JP4050194B2 - 磁界検出方法、磁界検出装置、および情報記憶器 - Google Patents
磁界検出方法、磁界検出装置、および情報記憶器 Download PDFInfo
- Publication number
- JP4050194B2 JP4050194B2 JP2003192391A JP2003192391A JP4050194B2 JP 4050194 B2 JP4050194 B2 JP 4050194B2 JP 2003192391 A JP2003192391 A JP 2003192391A JP 2003192391 A JP2003192391 A JP 2003192391A JP 4050194 B2 JP4050194 B2 JP 4050194B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- sample
- probe
- conversion coefficient
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Measuring Magnetic Variables (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Description
【発明の属する技術分野】
本発明は、磁界検出方法、磁界検出装置、および情報記憶器に関する。より詳しくは、磁気記録媒体や磁性膜等の表面の局所的な磁界を測定する場合に用いられる磁界測定装置、磁界検出方法、および情報記憶器に関する。
【0002】
【従来の技術】
例えば、磁気記録媒体や磁性体膜などの表面の局所的な磁気力を高空間分解能で検出する手段として、原子間力顕微鏡の技術を発展させた磁気力顕微鏡が実用化されている。
【0003】
上記のような磁気力顕微鏡として、例えば、特許文献1の技術が開示されている。
【0004】
特許文献1には、表面の形状を除くパラメータを示す表面の測定値を発生するか、または表面に仕事を行うようプローブを表面上に走査するための装置及び方法が開示されている。この走査は2つの段階から成る。まず、第1回の走査では、形状情報を得て、この情報を記憶し、第2回の走査では記憶した形状情報を使用してプローブの高さを制御しながら形状を除く表面のパラメータを測定するか、仕事を行う。
【0005】
サンプル表面の形状を除くパラメータを磁気力とした場合、第1回の走査でサンプルの表面形状を得て、その情報を記憶し、第2回の走査では、プローブの磁気先端をサンプルの表面に配置させ、上記磁気先端に働く磁気力によるプローブの振動周波数の変化を検出することにより、試料の表面の局所的な磁気情報を検出する。ここでは、磁気変換を上げるために、プローブを共振周波数付近で加振し、プローブの振動や位相の変化を検出する方法を取っており、サンプルの表面の局所的な磁気力の分布を検出している。
【0006】
【特許文献1】
特開平6−213910公報(1994年8月5日公開)
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に開示されている従来の磁界検出装置では、以下の問題が生じる。
【0008】
従来の磁界検出装置を用いて、磁気記録媒体や磁性膜の表面の磁界を局所的に検出するとき、サンプル表面からの磁界以外に外界からの磁界(自然磁界、磁界検出装置からの漏洩磁界等)を含んだ磁界を検出してしまうため、上記サンプルにおける外界からの磁界を含まないサンプル表面の磁界を検出することができない。すなわち、従来の磁界検出装置において、磁界勾配の変化量による力と外界からの磁界によるプローブの磁気先端に生じる偶力とが混在した力がプローブ先端に働き、上記の混在した力を磁気力として検出してしまい、サンプル表面の磁界を検出することができない。したがって、従来の磁界検出装置を用いた場合、磁界の検出感度が低下するという問題が生じる。
【0009】
さらに、サンプル表面上の磁界が外界からの磁界と比べて極めて低い、またはほぼ同等である場合(例えば、高密度磁気記録された磁気記録媒体表面上の磁界)、従来の磁界検出装置の磁界検出感度は極めて低いという問題が生じる。
【0010】
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、サンプル表面からの磁界以外の外界からの磁界の影響を排除することができ、サンプルの表面の局所的な磁界を検出することができる磁界検出方法、磁界検出装置、並びに情報記憶器を提供することにある。
【0011】
【課題を解決するための手段】
上記の課題を解決するために、以下のような磁界検出方法、磁界検出装置、および情報記憶器を提供する。
【0012】
本発明にかかる磁界検出方法は、上記の課題を解決するために、プローブを加振させながら試料の磁界を検出する磁界検出方法であって、磁界発生源から発生させた所定の磁界による、加振されたプローブの変動パラメータの変化量に基づき、上記所定の磁界を発生させて検出される外界の磁界が混在する磁界を、外界の磁界が混在しない磁界に変換するための磁界変換係数を導出する磁界変換係数導出過程と、試料の磁界による、加振されたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出することを特徴としている。
【0013】
通常、プローブを用いて試料の磁界を検出すると、検出結果には、試料の磁界と、試料以外の外界からの磁界とが混在して検出される。したがって、試料のみの磁界を検出することができず、検出精度は低いものとなっていた。
【0014】
より具体的には、例えば、上記プローブがカンチレバーと磁性体チップとを備えており、加振させたカンチレバーを試料表面に移動させ、磁性体チップと試料表面の磁界との磁気力により発生するカンチレバーの振動振幅の変化量及び位相の変化量に基づいて、試料表面の磁界の検出するような磁界検出方法では、外界からの磁界と試料表面の磁界とが混在する磁界を検出してしまう。そのため、そのような磁界検出方法の磁界検出感度は外界からの磁界に依存し、この外界からの磁界が高いほど、磁界検出感度は低下する。
【0015】
上記の発明によれば、磁界変換係数導出過程において、所定の磁界発生時と非発生時とにおける加振させたプローブの変動パラメータの変化量に基づいて、磁界変換係数を算出する。すなわち、この過程では、まず、既知の磁界を発生させた時の、加振させたプローブの変動パラメータを検出する。この変動パラメータによって算出される磁界は、前述のように外界の磁界が混在している。しかしながら、この過程では、既知の磁界を発生させているので、検出された磁界と、既知の磁界とによって、磁界変換係数を算出できる。すなわち、磁界変換係数は、磁界発生源から発生する所定の磁界と共に検出される磁界発生源以外からの磁界から、磁界発生源以外の磁界を取り除き、磁界発生源からのみの磁界とするための係数である。
【0016】
続いて、磁界検出過程では、同様にして、試料存在下と非存在下における、加振させたプローブの変動パラメータの変化量を検出し、その検出結果と前記過程で算出した磁界変換係数とを用いれば、試料の磁界を検出できる。ここで検出した試料の磁界の検出結果は、磁界変換係数によって、外部の磁界が排除された試料表面のみの磁界である。したがって、上記の方法によれば、高い検出感度で試料表面の磁界を検出することができる。
【0017】
本発明にかかる磁界検出方法は、上記の課題を解決するために、上記磁界検出過程の前に、上記試料表面の形状情報を検出する表面形状情報検出過程を有することを特徴としている。
【0018】
上記の方法によれば、上記表面形状情報検出過程にて得られた試料表面の形状情報を用いて、磁界検出過程において磁界変換係数から、外界の磁界に影響されない試料表面のみの磁界を検出している。これにより、試料の表面形状をモニタリングしながら、試料の特定の領域の磁界を検出することができる。
【0019】
本発明にかかる磁界検出方法は、上記の課題を解決するために、上記磁界変換係数導出過程は、上記磁界発生源に対する上記プローブの所定の角度(θiα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、下記(1)式から上記磁界変換係数を導出し、
Hi=η(ΔAi/θiα)又はHi=η(Δφi/θiα)―――(1)
(式中、Hiは磁界発生源から発生させた磁界、θiαは磁界発生源に対するプローブの角度、ΔAi及びΔφiはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
上記磁界変換係数導出過程は、上記試料に対する上記プローブの所定の角度(θsα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、その検出結果と上記磁界変換係数とを用いて、下記(2)式から試料表面の磁界を検出することを特徴としている。
【0020】
H=η(ΔAs/θsα)又はH=η(Δφs/θsα)―――(2)
(式中、Hは試料表面から発生した磁界、θsαは試料に対するプローブの角度であってθiα=θsαであり、ΔAs及びΔφsはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)。
【0021】
上記の方法によれば、上記変動パラメータの変化量として、所定の振動周波数でプローブを振動させたときの振動振幅または位相の変化を検出し、磁界発生源または試料に対するプローブの取り付け角度θiαと、θsαとは同じ角度である。
【0022】
上記の方法によれば、上記磁界変換係数導出過程において、加振されたプローブに備えられた磁性体チップを所望の磁界Hiを発生する磁界発生源の所望の位置に、かつ磁界発生源に対するプローブの取り付け角度θiαで移動させたとき、上記加振されたプローブの振動振幅及び位相は、上記磁界Hiを発生していないときに比べ変化する。この変化量をそれぞれΔAs及びΔφsとすると、磁界変換係数ηは(1)式により導出することができる。
【0023】
また、上記磁界検出過程では、加振されたプローブを試料表面の所望の位置に移動させる。このときの試料に対するプローブの取り付け角度をθsαとし、カンチレバーの振動振幅の変化量及び位相の変化量をΔAs及びΔφsとすると、上記磁界変換係数導出過程で導出された磁界変換係数ηを用いて、試料表面の磁界Hは、上記(2)式により導出される。
【0024】
これにより、磁界変換係数導出過程では、所望の位置及び所望のプローブの取り付け角度θiαにおける磁界変換係数ηを導出することができ、この磁界変換係数ηを用いて、上記磁界検出過程で試料表面における外界からの磁界に影響されない、試料表面のみの磁界を検出することができ、磁界の検出感度の向上できる。
【0025】
本発明にかかる磁界検出方法は、上記の課題を解決するために、上記磁界変換係数導出過程は、複数の上記角度(θiα)に対する上記磁界発生源の変化量を検出して、上記(1)式から複数の磁界変換係数を導出し、上記磁界検出過程は、上記複数の角度(θiα)に対応する複数の角度(θsα)に対する上記試料の上記変化量を検出し、その検出結果と上記複数の磁界変換係数とを用いて、上記(2)式から上記試料表面の磁界を検出することを特徴としている。
【0026】
上記の方法によれば、上記磁界変換係数導出過程において、所定の位置における磁界発生源に対するプローブの取り付け角度(θiα)を変化させ、それぞれの取り付け角度に対する加振されたプローブの振動振幅の変化量及び位相の変化量を検出し、複数の磁界変換係数を導出している。そして、上記磁界検出過程では、上記複数の取り付け角度(θiα)に対応する、試料に対するプローブの複数の取り付け角度(θsα)における、対する加振されたプローブの振動振幅の変化量及び位相の変化量を検出し、その検出結果と上記複数の磁界変換係数とを用いて試料表面の磁界を検出している。
【0027】
これにより、外界からの磁界に対して上記プローブで発生する磁界の向きの角度を変えることができる。上記磁界変換係数導出過程において、導出された磁界変換係数は磁界発生源に対するプローブの取り付け角度に依存する。それゆえ、上記取り付け角度に依存した磁界変換係数を用いて、試料表面に対するプローブの取り付け角度に依存した磁界を検出することができ、外界からの磁界の影響を排除した磁界を高精度で検出することができる。
【0028】
本発明にかかる磁界検出方法は、上記の課題を解決するために、上記磁界変換係数導出過程は、上記プローブを加振させる振動周波数の高調波成分における上記変化量を検出し、上記磁界変換係数を導出することを特徴としている。
【0029】
上記の方法によれば、ある振動周波数で加振したプローブのうち、高調波成分用いて導出した磁界変換係数を用いて、試料表面の磁界を検出している。
【0030】
これにより、上記の加振されたプローブの振動振幅の変化量及び位相の変化量は、試料表面の磁界に対して一次の振動周波数の変化量より大きくなる。したがって、試料表面での磁界検出精度を向上することができる。
【0031】
本発明にかかる磁界検出方法は、上記の課題を解決するために、上記磁界変換係数導出過程は、上記所定の角度(θiα)に対して、上記磁界発生源から複数の磁界を発生させて、上記複数の磁界に対する上記変化量を検出し、上記磁界変換係数を導出することを特徴としている。
【0032】
上記の方法によれば、磁界発生源から複数の磁界を発生させて(すなわち、発生させる所定の磁界を変化させて)、加振されたプローブの振動振幅の変化量及び位相の変化量に対応した磁界変換係数を導出している。言い換えれば、上記磁界変換係数導出過程では、複数の磁界に対する、複数の磁界変換係数が導出される。
【0033】
これにより、磁界検出過程において、加振されたプローブの振動振幅の変化量及び位相の変化量に対応した、複数の磁界変換係数を用いることができ、外界からの磁界が排除された試料表面の磁界を高精度に検出することができる。
【0034】
本発明にかかる磁界検出装置は、上記の課題を解決するために、試料を保持する試料台と、磁界を検出するプローブと、上記プローブを加振する加振手段と、加振させたプローブの振動を検出する検出手段と、上記プローブと上記試料台との相対位置を制御する位置制御手段とを備え、プローブを加振させながら試料の磁界におけるプローブの変動パラメータの変化量に基づいて、試料の磁界を検出する磁界検出装置において、試料の磁界と共に検出される試料以外からの磁界を、試料の磁界のみに変換する磁界変換係数を導出する磁界変換手段を備えていることを特徴としている。
【0035】
上記の構成によれば、上記加振手段により加振されたプローブと試料表面の磁界との磁気力による、上記プローブの振動による変動パラメータの変化量(例えば、振動振幅の変化量及び位相の変化量)を上記検出手段により検出する磁界検出装置に、磁界変換手段を備えている。上記磁界変換手段は、試料の磁界と共に検出される試料以外からの磁界を、試料の磁界のみに変換する磁界変換係数を導出する。そして、検出手段は、この磁界変換係数を用いて、試料表面上の外界からの磁界が混在した磁界を外界からの磁界が混在しない磁界に変換することができる。
【0036】
これにより、外界からの磁界の影響を排除し、試料の磁界のみを検出することができる磁界検出装置を実現することができる。
【0037】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記磁界変換手段は、所望の高さで所望の磁界を発生する磁界発生源を備えることを特徴としている。
【0038】
これにより、上記の所望の磁界での、加振されたカンチレバーの振動振幅または位相の変化量を検出し、磁界変換係数を導出することができ、外界からの磁界の影響を排除することができる磁界検出装置を実現することができる。
【0039】
本発明にかかる磁界検出装置は、上記の課題を解決するために、加振されたプローブの振動領域で所定の磁界を発生することを特徴とすることを特徴としている。
【0040】
これにより、磁界発生源で発生する磁界は、上記プローブの振動領域で均一になる。したがって、上記磁界変換手段によって磁界変換係数を導出するに際し、磁界発生源からの磁界分布の変化による影響を排除することができ、外界からの磁界の影響を排除することができる磁界検出装置を実現することができる。
【0041】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記磁界変換手段は、複数の異なる磁界を発生することを特徴としている。
【0042】
上記の構成によれば、複数の異なる磁界のそれぞれについて、磁界変換係数を導出する。そして、加振されたプローブの振動によって変動する変動パラメータに対応した磁界変換係数を、複数導出することができる。したがって、試料表面の磁界を検出するに際し、例えば、試料表面の磁界での加振されたプローブの振動振幅の変化量及び位相の変化量に応じた複数の磁界変換係数を用いることができる。したがって、外界からの磁界の影響を排除することができる精度の高い磁界検出装置を実現することができる。
【0043】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記磁界変換手段は、コイルと、該コイルに電流を供給するための磁界発生電源と、上記基準面を有する磁界発生用部材とを備えていることを特徴としている。
【0044】
これにより、磁界発生電源が供給する電流の量により、磁界発生源で発生する磁界を調節することができる。したがって、磁界発生源で発生する磁界を変化させることができ、精度の高い磁界検出装置を実現することができる。
【0045】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記試料および磁界発生源に対するプローブの角度を調節する角度制御手段をさらに備えることを特徴としている。
【0046】
これにより、外界からの磁界に対して上記プローブで発生する磁界の向きの角度を変えることができる。導出された磁界変換係数は、プローブの取り付け角度に依存する。試料表面の磁界を検出する際に、上記のプローブの取り付け角度に依存した磁界変換係数を用いて、試料表面におけるプローブの取り付け角度に依存した磁界を検出することができる。それゆえ、外界からの磁界の影響を排除した磁界を高精度で検出することができる磁界検出装置を実現することができる。
【0047】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記プローブの保磁力は、上記試料の最大発生磁界よりも大きいことが好ましい。例えば、上記プローブが、保磁力の高い磁性体により構成されていることが好ましい。
【0048】
これにより、上記プローブが試料表面の磁界により磁化反転するのを防ぐことができ、プローブの保磁力付近まで試料表面の磁界を検出することができる。
【0049】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記プローブは、柱状構造の磁性体チップを備えることが好ましい。上記の構成によれば、柱状構造を有する磁性体チップの形状磁気異方性から、磁性体チップの磁化の配向分布が急峻になり磁界検出の分解能を向上することができる。
【0050】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記コイルと上記磁界発生用部材との間に断熱材を備えていることを特徴としている。これにより、磁界発生源から磁界を発生する時に、コイルから発生するジュール熱によって生じる上記基準面の熱膨張ドリフトによるカンチレバーの振動振幅及び位相のズレの影響を排除し、外界からの磁界の影響を排除した試料表面の磁界を検出することができる磁界検出装置を提供することができる。
【0051】
本発明にかかる磁界検出装置は、上記の課題を解決するために、上記磁界発生源は、上記磁界発生用部材と上記プローブとを同電位に設定する帯電防止手段を有することを特徴としている。これにより、試料表面の磁界を検出するに際し、静電力によるプローブの振動によって変動する変動パラメータ(例えば、振動振幅または位相)のズレの影響を排除し、外界からの磁界の影響を排除した試料表面の磁界を検出することができる磁界検出装置を提供することができる。
【0052】
本発明にかかる情報記憶器は、上記の課題を解決するために、上記磁界変換係数を記憶した記憶手段を少なくとも備えていることを特徴としている。これにより、上記磁界変換手段を備えていない従来の磁界検出装置においても、上記情報記憶器を備えることにより、外界からの磁界の影響を排除した試料表面の磁界を検出することができる磁界検出装置を提供することができる。
【0053】
本発明にかかる磁界検出方法は、上記の課題を解決するために、上記情報記録器に記憶された磁界変換係数を用いて試料の磁界を検出する磁界検出方法であって、試料の磁界による、加振させたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出することを特徴とすることを特徴としている。
【0054】
上記の方法によれば、上記情報記憶器に記録された磁界変換係数を用いた磁界検出方法において、その磁界変換係数を用いて試料表面の磁界を検出している。
【0055】
これにより、前述のように、予め、磁界発生源を用いて、磁界変換係数を導出することなく、外界からの磁界の影響を排除した試料表面の磁界をより容易に検出することができる。すなわち、従来の磁界検出装置に、上記情報記録器に記憶された磁界変換係数を読み込ませることにより、外界からの磁界の影響を排除した試料表面の磁界を検出することができる。
【0056】
【発明の実施の形態】
以下、図1〜図10に基づいて、本発明の実施の一形態について説明する。
【0057】
(1)磁界検出装置
本実施の形態にかかる磁界検出装置300の概略の構成を図1に示す。同図に示すように、本実施の形態にかかる磁界検出装置300は、試料1及びその試料1を保持する試料台2と、プローブ3と、XYZ軸駆動装置7(位置制御手段)と、プローブ3に振動を加えるための加振器8(加振手段)と、加振されたプローブ(より具体的にはカンチレバー4)の振動振幅または振動周波数から位相ズレを検出する検出器9(検出手段)とを備えている。また、上記試料台2上には磁界発生装置10(磁界発生源)が備えられている。本明細書において、試料台2の表面に対して垂直方向をZ軸方向とする。上記Z軸を基準とした試料台2の表面と平行方向に、互いに垂直なX軸及びY軸が設定されている。なお、試料台2に対してプローブ3側の垂直方向を上向きとし、その反対方向を下向きとする。また、図1〜図4において、破線部分は側面図、それ以外の部分はブロック図として示す。
【0058】
図1に示すように、磁界発生装置10は、磁界発生用部材12、コイル13及びその電源である磁界発生用電源14からなり、コイル13内部に基準面11を有する磁界発生用部材12を備えている。
【0059】
この構成により、磁界発生装置10において基準面11の表面にプローブ3を配置させたとき、基準面11における所望の高さh及び所定の磁界Hiでの加振されたカンチレバー4の振動振幅または振動周波数fからの位相ずれを検出し、プローブ3における磁界変換係数ηを導出することができる。さらに、試料1の表面での磁界情報を検出するに際し、上記磁界変換係数ηを用いて、カンチレバー4の振動振幅または振動周波数fからの位相ズレから磁界Hの強度及び方向を検出することができる。
【0060】
上記磁界発生装置10は、上記プローブ3に空間的に均一な磁界Hiを印加するために備えられている。磁界発生用部材12の基準面11表面の磁界Hiは既知のものがよい。これにより、磁界発生用電源14による電流制御で基準面11の表面での所望の磁界Hiを得ることができる。また、上記磁界発生用部材12は、その基準面11に磁区構造が存在しないため、ナノメートルサイズの領域でも均一な磁界を得ることができる。これにより、磁界発生装置10の基準面11に空間意的に均一な磁界を発生させて、プローブ3の磁界変換係数ηを導出するに際し、磁界分布変化の影響を排除することができる。
【0061】
また、磁界発生用部材12の材料は基準面11を有し、コイル13及び磁界発生用電源14により磁界を発生することができるものであれば特に限定しないが、例えば、 SiO2が挙げられる。磁界発生用部材12としてSiO2を用いると、非磁性体なので磁区が存在せず、ナノメートルサイズの領域でも均一な磁界を得ることができる。
【0062】
また、試料台2から基準面11までの高さは、試料台2から試料1表面までの高さと同じであることが好ましい。これより、試料1表面及び磁界発生用部材12の基準面11のZ軸方向の位置が同じになる。試料1表面の磁界を検出するに際し、XYZ軸駆動装置7による試料1表面に対するプローブ3の相対位置制御は、X軸及びY軸のみの位置制御となり、位置制御が容易になる。
【0063】
また、図示はしないが、基準面11には帯電防止手段を備えることが好ましい。例えば、帯電防止手段として、基準面11の表面を金属膜でコーテイングし、金属膜とプローブ3とが同電位になるように接続する。これにより、プローブ3の磁界変換係数ηを導出する際に、静電力による影響を抑えることができる。上記金属膜としてはAuなどの非磁性金属で酸化物を形成しない金属が望ましい。
【0064】
また、図示はしないが、基準面11とコイル13との間には断熱剤が備えられていることが好ましい。上記断熱剤により、磁界発生時にコイル13から発生するジュール熱による基準面11の部材への熱伝導を抑えることことができる。よって、プローブ3の磁界変換係数ηを導出するに際し、基準面11上でのプローブ3の熱膨張ドリフトの影響を抑えることができる。上記断熱材として、基準面11を有する磁界発生用部材12への熱伝導を抑えることができるものであれば、特に限定しないが、例えば発砲スチロールが挙げられる。
【0065】
上記プローブ3は、カンチレバー4と、カンチレバー4を支持するための支持基板5と、カンチレバー4に設けられた磁性体チップ6とを備える。カンチレバー4において支持基板5が備えられている側と反対側の先端に、磁性体チップ6はカンチレバー4に対して垂直下向きに備えられている。本明細書では、このように設けられた磁性体チップ6を、本明細書では、「カンチレバー4の自由端に設けられた磁性体チップ6」と記す。また、本実施の形態では、磁性体チップ6の形状は、図1に示すような、該磁性体チップ6においてカンチレバー4側を底面とする角錐(円錐)形状を有する。
【0066】
また、プローブ3は、支持基板5に複数のカンチレバー4が備えられた構成であってもよい。この構成により、試料1表面の磁界を検出するに際し、試料1表面で発生する磁界を、同時に複数の場所で検出することかできる。
【0067】
また、カンチレバー4の自由端に設けられた磁性体チップ6の材料としては、保磁力の高い磁性体が望ましい。これにより、試料1から生じる磁界による磁性体チップ6の磁化反転を防ぐことができ、磁性体チップ6の保磁力付近まで磁界測定が可能になる。つまり、磁性体チップ6の保磁力の大きさは、磁界検出対象となる試料1の最大発生磁界より大きくすることが必要である。また、上記磁性体チップ6の磁化の向きについては、カンチレバー4に対して垂直に配向しているものが望ましい。磁化の配向分布が急峻であれば、磁界検出の分解能が向上する。上記のような磁性体チップ6の材料として、例えばCo合金が挙げられる。
【0068】
また、磁性体チップ6の形状は、特に限定しないが、例えば図10に示す形状が望ましい。同図から、磁性体チップ106はカンチレバー104に対して垂直方向に備えられており柱状構造を有している。これにより、形状磁気異方性から磁性体チップ106の磁化の配向分布が急峻になり磁界検出の分解能が向上する。また、カンチレバー104の振動振幅や位相変化が及ぼす磁界勾配による影響は、磁性体チップ106の長さに比例する為、柱状構造の高さを短くすれば、磁界勾配の影響を低減することができる。上記磁性体チップ106の長さは、特に限定しないが、上記の磁界勾配の影響を低減することができる1〜20μmが好ましい。なお、図10において、磁性体チップ106に示された矢印は、磁界の方向を示す。
【0069】
上記XYZ軸駆動装置7は、プローブ3と試料台2との相対位置制御を行う。試料1または磁界発生装置10の磁界を測定するときに、磁性体チップ6を試料1または磁界発生装置10の基準面11の表面に位置させるように動作する。磁界検出装置300では、試料台2がXYZ軸方向に位置制御され移動するXYZ軸駆動装置7を構成としているが、これに限定されず、プローブ3と試料台2との相対位置が制御することができればよい。例えば、プローブ3がXYZ軸方向に位置制御され移動するものでもよい。また、試料台2に対してはXY軸方向に、プローブ3に対してはZ軸方向に位置制御され移動することができるXYZ軸駆動装置7であってもよい。
【0070】
上記加振器8は、上記プローブ3を所望の振動周波数fで振動するために、励振波形発生回路30と励振用圧電素子22とを備えている。
【0071】
上記励振用圧電素子22は、図7に示すように、上部電極17、中央部電極18、下部電極19を備え、それぞれの電極に挟まれた上部圧電体20及び下部圧電体21により構成されている。すなわち、励振用圧電素子22は、支持基板5に、下部電極19、下部圧電体21、中央部電極18、上部圧電体20、および上部電極17が、この順で積層した構成となっている。また、上部電極17及び下部電極19は接地されており、中央部電極18は、励振波形発生回路30と接続している。また、励振用圧電素子22の下部にプローブ3の支持基板5が取り付けられている。励振波形発生回路30から中央部電極18に印加された励振波形のベース電圧が、プローブ3を振動させる。
【0072】
上記検出器9は、光てこ方式を用いた場合、レーザ源91、ポジションセンサ素子92、撓み検出回路93及び励振波形発生回路30からの振動周波数fの信号に対するロックイン検出回路40から構成されている。ポジションセンサ素子92は、撓み検出回路93と通して、ロックイン検出回路40と接続されている。上記検出器9として、本実施の形態では光てこ方式を採用したが、これに限定されず試料1の表面形状情報及び磁界情報を検出することができる方式を採用したものであればよい。例えば、検出器9として、光干渉方式、静電容量方式、光臨界方式などを採用することができる。
【0073】
上記加振器8は、試料1の表面にプローブ3を配置させたときの表面形状情報及び磁界情報または磁界発生装置10の基準面11表面の磁界情報を検出する。すなわち、加振器8により加振されたカンチレバー4の振動振幅もしくは振動周波数fからの位相ズレを検出する。具体的には、レーザ源91から、レーザ光がカンチレバー4の自由端付近に照射される。そして、上記のカンチレバー4の自由端付近に照射されたレーザ光の反射光を、ポジションセンサ素子92が受光する。上記反射光におけるポジションセンサ素子92の受光の位置情報は、撓み検出回路93に送られる。撓み検出回路93は上記位置情報をカンチレバー4の撓み量に変換する。上記撓み量は、ロックイン検出回路40によりカンチレバー4の自由端の振動振幅及び位相情報として検出される。
【0074】
加振されたカンチレバー4の振動振幅もしくは振動周波数fからの位相ズレを検出する検出器9については、振動周波数成分f及びその2倍以上の高調波成分2fにおけるそれぞれの振動振幅及び位相変化を個別に検出することができるようになっている。高調波成分2fにおける振動振幅及び位相変化を検出することにより、プローブ3の磁界変換係数ηを導出することができる。導出した磁界変換係数ηから試料1の表面での磁界強度とその方向を検出することができる。
【0075】
また、磁界検出装置300は、試料1の表面または基準面11に対してプローブ3の取り付け角度を調節する取り付け角度制御手段を備えることが好ましい。これにより、磁性体チップ6の磁化の向きを制御することができる。したがって、試料1の表面または基準面11から発生している磁界と磁性体チップ6との磁化によって生じる偶力の大きさを制御することができる。
【0076】
また、XYZ軸駆動装置7を用いて広域を走査する場合、XYZ軸駆動装置7によっては、装置の構造的歪み(具体的にXYZ軸駆動装置を構成する圧電素子の反りなど)から、走査領域の淵の領域でプローブ3の試料1の表面または基準面11に対しての取り付け角度がずれる。上記の取り付け角度制御手段により、プローブ3の試料1の表面または基準面11に対して所望の取り付け角度に制御しながら広域を走査することが出来る。
【0077】
図8に、プローブ3のカンチレバー4の取り付け角度θαを調節する取り付け角度制御手段を示す。上記取り付け角度θαは、試料1または磁界発生装置10に対する、カンチレバー4の角度とも換言できる。同図に示すように、上記取り付け角度制御手段を備えた加振器58は、励振波形発生回路230及び励振用圧電素子222から構成されている。上記励振用圧電素子222は、上部電極217、中央部電極218、下部電極219を備え、それぞれの電極に挟まれた上部圧電体220及び下部圧電体221により構成されている。また、上記中央部電極218は、左中央部電極23、右中央部電極24を有し、2分割されている。図8では、左中央部電極23、右中央部電極24との間には、互いに電気的に接続されないように間隔が設けられている。上部電極217及び下部電極219は接地されており、左中央部電極23及び右中央部電極24は、それぞれ左ベース電圧端子31及び右ベース電圧端子32を介して励振波形発生回路230と接続している。
【0078】
励振波形発生回路230により左中央部電極23及び右中央部電極24に印加される励振波形のベース電圧は、左ベース電圧端子31及び右ベース電圧端子32により設定できるようになっている。すなわち、上記加振器58は、励振用圧電素子222の左右両側で個別にベース電圧を印加することができる。これにより、上記加振器58は、励振用圧電素子222の左右両端での伸縮を変えることによりプローブ3の取り付け角を調節することができる。また、左ベース電圧端子31及び右ベース電圧端子32は、取り付け角度制御回路50(図1参照)により設定されている。
【0079】
図8に示す取り付け角度制御手段は、励振用圧電素子222と角度制御用圧電素子80(図1参照)とが一体化したものであるが、単に励振用圧電素子222に角度制御用圧電素子80を接着しただけの構成でもよい。
【0080】
また、取り付け角度制御手段によりカンチレバーの取り付け角度θαを制御したときに、カンチレバー4の先端からレーザ光が外れないようレーザ源91とポジションセンサ92との取り付け位置の制御もしくは、レーザ光の光軸が制御されていることが望ましい。
【0081】
さらに、上記取り付け角度制御手段の別の構成を図9に示す。同図に示すように、上記取り付け角度制御手段を備えた加振器68は、上記同様に、励振波形発生回路330及び励振用圧電素子322から構成されている。上記励振用圧電素子322は上部電極317、中央部電極318、下部電極319を備え、それぞれの電極に挟まれた上部圧電体320及び下部圧電体321により構成されている。上記の構成において、上部電極317及び下部電極319は2分割されており、それぞれ右上部電極25及び左上部電極26と、右下部電極27及び左下部電極28とを備えている。上記の上部圧電体320及び下部圧電体321もまた2分割され、右上部圧電体325及び左上部圧電体326と、右下部圧電体327及び左下部圧電体328とを備えている。上記の構成において、中央部電極318は接地されている。右上部電極25及び右下部電極27は接続されており、右ベース電圧端子332を介して励振波形発生回路330に接続されている。また、左上部電極26及び左下部電極28は接続されており、左ベース電圧端子331を介して励振波形発生回路330に接続されている。
【0082】
励振波形発生回路330により右上部電極25及び右下部電極27、左上部電極26及び左下部電極28に印加される励振波形のベース電圧は、右ベース電圧端子332及び左ベース電圧端子331により設定できるようになっている。すなわち、上記加振器68は、励振用圧電素子322の左右両側で個別にベース電圧を印加することができる。これにより、上記加振器68は、励振用圧電素子322の左右両端での伸縮を変えることによりプローブ3の取り付け角度(プローブ3と試料1または磁界発生装置10との成す角)θαを調節することができる。また、右ベース電圧端子332及び左ベース電圧端子331は、取り付け角度制御回路50により設定されている。
【0083】
本発明の磁界検出装置300では、複数の励振用圧電素子22、222、322が並列に構成されていても良い。複数化することで、プローブ3の取り付け角度θαを調整時に、支持基板5に掛かる応力ストレスを、支持基板5全体に均一化することができ、加振中での磁界に依存しないプローブ3の共振周波数のズレを抑えることができる。
【0084】
次に、本実施の形態にかかる磁界検出装置300における情報処理装置200の接続形態について図1に基づいて説明する。
【0085】
情報処理装置200はXYZ軸駆動装置7に接続されている。情報処理装置200の指示によりXYZ軸駆動装置7は、磁性体チップ6を試料1または基準面11の表面の所望の位置(X,Y,Z)に配置する。また、情報処理装置200は、励振波形発生回路30に接続されている。情報処理装置200の指示により励振波形発生回路30は、所望の振動周波数fまたその高調波成分である2fと振幅の励振波形とを発生する。励振波形発生回路30は、励振用圧電素子22及びロックイン検出器40に接続されている。励振用圧電素子22は、励振波形発生回路30の励振波形によりプローブ3を加振する。レーザ源91からのレーザ光がカンチレバー4の自由端付近に照射され、その反射光はポジションセンサ92により受光される。ポジションセンサ92は撓み検出回路93に接続されており、ポジションセンサ92から反射光受光の位置情報が撓み検出回路93に送られる。撓み検出回路93は上記の反射光受光の位置情報をカンチレバー4の撓み量に変換する。また、撓み検出回路93はロックイン検出器40とも接続している。ロックイン検出器40は、励振波形発生回路30から発生した振動周波数fもしくはその高調波成分2fの成分にカンチレバー4自由端の振動振幅及び位相情報を検出する。ロックイン検出器40は情報処理装置200と接続しており、検出された振動振幅及び位相情報がフィードバックされている。また、情報処理装置200は取り付け角度制御回路50に接続しており、さらに取り付け角度制御回路50は角度制御用圧電素子80に接続している。情報処理装置200の指示により取り付け角度制御回路50は、プローブ3が所望の取り付け角度θαに成るように、角度制御用圧電素子80のベース電圧を設定する。また、情報処理装置200は、磁界発生用電源14と接続しており、基準面11の所望の高さhでの所望の磁界Hを発生するように、コイル13に流す電流を設定することができる。また、情報処理装置200は、磁界変換係数メモリ70及び表面形状情報メモリ110及び磁界情報メモリ140と接続している。また、情報処理装置200は表示装置120とも接続されている。
【0086】
磁界検出装置300を適用した磁界検出方法において、後述する磁界変換係数導出過程、表面形状情報検出過程、及び磁界検出過程によって、上記の情報処理装置200、磁界変換係数メモリ70、表面形状情報メモリ110、磁界情報メモリ140、及び表示装置120の接続形態も異なる。
【0087】
(2)磁界検出方法
次に、本実施の形態にかかる磁界検出装置300を適用した磁界検出方法について説明する。
【0088】
(2−1)磁界検出の原理
本発明は、磁界発生装置10の磁界発生用部材12の基準面11上で発生する既知の磁界Hiを検出することにより磁界変換係数ηを導出し、該磁界変換係数ηを用いて試料1表面の磁界Hを検出することを特徴としている。これにより、試料1表面の外界からの磁界に影響されない磁界Hを検出することができる。
【0089】
以下に、本実施の形態にかかる磁界発生装置300を適用した磁界検出原理について説明する。加振器8が周波数ωで駆動しているとき、カンチレバー4は振動周波数fで加振されているとすると、ω=2πfの等式が成立する。そこで振動周波数fで加振された磁性体チップ6を備えたカンチレバー4についての振動系の運動方程式は以下のとおりになる。
【0090】
【数1】
【0091】
ここで、zは振動時のカンチレバー4自由端の変位量、ω0はカンチレバーの共振周波数、kはカンチレバーのばね定数、mαは振動系の換算質量、σは緩和係数、Rは加振器8の振幅を表わす。ccは複素共役を表わす。本明細書で、カンチレバー4自由端とは、カンチレバーの磁性体チップ6設置側の端のことをいう。
【0092】
試料1表面から所望の高さhで、試料1表面に対して平行な面を基準面にして、その基準面とカンチレバー4とがなす角をθsαとしたとき、カンチレバー4自由端の振動中心の基準面からのズレをzα(zα〜Lθsα)とする。mはカンチレバーに取り付けられた磁性体チップの磁荷、lは磁性体チップの長さ、Lはカンチレバーの長さ、Hは試料表面から高さhの場所での磁界である。
【0093】
また、βはカンチレバーの振動方向での磁界勾配の変化量(d2H/dz2)による力の項、γは外界からの磁界と磁性体チップの磁気モーメントによる偶力の項である。
【0094】
上記(3)式において、外界からの磁界の影響で、上記の振動系の共振周波数ω0はω1にシフトする(シフト量Δω=ω1‐ω0)。つまり共振周波数ω0で共振していた磁性体チップ6を備えたカンチレバー4が、外界からの磁界によりカンチレバーの共振周波数がω1にシフトする。そして、外界からの磁界の影響でカンチレバー4の振動振幅及び位相が変化する。
【0095】
ここで、上記のカンチレバー4の、振動振幅及び位相の変化量をそれぞれΔA、Δφとし、磁界変換係数ηを導入すると、磁界Hは以下の式のように表わされる。
【0096】
H=ηΔA/θα又はH=ηΔφ/θα――――(4)
(4)式において、振動振幅の変化量ΔA及び位相の変化量Δφを検出することにより、磁界Hの強度を検出することができる。また、磁界Hを既知の磁界とする(以下、既知の磁界をHiと記す)と、上記の既知の磁界の強度に対する振動振幅の変化量ΔA及び位相の変化量Δφを検出することにより、(4)式から磁界変換係数ηを導出することができる。
【0097】
上記の導出された磁界変換係数ηを用いて試料1表面上の未知の磁界Hの強度を検出することができる。すなわち、試料1表面上での振動振幅の変化量ΔA及び位相の変化量Δφを検出することにより、(4)式及び上記磁界変換係数ηから、試料1表面の磁界Hの強度を検出することができる。
【0098】
また、カンチレバー4自由端の振動中心と試料1表面からの高さhを変えずに、カンチレバーの取り付け角度θαを変えるとき、振動振幅の変化量ΔA及び位相の変化量Δφの取り付け角度θαに対する勾配(∂ΔA/∂θα又は∂Δφ/∂θα)を求めることで、(3)式における磁界勾配の変化量による力の項に影響されないで、磁界Hの向き(H=η∂ΔA/∂θα又はH=η∂Δφ/∂θα)が得られる。
【0099】
また、振動振幅の変化量ΔA及び位相の変化量Δφをモニタリングし、その磁界Hの強度の変化量が極小値もしくは極大値になるときのθαの角度が得られれば、カンチレバー4自由端の振動方向と試料1から発生している磁界Hの向きが平行になることが分かる(∂ΔA/∂θα=0又は∂Δφ/∂θα=0のとき)。このとき、カンチレバー4自由端の振動中心の基準面からのズレzα=0になる。よって(3)式において、zα=0に対応しβが決定するので、(3)式における磁界勾配の変化量による力の項が分かる。従って、予め均一な磁界でその磁界の方向に対してカンチレバー4の取り付け角度θαを変えて磁界変換係数ηを導出しておけば、試料1表面の任意の高さでの磁界の方向、強度、磁界勾配の変化量をそれぞれ分離して検出することができる。
【0100】
また、(3)式の運動方程式からも分かるように偶力の項はカンチレバーの変位量に対して2次の項で入ってきているため、この振動系は高次の周波数成分の振動を含む。従って、高次周波数成分の振動振幅の変化量及び位相の変化量を検出することで、試料1表面での磁界検出精度を向上させることができる。
【0101】
このように、本発明では、磁気的トルク量検出(抽出)し、そのトルク量から磁界を導出する点が、従来とは異なる。また、従来の技術では上記βの混入のため測定できなかった磁界強度そのものを、プローブ式の検出器を用いて検出することが可能となる。
【0102】
(2−2)磁界検出方法
次に、本発明の磁界検出方法について、磁界検出装置300を例に挙げて説明する。
【0103】
磁界検出装置300を用いた磁界検出方法は、(a)磁界発生源である磁界発生装置10を用いて磁界変換係数ηを導出する磁界変換係数導出過程、(b)試料1の表面形状情報を検出する表面形状情報検出過程、及び(c)試料1表面の磁界を検出する磁界検出過程からなっている。
【0104】
前述のように磁界変換係数ηは、外界からの磁界に影響されない試料表面にのみ発生する磁界を検出するための係数である。
【0105】
磁界変換係数導出過程により導出された磁界変換係数ηと、表面形状情報検出過程より得られた試料1の表面形状情報とを基にして、磁界検出過程において試料1表面の磁界を検出する。
【0106】
これにより、上記磁界検出過程において、外界からの磁界の影響を排除した、試料1表面の磁界を検出することができる。また、表面形状情報検出過程により得られた試料1の表面形状情報を磁界検出過程に用いることにより、試料1表面上の磁界検出領域に対するプローブ3の相対位置制御が容易になる。
【0107】
以下、各過程を詳細に説明する。
【0108】
(a)磁界変換係数導出過程
まず、磁界変換係数導出過程を図2に基づいて説明する。図2は磁界変換係数導出過程を示した概略図である。
【0109】
磁界変換係数導出過程は、図2に示すように、磁界発生装置10から発生する既知の磁界Hiに対するカンチレバー4の振動振幅の変化量ΔAi及び位相の変化量Δφiを検出し、カンチレバー4の取り付け角度θαに対する磁界変換係数ηを導出し、その情報を記録する。また同図に示すように、情報処理装置200は、磁界変換係数メモリ70と接続されており、複数または一つの所望の、既知の磁界Hi、高さh、及び取り付け角度θαにおける磁界変換係数情報を上記磁界変換係数メモリ70に記録する。
【0110】
磁界変換係数ηを導出するためには、まず、磁界発生用部材12の基準面11の基準位置を決定する必要がある。そこで、情報処理装置200の指示により、プローブ3を加振しながら、所定の取り付け角度θαでプローブ3と基準面11との間の距離を近づける。このとき基準面11から磁界は発生させない。ロックイン検出器40からの振動振幅の変化により、プローブ3が基準面11に近接する基準位置を決定する。
【0111】
図5は上記のように、プローブ3を加振させながら磁界発生用部材12の基準面11に近づけたときのカンチレバー4の振動振幅と基準面11からのZ軸高さとの関係を示したグラフである。同図に示すように、Z軸高さに対するカンチレバー4の振動振幅の勾配に変化が生じるときのZ軸高さの近傍を基準面11の基準位置とする。
【0112】
次に、基準面11に磁界を発生させていないとき(無磁界時)のカンチレバー4の振動振幅A0及び位相φ0を設定する。情報処理装置200の指示により、上記の基準位置から所望の高さhにプローブ3を加振させながら配置する。このとき、情報処理装置200から励振波形発生回路30に向けて上記基準位置の決定時とは異なる設定を行っても良い。具体的には、プローブ3の振動周波数fあるいは振動振幅A0を変えることができる。これにより得られるロックイン検出器40からの情報を、無磁界時の振動振幅A0及び位相φ0の情報として情報処理装置200に読み取らせてもよい。
【0113】
次に、基準面11に磁界を発生したとき(磁界印加時)のカンチレバー4の振動振幅Ai及び位相φiを検出する。まず、情報処理装置200から磁界発生用電源14に向け、所望の磁界Hiを発生するためにコイル13に流す電流の設定を行う。このとき発生する磁界Hiによって、プローブ3のカンチレバー4自由端に設けた磁性体チップ6が磁気的に相互作用することにより、カンチレバー4の振動振幅及び位相がAi及びφiに変化する。検出器9は、上記のカンチレバー4の振動振幅Ai及び位相φiを検出する。そして、ロックイン検出器40から磁界印加時の振動振幅Ai及び位相φiの情報が得られ、この情報を情報処理装置200が読み取る。
【0114】
次に、上述の無磁界時と磁界印加時とでの、振動振幅の変化量ΔAi(ΔA=Ai−A0)及び位相の変化量Δφi(Δφ=φi−φ0)を求め、この変化量から磁界変換係数ηを導出する。情報処理装置200では、得られた無磁界時と磁界印加時での所定の振動振幅の変化量ΔA及び位相の変化量Δφを求め、所定の磁界Hi、高さh、取り付け角度θαでの磁界変換係数η(η=Hiθα/ΔAi又はη=Hiθα/Δφi)を導出し、その情報を磁界変換係数メモリ70に記録する。
【0115】
また、情報処理装置200により複数の磁界Hi、高さh、及び取り付け角度θαに対して磁界変換係数ηを導出し、その情報を磁界変換係数メモリ70に記録してもよい。
【0116】
これにより、磁界Hi以外は同一条件で、複数の異なる磁界Hiに対して、カンチレバー4の変化量ΔAi及び位相の変化量Δφiを得ることができる。上記の複数の磁界Hiに対する磁界変換係数ηを導出することにより、得られた磁界変換係数ηの信頼性が高くなる。したがって、磁界発生装置10に印加した磁界Hi以外の外界からの磁界(自然磁界、磁界検出装置300からの漏洩磁界等)の影響を排除することができ、後述する磁界検出過程において、試料1表面の磁界Hの強度を高精度で検出することができる。
【0117】
また、情報処理装置200により取り付け角度θαのみを変化させ、一定の磁界Hi及び高さh対して磁界変換係数ηを導出し、その情報を磁界変換係数メモリ70に記録してもよい。以下、取り付け角度θαに依存して導出された磁界変換係数ηをηθとする。
【0118】
これにより、振動振幅の変化量ΔAi及び位相の変化量Δφiの取り付け角度θαに対するゼロでない磁界勾配(∂ΔAi/∂θα又は∂Δφi/∂θα)を求めることで、一定の既知の磁界Hiの強度に対して磁界変換係数ηθ(ηθ=Hi/(∂ΔAi/∂θα)又はηθ=Hi/(∂Δφi/∂θα))を導出することができる。磁界発生装置10に印加した磁界Hi以外の外界からの磁界(自然磁界、磁界検出装置300からの漏洩磁界等)の影響を排除することができ、後述する磁界検出過程において、試料1表面の磁界Hの強度を高精度で検出することができる。
【0119】
ここで、取り付け角度θαを変える場合は、カンチレバー4自由端の振動中心と試料表面の距離は一定(所定の高さh)になるように、情報処理装置200からXYZ軸駆動装置7に向け、所望の位置(X,Y,Z)に配置するよう指示がなされる。
【0120】
図6は、上記の複数の磁界Hiと該磁界Hiより得られたカンチレバー4の位相の変化量Δφとの関係を示すグラフである。同図では、典型的な磁界Hiに対する位相変化曲線して示している。このとき、磁性体チップ6の保磁力すなわち既知の磁界Hiの増減に伴い変化する磁性体チップ6の磁束密度がゼロになるときの磁界Hiの強度は300Oe付近である。同図に示すように、磁界Hiが保磁力300Oeに近づくとカンチレバー4の位相の変化量Δφが発散してしまうため、磁界の検出感度が低下してしまう。したがって、磁界の高い試料1を検出するときには、保磁力の高い磁性体チップ6が必要になる。磁性体チップ6の保磁力は、特に限定しないが、300Oe〜20kOeのものが好ましく、4kOe〜10kOeのものがより好ましい。また、磁界発生装置10の磁界発生用部材12の基準面11に印加される磁界Hiの範囲は、特に限定しないが、1Oe〜20kOeのものが好ましい。これにより、磁性体チップ6に保磁力以上の磁界を印加することが出来、磁性体チップ6の磁化の向きを磁界検出装置300内で所望の方向に容易に反転できる。
【0121】
以上述べた磁界変換係数ηの導出方法は、基準面11表面で磁界Hiの有無をコイル13により制御できるので、カンチレバー4の振動振幅及び位相に及ぼす磁気力と原子間力による影響を明確に分離できる。また、それぞれのプローブ3に対して磁界変換係数ηを導出すれば、プローブ3の作製段階での形状のバラツキ等による影響を受けず、高精度の磁界検出が可能になる。
【0122】
また、加振器8により加振されるプローブ3の振動周波数としては、上記の振動周波数fの他に2倍以上の高調波成分である2fが挙げられる。高調波成分である2fにおける磁界変換係数ηを導出することにより、後述する磁界検出過程において、試料1表面の磁界Hの強度をより高精度で検出することができる。
【0123】
(b)表面形状情報検出過程
次に、本磁界検出方法における、表面形状情報検出過程を図3に基づいて説明する。図3は表面形状情報検出過程を示した概略図である。
【0124】
表面形状情報検出過程は、図3に示すように、試料1表面に対して表面形状情報を検出し、その情報を記録する。また、同図に示すように、情報処理装置200は、表面形状情報メモリ110と接続されており、試料1表面の形状情報を表面形状情報メモリ110に記録する。
【0125】
表面形状情報の検出に関しては、Z軸方向に移動している加振されたカンチレバー4の振動振幅の勾配に変化が生じる振動振幅に対して、その振動振幅が一定になるようにサーボ制御を行いながら、そのときの3次元位置情報(X,Y,Z)を検出する。具体的には、情報処理装置200から取り付け角度制御回路50にむけ、所望のプローブ3の取り付け角度θαを設定し、試料1表面にプローブ3を近接させる。プローブ3のカンチレバー4自由端に設けられた磁性体チップ6が試料1表面に近接したとき、ロックイン検出器40からのカンチレバー4の振動振幅のZ軸に対する勾配に変化が生じる。このときの振動振幅を一定にするように情報処理装置200を介してXYZ軸駆動装置7を制御する。
【0126】
試料1表面を所望のXY平面走査手順に従って、振動振幅が一定に成るようにフィードバック制御を行いながら所定のXY位置でのZ位置を検出する。これにより、試料1の表面形状情報が得られる。上記XY平面走査手順については、試料1表面の制限された領域の全面あるいは直線あるいは多点についてフィードバック制御が行われる。得られた表面形状情報は表面形状情報メモリ110に記録し、表示装置120に表示される。
【0127】
このように、表面形状情報検出過程では、試料1表面の形状情報を用いて、後続する磁界検出過程において磁界変換係数から試料表面の外界の磁界に影響されない磁界を検出している。すなわち、磁界検出過程において、カンチレバー4に備えられた磁性体チップ6を試料1表面に移動するのに際し、表面形状情報検出過程で得られた試料1表面の形状情報を用いることができる。
【0128】
(c)磁界検出過程
次に、本磁界検出方法における、磁界検出過程を図4に基づいて説明する。図4は磁界検出過程を示した概略図である。
【0129】
磁界検出過程は、図4に示すように、試料1に対して磁界情報を検出し、その情報を記録する。上記の磁界変換係数導出過程により得られた磁界変換係数η及び表面形状情報検出過程により得られた試料1表面の表面形状情報を用いて試料1表面の磁界を検出する。また、情報処理装置200は、磁界変換係数メモリ70及び表面形状情報メモリ110及び磁界情報メモリ140と接続している。
【0130】
磁界検出過程は、試料1表面上でのカンチレバー4の振動振幅の変化量ΔAs及び位相の変化量Δφsを検出し、磁界変換係数導出過程で得られた磁界変換係数ηを用いて、試料1表面の外界からの磁界に影響されない磁界Hを検出する。また、表面形状情報検出過程により得られた試料1の表面形状情報を用いることにより、磁界検出時の試料1表面上の全ての位置決めが可能になる。
【0131】
磁界情報の検出に関しては、情報処理装置200は、表面形状情報メモリ110から試料1の表面形状情報を読み取り、XYZ軸駆動装置7に向け、上記表面形状情報110メモリにおける所定の(X,Y)位置を設定する。さらに、XYZ軸駆動装置7は、それぞれの(X,Y)位置に対して試料1表面から所望の高さhまで離れた位置に、プローブ3のカンチレバー4自由端に設けられた磁性体チップ6を配置する。磁界検出過程において上述のように設定された試料1表面に対する磁性体チップ6の位置を(X,Y,Z)位置とする。
【0132】
プローブ3のカンチレバー4自由端に設けられた磁性体チップ6は表面形状情報検出過程により得られた試料1表面の表面形状情報を用いることにより全て位置決めができる。これにより、XYZ軸駆動装置7は、試料1表面を示す表面形状情報メモリ110を用いて試料1表面上における任意の位置決めが可能になり、磁界検出過程における試料1表面の磁性体チップ6の位置決めを容易にすることができる。
【0133】
また、このとき、情報処理装置200は、励振波形発生回路30に向けてカンチレバー4の振動振幅As0及び位相φs0を設定し、カンチレバー4を加振する。ここで、XYZ軸駆動装置7により試料1表面上で位置決めされた、(X,Y)位置及び所望の高さhでの磁界により、カンチレバー4の振動振幅及び位相がそれぞれAs及びφsに変化したとき、磁界検出過程でのカンチレバー4の振動振幅の変化量ΔAs及び位相の変化量Δφsは、それぞれΔAs=As−As0、Δφs=φs−φs0となる。
【0134】
次に、情報処理装置200は、取り付け角度制御回路50に向け、所望のプローブ3の取り付け角度θαを設定するよう指示する。
【0135】
上述のようにカンチレバー4を配置すると、試料1表面から発生する磁界Hによって、プローブ3のカンチレバー4自由端に設けた磁性体チップ6が磁気的に相互作用することにより、カンチレバー4の振動振幅及び位相がAs及びφsに変化する。検出器9は、上記のカンチレバー4の振動振幅As及び位相φiを検出する。そして、ロックイン検出器40から、上記の試料1表面から所望の高さhでの磁界Hに、カンチレバー4の振動振幅As及び位相φsの情報が得られ、情報処理装置200にその情報を読み取る。
【0136】
次に、情報処理装置200は、上記の振動振幅As及び位相φsから振動振幅の変化量ΔAs(ΔA=As−As0)及び位相の変化量Δφs(Δφs=φs−φ0)を求める。また、情報処理装置200は、磁界変換係数メモリ70から所定の角度θα及び高さhでの磁界変換係数ηの情報を読み出し、ロックイン検出器40から得られたカンチレバー4の振動振幅の変化量ΔA及び位相の変化量Δφから、上記(4)式を用いて試料1表面の所定位置での磁界H(H=ηΔAs/θα又はH=ηΔφs/θα)を導出する。
【0137】
表面形状情報検出過程と同様に、所望のXY平面走査手順に従って、試料1表面の磁界Hを導出することができ、所望の高さhでのXY平面内での外界からの磁界に影響されない磁界Hの強度分布が得られる。得られた磁界情報は、磁界情報メモリ140に記録し、表示装置120に表示される。
【0138】
また、上述したカンチレバー4の取り付け角度θαに依存した磁界変換係数ηθを用いて、試料1表面の所定の(X,Y,Z)位置での磁界Hを検出することができる。これにより、試料1表面の所望の高さhでの磁界Hの方向、強度、及び磁界勾配の変化量をそれぞれ分離して検出することができる。
【0139】
情報処理装置200は、XYZ軸駆動装置7及び取り付け角度制御回路50に向け、カンチレバー4自由端の振動中心及び試料1表面からの高さhを変えずに、カンチレバー4の取り付け角度θαのみを変化させるように設定することができる。この時、情報処理装置200は、複数の取り付け角度θαに振動振幅の変化量ΔAs及び位相の変化量Δφsを磁界情報メモリ140に記録する。取り付け角度θαの制御終了後、磁界情報メモリ140に記録された取り付け角度θαに依存する上記振動振幅の変化量ΔAs及び位相の変化量Δφsの情報から、それぞれの変化量(∂ΔAs/∂θα又は∂Δφs/∂θα)が極小値あるいは最小値になる取り付け角度θαを検出する。これにより、上記(3)式における磁界勾配の変化量による力の項に影響されないで、試料1表面からの磁界Hの向きを決定することができる。
【0140】
また、このとき、上記振動振幅の変化量ΔAs及び位相の変化量Δφsの取り付け角度θαに対するゼロでない勾配(∂ΔAs/∂θα又は∂Δφs/∂θα)を求め、磁界変換係数導出過程で得られたカンチレバー4の取り付け角度θαに依存する磁界変換係数ηθを導入することで、上記(3)式における磁界勾配の変化量による力の項に影響されないで、磁界Hの強度(H=ηθ∂ΔAs/∂θα又はH=ηθ∂Δφs/∂θα)が得られ、磁界情報メモリ140に記録される。
【0141】
また、上記振動振幅の変化量ΔAs及び位相の変化量Δφsの取り付け角度θαに対する勾配がゼロの場合(∂ΔAs/∂θα=0又は∂Δφs/∂θα=0)、カンチレバー4自由端の振動方向と試料1表面からの磁界Hの向きとが平行になる。この時、同時に上記(3)式における磁界勾配の変化量による力の項が導出される。そして、磁界情報メモリ140に記録された所定XYZ位置での振動振幅の変化量ΔAs及び位相の変化量Δφsから、磁界勾配の変化量による寄与を差し引いた振動振幅の変化量ΔAs及び位相の変化量Δφsに対して、磁界変換係数メモリ70から読み出した磁界の方向にカンチレバー4の取り付け角度θαを変えた磁界変換係数ηθを導入することにより、所定XYZ位置での磁界Hの強度を導出することができる。
【0142】
以上の幾つかの手法により、試料1表面の任意の高さhでの磁界Hの方向、強度、磁界、及び勾配の変化量をそれぞれ分離して検出を行うことができる。
【0143】
また、加振器8により振動周波数fまたはその高調波成分である2fで加振されているカンチレバー4を用いて、試料1表面の磁界Hを検出してもよい。このとき、ロックイン検出回路40で振動周波数fまたは高調波成分2fの成分にカンチレバー4自由端の振動振幅As及び位相φsの情報を検出する。そして、情報処理装置200が振動振幅の変化量ΔAs及び位相の変化量Δφsを求める。次に、磁界変換係数メモリ70より予め導出しておいた周波数成分f及び2fにおける磁界変換係数ηを読み取り、試料1表面での磁界Hを導出する。これにより磁界検出装置300による磁界の検出精度を向上させることができる。
【0144】
また、磁界検出装置300を適用した磁界検出方法において、磁界変換係数導出過程において磁界変換係数ηが導出されれば、この磁界変換係数ηに関する情報をメモリとして記憶された上記磁界変換係数メモリ70のみを用いて試料1表面の磁界Hを検出することができる。
【0145】
これにより、上記磁界変換係数メモリ70があれば、磁界変換係数導出過程は必要なくなり、表面形状情報検出過程及び磁界検出過程のみにより、外界からの磁界に影響されない試料1表面の磁界Hを検出することができる。よって、より容易に試料1表面の磁界を検出することができる。
【0146】
また、磁界検出時に外界からの磁界の影響を受ける従来の磁界検出装置においても、上記磁界変換係数メモリ70を導入することにより、外界からの磁界の影響を受けない磁界の検出が可能になる。
【0147】
上記磁界変換係数メモリ70の中に、パラメータとして少なくとも磁界発生装置10の磁界発生用部材12の基準面11で発生される既知の磁界Hi、該磁界Hiに対応するカンチレバー4自由端の振動振幅の変化量ΔAi及び位相の変化Δφi、カンチレバー4の取り付け角度θα、磁界Hiの検出時の所望の高さh及び磁界変換係数ηが記憶されていることが好ましい。
【0148】
また上記パラメータにおいて、既知の磁界Hiが複数である場合、それぞれの磁界Hiに対応する磁界変換係数ηが磁界変換係数メモリ70に記憶されていることが好ましい。
【0149】
また、上記パラメータにおいて、カンチレバー4の取り付け角度θαが複数である場合、それぞれの取り付け角度θαに対応する磁界変換係数ηθが磁界変換係数メモリ70に記憶されていることが好ましい。
【0150】
また、本実施の形態にかかる磁界検出装置300は、従来の磁界検出装置で検出可能な磁気記録媒体や磁性膜等の表面の局所的な磁界を外界からの磁界の影響を受けずに測定することができる。また、従来の磁界検出装置では外界からの磁界の影響により検出できない集積回路の微小細線の電流から発生する磁界や高密度磁気記録がなされた磁気記録媒体上の磁気ビットを測定することが可能である。また、振動振幅の変化量または位相の変化量以外にも、例えば、周波数シフト量などによっても、試料表面の磁界を検出することも可能である。
【0151】
なお、本発明は、以下のように表現することも可能である。
【0152】
本発明にかかる磁界検出方法は、以上のように、所望の磁界を発生することができる磁界発生源を用いて、外界からの磁界の混在した磁界を外界からの磁界の混在しない磁界に変換するための磁界変換係数を導出する磁界変換係数導出過程と、上記磁界変換係数導出過程より得られた磁界変換係数を用いて試料表面の磁界を検出する磁気検出過程を有する構成である。
【0153】
本発明にかかる磁界検出方法は、以上のように、上記磁界検出過程の前に、上記試料表面の形状情報を検出する表面形状情報検出過程を有する構成である。これにより、試料表面上の磁性体チップの位置決めを簡略化することができるという効果を奏する。
【0154】
本発明にかかる磁界検出方法は、以上のように、上記磁界変換係数導出過程は、上記磁界発生源に対して所望の位置に上記磁性体チップを移動し、上記磁界発生源から所望の磁界を発生し、所望のカンチレバーの取り付け角度に対する、加振されたカンチレバーの振動振幅の変化量及び位相の変化量を検出し、上記磁界発生源から発生した磁界をHi、所望のカンチレバーの取り付け角度をθα、上記カンチレバーの振動振幅の変化量及び移送の変化量をΔAi及びΔφi、磁界変換係数をηとして、
Hi=η(ΔAi/θα)又はHi=η(Δφi/θα)―――(1)
上記式から、上記磁界Hiに対する磁界変換係数ηを導出する過程であり、
上記磁気検出過程は、試料表面に対して所望の位置に上記磁性体チップを移動し、上記取り付け角度に対する、加振されたカンチレバーの振動振幅の変化量及び位相の変化量を検出し、上記試料表面から発生した磁界をH、カンチレバーの取り付け角度をθα、上記カンチレバーの振動振幅の変化量及び移送の変化量をΔAs及びΔφs、磁界変換係数をηとして、
H=η(ΔAs/θα)又はH=η(Δφs/θα)―――(2)
上記式から、上記磁界変換係数ηを用いて上記試料表面から所望の位置での磁界Hを検出する過程である構成である。
【0155】
本発明にかかる磁界検出方法は、以上のように、上記磁界変換係数導出過程は、上記磁界発生源に対して所望の位置に上記磁性体チップを移動し、上記磁界発生源から所望の磁界を発生し、カンチレバーのカンチレバーの取り付け角度を変化させ、複数の取り付け角度に対する、加振されたカンチレバーの振動振幅の変化量及び位相の変化量を検出し、(1)式より上記磁界に対する磁界変換係数を導出する過程であり、上記磁気検出過程は、試料表面に対して所望の位置に上記磁性体チップを移動し、上記の複数の取り付け角度に対する、加振されたカンチレバーの振動振幅の変化量及び位相の変化量を検出し、(2)式より上記磁界変換係数を用いて上記試料表面から所望の位置での磁界を検出する過程である構成である。これにより、上記のカンチレバーの取り付け角度に依存した磁界変換係数を用いて、試料表面におけるカンチレバーの取り付け角度に依存した磁界を検出することができ、外界からの磁界の影響を排除した磁界を高精度で検出することができるという効果を奏する。
【0156】
本発明にかかる磁界検出方法は、以上のように、上記加振されたカンチレバーの振動周波数が高調波成分である構成である。これにより、上記の加振されたカンチレバーの振動振幅の変化量及び位相の変化量は、試料表面の磁界に対して大きくなる。したがって、試料表面での磁界検出精度を向上することができるという効果を奏する。
【0157】
本発明にかかる磁界検出方法は、以上のように、上記磁界変換係数導出過程は、上記磁界発生源に対して所望の位置に上記磁性体チップを移動し、上記磁界発生源から発生させる所望の磁界を変化させ、カンチレバーの所望の取り付け角度に対する、加振されたカンチレバーの振動振幅の変化量及び位相の変化量を検出し、上記の変化させた磁界に対する磁界変換係数を導出する過程である構成である。
【0158】
本発明にかかる磁界検出装置は、以上のように、試料を保持する試料台と、カンチレバー及び磁性体チップを備えたプローブと、上記カンチレバーを加振するための加振手段と、加振時のカンチレバーの撓みを検出する検出手段と、上記磁性体チップと上記試料台との相対位置を制御する位置制御手段を備え、試料表面の磁界と磁性体チップとの磁気力による、加振されたカンチレバーの振動振幅または位相の変化量を検出することにより、試料表面の磁界を検出する磁界検出装置において、磁界変換係数を用いて、試料表面上の外界からの磁界が混在した磁界を外界からの磁界が混在しない磁界に変換するための磁界変換手段を備える構成である。
【0159】
本発明にかかる磁界検出装置は、以上のように、上記磁界変換手段は、所望の高さで所望の磁界を発生する磁界発生源を備える構成である。
【0160】
本発明にかかる磁界検出装置は、以上のように、上記磁界発生源は、上記所定の高さに磁性体チップを移動させるための基準面を有し、加振時のカンチレバーにおける磁性体チップの振動領域で一定の磁界を発生する構成である。
【0161】
本発明にかかる磁界検出装置は、以上のように、上記磁界発生源に発生する一定の磁界を変化させることができる構成である。
【0162】
本発明にかかる磁界検出装置は、以上のように、上記磁界発生源は、コイルと、該コイルに電流を供給するための磁界発生電源と、基準面を有する磁界発生用部材とを備えている構成である。
【0163】
本発明にかかる磁界検出装置は、以上のように、上記試料表面に対するプローブの取り付け角度を調節する取り付け角度制御手段を備える構成である。
【0164】
これにより、外界からの磁界に対して上記磁性体チップで発生する磁界の向きの角度を変えることができる。磁界変換係数を導出するに際し、導出された磁界変換係数はカンチレバーの取り付け角度に依存する。試料表面の磁界を検出するに際し、上記のカンチレバーの取り付け角度に依存した磁界変換係数を用いて、試料表面におけるカンチレバーの取り付け角度に依存した磁界を検出することができ、外界からの磁界の影響を排除した磁界を高精度で検出することができる磁気検出装置を実現することができるという効果を奏する。
【0165】
本発明にかかる磁界検出装置は、以上のように、上記磁性体チップが保磁力の高い磁性体により構成されている構成である。
【0166】
本発明にかかる磁界検出装置は、以上のように、上記磁性体チップが柱状構造である構成である。
【0167】
本発明にかかる磁界検出装置は、以上のように、上記コイルと上記磁界発生用部材との間に断熱材が備えられている構成である。
【0168】
本発明にかかる磁界検出装置は、以上のように、上記部材と磁性体チップとを同電位に設定する帯電防止手段を有する構成である。
【0169】
本発明にかかる情報記憶器は、以上のように、上記磁界検出方法における磁界変換係数導出過程で得られた、磁界発生源から所望の高さで発生する磁界及びカンチレバーの取り付け角度に対応する磁界変換係数の情報を記憶構成である。
【0170】
本発明にかかる磁界検出方法は、以上のように、上記情報記録器を備え、試料を保持する試料台と、カンチレバー及び磁性体チップを備えたプローブと、上記カンチレバーを加振するための加振手段と、加振時のカンチレバーの撓みを検出する検出手段と、上記磁性体チップと上記試料台との相対位置を制御する位置制御手段を備え、試料表面の磁界と磁性体チップとの磁気力による、加振されたカンチレバーの振動振幅または位相の変化量を検出することにより、試料表面の磁界を検出する磁界検出装置を適用した磁界検出方法であって、試料表面に対して所望の位置に上記磁性体チップを移動し、所望のカンチレバーの取り付け角度に対する、加振されたカンチレバーの振動振幅の変化量及び位相の変化量を検出し、上記情報記憶器に記憶された磁界変換係数を用いて上記試料表面から所望の位置での磁界を検出する構成である。
【0171】
【発明の効果】
本発明にかかる磁界検出方法は、以上のように、プローブを加振させながら試料の磁界を検出する磁界検出方法であって、磁界発生源から発生させた所定の磁界による、加振されたプローブの変動パラメータの変化量に基づき、上記所定の磁界を発生させて検出される外界の磁界が混在する磁界を、外界の磁界が混在しない磁界に変換するための磁界変換係数を導出する磁界変換係数導出過程と、試料の磁界による、加振されたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出することを特徴としている。
【0172】
通常、プローブを用いて試料の磁界を検出すると、検出結果には、試料の磁界と、試料以外の外界からの磁界とが混在して検出される。したがって、試料のみの磁界を検出することができず、検出精度は低いものとなっていた。
【0173】
より具体的には、例えば、上記プローブがカンチレバーと磁性体チップとを備えており、加振させたカンチレバーを試料表面に移動させ、磁性体チップと試料表面の磁界との磁気力により発生するカンチレバーの振動振幅の変化量及び位相の変化量に基づいて、試料表面の磁界の検出するような磁界検出方法では、外界からの磁界と試料表面の磁界とが混在する磁界を検出してしまう。そのため、そのような磁界検出方法の磁界検出感度は外界からの磁界に依存し、この外界からの磁界が高いほど、磁界検出感度は低下する。
【0174】
上記の発明によれば、磁界変換係数導出過程において、所定の磁界発生時と非発生時とにおける加振させたプローブの変動パラメータの変化量に基づいて、磁界変換係数を算出する。すなわち、この過程では、まず、既知の磁界を発生させた時の、加振させたプローブの変動パラメータを検出する。この変動パラメータによって算出される磁界は、前述のように外界の磁界が混在している。しかしながら、この過程では、既知の磁界を発生させているので、検出された磁界と、既知の磁界とによって、磁界変換係数を算出できる。すなわち、磁界変換係数は、磁界発生源から発生する所定の磁界と共に検出される磁界発生源以外からの磁界から、磁界発生源以外の磁界を取り除き、磁界発生源からのみの磁界とするため係数である。
【0175】
続いて、磁界検出過程では、同様にして、試料存在下と非存在下における、加振させたプローブの変動パラメータの変化量を検出し、その検出結果と前記過程で算出した磁界変換係数とを用いれば、試料の磁界を検出できる。ここで検出した試料の磁界の検出結果は、磁界変換係数によって、外部の磁界が排除された試料表面のみの磁界である。したがって、上記の方法によれば、高い検出感度で試料表面の磁界を検出することができる。
【0176】
本発明にかかる磁界検出方法は、以上のように、上記磁界検出過程の前に、上記試料表面の形状情報を検出する表面形状情報検出過程を有することを特徴としている。
【0177】
上記の方法によれば、上記表面形状情報検出過程にて得られた試料表面の形状情報を用いて、磁界検出過程において磁界変換係数から、外界の磁界に影響されない試料表面のみの磁界を検出している。これにより、試料の表面形状をモニタリングしながら、試料の特定の領域の磁界を検出することができる。
【0178】
本発明にかかる磁界検出方法は、以上のように、上記磁界変換係数導出過程は、上記磁界発生源に対する上記プローブの所定の角度(θiα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、下記(1)式から上記磁界変換係数を導出し、
Hi=η(ΔAi/θiα)又はHi=η(Δφi/θiα)―――(1)
(式中、Hiは磁界発生源から発生させた磁界、θiαは磁界発生源に対するプローブの角度、ΔAi及びΔφiはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
上記磁界変換係数導出過程は、上記試料に対する上記プローブの所定の角度(θsα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、その検出結果と上記磁界変換係数とを用いて、下記(2)式から試料表面の磁界を検出することを特徴としている。
【0179】
H=η(ΔAs/θsα)又はH=η(Δφs/θsα)―――(2)
(式中、Hは試料表面から発生した磁界、θsαは試料に対するプローブの角度であってθiα=θsαであり、ΔAs及びΔφsはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)。
【0180】
上記の方法によれば、上記変動パラメータの変化量として、所定の振動周波数でプローブを振動させたときの振動振幅または位相の変化を検出し、磁界発生源または試料に対するプローブの取り付け角度θiαと、θsαとは同じ角度である。
【0181】
上記の方法によれば、上記磁界変換係数導出過程において、加振されたプローブに備えられた磁性体チップを所望の磁界Hiを発生する磁界発生源の所望の位置に、かつ磁界発生源に対するプローブの取り付け角度θiαで移動させたとき、上記加振されたプローブの振動振幅及び位相は、上記磁界Hiを発生していないときに比べ変化する。この変化量をそれぞれΔAs及びΔφsとすると、磁界変換係数ηは(1)式により導出することができる。
また、上記磁界検出過程では、加振されたプローブを試料表面の所望の位置に移動させる。このときの試料に対するプローブの取り付け角度をθsαとし、カンチレバーの振動振幅の変化量及び位相の変化量をΔAs及びΔφsとすると、上記磁界変換係数導出過程で導出された磁界変換係数ηを用いて、試料表面の磁界Hは、上記(2)式により導出される。
【0182】
これにより、磁界変換係数導出過程では、所望の位置及び所望のプローブの取り付け角度θiαにおける磁界変換係数ηを導出することができ、この磁界変換係数ηを用いて、上記磁界検出過程で試料表面における外界からの磁界に影響されない、試料表面のみの磁界を検出することができ、磁界の検出感度の向上できる。
【0183】
本発明にかかる磁界検出方法は、以上のように、上記磁界変換係数導出過程は、複数の上記角度(θiα)に対する上記磁界発生源の変化量を検出して、上記(1)式から複数の磁界変換係数を導出し、上記磁界検出過程は、上記複数の角度(θiα)に対応する複数の角度(θsα)に対する上記試料の上記変化量を検出し、その検出結果と上記複数の磁界変換係数とを用いて、上記(2)式から上記試料表面の磁界を検出することを特徴としている。
【0184】
上記の方法によれば、上記磁界変換係数導出過程において、所定の位置における磁界発生源に対するプローブの取り付け角度(θiα)を変化させ、それぞれの取り付け角度に対する加振されたプローブの振動振幅の変化量及び位相の変化量を検出し、複数の磁界変換係数を導出している。そして、上記磁界検出過程では、上記複数の取り付け角度(θiα)に対応する、試料に対するプローブの複数の取り付け角度(θsα)における、対する加振されたプローブの振動振幅の変化量及び位相の変化量を検出し、その検出結果と上記複数の磁界変換係数とを用いて試料表面の磁界を検出している。
【0185】
これにより、外界からの磁界に対して上記プローブで発生する磁界の向きの角度を変えることができる。上記磁界変換係数導出過程において、導出された磁界変換係数は磁界発生源に対するプローブの取り付け角度に依存する。それゆえ、上記取り付け角度に依存した磁界変換係数を用いて、試料表面に対するプローブの取り付け角度に依存した磁界を検出することができ、外界からの磁界の影響を排除した磁界を高精度で検出することができる。
【0186】
本発明にかかる磁界検出方法は、以上のように、上記磁界変換係数導出過程は、上記プローブを加振させる振動周波数の高調波成分における上記変化量を検出し、上記磁界変換係数を導出することを特徴としている。
【0187】
上記の方法によれば、ある振動周波数で加振したプローブのうち、高調波成分用いて導出した磁界変換係数を用いて、試料表面の磁界を検出している。
【0188】
これにより、上記の加振されたプローブの振動振幅の変化量及び位相の変化量は、試料表面の磁界に対して大きくなる。したがって、試料表面での磁界検出精度を向上することができる。
【0189】
本発明にかかる磁界検出方法は、以上のように、上記磁界変換係数導出過程は、上記所定の角度(θiα)に対して、上記磁界発生源から複数の磁界を発生させて、上記複数の磁界に対する上記変化量を検出し、上記磁界変換係数を導出することを特徴としている。
【0190】
上記の方法によれば、磁界発生源から複数の磁界を発生させて(すなわち、発生させる所定の磁界を変化させて)、加振されたプローブの振動振幅の変化量及び位相の変化量に対応した磁界変換係数を導出している。言い換えれば、上記磁界変換係数導出過程では、複数の磁界に対する、複数の磁界変換係数が導出される。
【0191】
これにより、磁界検出過程において、加振されたプローブの振動振幅の変化量及び位相の変化量に対応した、複数の磁界変換係数を用いることができ、外界からの磁界が排除された試料表面の磁界を高精度に検出することができる。
【0192】
本発明にかかる磁界検出装置は、以上のように、試料を保持する試料台と、磁界を検出するプローブと、上記プローブを加振する加振手段と、加振させたプローブの振動を検出する検出手段と、上記プローブと上記試料台との相対位置を制御する位置制御手段とを備え、プローブを加振させながら試料の磁界におけるプローブの変動パラメータの変化量に基づいて、試料の磁界を検出する磁界検出装置において、試料の磁界と共に検出される試料以外からの磁界を、試料の磁界のみに変換する磁界変換係数を導出する磁界変換手段を備えていることを特徴としている。
【0193】
上記の構成によれば、上記加振手段により加振されたプローブと試料表面の磁界との磁気力による、上記プローブの振動による変動パラメータの変化量(例えば、振動振幅の変化量及び位相の変化量)を上記検出手段により検出する磁界検出装置に、磁界変換手段を備えている。上記磁界変換手段は、試料の磁界と共に検出される試料以外からの磁界を、試料の磁界のみに変換する磁界変換係数を導出する。そして、検出手段は、この磁界変換係数を用いて、試料表面上の外界からの磁界が混在した磁界を外界からの磁界が混在しない磁界に変換することができる。
【0194】
これにより、外界からの磁界の影響を排除し、試料の磁界のみを検出することができる磁界検出装置を実現することができる。
【0195】
本発明にかかる磁界検出装置は、以上のように、上記磁界変換手段は、所望の高さで所望の磁界を発生する磁界発生源を備えることを特徴としている。
【0196】
これにより、上記の所望の磁界での、加振されたカンチレバーの振動振幅または位相の変化量を検出し、磁界変換係数を導出することができ、外界からの磁界の影響を排除することができる磁界検出装置を実現することができる。
【0197】
本発明にかかる磁界検出装置は、以上のように、加振されたプローブの振動領域で所定の磁界を発生することを特徴とすることを特徴としている。
【0198】
これにより、磁界発生源で発生する磁界は、上記プローブの振動領域で均一になる。したがって、上記磁界変換手段によって磁界変換係数を導出するに際し、磁界発生源からの磁界分布の変化による影響を排除することができ、外界からの磁界の影響を排除することができる磁界検出装置を実現することができる。
【0199】
本発明にかかる磁界検出装置は、以上のように、上記磁界変換手段は、複数の異なる磁界を発生することを特徴としている。
【0200】
上記の構成によれば、複数の異なる磁界のそれぞれについて、磁界変換係数を導出する。そして、加振されたプローブの振動によって変動する変動パラメータに対応した磁界変換係数を、複数導出することができる。したがって、試料表面の磁界を検出するに際し、例えば、試料表面の磁界での加振されたプローブの振動振幅の変化量及び位相の変化量に応じた複数の磁界変換係数を用いることができる。したがって、外界からの磁界の影響を排除することができる精度の高い磁界検出装置を実現することができる。
【0201】
本発明にかかる磁界検出装置は、以上のように、上記磁界変換手段は、コイルと、該コイルに電流を供給するための磁界発生電源と、上記基準面を有する磁界発生用部材とを備えていることを特徴としている。
【0202】
これにより、磁界発生電源が供給する電流の量により、磁界発生源で発生する磁界を調節することができる。したがって、磁界発生源で発生する磁界を変化させることができ、精度の高い磁界検出装置を実現することができる。
【0203】
本発明にかかる磁界検出装置は、以上のように、上記試料および磁界発生源に対するプローブの角度を調節する角度制御手段をさらに備えることを特徴としている。
【0204】
これにより、外界からの磁界に対して上記プローブで発生する磁界の向きの角度を変えることができる。導出された磁界変換係数は、プローブの取り付け角度に依存する。試料表面の磁界を検出する際に、上記のプローブの取り付け角度に依存した磁界変換係数を用いて、試料表面におけるプローブの取り付け角度に依存した磁界を検出することができる。それゆえ、外界からの磁界の影響を排除した磁界を高精度で検出することができる磁界検出装置を実現することができる。
【0205】
本発明にかかる磁界検出装置は、以上のように、上記プローブの保磁力は、上記試料の最大発生磁界よりも大きいことが好ましい。例えば、上記プローブが、保磁力の高い磁性体により構成されていることが好ましい。
【0206】
これにより、上記プローブが試料表面の磁界により磁化反転するのを防ぐことができ、プローブの保磁力付近まで試料表面の磁界を検出することができる。
【0207】
本発明にかかる磁界検出装置は、以上のように、上記プローブは、柱状構造の磁性体チップを備えることが好ましい。上記の構成によれば、柱状構造を有する磁性体チップの形状磁気異方性から、磁性体チップの磁化の配向分布が急峻になり磁界検出の分解能を向上することができる。
【0208】
本発明にかかる磁界検出装置は、以上のように、上記コイルと上記磁界発生用部材との間に断熱材を備えていることを特徴としている。これにより、磁界発生源から磁界を発生する時に、コイルから発生するジュール熱によって生じる上記基準面の熱膨張ドリフトによるカンチレバーの振動振幅及び位相のズレの影響を排除し、外界からの磁界の影響を排除した試料表面の磁界を検出することができる磁界検出装置を提供することができる。
【0209】
本発明にかかる磁界検出装置は、以上のように、上記磁界発生源は、上記磁界発生用部材と上記プローブとを同電位に設定する帯電防止手段を有することを特徴としている。これにより、試料表面の磁界を検出するに際し、静電力によるプローブの振動によって変動する変動パラメータ(例えば、振動振幅または位相)のズレの影響を排除し、外界からの磁界の影響を排除した試料表面の磁界を検出することができる磁界検出装置を提供することができる。
【0210】
本発明にかかる情報記憶器は、以上のように、上記磁界変換係数を記憶した記憶手段を少なくとも備えていることを特徴としている。これにより、上記磁界変換手段を備えていない従来の磁界検出装置においても、上記情報記憶器を備えることにより、外界からの磁界の影響を排除した試料表面の磁界を検出することができる磁界検出装置を提供することができる。
【0211】
本発明にかかる磁界検出方法は、以上のように、上記情報記録器に記憶された磁界変換係数を用いて試料の磁界を検出する磁界検出方法であって、試料の磁界による、加振させたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出することを特徴とすることを特徴としている。
【0212】
上記の方法によれば、上記情報記憶器に記録された磁界変換係数を用いた磁界検出方法において、その磁界変換係数を用いて試料表面の磁界を検出している。
【0213】
これにより、前述のように、予め、磁界発生源を用いて、磁界変換係数を導出することなく、外界からの磁界の影響を排除した試料表面の磁界をより容易に検出することができる。すなわち、従来の磁界検出装置に、上記情報記録器に記憶された磁界変換係数を読み込ませることにより、外界からの磁界の影響を排除した試料表面の磁界を検出することができる。
【図面の簡単な説明】
【図1】本発明にかかる実施の一形態の磁界検出装置の概略の構成を示す模式図である。
【図2】本発明にかかる実施の一形態の磁界変換係数導出過程を示す模式図である。
【図3】本発明にかかる実施の一形態の表面形状情報検出過程を示す模式図である。
【図4】本発明にかかる実施の一形態の磁界検出過程を示す模式図である。
【図5】磁界変換係数導出過程において、プローブを加振させながら部材の基準面に近づけたときのプローブの振動振幅と基準面からのZ軸高さとの関係を示したグラフである。
【図6】複数の既知の磁界と該磁界での加振されたカンチレバーの位相の変化量との関係を示すグラフである。
【図7】本発明にかかる実施の一形態の磁界検出装置の加振器の概略構成を示す断面図である。
【図8】本発明にかかる実施の一形態の磁界検出装置における、取り付け角度制御手段を備えた加振器の概略構成を示す断面図である。
【図9】本発明にかかる実施の一形態の磁界検出装置における、別の取り付け角度制御手段を備えた加振器の構成を示す断面図である。
【図10】柱状構造を有する磁性体チップを備えたプローブの概略構成を示す断面図である。
【符号の説明】
1 試料
2,102 試料台
3,103 プローブ
4,104 カンチレバー
5 支持基板
6 磁性体チップ
7 XYZ軸駆動装置(位置制御手段)
8,58,68 加振器(加振手段)
9 検出器(検出手段)
10 磁界発生装置(磁気発生源)
11 基準面
12 磁界発生用部材
13 コイル
14 磁界発生用電源
22,222,322 励振用圧電素子
30,230,330 励振波形発生回路
50 取り付け角度制御回路
80 角度制御用圧電素子(取り付け角度制御手段)
91 レーザ源
92 ポジションセンサ素子
93 撓み検出回路
110 表面形状情報メモリ
120 表示装置
140 磁界情報メモリ
200 情報処理装置
300 磁界検出装置
Claims (18)
- プローブを加振させながら試料の磁界を検出する磁界検出方法であって、
磁界発生源から発生させた所定の磁界による、加振されたプローブの変動パラメータの変化量に基づき、試料の磁界と試料以外の磁界とが混在する磁界を、試料の磁界のみに変換するための磁界変換係数を導出する磁界変換係数導出過程と、
試料の磁界による、加振されたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出する磁界検出過程とを有し、
上記磁界変換係数導出過程は、上記磁界発生源に対する上記プローブの所定の角度(θiα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、下記(1)式から上記磁界変換係数を導出し、
Hi=η(ΔAi/θiα)又はHi=η(Δφi/θiα)―――(1)
(式中、Hiは磁界発生源から発生させた磁界、θiαは磁界発生源に対するプローブの角度、ΔAi及びΔφiはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
上記磁界検出過程は、上記試料に対する上記プローブの所定の角度(θsα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、その検出結果と上記磁界変換係数とを用いて、下記(2)式
H=η(ΔAs/θsα)又はH=η(Δφs/θsα)―――(2)
(式中、Hは試料表面から発生した磁界、θsαは試料に対するプローブの角度であってθiα=θsαであり、ΔAs及びΔφsはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
から試料表面の磁界を検出することを特徴とする磁界検出方法。 - 上記磁界検出過程の前に、上記試料表面の形状情報を検出する表面形状情報検出過程を有することを特徴とする請求項1に記載の磁界検出方法。
- 上記プローブとして、柱状構造の磁性体チップを備えたプローブを用いることを特徴とする請求項1に記載の磁界検出方法。
- 上記磁界変換係数導出過程は、複数の上記角度(θiα)に対する上記磁界発生源の変化量を検出して、上記(1)式から複数の磁界変換係数を導出し、
上記磁界検出過程は、上記複数の角度(θiα)に対応する複数の角度(θsα)に対する上記試料の上記変化量を検出し、その検出結果と上記複数の磁界変換係数とを用いて、上記(2)式から上記試料表面の磁界を検出することを特徴とする請求項1に記載の磁界検出方法。 - 上記磁界変換係数導出過程は、上記プローブを加振させる振動周波数の高調波成分における上記変化量を検出し、上記磁界変換係数を導出することを特徴とする請求項1または4に記載の磁界検出方法。
- 上記磁界変換係数導出過程は、上記所定の角度(θiα)に対して、上記磁界発生源から複数の磁界を発生させて、上記複数の磁界に対する上記変化量を検出し、上記磁界変換係数を導出することを特徴とする請求項1に記載の磁界検出方法。
- 試料を保持する試料台と、試料の磁界を検出するプローブと、上記プローブを加振する加振手段と、加振したプローブの振動を検出する検出手段と、上記プローブと上記試料台との相対位置を制御する位置制御手段と、上記プローブと所定の距離で所定の磁界を発生する磁界発生源とを備え、プローブを加振させながら試料の磁界におけるプローブの変動パラメータの変化量に基づいて、試料の磁界を検出する磁界検出装置において、
磁界発生源から発生させた所定の磁界による、加振されたプローブの変動パラメータの変化量に基づき、試料の磁界と試料以外の磁界とが混在する磁界を、試料の磁界のみに変換するための磁界変換係数を導出する磁界変換係数導出部と、
試料の磁界による、加振されたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出する磁界検出部とをさらに備え、
上記磁界変換係数導出部は、上記磁界発生源に対する上記プローブの所定の角度(θiα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、下記(1)式から上記磁界変換係数を導出し、
Hi=η(ΔAi/θiα)又はHi=η(Δφi/θiα)―――(1)
(式中、Hiは磁界発生源から発生させた磁界、θiαは磁界発生源に対するプローブの角度、ΔAi及びΔφiはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
上記磁界検出部は、上記試料に対する上記プローブの所定の角度(θsα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、その検出結果と上記磁界変換係数とを用いて、下記(2)式
H=η(ΔAs/θsα)又はH=η(Δφs/θsα)―――(2)
(式中、Hは試料表面から発生した磁界、θsαは試料に対するプローブの角度であってθiα=θsαであり、ΔAs及びΔφsはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
から試料表面の磁界を検出することを特徴とする磁界検出装置。 - 試料の磁界を検出するプローブと、上記プローブを加振する加振手段と、加振したプローブの振動を検出する検出手段と、上記プローブと所定の距離で所定の磁界を発生する磁界発生源とを備え、
プローブを加振させながら試料の磁界を検出する磁界検出装置であって、
磁界発生源から発生させた所定の磁界による、加振されたプローブの変動パラメータの変化量に基づき、試料の磁界と試料以外の磁界とが混在する磁界を、試料の磁界のみに変換するための磁界変換係数を導出する磁界変換係数導出部と、
試料の磁界による、加振されたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出する磁界検出部とをさらに備え、
上記磁界変換係数導出部は、上記磁界発生源に対する上記プローブの所定の角度(θiα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、下記(1)式から上記磁界変換係数を導出し、
Hi=η(ΔAi/θiα)又はHi=η(Δφi/θiα)―――(1)
(式中、Hiは磁界発生源から発生させた磁界、θiαは磁界発生源に対するプローブの角度、ΔAi及びΔφiはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
上記磁界検出部は、上記試料に対する上記プローブの所定の角度(θsα)における、上記加振されたプローブの振動振幅の変化量または位相の変化量を検出し、その検出結果と上記磁界変換係数とを用いて、下記(2)式
H=η(ΔAs/θsα)又はH=η(Δφs/θsα)―――(2)
(式中、Hは試料表面から発生した磁界、θsαは試料に対するプローブの角度であってθiα=θsαであり、ΔAs及びΔφsはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
から試料表面の磁界を検出することを特徴とする磁界検出装置。 - 上記磁界発生源は、加振されたプローブの振動領域で所定の磁界を発生することを特徴とする請求項7または8に記載の磁界検出装置。
- 上記磁界発生源は、複数の異なる磁界を発生することを特徴とする請求項7または8に記載の磁界検出装置。
- 上記磁界発生源は、コイルと、該コイルに電流を供給するための磁界発生電源と、上記基準面を有する磁界発生用部材とを備えていることを特徴とする請求項9に記載の磁界検出装置。
- さらに、上記試料および磁界発生源に対するプローブの角度を調節する角度制御手段を備えることを特徴とする請求項7または8に記載の磁界検出装置。
- 上記プローブの保磁力は、上記試料の最大発生磁界よりも大きいことを特徴とする請求項7または8に記載の磁界検出装置。
- 上記プローブは、柱状構造の磁性体チップを備えることを特徴とする請求項7または8に記載の磁界検出装置。
- 上記磁界発生源は、上記コイルと上記磁界発生用部材との間に、断熱材を備えていることを特徴とする請求項11に記載の磁界検出装置。
- 上記磁界発生源は、上記磁界発生用部材と上記プローブとを同電位に設定する帯電防止手段を有することを特徴とする請求項11に記載の磁界検出装置。
- 磁界検出装置での計算のために、下記(1)式から導出された磁界変換係数を記憶しており、
Hi=η(ΔAi/θiα)又はHi=η(Δφi/θiα)―――(1)
(式中、Hiは磁界発生源から発生させた磁界、θiαは磁界発生源に対するプローブの角度、ΔAi及びΔφiはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
磁界検出装置で、下記(2)式
H=η(ΔAs/θsα)又はH=η(Δφs/θsα)−−−(2)
(式中、Hは試料表面から発生した磁界、θsαは試料に対するプローブの角度であってθiα=θsαであり、ΔAs及びΔφsはそれぞれカンチレバーの振動振幅の変化量及び位相の変化量、ηは磁界変換係数である。)
から試料表面の磁界を計算するために用いられることを特徴とする情報記憶器。 - 請求項17に記載の情報記憶器に記憶された磁界変換係数を用いて試料の磁界を検出する磁界検出方法であって、
試料の磁界による、加振させたプローブの変動パラメータの検出結果と、上記磁界変換係数とを用いて、試料の磁界を検出することを特徴とする磁界検出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003192391A JP4050194B2 (ja) | 2003-07-04 | 2003-07-04 | 磁界検出方法、磁界検出装置、および情報記憶器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003192391A JP4050194B2 (ja) | 2003-07-04 | 2003-07-04 | 磁界検出方法、磁界検出装置、および情報記憶器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005024471A JP2005024471A (ja) | 2005-01-27 |
JP4050194B2 true JP4050194B2 (ja) | 2008-02-20 |
Family
ID=34189709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003192391A Expired - Fee Related JP4050194B2 (ja) | 2003-07-04 | 2003-07-04 | 磁界検出方法、磁界検出装置、および情報記憶器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4050194B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5592841B2 (ja) * | 2011-06-16 | 2014-09-17 | 株式会社日立製作所 | 磁気力顕微鏡及びそれを用いた磁場観察方法 |
JP2014016207A (ja) * | 2012-07-06 | 2014-01-30 | Ibaraki Univ | 電流計測装置 |
CN106093476B (zh) * | 2016-06-15 | 2019-05-10 | 北京原力辰超导技术有限公司 | 一种扫描磁探针显微镜 |
KR102242113B1 (ko) * | 2019-10-23 | 2021-04-20 | 재단법인대구경북과학기술원 | 3축 자기장 측정 장치 |
-
2003
- 2003-07-04 JP JP2003192391A patent/JP4050194B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005024471A (ja) | 2005-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5319977A (en) | Near field acoustic ultrasonic microscope system and method | |
KR100961571B1 (ko) | 주사 탐침 현미경 | |
JP2730673B2 (ja) | 超音波を導入するカンチレバーを用いた物性の計測方法および装置 | |
EP0410131B1 (en) | Near-field lorentz force microscopy | |
US6181131B1 (en) | Magnetic resonance force microscopy with oscillator actuation | |
JPH10332715A (ja) | 単一パス2重振幅モード走査力顕微鏡による場の検出 | |
US8869311B2 (en) | Displacement detection mechanism and scanning probe microscope using the same | |
US5652377A (en) | Scanning method with scanning probe microscope | |
JP3926990B2 (ja) | 磁気ヘッド測定装置及び同装置に適用する測定方法 | |
US8726410B2 (en) | Atomic force microscopy system and method for nanoscale measurement | |
JP2002063706A (ja) | 磁気抵抗効果型素子の特性測定装置及び方法、磁気再生ヘッドの特性測定装置及び方法 | |
JP4050194B2 (ja) | 磁界検出方法、磁界検出装置、および情報記憶器 | |
EP0872707A1 (en) | Apparatus for measuring exchange force | |
JPH09218213A (ja) | 極微小磁区観察方法と極微小磁区観察装置 | |
JP2001108601A (ja) | 走査型プローブ顕微鏡 | |
JP2014134523A (ja) | 磁性微粒子の磁気特性評価装置および磁気特性評価方法 | |
JP2576826B2 (ja) | 表面構造を画像化するセンサ | |
JP2001255258A (ja) | 磁界測定装置 | |
JPH11160334A (ja) | 走査型プローブ顕微鏡の探針および力検出方法 | |
JP3063351B2 (ja) | 原子間力顕微鏡用プローブ、原子間力顕微鏡、原子間力検出方法、原子間力顕微鏡用プローブの製造方法 | |
JP3597787B2 (ja) | 磁気記録ヘッド測定装置及び磁気記録ヘッド測定方法 | |
JP2012053956A (ja) | 磁気ヘッド素子評価装置及び磁気ヘッド素子評価方法 | |
JPH06323845A (ja) | 走査型力顕微鏡用薄膜式力検出プローブ | |
JP3376374B2 (ja) | プローブ顕微鏡における試料表面のイメージ作成方法 | |
JPH09264897A (ja) | 走査型プローブ顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070725 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4050194 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |