチ化され、ファインピッチ化が進行するにつれてワイヤとワイヤの間隔が狭まってきた。このためワイヤとワイヤの間隔が広いときにはわずかな傾きはリーニング不良と判定されなかったのに対し、間隔が狭まってきた結果リーニング不良と判定されることが増加してきたのである。
しかし、近年の集積回路の集積度が向上してファインピッチ化とワイヤの細線化が同時に進行してきた。ピッチ間隔は100μmから35μmへと急速にファインピッチ化され、ワイヤ径は30μmから15μmへ細線化となった。この結果、リーニング不良対策は、これらの極細線においては極めて重要な課題とされるようになった。
Moreover, even for a fine metal wire defined in Japanese Patent Application Laid-Open No. 2002-124534 (Patent Document 1), such an operation of feeding from a spool, cutting it to a fixed length, and performing bonding many times is performed. During the process, the product may be deformed into an unexpected shape and become defective. In particular, in the case of a bonding wire used in a semiconductor device, a single semiconductor device with hundreds to thousands of connection locations will be fatal because one failure will make all other connection locations unusable. It was a flaw. Such a defect is called wire bending or leaning and occurs even with a thin metal wire with a small meandering width. Could not be determined.
Specifically, the leaning failure means that a bonding ball is bonded to an Al pad of a semiconductor chip to form a first bond, and then a bonding wire is drawn out by a capillary to draw a loop. This is an abnormal inclination of the bonding wire that occurs in the vicinity. This leaning defect occurs because the distance between adjacent wires is narrowed and too close. In recent years, the pitch interval has been rapidly changed from 100 μm to 35 μm, and the interval between the wires has been narrowed as the fine pitch has progressed. For this reason, when the distance between the wires is wide, a slight inclination is not determined to be a leaning failure, but as a result of the narrowing of the interval, it is increasingly determined that the leaning is defective.
However, in recent years, the degree of integration of integrated circuits has improved, and fine pitches and thinning of wires have progressed simultaneously. The pitch interval was rapidly reduced from 100 μm to 35 μm, and the wire diameter was reduced from 30 μm to 15 μm. As a result, leaning countermeasures have become a very important issue for these ultrafine wires.

本発明は、上記課題を解決するためになされたものであり、ワイヤボンディングなどの、金属細線を一定長毎に接合して使用するための金属細線の実用的かつ効果的な真直性の測定方法を提供することを目的とする。
本発明は、リーニングの原因となる蛇行度とその原因とならない蛇行度を区別して確実に判定できる効果的な真直性測定方法を提供し、
金属細線の3次元的に変形する蛇行度を2次元的に精度良く測定するうえで、金属細線の径及び蛇行幅が絶対値として極めて小さく、画像取り込みのための撮影用の光学機器の精度では充分に対応できないことを解決することを目的とする。
また、上記の課題を達成する、これまでの測定装置よりも廉価で精度の高い、実用的な測定装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and a practical and effective method for measuring the straightness of a thin metal wire, such as wire bonding, which is used by joining thin metal wires at a certain length. The purpose is to provide.
The present invention provides an effective straightness measurement method that can distinguish and reliably determine the meandering degree that causes leaning and the meandering degree that does not cause the meandering,
In measuring the degree of meandering of a thin metal wire in three dimensions, the diameter and meandering width of the fine metal wire are extremely small as absolute values. The purpose is to solve the problems that cannot be fully addressed.
It is another object of the present invention to provide a practical measurement device that achieves the above-described problems and is more inexpensive and accurate than conventional measurement devices.

本発明は、金属細線を垂下して該金属細線の垂下方向に対して垂直な方向から撮影し
撮影像を2値データとして取り込んで、その画像から仮想の中心線を求めて2次元連続蛇行曲線に変換し、
該2次元曲線の測定領域を、ワイヤボンディングにおけるループ長さの2〜25倍の複数区間で区切り、その区切られた2次元曲線の区間毎に該曲線の真直性を評価すること、
を特徴とする金属細線の真直性の測定方法であって、
上記複数区間が5区間以上であり、それぞれの区間ごとに蛇行幅を測定し、蛇行幅の大きい順に測定値の半数〜十分の一の個数の値のみを用いて、該曲線の真直性を評価するものであり、
上記金属細線の真直性評価を、上記の区切り区間の金属細線の曲線を挟む平行線間距離により行うものであり、
上記撮影像を2値データとして処理して2次元曲線に変換するに当たって、画像を幅方向に拡大処理し、その拡大された画像を用いることにより、2次元曲線に変換する際のエラーを低減し、
上記金属細線が0.015〜0.025mmの線径であることを特徴とし、
上記2次元曲線の各々の区切り区間が隣接する区間と重なり合うことによって、曲線の連続性を維持し、測定精度を向上する金属細線の真直性の測定方法である。
The present invention hangs a thin metal wire , shoots from a direction perpendicular to the hanging direction of the thin metal wire , takes a photographed image as binary data, obtains a virtual center line from the image, and obtains a two-dimensional continuous meander curve. Converted to
Dividing the measurement region of the two-dimensional curve into a plurality of sections of 2 to 25 times the loop length in wire bonding, and evaluating the straightness of the curve for each section of the partitioned two-dimensional curve;
A method for measuring the straightness of a thin metal wire characterized by:
The above-mentioned multiple sections are 5 sections or more, and the meandering width is measured for each section , and the straightness of the curve is evaluated by using only half of the measured values to one-tenth in order of increasing meandering width. Is what
The straightness evaluation of the thin metal wire is performed by the distance between the parallel lines sandwiching the curve of the thin metal wire in the separation section,
When converting the captured image as binary data into a two-dimensional curve, the image is enlarged in the width direction, and the enlarged image is used to reduce errors when converting to a two-dimensional curve. ,
The fine metal wire has a wire diameter of 0.015 to 0.025 mm,
This is a method for measuring the straightness of a fine metal wire that maintains the continuity of the curve and improves the measurement accuracy by overlapping each section of the two-dimensional curve with an adjacent section.

更に、本発明は、線引き加工されたワイヤボンディング用金属細線の真直性の測定装置であって、
a) スプールから垂下した金属細線を挿通して位置決めするガイドリング
b) 金属細線の垂下方向に対して垂直な方向で撮影する撮像手段、および
c) 撮影された2次元蛇行画像を幅方向のみ拡大し、その中心線を求めて得た2次元曲線をワイヤボンディングにおけるループ長さの2〜25倍の区間で区切り、その区切られた2次元曲線の区間毎に該2次元曲線を挟む平行線を引いて、該平行線間の距離を求める演算処理装置、
から構成されることを特徴とする金属細線の真直性の測定装置であり、上記金属細線に対する照明は、バックライト照明とすることにより、照明光の乱反射の影響を低減した金属細線の真直性の測定装置である。
Furthermore, the present invention is a device for measuring the straightness of a wire-bonded fine metal wire for wire bonding,
a) Guide ring for inserting and positioning a fine metal wire hanging from the spool b) Imaging means for photographing in a direction perpendicular to the hanging direction of the fine metal wire, and c) Enlarging the photographed two-dimensional meandering image only in the width direction and divides the two-dimensional curve obtained Searching for the center line in the section 2 to 25 times the loop length in the wire bonding, the parallel lines sandwiching the two-dimensional curves for each section of the divided 2-dimensional curve was An arithmetic processing device for subtracting the distance between the parallel lines,
The apparatus for measuring the straightness of a thin metal wire, characterized in that the illumination of the thin metal wire is a backlight illumination, and the straightness of the thin metal wire is reduced by reducing the influence of irregular reflection of illumination light. It is a measuring device.

本発明は、ワイヤボンディングなどの結線に用いる上でリーニングなどの原因となる曲率半径の小さい曲がりを的確に評価することによって、リーニング不良となる金属細線を確実に除外できると共に、リーニング不良とならない緩やかな曲率半径の大きい金属細線の利用を可能とする。
このため、細線化、ファインピッチ化の著しいワイヤボンディング用金属細線に課せられた、より高度の真直性向上の要請に効果的に応えることができる。
また、測定に求められる高精細度を確保すると共に、撮影機器や画像解析の負担を低減して、安価な撮像機器などの利用を可能とし、設備負担を軽減すると共にそれらの取扱いを容易とする。
In the present invention, by accurately evaluating a bend with a small radius of curvature that causes leaning when used for connection such as wire bonding, a thin metal wire that causes a leaning defect can be surely excluded, and a gentle bending that does not cause a leaning defect is achieved. It is possible to use a thin metal wire having a large radius of curvature.
For this reason, the request | requirement of the higher degree of straightness improvement imposed on the metal wire for wire bondings with remarkable thinning and fine pitch can be responded effectively.
In addition, the high definition required for measurement is ensured, and the burden of imaging equipment and image analysis is reduced, enabling the use of inexpensive imaging equipment and the like, reducing the equipment burden and facilitating their handling. .

本発明においては、金属細線の真直性評価を使用時の切断長さであるワイヤボンディングにおけるループ長さを基準として、撮影画像から得られた2次元曲線をその2〜25倍の長さの区間に分割して蛇行度を測定することにより行なう。
本発明者らの研究によれば、金属細線の真直性としてリーニングなどに影響を与える蛇行は、スパンの大きいいわゆるうねりや曲率の大きいループではなく、曲率半径の小さい屈曲によるものであった。
この関係を図2に模式的に表す。
供試体の測定範囲の長さにおける金属細線の屈曲の形態を模式的に表すと、概ね図2(a)〜(d)のようになる。(a)は蛇行幅の小さいほぼ理想的な形態である。(b)は蛇行の緩やかないわゆる「うねり」状の屈曲であり、(c)は比較的曲率の大きいループとして蛇行が表れるものであり、(d)は曲率の小さい「こぶ」状の屈曲がこれらの「うねり」や「ループ」に伴なって表れるものである。一般にこれらの曲線について蛇行幅を測定すると図(b)〜(d)のような場合、これらの形態上の相違は測定値に現れず、いずれも最大蛇行幅として同様の数値となってしまう。
In the present invention, on the basis of the loop length in wire bonding, which is the cutting length when using the straightness evaluation of a thin metal wire, a two-dimensional curve obtained from the photographed image is a section of 2 to 25 times the length. This is done by measuring the degree of meandering.
According to the study by the present inventors, meandering that affects leaning as the straightness of a fine metal wire is not a so-called swell or loop with a large curvature but a bending with a small curvature radius.
This relationship is schematically shown in FIG.
When the form of bending of the thin metal wire in the length of the measurement range of the specimen is schematically represented, it is as shown in FIGS. 2 (a) to (d). (a) is an almost ideal form with a small meandering width. (B) is a so-called “swell” -shaped bend with a gentle meandering, (c) is a meandering appearance as a loop having a relatively large curvature, and (d) is a “bump-like” bend with a small curvature. It appears along with these “swells” and “loops”. In general, when the meandering width is measured for these curves, the difference in form does not appear in the measured values in the cases as shown in FIGS.

しかしながら、ボンディングワイヤのように結線長さがせいぜい10mm程度以下のループ長さで接合される場合、測定長さ数十cmの間で測定されるこれら(b)、(c)の「うねり」や「ループ」のような緩やかで比較的長い区間で表れる蛇行は、リーニングなどの真直性にほとんど影響しないことが判明した。
一方、(d)に見られるような曲率半径の小さい「こぶ状」の屈曲は、いわばその屈曲の変化率が大きいためにこれら短い区間で使用される場合に影響が大きく表れ、特にボンディングワイヤでは接合部位にこのような屈曲が存在すると、例え蛇行幅が小さく、またその範囲が狭くとも直ちにリーニング不良となって表れ、その影響は大きい。すなわち、これらの蛇行曲線の内で(d)に示すように曲率の小さい、屈曲度合いの大きい、「こぶ」状に表れる屈曲が真直性評価で重要なのである。
ところが、従来のように測定長さを長く取り、その全体から蛇行度を測定する手法によると、その範囲内の最大のうねりや曲率半径の大きいループによる蛇行幅はその周期若しくは曲率半径に相当する長さにおいて最大となるから、これらのうねりや曲率半径の大きいループによる蛇行が、最大の蛇行幅として検出されることとなる。
従って、上記のようなリーニング特性に最も影響の大きい曲率半径の小さい屈曲は、蛇行幅が小さいためにこれらの曲率の大きい蛇行に隠れて検出されない。
リーニングなどに影響する曲率半径の小さい蛇行を検出するためには、評価すべき曲率に相当する長さの区間に分割して測定すれば、それより大きい周期、或いは曲率の蛇行は捨象されて消去され、これらの小さい曲率に相当する蛇行幅が検出されることとなる。
However, when bonding is performed with a loop length of not more than about 10 mm, such as a bonding wire, these “buzz” and (c) measured between several tens of centimeters are measured. It turns out that meandering that appears in a relatively long section such as a “loop” has little effect on straightness such as leaning.
On the other hand, the “bump-like” bend with a small radius of curvature as shown in (d) has a large change rate of the bend, so it has a significant effect when used in these short sections, especially with bonding wires. If such a bend exists at the joint portion, the meandering width is small, and even if the range is narrow, it appears immediately as a leaning failure, and the influence is great. That is, of these meandering curves, as shown in (d), a small curvature, a large degree of bending, and a bending appearing in a “hump” shape are important in the straightness evaluation.
However, according to the conventional method in which the measurement length is long and the meandering degree is measured from the entire length, the meandering width within the range and the meandering width due to the loop having a large curvature radius correspond to the period or the radius of curvature. Since the length is the maximum, meandering due to these undulations or loops having a large radius of curvature is detected as the maximum meandering width.
Therefore, a bend with a small radius of curvature that has the greatest influence on the leaning characteristics as described above is hidden behind these meanders having a large curvature and is not detected because the meander width is small.
In order to detect meandering with a small radius of curvature that affects leaning, etc., if measurement is performed by dividing into sections with a length corresponding to the curvature to be evaluated, meandering with a larger period or curvature is discarded and erased. Then, the meandering width corresponding to these small curvatures is detected.

これらの関係について、供試体の撮影画像に基づく2次元蛇行曲線に対して蛇行性を測定する手法の概念図を図2の蛇行形態に倣って図3に示す。図において、それぞれの2次元曲線を、a1〜a3、・・・、d1〜d3の区間に分割し、これらの分割範囲は、一部重複させてある。
「うねり」も「ループ」も小さく、真直性の良い細線は、(a)に示すように、分割した範囲においてもそれぞれ測定された蛇行幅は小さい。
また、(b)、(c)の曲線に見られるようなスパンの長い蛇行は図のように分割することによってその分割された長さに応じて「うねり」や「ループ」の振幅が消去される。その「うねり」や「ループ」の周期、若しくは曲率半径より分割長さが小さいほどその値は小さくなる。これに対して、(d)のように屈曲の周期が短く、曲率半径が小さい短い蛇行は、その分割長さが周期若しくは曲率半径に近くなるにつれて、大きな値となって測定される。
FIG. 3 shows a conceptual diagram of a method for measuring the meandering property with respect to the two-dimensional meandering curve based on the photographed image of the specimen, following the meandering form of FIG. In the figure, each two-dimensional curve is divided into sections a1 to a3,..., D1 to d3, and these divided ranges are partially overlapped.
“Waviness” and “loop” are small, and a thin line with good straightness has a small meandering width measured even in a divided range, as shown in (a).
Further, by dividing the meander with a long span as shown in the curves (b) and (c) as shown in the figure, the amplitude of the “swell” and “loop” is eliminated according to the divided length. The The value becomes smaller as the division length is smaller than the period of the “swell” or “loop” or the radius of curvature. On the other hand, as shown in (d), a short meander with a short bending period and a small curvature radius is measured as a larger value as its division length becomes closer to the period or the curvature radius.

適切な分割区画の長さや分割数は、金属細線の線径やボンディングのループ長さ(キャピラリから繰り出されたワイヤの全長をいう。すなわち、ボンディングをされたワイヤを垂直方向からみた場合平面的な長さが同じでも、ループ高さが高くなれば、ループ長さは長くなる。以下、同じ。)、ループの高さなどループの取り方、及び供試体長さによって異なるが、一般にリーニングなどの欠陥に対しては、分割された各々の区画が上記金属細線の使用時のループ長さに対して2〜25倍の範囲の長さにあると、これらの曲率半径が小さい短い蛇行の値が最大の蛇行幅となって測定されるようになることがわかった。さらに、2〜15倍の範囲の長さにすると、実用条件に対してより直接的に対比できるため、より好ましい   The appropriate length and number of divisions are the diameter of the fine metal wire and the loop length of the bonding (the total length of the wire drawn out from the capillary. In other words, it is planar when the bonded wire is viewed from the vertical direction. Even if the length is the same, if the loop height is increased, the loop length will be longer. The same applies hereinafter.), Depending on how the loop is taken, such as the height of the loop, and the length of the specimen, For a defect, if each of the divided sections has a length in the range of 2 to 25 times the loop length when the thin metal wire is used, the value of the short meander with a small radius of curvature is obtained. It was found that the maximum meandering width was measured. Furthermore, when the length is in the range of 2 to 15 times, it is more preferable because it can be directly compared with practical conditions.

さらに、本発明の測定法は、撮影画像を取り込んでコンピュータ処理により2値化した2次元曲線として、その2次元曲線をワイヤボンディングのループ長さに応じた長さに区切って蛇行度を測定して真直性を評価するが、金属細線の撮影区間を短く区切って蛇行度測定に必要な高精細画像とすることにより、撮影機器の画像処理能力に応じて、所要の精度を確保することができる。
先に述べたように、本発明の対象とする直径数十μm以下の極細線の撮影画像において、ほとんど真直ぐな直線の中での小さな屈曲を捉えるためには、拡大した高精細な画像が必要となるが、それに見合う画素数の撮影機器を得ることは困難であり、またコスト負担も大きい。
そこで、このように適宜に分割して撮影した画像を取り込んで、データ処理することにより、高精細の画像を得ることができ、またこれらの設備負担を大幅に低減することができる。
Furthermore, the measurement method of the present invention measures the meandering degree by dividing a two-dimensional curve into a length corresponding to the loop length of wire bonding as a two-dimensional curve obtained by taking a photographed image and binarizing by computer processing. Straightness is evaluated, but the required accuracy can be ensured according to the image processing capability of the imaging equipment by dividing the imaging section of the thin metal wire into a high-definition image necessary for the meandering degree measurement. .
As described above, an enlarged, high-definition image is necessary to capture a small bend in an almost straight line in a photographed image of an ultrathin line with a diameter of several tens of μm or less, which is an object of the present invention. However, it is difficult to obtain a photographic device having the number of pixels suitable for it, and the cost burden is large.
Thus, by capturing images that are appropriately divided and photographed in this way and processing the data, a high-definition image can be obtained, and the burden on these facilities can be greatly reduced.

次に、撮影した画像を幅方向に拡大する。
レンズ収差の影響は光軸近傍では小さく、また半径方向に沿って現われるため、本来蛇行幅が小さく、レンズ光軸近傍を通って半径方向に沿って撮影される金属細線の画像では、幅方向のみ拡大してもその影響は小さい。
また、幅方向のみ拡大することにより、2次元曲線の蛇行幅が拡大されて測定が容易になる。
このようにして得られた画像データを取り込んで、2値化して2次元曲線とするが、
本発明の対象とする極細線は、光の回折や乱反射などにより撮影画像の輪郭が不鮮明となりやすく、そのまま2値化するとその影響で線の輪郭が明瞭でない箇所は不連続化することがあるが、幅方向に拡大して線径を一定以上とすることによって、2次元曲線へと変換する際のエラーの発生率を少なくすることができた。
Next, the photographed image is enlarged in the width direction.
The effect of lens aberration is small in the vicinity of the optical axis and appears along the radial direction, so the meandering width is essentially small, and in the image of the metal thin line taken along the radial direction through the vicinity of the lens optical axis, only the width direction Even if it is enlarged, the effect is small.
Further, by enlarging only in the width direction, the meandering width of the two-dimensional curve is expanded and the measurement becomes easy.
The image data obtained in this way is taken and binarized into a two-dimensional curve.
The ultra-thin line that is the subject of the present invention tends to make the contour of the photographed image unclear due to light diffraction, diffuse reflection, or the like. By increasing the width in the width direction so that the diameter of the wire is greater than or equal to a certain value, it is possible to reduce the error rate when converting to a two-dimensional curve.

金属細線の三次元の変形は、線引き加工や熱処理などの加工時の様々な履歴に起因し、これらが複雑に絡み合って生じるため不連続であって短い区間ではその一部しか把握できない。しかしながら、ある程度の長さに亘って見ると、これらの変形は様々な組合せで、あるいは長手方向に向きを変えて略全て発現する。
従って、撮影画像の分割された区画を合わせてこれらの条件を満たす長さとすることによって金属細線に発現するこれらの蛇行特性を略すべて把握することができる。
このような蛇行性の判定条件を満足する供試体の長さは、具体的にはスプールから巻ほどかれた金属細線のうねり度合いによって定められるが、経験的には、その長さは線径にもよるが、ほぼ30〜50cm程度あれば足りる。
これらの分割された区画は、相互に重複していることが好ましい。重複している箇所で各々の区画を相互接続することができるからである。重複範囲は20〜70%が実用的である。
測定対象とする金属細線は、0.007〜0.1mm、特に0.015〜0.025mmの線径であることが好ましい。線径が0.1mmより太くなると、線材自体が剛性をもつため、接合時に内在する線材の欠陥が線材の剛性によって隠されてしまうからである。逆に0.007mmよりもあまりにも細くなりすぎると極細線の取扱いが困難になるからである。
The three-dimensional deformation of the fine metal wire is caused by various histories at the time of processing such as wire drawing and heat treatment, and these are intertwined in a complicated manner, so that they are discontinuous and only a part of them can be grasped in a short section. However, when viewed over a certain length, almost all of these deformations appear in various combinations or by changing the direction in the longitudinal direction.
Therefore, it is possible to grasp almost all of the meandering characteristics appearing on the fine metal wires by combining the divided sections of the photographed image to have a length satisfying these conditions.
The length of the specimen satisfying such a meandering condition is specifically determined by the degree of undulation of the thin metal wire wound from the spool, but empirically, the length is determined by the wire diameter. Although it depends, about 30-50cm is sufficient.
These divided sections preferably overlap each other. This is because the respective sections can be interconnected at overlapping portions. An overlapping range of 20 to 70% is practical.
It is preferable that the metal fine wire to be measured has a wire diameter of 0.007 to 0.1 mm, particularly 0.015 to 0.025 mm. This is because when the wire diameter is thicker than 0.1 mm, the wire itself has rigidity, so that the defects of the wire that are present at the time of joining are hidden by the rigidity of the wire. Conversely, if the thickness is too thin than 0.007 mm, it is difficult to handle the extra fine wire.

以下、図面を参照してさらに具体的に本発明による測定方法及び測定装置を説明する。
図1は、本発明の測定装置の一実施形態を示すもので、図中の7は測定長さに垂下された供試体金属細線、12は撮像装置、13は画像処理装置、14はモニタ、10は気流の影響を阻止するための風防ハウジング、11は観測窓、3は金属細線を巻いたスプール、18はガイドリングである。
Hereinafter, the measurement method and measurement apparatus according to the present invention will be described in more detail with reference to the drawings.
FIG. 1 shows an embodiment of the measuring apparatus of the present invention. In FIG. 1, reference numeral 7 denotes a specimen metal fine wire suspended from the measuring length, 12 denotes an imaging device, 13 denotes an image processing device, 14 denotes a monitor, 10 is a windshield housing for preventing the influence of airflow, 11 is an observation window, 3 is a spool wound with a fine metal wire, and 18 is a guide ring.

〈金属細線支持手段〉
金属細線を巻回したスプール3は、ハウジング上部に回転可能に支持され、金属細線を所定の長さに繰り出して垂下する。
この状態にあると、これらの極めて線径の細い金属細線は気流の影響により揺らぐため、金属細線を囲う風防ハウジング内で垂下して観測窓を通して撮影するが、金属細線を小径のリング状のガイドリングを通して垂下することにより、線のゆれを防止すると共にその位置を撮影装置の視野中心に正確に配置することができる。
ガイドリングには、金属細線の滑り性を向上させるため、酸化クロム、窒化チタン、タングステンカーバイドなどでコーティングし、2〜3重のコイル状としておくことが望ましい。
<Metallic wire support means>
The spool 3 around which the fine metal wire is wound is rotatably supported by the upper portion of the housing, and the fine metal wire is drawn out to a predetermined length and hangs down.
In this state, these fine metal wires with extremely small wire diameters fluctuate due to the influence of the air current, so they hang down in the windshield housing that surrounds the metal wires and take pictures through the observation window. By hanging down through the ring, it is possible to prevent the line from being shaken and to accurately position the position at the center of the field of view of the photographing apparatus.
The guide ring is preferably coated with chromium oxide, titanium nitride, tungsten carbide or the like in order to improve the slipperiness of the fine metal wire, and is formed in a two- to three-fold coil shape.

〈照明手段〉
撮像条件は、金属細線の撮影画像を明瞭に取り込むため、背景にはコントラストの大きいブラックボードなどの平面を配置し、これと平行な撮像面により2次元画像として撮像する。このとき、金属細線を多方向から直接照明して陰影や反射光による断続した画像とならない様にする必要がある。
従来の照明方法では光源に照らされた金属細線7からの反射光が観測されるため、金属細線7の乱反射によって金属細線7の輝きにばらつきが生じ、金属細線7全体の映像を均一に捕捉することが困難であった。
これに対して、バックライト照明を背景として撮影すると、金属細線7が直接光を遮断するため金属細線7だけが暗いシルエットとして観察される。このため金属細線7に曲率の小さな湾曲があっても、バックライト光の回折光の影響があるものの乱反射がないため金属細線7はほぼ均一に暗く観察される。
<Lighting means>
As the imaging condition, in order to capture a captured image of a fine metal wire clearly, a plane such as a black board with a high contrast is arranged in the background, and an image is taken as a two-dimensional image on an imaging surface parallel to the plane. At this time, it is necessary to directly illuminate the thin metal wires from multiple directions so as not to cause an intermittent image due to shadows or reflected light.
In the conventional illumination method, since the reflected light from the thin metal wire 7 illuminated by the light source is observed, the diffuseness of the fine metal wire 7 varies due to irregular reflection of the fine metal wire 7, and the image of the entire thin metal wire 7 is captured uniformly. It was difficult.
On the other hand, when the backlight illumination is taken as a background, only the fine metal wire 7 is observed as a dark silhouette because the fine metal wire 7 directly blocks light. Therefore, even if the thin metal wire 7 has a small curvature, the thin metal wire 7 is observed to be almost uniformly dark because there is no diffuse reflection although it is affected by the diffracted light of the backlight light.

〈撮像装置〉
2次元の撮像装置12としては市販のデジタルカメラを使用することができる。デジタルカメラとしては、例えばオムロン株式会社製の「3DデジタルファインスコープVC4500」、キーエンス株式会社製の「デジタルHDマイクロスコープVH−7000」、Pixera社製「Penguin 600CL」、Micro Publisher社製「5.0RTV」、或いは、Canan社製「Eos」シリーズ(Eos Kiss)などがある。金属細線7の先端部分は切断による変形を受けているため必要に応じて先端から一定間隔離れた位置で金属細線を撮影することが好ましい。
<Imaging device>
A commercially available digital camera can be used as the two-dimensional imaging device 12. Examples of digital cameras include “3D Digital Finescope VC4500” manufactured by OMRON Corporation, “Digital HD Microscope VH-7000” manufactured by Keyence Corporation, “Penguin 600CL” manufactured by Pixela, and “5.0RTV manufactured by Micro Publisher”. Or “Eos” series (Eos Kiss) manufactured by Canan. Since the distal end portion of the thin metal wire 7 is deformed by cutting, it is preferable to photograph the fine metal wire at a position spaced apart from the distal end as necessary.

測定する範囲は、前述のように撮像装置の精細度に応じて、垂下された金属細線全体を複数の区画に分割して撮影する。各分割された区画は相互に重複させることにより、重複箇所で各々の区画を相互接続して連続性を持たせることができる。重複範囲は20〜70%が実用的である。   As described above, the range to be measured is obtained by dividing the entire thin metal wire into a plurality of sections according to the definition of the imaging device. By making the divided sections overlap each other, the sections can be interconnected at the overlapping portions to have continuity. An overlapping range of 20 to 70% is practical.

〈画像処理装置〉
撮像装置12で撮影した画像は、画像処理装置13によって金属細線7の長手方向の倍率はそのままにして横方向の倍率を好ましくは3〜30倍、例えば10倍に拡大する。金属細線7の拡大する範囲および倍率は、モニタ装置14を観ながら、例えば300mm〜1000mmに引き出した金属細線を5mm〜50mmの任意の範囲で適宜選択して拡大することができる。
<Image processing device>
The image taken by the imaging device 12 is enlarged by the image processing device 13 while maintaining the magnification in the longitudinal direction of the fine metal wires 7, preferably 3 to 30 times, for example, 10 times. The range and magnification of the fine metal wire 7 can be enlarged by appropriately selecting the fine metal wire drawn to, for example, 300 mm to 1000 mm within an arbitrary range of 5 mm to 50 mm while observing the monitor device 14.

拡大した画像の2値化を行う。2値化の方法は、金属細線と背景の濃淡差だけでなく光の回折や乱反射などが原因で現れる不連続な画像についてしきい値以下になるものを省くなどの方法により、線径が7μm程度の金属細線も測定が可能になった。また、金属細線と背景との境目がはっきりしないため2値化データが連続して得られない場合は、その空白部分を直線や回帰曲線で結び、2値化の際のエラーを極力少なくした。これらの連続曲線を得るための手法は、いわゆるディジタル画像データの処理法として広く知られており、市販のソフトを適宜採用すれば良いので、ここではその手法の説明は省く。   Perform binarization of the enlarged image. In the binarization method, the discontinuous image appearing due to light diffraction or irregular reflection as well as the contrast between the thin metal wire and the background is omitted, and the wire diameter is 7 μm. It was possible to measure even a fine metal wire. In addition, when the binarized data cannot be obtained continuously because the boundary between the fine metal wire and the background is not clear, the blank portion is connected with a straight line or a regression curve to minimize the error in binarization. A technique for obtaining these continuous curves is widely known as a so-called digital image data processing method, and commercially available software may be adopted as appropriate, so that the description of the technique is omitted here.

次に2値化した画像からコンピュータ処理によって仮想の中心曲線を求める。金属細線の外周と背景との境目がはっきりしない2値化データであっても、横方向の倍率を拡大した金属細線の画像は太い曲線で表されているためその外周部分の影響(ギザなどの不連続性)を受けることなく、高精度で滑らかな中心曲線を得ることができた。この曲線が仮想の蛇行曲線である。これに対し、横方向の倍率を拡大しない場合には、その外周部分の不連続性の影響が仮想の蛇行曲線に大きく表れるため2値化の際のエラーを除去することができない。そのため焦点深度の深い高価なレンズや複雑な解析計算ができる高価なソフトが必要になる。   Next, a virtual center curve is obtained from the binarized image by computer processing. Even with binary data where the boundary between the outer periphery of the metal thin line and the background is not clear, the image of the metal thin line with the magnification in the horizontal direction is expressed by a thick curve, so the influence of the outer periphery (such as A high-precision and smooth central curve could be obtained without any discontinuity. This curve is a virtual meandering curve. On the other hand, when the magnification in the horizontal direction is not enlarged, the influence of the discontinuity of the outer peripheral portion appears greatly in a virtual meandering curve, and thus an error in binarization cannot be removed. For this reason, an expensive lens with a deep focal depth and expensive software capable of complicated analysis calculation are required.

得られた仮想の蛇行曲線からは、蛇行の拡大された曲率と数、蛇行の拡大された幅および拡大された蛇行幅などをパラメータとして蛇行の程度を測定でき、これらの数値化されたデータによって、実際のワイヤボンディングで結線された金属細線の不良、例えば半導体装置用の接続ワイヤにおける微細なワイヤ曲がりやリーニングといった金属細線の真直性に起因する不良と対比することができた。   From the obtained virtual meander curve, the degree of meandering can be measured using parameters such as the expanded curvature and number of meanders, the expanded width of the meander and the expanded meander width, and the like. It was possible to contrast the defect of the fine metal wire connected by actual wire bonding, for example, the defect caused by the straightness of the fine metal wire such as fine wire bending or leaning in the connection wire for the semiconductor device.

測定対象とする金属細線7は、長さが約100cmあり、線径は0.015〜0.025mmとした。この測定対象とする適切な長さは線径によって異なるが、上記した3次元の変化を精度良く計測するため、線径が大きい場合は上記程度の長さとすることが好ましい。また、線径が小さい場合は、金属細線7の計測長さが約30cmでも、線径に対するアスペクト比が3×104〜3×105程度と大きくなり、上記の蛇行特性を充分に把握することができる。 The metal thin wire 7 to be measured has a length of about 100 cm and a wire diameter of 0.015 to 0.025 mm. The appropriate length to be measured varies depending on the wire diameter. However, in order to accurately measure the above-described three-dimensional change, it is preferable to set the length as described above when the wire diameter is large. When the wire diameter is small, the aspect ratio with respect to the wire diameter is as large as about 3 × 10 4 to 3 × 10 5 even if the measurement length of the thin metal wire 7 is about 30 cm, and the above meandering characteristics can be sufficiently grasped. be able to.

図4は、線引き金属細線の撮影画像を取り込んで2次元曲線とし、さらにこの2次元曲線について所定の測定区画長さに区切った区画毎に蛇行幅を求める模式図を表す。
これらの区切り区間C1〜C16は連続性を維持し、測定精度を向上するためそれぞれ重複させてある。
これらの蛇行幅を測定する手法は、種々提案されており、例えば、図5(a),(b)にしめす方法が一般的である。
(a) 先ず、区切り区画の区切り位置の線材の上下端を結ぶ線を中心線として描き、該中心線に平行な2本の直線を引いて蛇行曲線を挟み、その間隔距離を求める。
(b) 或いは、区切り区間における中心線をその区間の蛇行曲線から最小自乗法で求め、以下同様にして蛇行曲線を挟む2本の平行線を引いてもよい。
次いで、これらの操作を各区画毎に行い、それらの数値を比較して最大値を求める。
FIG. 4 is a schematic diagram for obtaining a meandering width for each section obtained by taking a photographed image of a drawn metal thin line into a two-dimensional curve and dividing the two-dimensional curve into predetermined measurement section lengths.
These separation sections C1 to C16 are overlapped in order to maintain continuity and improve measurement accuracy.
Various methods for measuring these meandering widths have been proposed. For example, the method shown in FIGS. 5A and 5B is generally used.
(A) First, a line connecting the upper and lower ends of the wire at the delimiter position of the delimiter is drawn as a center line, two straight lines parallel to the center line are drawn, a meandering curve is sandwiched, and the distance between the two is obtained.
(b) Alternatively, the center line in the section may be obtained from the meandering curve of the section by the least square method, and two parallel lines sandwiching the meandering curve may be drawn in the same manner.
Next, these operations are performed for each section, and those values are compared to obtain the maximum value.

線径が25μm、純度99.99質量%以上のAu線ボンディングワイヤを試供線として測定範囲を全長30cmとし、上記のようにして得られた2次元曲線について、蛇行測定範囲内を0.5cm、2cm、5cm及び15cmで区切り、これらの区切り区間毎に測定した蛇行度とリーニング(ループ形状はループ長さが2.56mmである。)の関係について調べたところ、表1のデータが得られた。
ここで、蛇行度は、各区間内で最小二乗法によって中心線を求め、この中心線に平行で曲線を挟む2本の直線の幅が最小になるように2本の平行線を引き、この平行線の間隔、蛇行幅を蛇行度とした。単位はmmである。
An Au wire bonding wire having a wire diameter of 25 μm and a purity of 99.99% by mass or more was used as a sample wire, the measurement range was 30 cm in total length, and the two-dimensional curve obtained as described above had a meandering measurement range of 0.5 cm, When the relationship between the meandering degree and the leaning (the loop shape has a loop length of 2.56 mm) measured for each of these separation sections was obtained by dividing the data into 2 cm, 5 cm, and 15 cm, the data shown in Table 1 was obtained. .
Here, for the meandering degree, a center line is obtained by the least square method within each section, and two parallel lines are drawn so that the width of two straight lines parallel to the center line and sandwiching the curve is minimized. The interval between the parallel lines and the meandering width were defined as the meandering degree. The unit is mm.

2次元曲線全体の蛇行測定は、ワイヤの切断による誤差を避けるため、ワイヤの下端から10cmの距離を隔ててその箇所から測定領域を30cmに固定し、重複区間を50%とした。蛇行度は、この測定領域内で、任意の区切り区間長さを決め、得られた複数の区間の蛇行幅を、平均値などにより丸めて求める。しかし、区切り区間を短く設定すると全体のデータ数が増加し、数は少ないにもかかわらず大きい蛇行が数個ある場合は、平均値処理により目立たなくなってしまう。そこで、下記の計算式に基づいて、総データから、蛇行幅の高い順に1/3のみを用いた平均値により、蛇行度を求めることにした。このほかにも、蛇行度をまるめる方法は、ばらつきを加味するなど複数考えられ、必要に応じて適宜採用すれば良い。
すなわち、測定領域(cm):L、区切り区間(cm):Kに対して、
重複する長さをx とすると、測定領域Lにおける重複数はn-1であるから、
L=nk−(n−1)x となり、ここで重複長さとして50%を採ると、
L=nk−(n−1)0.5k=k/2(n+1)、
これを解くと、測定領域における区間数として、
総データ数(個):n=(L/K)+((L-K)/K)
これらのデータ中から、上位1/3を採用すると、次のとおりとなる。
有効データ数(個):蛇行幅の高い順に{(L/K)+((L-K)/K)}/ 3(個)
(例) したがって上記の例に拠れば、L=30cm、K=0.5cmから、
総データ数(個):=(30/0.5)+((30-0.5)/0.5)=119(個)
有効データ数:蛇行幅の高い順に40個となる。
本実施例においては、この測定を10回繰り返して行い、蛇行度が大きい方から5個の値を採用してその平均値を表1に示した。

Figure 0004050772


*(株)新川製のボンダー(UTC−400)を用い、ピッチ間隔53μmで、 1,500回のワイヤボンディングしたとき、隣接ワイヤが接触したワイヤ の本数を数えた。 In the meandering measurement of the entire two-dimensional curve, in order to avoid errors due to the cutting of the wire, the measurement area was fixed at 30 cm from the lower part of the wire at a distance of 10 cm, and the overlapping section was 50%. The meandering degree is obtained by determining an arbitrary section length within the measurement region and rounding the meandering widths of the plurality of obtained sections by an average value or the like. However, if the delimiter section is set short, the total number of data increases, and if there are several large meanders even though the number is small, the average value processing makes it inconspicuous. Therefore, based on the following calculation formula, the meandering degree was determined from the total data by an average value using only 1/3 in descending order of the meandering width. In addition to this, a plurality of methods for rounding the meandering degree are conceivable, such as taking into account variations, and may be appropriately adopted as necessary.
That is, for the measurement area (cm): L and the separation interval (cm): K,
If the overlapping length is x, the overlap number in the measurement region L is n−1.
L = nk− (n−1) x where 50% is taken as the overlap length,
L = nk− (n−1) 0.5k = k / 2 (n + 1),
Solving this, as the number of sections in the measurement area,
Total number of data (pieces): n = (L / K) + ((L-K) / K)
If the top 1/3 is adopted from these data, the result is as follows.
Number of valid data (pieces): {(L / K) + ((L-K) / K)} / 3 (pieces) in descending order of meandering width
(Example) Therefore, according to the above example, from L = 30cm, K = 0.5cm,
Total number of data (pieces): = (30 / 0.5) + ((30-0.5) /0.5) = 119 (pieces)
Number of valid data: 40 in descending order of meandering width.
In this example, this measurement was repeated 10 times, and five values from the higher meandering degree were adopted and the average values are shown in Table 1.
Figure 0004050772


* Using a bonder (UTC-400) manufactured by Shinkawa Co., Ltd., the number of wires in contact with adjacent wires was counted when wire bonding was performed 1,500 times at a pitch interval of 53 μm.

表1の関係を図6−1、図6−2に区切り区間の長さ別に蛇行度とリーニング接触数/本としてグラフで表示する。
すなわち、蛇行度とリーニング数との間に一定の関係があり、蛇行測定区切り区間が0.5、2、5及び15cmのいずれの範囲でも、蛇行度が大きいほどリーニング不良が大きいこと、また蛇行度測定区切り区間がループ長さ2.56mmの近傍においてリーニング不良との相関関係が強いことがわかる。これを数値化するために、相関係数を求めた結果を表2に示す。
The relationship of Table 1 is displayed as a graph in FIGS. 6-1 and 6-2 as the degree of meandering and the number of leaning contacts / line for each segment length.
That is, there is a certain relationship between the degree of meandering and the number of leaning, and the meandering measurement section interval is 0.5, 2, 5, and 15 cm. It can be seen that there is a strong correlation with the leaning failure in the vicinity of the loop length measurement section of 2.56 mm. Table 2 shows the results of obtaining the correlation coefficient in order to quantify this.

Figure 0004050772
Figure 0004050772

すなわち、蛇行度測定区切り区間長さとリーニングには相関関係が認められ、区切り区間を変化させることで、相関の傾向が変化することが確認できた。
ここで、相関係数(r)は、リーニング本数をxとし、蛇行度をyとすると、
r = Sxy/(Sx ・ Sy)1/2
で表される。
ただし、Sx = Σxi2 −(Σxi )2 /n、
Sv = Σyi2 −(Σvi )2/n、
Sxy = Σxivi − (Σxi )(Σyi )/n である。

また、0.5cmの区切り区間の総データ数は、上記のとおり119個であり、2cm、5cm及び15cmでは、それぞれ29、11及び3個であった。
この結果から、相関関数が0.7以上を◎、0.6〜0.7を○、0.5〜0.6を△、0.5未満をーで表すと、2cmの区切り区間が◎で蛇行度とリーニングの関係を最もよく表し、0.5cm及び5cmの区切り区間が○となり相関関係が良好であることがわかる。
That is, it was confirmed that there is a correlation between the meandering degree measurement section length and the leaning, and that the tendency of correlation changes by changing the section.
Here, the correlation coefficient (r) is, where the leaning number is x and the meandering degree is y.
r = Sxy / (Sx · Sy) 1/2
It is represented by
However, Sx = Σxi 2 − (Σxi) 2 / n,
Sv = Σyi 2 − (Σvi) 2 / n,
Sxy = .SIGMA.xivi-(. SIGMA.xi) (. SIGMA.yi) / n.

In addition, the total number of data in the 0.5 cm section was 119 as described above, and 29, 11 and 3 at 2 cm, 5 cm and 15 cm, respectively.
From this result, when the correlation function is 0.7 or more, 0.6, 0.6 to 0.7 is indicated by ○, 0.5 to 0.6 is indicated by △, and less than 0.5 is indicated by-, the separation interval of 2 cm is indicated by ◎. The relationship between the degree of meandering and the leaning is best expressed, and it can be seen that the 0.5 cm and 5 cm separation sections become ◯ and the correlation is good.

表2より、ワイヤ線径25μmかつループ長さ2.67mmの場合において、蛇行度区切り区間の長さが2cmの蛇行度とリーニングには強い相関関係が認められた。一方、ワイヤ線径とループ長さは、蛇行とリーニングに影響を与えるため、最適な蛇行区切り区間は、ワイヤ線径とループ長さにより変化することが予想される。
ワイヤ線径が大きくなると、ワイヤ蛇行の曲率半径が大きくなることから、平均的にワイヤ蛇行の周期は大きくなる。そのために、蛇行区切り区間の長さは、長く設定した方が良い。また、ループ長が短くなると、周期の短い蛇行がリーニングに与える影響が高くなる。そのために、蛇行度区切り区間の長さを、短く設定した方が良い。これらの関係を明らかにするために、表3のようにワイヤ線径とループ長の組合わせをそれぞれ変えて4水準(レベル)としたサンプルをそれぞれ32スプール用いて評価を行なった。
はじめに、4水準のそれぞれ32スプールについて蛇行の測定範囲を30cmに固定し、得られた2次曲線の範囲内を0.5cm、2cm、5cm、15cm、30cmで区切り、それぞれの区切り区間に応じた蛇行度を測定した。
次に、4水準のそれぞれ32スプールについてリーニングを測定した。最後に、蛇行度とリーニングの相関関係を求め、下記の基準に基づいて、表3に結果をまとめた。
なお、相関係数:◎≧0.7、0.7>○≧0.6、0.6>△>0.4、0.4≧− とした。
From Table 2, a strong correlation was observed between the meandering degree and the leaning when the length of the meandering section was 2 cm when the wire diameter was 25 μm and the loop length was 2.67 mm. On the other hand, since the wire diameter and loop length affect meandering and leaning, the optimum meandering section is expected to change depending on the wire diameter and loop length.
As the wire diameter increases, the radius of curvature of the wire meander increases, so the average period of the wire meander increases. Therefore, it is better to set the length of the meandering section longer. Further, when the loop length is shortened, the influence of the meander having a short period on the leaning is increased. For this reason, it is better to set the length of the meandering degree section shorter. In order to clarify these relationships, as shown in Table 3, evaluation was performed using 32 spools of samples each having a combination of the wire diameter and the loop length and changing to 4 levels.
First, the meandering measurement range was fixed at 30 cm for each of the four levels of 32 spools, and the range of the obtained quadratic curve was divided into 0.5 cm, 2 cm, 5 cm, 15 cm, and 30 cm, and according to each division section The degree of meandering was measured.
Next, leaning was measured for 32 spools of 4 levels each. Finally, the correlation between the degree of meandering and leaning was obtained, and the results are summarized in Table 3 based on the following criteria.
In addition, it was set as correlation coefficient: (double-circle)> = 0.7, 0.7> (circle) ≧ 0.6, 0.6> (triangle | delta)> 0.4, 0.4> =-.

Figure 0004050772
Figure 0004050772

以上の結果から、リーニングは、15μm〜25μmのボンディングワイヤの線径に依存せず、蛇行度が大きいほどリーニング不良が多くなるが、リーニング不良の度合いは使用する線材の長さ、すなわちループ長さとの間に相関関係があり、ループ長さの2〜25倍の区切り区間で蛇行度を評価することによって最も適切、正確にリーニングの良否が判定され、測定精度が向上することがわかる。
したがって、線引き加工された金属細線をボンディングワイヤとして使用する前に、金属細線の撮影画像を取り込んで2次元曲線として評価するうえで、使用するワイヤ長さ、ループ長さの2〜25倍の区切り区間毎の蛇行度を求めて真直性を評価することにより、適切に真直性の良・不良の評価を簡易迅速に行うことができる。
From the above results, the leaning does not depend on the wire diameter of the bonding wire of 15 μm to 25 μm, and as the meandering degree increases, the leaning defect increases. However, the degree of leaning defect depends on the length of the wire used, that is, the loop length. It can be seen that the quality of the leaning is judged most appropriately and accurately by evaluating the meandering degree in the section between 2 and 25 times the loop length, and the measurement accuracy is improved.
Therefore, before using a thin metal wire that has been drawn as a bonding wire, a captured image of the thin metal wire is taken and evaluated as a two-dimensional curve. By determining the meandering degree for each section and evaluating the straightness, it is possible to easily and quickly evaluate the goodness / badness of the straightness appropriately.

本発明の測定装置全体を模式的に示す構成図である。It is a lineblock diagram showing typically the whole measuring device of the present invention. 線引き金属細線の4種類の代表的な蛇行曲線を示す。Four types of representative meander curves of drawn metal wires are shown. 線引き金属細線の蛇行曲線と蛇行度の関係を示す。The relationship between the meandering curve and the degree of meandering of a thin metal wire is shown. 本発明における金属細線の蛇行幅側定方法を示す。The method for determining the meandering width of a fine metal wire in the present invention will be described. 金属細線の蛇行測定法を示す説明図である。It is explanatory drawing which shows the meandering measuring method of a metal fine wire. 蛇行測定区間0.5cm(A)及び2cm(B)における蛇行度とリーニング不良との相関関係を示す図。The figure which shows the correlation with the meandering degree and leaning defect in meandering measurement area 0.5cm (A) and 2cm (B). 蛇行測定区間5cm(A)及び15cm(B)における蛇行度とリーニング不良との相関関係を示す図。The figure which shows the correlation with the meandering degree and leaning defect in meandering measurement area 5cm (A) and 15cm (B).

符号の説明Explanation of symbols

3・・・金属細線スプール、7…金属細線、10・・・風防用ハウジング、11・・・測定窓、12…撮像装置、13…画像処理装置、14・・・モニター、18…ガイドリング DESCRIPTION OF SYMBOLS 3 ... Metal wire spool, 7 ... Metal wire, 10 ... Windshield housing, 11 ... Measuring window, 12 ... Imaging device, 13 ... Image processing device, 14 ... Monitor, 18 ... Guide ring

Claims (8)

金属細線を垂下して該金属細線の垂下方向に対して垂直な方向から撮影し
撮影像を2値データとして取り込んで、その画像から仮想の中心線を求めて2次元連続蛇行曲線に変換し、
該2次元曲線の測定領域を、ワイヤボンディングにおけるループ長さの2〜25倍の複数区間で区切り、その区切られた2次元曲線の区間毎に該曲線の真直性を評価すること、を特徴とする金属細線の真直性の測定方法。
A metal thin line is suspended and photographed from a direction perpendicular to the direction in which the metal thin line is suspended, a captured image is taken as binary data, a virtual center line is obtained from the image and converted into a two-dimensional continuous meandering curve,
The measurement region of the two-dimensional curve is divided into a plurality of sections of 2 to 25 times the loop length in wire bonding, and the straightness of the curve is evaluated for each section of the divided two-dimensional curve, To measure straightness of thin metal wires.
金属細線を垂下して該金属細線の垂下方向に対して垂直な方向から撮影し
撮影像を2値データとして取り込んで、その画像から仮想の中心線を求めて2次元連続蛇行曲線に変換し、
該2次元曲線の測定領域を、ワイヤボンディングにおけるループ長さの2〜25倍の区間で5区間以上に区切り、
それぞれの区間毎に蛇行幅を測定し、得られた測定値を大きい順に、区間数の半分〜十分の一の個数だけ選択して用いて、該曲線の真直性を評価すること、を特徴とする金属細線の真直性の測定方法。
A metal thin line is suspended and photographed from a direction perpendicular to the direction in which the metal thin line is suspended, a captured image is taken as binary data, a virtual center line is obtained from the image and converted into a two-dimensional continuous meandering curve,
The measurement area of the two-dimensional curve is divided into five or more sections in a section 2 to 25 times the loop length in wire bonding,
Measuring the meandering width for each section , and evaluating the straightness of the curve by selecting and using the obtained measured values in order of magnitude from half to one- tenth of the number of sections. To measure straightness of thin metal wires.
上記金属細線の真直性評価は、上記の区切り区間の金属細線の曲線を挟む平行線間距離により行うことを特徴とする請求項1又は2記載の金属細線の真直性の測定方法。 3. The method for measuring the straightness of a thin metal wire according to claim 1, wherein the straightness of the thin metal wire is evaluated by a distance between parallel lines sandwiching a curve of the thin metal wire in the section. 上記撮影像を2値データとして処理して2次元曲線に変換するに当たって、画像を幅方向に拡大処理し、その拡大された画像を用いることを特徴とする請求項1〜3のいずれかに記載の金属細線の真直性の測定方法。 In converting a two-dimensional curve and processing said photographic image as binary data, and enlargement processing image in the width direction, according to claim 1, which comprises using the expanded image To measure straightness of thin metal wires. 上記金属細線が0.015〜0.025mmの線径であることを特徴とする請求項1〜4のいずれかに記載金属細線の真直性の測定方法。 Method of measuring the straightness of the fine metal wire according to claim 1, wherein said metal thin wire is a wire diameter of 0.015~0.025Mm. 上記各々の2次元曲線を区切る各々の区間が隣接する区間と重なり合うことを特徴とする請求項1〜5のいずれかに記載の金属細線の真直性の測定方法。 6. The method for measuring the straightness of a thin metal wire according to claim 1 , wherein each section dividing each two-dimensional curve overlaps with an adjacent section. 線引き加工されたワイヤボンディング用金属細線の真直性の測定装置であって、
a) スプールから垂下した金属細線を挿通して位置決めするガイドリング
b)金属細線の垂下方向に対して垂直な方向で撮影する撮像手段、および
c)撮影された2次元蛇行画像を幅方向のみ拡大し、その中心線を求めて得た2次元曲線をワイヤボンディングにおけるループ長さの2〜25倍の区間で区切り、
その区切られた2次元曲線の区間毎に該2次元曲線を挟む平行線を引いて、該平行線間の距離を求める演算処理装置、
から構成されることを特徴とする金属細線の真直性の測定装置。
A device for measuring the straightness of a fine wire for wire bonding that has been drawn,
a) Guide ring for inserting and positioning a thin metal wire suspended from the spool b) Imaging means for photographing in a direction perpendicular to the direction of the metal fine wire, and c) Enlarging the photographed two-dimensional meander image only in the width direction Then, the two-dimensional curve obtained by obtaining the center line is divided into sections of 2 to 25 times the loop length in wire bonding,
An arithmetic processing unit for drawing a parallel line sandwiching the two-dimensional curve for each section of the divided two-dimensional curve and obtaining a distance between the parallel lines ;
An apparatus for measuring the straightness of a thin metal wire, comprising:
上記金属細線に対する照明は、バックライト照明であることを特徴とする請求項7記載の金属細線の真直性の測定装置。 8. The apparatus for measuring straightness of a fine metal wire according to claim 7, wherein the illumination with respect to the fine metal wire is backlight illumination.
JP2006335034A 2006-12-12 2006-12-12 Measuring method and measuring device for straightness of fine metal wire Expired - Fee Related JP4050772B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006335034A JP4050772B1 (en) 2006-12-12 2006-12-12 Measuring method and measuring device for straightness of fine metal wire
TW096146410A TWI348538B (en) 2006-12-12 2007-12-05 Method for measurement of straightness of metallic wire and measuring equipment of same
SG200718388-2A SG144047A1 (en) 2006-12-12 2007-12-06 Method for measurement of straightness of metallic fine wire and measuring equipment of same
MYPI20072208A MY144721A (en) 2006-12-12 2007-12-10 Method for measurement of straightness of metallic fine wire and measuring equipment of same
CN2007101989800A CN101201242B (en) 2006-12-12 2007-12-11 Method for measurement of straightness of metallic fine wire and measuring equipment of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006335034A JP4050772B1 (en) 2006-12-12 2006-12-12 Measuring method and measuring device for straightness of fine metal wire

Publications (2)

Publication Number Publication Date
JP4050772B1 true JP4050772B1 (en) 2008-02-20
JP2008147523A JP2008147523A (en) 2008-06-26

Family

ID=39181787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006335034A Expired - Fee Related JP4050772B1 (en) 2006-12-12 2006-12-12 Measuring method and measuring device for straightness of fine metal wire

Country Status (5)

Country Link
JP (1) JP4050772B1 (en)
CN (1) CN101201242B (en)
MY (1) MY144721A (en)
SG (1) SG144047A1 (en)
TW (1) TWI348538B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207657A (en) * 2020-03-05 2020-05-29 中国工程物理研究院机械制造工艺研究所 Device and method for detecting straightness error of plain line of large-size cylindrical part

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748582B1 (en) 2016-05-13 2017-06-21 크루셜머신즈 주식회사 Straight degree inspection apparatus and method for probe pin
CN109099845B (en) * 2018-07-06 2020-07-10 江西洪都航空工业集团有限责任公司 Method for measuring three-dimensional displacement by high-speed photography

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147923B2 (en) * 2002-12-03 2008-09-10 松下電器産業株式会社 Electronic component mounting apparatus and electronic component mounting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207657A (en) * 2020-03-05 2020-05-29 中国工程物理研究院机械制造工艺研究所 Device and method for detecting straightness error of plain line of large-size cylindrical part

Also Published As

Publication number Publication date
TWI348538B (en) 2011-09-11
MY144721A (en) 2011-10-31
CN101201242B (en) 2010-06-02
SG144047A1 (en) 2008-07-29
TW200825370A (en) 2008-06-16
CN101201242A (en) 2008-06-18
JP2008147523A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4103921B2 (en) Method of setting inspection reference data for fillet inspection, and substrate visual inspection apparatus using this method
JP5624326B2 (en) Method for accurately identifying the edge of an inspection area for an array area formed on a wafer, and a method for binning detected defects in an array area formed on a wafer
US20070115464A1 (en) System and method for inspection of films
JP5460527B2 (en) Coated wire inspection device and wire processing machine equipped with the same
JPS63244753A (en) Defect recognition and processing device
JP5085953B2 (en) Surface inspection device
JP4050772B1 (en) Measuring method and measuring device for straightness of fine metal wire
CN106030283A (en) An apparatus and method for inspecting a semiconductor package
TW200426497A (en) Method for detecting the position of a defect in a glass substrate in a depth direction
EP1018633A2 (en) Bar angle measurement system
TWI274869B (en) Apparatus and method for inspecting bumps
JP3324699B2 (en) Method and apparatus for measuring fiber diameter distribution
CN112834528A (en) 3D defect detection system and method
JP5422896B2 (en) Inspection method and inspection apparatus for metal substrate surface
JP2003068813A (en) Method and device for measuring probe mark
JP5001815B2 (en) Film inspection equipment
WO2008085160A1 (en) System and method for inspection of films
JP4037374B2 (en) Spark plug inspection method and spark plug manufacturing method using the same
JP2017009469A (en) Device for detection of terminal crimping failure
JP4215330B2 (en) Ring fluorescent lamp form inspection apparatus and form inspection method
JP2007033327A (en) Flaw detecting method and flaw detector
JP2002124534A (en) Rectilinear propagation estimating equipment and method of metal thin wire
JP2865125B2 (en) Inspection method for ERW pipe weld and inspection device for ERW pipe weld
JPS6336543A (en) Method and apparatus for automatic inspection of semiconductor device
JP7468117B2 (en) Electronic component evaluation method, electronic component evaluation device, and electronic component evaluation program

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees