JP4048985B2 - Manufacturing method of high-strength steel sheet - Google Patents

Manufacturing method of high-strength steel sheet Download PDF

Info

Publication number
JP4048985B2
JP4048985B2 JP2003070512A JP2003070512A JP4048985B2 JP 4048985 B2 JP4048985 B2 JP 4048985B2 JP 2003070512 A JP2003070512 A JP 2003070512A JP 2003070512 A JP2003070512 A JP 2003070512A JP 4048985 B2 JP4048985 B2 JP 4048985B2
Authority
JP
Japan
Prior art keywords
strength
less
toughness
steel
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003070512A
Other languages
Japanese (ja)
Other versions
JP2004277809A (en
Inventor
信行 石川
茂 遠藤
豊久 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003070512A priority Critical patent/JP4048985B2/en
Publication of JP2004277809A publication Critical patent/JP2004277809A/en
Application granted granted Critical
Publication of JP4048985B2 publication Critical patent/JP4048985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管や圧力容器等の製造に用いるAPI X80グレード以上の強度を有する高強度鋼板に関し、特に、溶接後に行う応力除去焼鈍(SR)後においても優れた強度と靱性を有する耐SR特性に優れた高強度鋼板の製造方法に関する。
【0002】
【従来の技術】
石油またはガスの掘削用等に用いられるライザー鋼管は円周溶接によって合金元素量が非常に多い鍛造品(例えばコネクタ等)を溶接する場合が多い。また、発電プラント等の配管用鋼管やその他強度部材として用いられる鋼材または鋼板はCr―Mo鋼等と溶接接合される場合が多い。このような場合には、通常、溶接による残留応力除去を目的としてSR処理(応力除去焼鈍)が施されるが、熱処理によって強度低下や靱性低下を招くことが懸念されるため、SR処理が施される鋼管や鋼材に対してはSR処理後も強度、靱性が確保されることが要求されている。また近年、圧力上昇による操業効率向上や素材コストの削減から、API X80グレード以上の高強度鋼管または鋼材に対する要求も高まっている。
このような要求に対して、API X80グレード以上の耐SR特性に優れた鋼板または鋼管が知られている(例えば、特許文献1、特許文献2参照。)。
【0003】
【特許文献1】
特開平11−50188号公報
【0004】
【特許文献2】
特開2001−158939号公報
【0005】
【発明が解決しようとする課題】
しかし、特許文献1に記載の鋼板はSR処理による強度低下をSR時のCr炭化物の析出によって補っているため、多量のCrの添加が必要となっており、素材コストが高いだけでなく、溶接性や靱性の低下が問題となっていた。一方、特許文献2に記載の鋼管はシーム溶接金属の特性改善を主眼においており、母材に対しては特段の配慮がなされておらず、SR処理による母材強度の低下がさけられないため、制御圧延や加速冷却によってSR前の強度を高めておく必要があった。
【0006】
したがって本発明の目的は、このような従来技術の課題を解決し、API X80グレード以上の高強度鋼板であって、多量の合金元素の添加なしに、優れた耐SR特性を示す高強度鋼板を提供することにある。
【0007】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
)質量%で、C:0.03%以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2%、Mo:0.1〜0.5%、Al:0.08%以下を含有し、さらにTi:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.1%の1種又は2種以上を含有し、残部Feおよび不可避不純物からなり、下記(1)式で示されるCeq値が0.32以上であり、さらに、原子%でのMo、Ti、Nb、Vの合計量が0.14%以上で、かつ原子%でのC量との比である[C]/([Mo]+[Ti]+[Nb]+[V])が0.6〜1.43である鋼を、1100〜1300℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、26℃/s以上の冷却速度で400℃未満の温度まで加速冷却を行うことを特徴とする、高強度鋼板の製造方法。
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5・・・・(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
)さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.0035%の中から選ばれる1種又は2種以上を含有することを特徴とする(A)に記載の高強度鋼板の製造方法。
【0008】
【発明の実施の形態】
本発明者らは耐SR特性向上と高強度の両立のために、SR処理による鋼材のミクロ組織変化について詳細な検討を行った。一般に溶接鋼管用の鋼板や溶接構造用の鋼板は溶接性の観点から化学成分が厳しく制限されるため、X65グレード以上の高強度鋼板は熱間圧延後に加速冷却されて製造されている。そのため、ミクロ組織はベイナイト主体か、またはベイナイト中にマルテンサイト(MA)を含んだ組織となるが、このような組織の鋼にSR処理を施すと、ベイナイト中のセメンタイト組織またはマルテンサイトが焼戻しにより分解するため強度低下はさけられない。また、焼戻しによる強度低下を補うために、SR時にCr炭化物等を析出させる方法があるが、炭化物が容易に粗大化するために靭性低下を生じてしまう。このように変態強化によって、SR後でも強度、靭性を確保することには限界があることが明白である。そこで、本発明者らは優れた耐SR特性が得られるミクロ組織形態に関して鋭意研究を行った結果、以下のa)c)の知見を得るに至った。
【0009】
a)、加速冷却により得られるベイナイト組織がSR処理によって軟化しても、SR処理によって微細でかつ安定な析出物を析出させれば、大幅な靱性低下を招かずに、SR後の強度を確保できる。SR処理によって析出強化を得るためには、高冷速の加速冷却を行いセメンタイトの析出を抑制しCが過飽和に固溶したベイナイト組織とし、そして、SR処理時に鋼中の炭素を熱的に安定な微細炭化物として分散析出させることによって強化すればよい。
【0010】
b)、鋼中で析出する種々の析出物について検討した結果、Ti、Nb、Vのいずれか一種または二種以上と、Moとからなる複合炭化物は適正な成分バランスの元では、10nm以下の極めて微細な析出物となり、かつ熱的にも安定である。
【0011】
c)、上記b)のTi、Nb、Vの一種または二種以上と、Moとからなる複合炭化物が分散析出した鋼は、析出強化によって高強度が得られるだけでなく、700℃程度以下の加熱によっても微細炭化物が分解または粗大化することが無いため、SR処理後もその高い強度・靱性が維持されるものである。
【0012】
以下、本発明の高強度鋼板の製造方法について詳しく説明する。まず、本発明の高強度鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。
【0013】
C:0.03%以上、0.07%未満とする。Cは炭化物として析出強化に寄与する元素であるが、0.03%未満では十分な強度が確保できず、0.07%以上では靭性を劣化させるため、C含有量を0.03%以上、0.07%未満に規定する。
【0014】
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
【0015】
Mn:0.5〜2%とする。Mnは強度、靭性のため添加するが、0.5%未満ではその効果が十分でなく、2%を超えると再加熱時にマルテンサイト(MA)を生じるためSR処理後の強度が劣化するだけでなく、溶接性が劣化するため、Mn含有量を0.5〜2%に規定する。
【0016】
Al:0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。望ましくは0.01%〜0.08%である。
【0017】
Mo:0.1〜0.5%とする。Moは本発明において重要な元素であり、0.1%以上含有させることで、加速冷却時のベイナイト変態による強度上昇に寄与する。また、SR時には、TiまたはNb、Vとの微細な複合析出物を形成するため、ベイナイトの焼戻しによる強度低下を補うことで、SR後の強度保持または強度上昇に大きく寄与する。しかし、0.5%を超えると溶接熱影響部靭性の劣化を招くことから、Mo含有量を0.1〜0.5%に規定する。
【0018】
Ti:0.005〜0.04%とする。Tiは0.005%以上添加することで、SR時にMoとの微細な複合析出物を形成するため、ベイナイトの焼戻しによる強度低下を補うことで、SR後の強度保持または強度上昇に大きく寄与する。しかし、0.04%を超える添加は溶接熱影響部靭性及び母材靱性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。
【0019】
Nb:0.005〜0.07%とする。Nbは組織の微細粒化により靭性を向上させる。また、SR時には、Moとの微細な複合析出物を形成するため、ベイナイトの焼戻しによる強度低下を補うことで、SR後の強度保持または強度上昇に大きく寄与する。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。
【0020】
V:0.005〜0.1%とする。VもSR時にMoとの微細な複合析出物を形成するため、ベイナイトの焼戻しによる強度低下を補うことで、SR後の強度保持または強度上昇に大きく寄与する。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.005〜0.1%に規定する。
【0021】
Ceq値:0.32以上とする。
【0022】
Ceq値は合金元素の質量%を用いて下記(1)式で示されるが、このCeq値が0.32未満ではAPI X80グレードの高強度が得られないため、0.32以上に規定する。溶接性・靭性の観点からは、Ceq値の上限を0.55とすることが好ましい。下記(1)式の元素記号は各含有元素の質量%を示す。
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5・・・・(1)
原子%でのMo、Ti、Nb、Vの合計量:0.14%以上とする。Mo、Ti、Nb、Vは微細炭化物として析出強化に寄与し、さらにSR後の強度保持に有効な元素である。析出強化量はこれらの原子%での合計量に従って増加するが、0.14%未満ではその効果が不足し十分な強度が得られないため、Mo、Ti、Nb、Vの原子%での合計量は0.14%以上とする。なお、上記元素の原子%での合計量は、鋼に含まれるMo、Ti、Nb、Vの原子数の和と、Fe、Mo、Ti、Nb、Vおよび他の合金元素の全原子数との比で求められるが、Mo、Ti、Nb、Vの質量%での含有量を用いた下記(2)式により求めることもできる。下記(2)式の元素記号は各含有元素の質量%である。
(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)/(100/55.85)×100・・・・(2)
さらに、C量と、Mo、Ti、Nb、Vとの合計量の比である、[C]/([Mo]+[Ti]+[Nb]+[V]):0.6〜1.7とする。ここで、[C]、[Mo]、[Ti]、[Nb]、[V]はその成分の原子%の含有量(at%)を示す。本発明鋼板における高強度化はMoとTi、Nb、Vを含む複合析出物(炭化物)によるものである。この複合析出物による析出強化を有効に利用するためには、C量と炭化物形成元素であるMo、Ti、Nb、V量の関係が重要であり、これらの元素を適正なバランスのもとで添加する事によって、熱的に安定でかつ非常に微細な複合析出物を得ることができる。このときCの原子%での含有量と、Mo、Ti、Nb、V量の原子%での含有量の合計量の比である[C]/([Mo]+[Ti]+[Nb]+[V])の値は、0.6〜1.7とする。[C]/([Mo]+[Ti]+[Nb]+[V])の値が0.6未満または1.7を超える場合はいずれかの元素量が過剰であり、本発明の複合析出物以外の硬化組織が過度に形成されて、耐SR特性の劣化や、靭性の劣化を招くため、[C]/([Mo]+[Ti]+[Nb]+[V])の値を0.6〜1.7に規定する。なお、質量%の含有量を用いる場合は、以下の(3)式を用いて計算して、その値を0.6〜1.7とする。
【0023】
(C/12.01)/(Mo/95.9+Nb/92.91+V/50.94+Ti/47.9)・・・・(3)
本発明では鋼板の強度をさらに改善する目的で、以下に示すCu,Ni,Cr、Caの1種または2種以上を含有してもよい。
【0024】
Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
【0025】
Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
【0026】
Cr:0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.5%を上限とする。
【0027】
Ca:0.0005〜0.0035%とする。Caは硫化物系介在物の形態制御による靭性向上に有効な元素であるが、0.0005%未満ではその効果が十分でなく、0.0035%をこえて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性を劣化させるので、添加する場合はCa含有量を0.0005〜0.0035%に規定する。
【0028】
上記以外の残部は実質的にFeからなる。残部が実質的にFeからなるとは、本発明の作用効果を無くさない限り、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。
【0029】
次に、上記組成の鋼を用いた本発明の高強度鋼板の製造方法について説明する。
【0030】
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、加熱温度:1100〜1300℃、圧延終了温度:750℃以上で熱間圧延を行い、その後20℃/s以上の冷却速度で400℃未満の温度まで加速冷却を行うことで、Cが過飽和に固溶したベイナイト相組織とし、SR処理時にMoとTi、Nb、Vの1種または2種以上からなる微細な複合炭化物を分散析出することができる。ここで、温度は鋼板の平均温度とする。以下、各製造条件について詳しく説明する。
【0031】
加熱温度:1100〜1300℃とする。加熱温度が1100℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると靭性が劣化するため、1100〜1300℃とする。
【0032】
圧延終了温度:750℃以上とする。圧延終了温度が低いと、加速冷却前に軟質なフェライト相が生成し強度が低下するため、圧延終了温度を750℃以上とする。
【0033】
圧延終了後、直ちに20℃/s以上の冷却速度で冷却する。冷却速度が20℃/s未満では軟質なフェライト相やセメンタイトの析出を生じるため、加速冷却後に十分な強度が得られない。また、セメンタイトの析出によって、固溶C量が減少するため、SR処理時の微細炭化物析出による強化が得られない。よって、圧延終了後の冷却速度を20℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。
【0034】
冷却停止温度:400℃未満とする。本発明では圧延終了後加速冷却によりCが過飽和に固溶したベイナイト単相とすることによって、SR処理時に微細析出物による析出強化が得られる。しかし、冷却停止温度が400℃以上では、ベイナイト変態が完了しないため、冷却停止後の空冷時にパーライトが析出し加速冷却後に十分な強度が得られないだけでなく、固溶C量が不足しSR処理での微細炭化物の析出が不十分となり、SR後の強度が得られない。よって、加速冷却停止温度を400℃未満に規定する。
【0035】
【実施例】
表1に示す化学成分の鋼(鋼種A〜L)を連続鋳造法によりスラブとし、これを用いて板厚19mmの厚鋼板(No.1〜17)を製造した。
【0036】
【表1】

Figure 0004048985
【0037】
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行った。各鋼板(No.1〜17)の製造条件を表2に示す。
【0038】
以上のようにして製造した鋼板の引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。降伏強度551MPa以上、引張強度620MPa以上を本発明に必要な強度とした。溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。そして、−10℃でのシャルピー吸収エネルギーが100J以上の物を良好とした。
【0039】
また耐SR特性を調査するため、各鋼板をガス雰囲気炉を用いてSR処理を行った。このときの熱処理条件は650℃で2時間とし、その後炉から取り出し空冷によって室温まで冷却した。そして、SR処理前後の鋼板の引張特性及びシャルピー衝撃特性を測定した。測定結果を表2に併せて示す。
【0040】
【表2】
Figure 0004048985
【0041】
表2において、本発明例であるNo.1〜9はいずれも、化学成分および製造方法が本発明の範囲内であり、SR処理の前後で、降伏強度551MPa以上、引張強度620MPa以上の高強度であり、さらに母材靱性及び溶接熱影響部靭性も良好であった。
【0042】
No.10〜12は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、微細炭化物が分散析出しない場合があり、強度不足であった。No.13〜17は化学成分が本発明の範囲外であるので、十分な強度が得られないか、溶接熱影響部靭性が劣っていた。
【0043】
【発明の効果】
以上述べたように、本発明によれば、API X80グレード以上の高強度を有し、かつSR処理後も強度靭性の優れた鋼板が得られる。このため、特にSR処理を行う可能性のある鋼管や圧力容器等への利用に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel sheet having a strength of API X80 grade or higher used in the manufacture of steel pipes, pressure vessels, etc., and in particular, SR resistance having excellent strength and toughness even after stress relief annealing (SR) performed after welding. The present invention relates to a method for producing a high-strength steel sheet having excellent resistance.
[0002]
[Prior art]
Riser steel pipes used for oil or gas drilling or the like often weld forged products (for example, connectors) having a very large amount of alloy elements by circumferential welding. In addition, steel pipes for piping such as power plants and other steel members or steel plates used as strength members are often welded to Cr—Mo steel or the like. In such a case, SR treatment (stress relief annealing) is usually performed for the purpose of removing residual stress by welding. However, since there is a concern that the heat treatment may cause a decrease in strength or toughness, the SR treatment is performed. Steel pipes and steel materials that are used are required to have strength and toughness even after SR treatment. In recent years, the demand for high-strength steel pipes or steel materials of API X80 grade or higher is increasing due to the improvement of operational efficiency and the reduction of material costs due to pressure increase.
In response to such demands, steel plates or steel pipes having excellent SR resistance characteristics higher than API X80 grade are known (see, for example, Patent Document 1 and Patent Document 2).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-50188
[Patent Document 2]
Japanese Patent Laid-Open No. 2001-158939
[Problems to be solved by the invention]
However, since the steel sheet described in Patent Document 1 compensates for the strength reduction due to the SR treatment by precipitation of Cr carbide during SR, it is necessary to add a large amount of Cr and not only the material cost is high, but also welding. Decrease in toughness and toughness has been a problem. On the other hand, the steel pipe described in Patent Document 2 focuses on improving the characteristics of the seam weld metal, and no special consideration is given to the base material, and a reduction in the base material strength due to the SR treatment cannot be avoided. It was necessary to increase the strength before SR by controlled rolling and accelerated cooling.
[0006]
Therefore, the object of the present invention is to solve such problems of the prior art and to provide a high strength steel plate of API X80 grade or higher, which exhibits excellent SR resistance without adding a large amount of alloying elements. It is to provide.
[0007]
[Means for Solving the Problems]
The features of the present invention for solving such problems are as follows.
( A ) By mass%, C: 0.03% or more, less than 0.07%, Si: 0.01-0.5%, Mn: 0.5-2%, Mo: 0.1-0.5 %, Al: 0.08% or less, Ti: 0.005-0.04%, Nb: 0.005-0.07%, V: 0.005-0.1% Containing two or more, consisting of the balance Fe and inevitable impurities, the Ceq value represented by the following formula (1) is 0.32 or more, and the total amount of Mo, Ti, Nb, V in atomic% is [C] / ([Mo] + [Ti] + [Nb] + [V]), which is a ratio of 0.14% or more and the amount of C in atomic%), is 0.6 to 1.43 . The steel is heated to a temperature of 1100 to 1300 ° C., hot rolled at a rolling end temperature of 750 ° C. or higher, and then subjected to accelerated cooling to a temperature of less than 400 ° C. at a cooling rate of 26 ° C./s or higher. A method for producing a high-strength steel sheet characterized by the following.
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5 (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
( B ) Further, by mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0.0005 to 0.0035% Or the manufacturing method of the high strength steel plate as described in (A) characterized by containing 2 or more types.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have made detailed studies on changes in the microstructure of steel materials due to SR treatment in order to achieve both improved SR resistance and high strength. Generally, the chemical composition of steel plates for welded steel pipes and steel plates for welded structures is severely limited from the viewpoint of weldability, so high-strength steel plates of grade X65 and higher are manufactured by accelerated cooling after hot rolling. Therefore, the microstructure is mainly bainite or a structure containing martensite (MA) in bainite. However, when SR treatment is applied to steel having such a structure, the cementite structure or martensite in bainite is tempered. Because it decomposes, strength reduction cannot be avoided. Further, in order to compensate for the strength reduction due to tempering, there is a method of depositing Cr carbide or the like at the time of SR. However, since the carbide is easily coarsened, the toughness is reduced. Thus, it is clear that there is a limit to securing strength and toughness even after SR by transformation strengthening. Therefore, as a result of intensive studies on the microstructure structure capable of obtaining excellent SR resistance, the inventors have obtained the following findings a) to c).
[0009]
a) Even if the bainite structure obtained by accelerated cooling is softened by SR treatment, if a fine and stable precipitate is precipitated by SR treatment, the strength after SR is secured without causing a significant decrease in toughness. it can. In order to obtain precipitation strengthening by SR treatment, accelerated cooling at a high cooling rate is performed to suppress precipitation of cementite to form a bainite structure in which C is supersaturated, and carbon in the steel is thermally stable during SR treatment. What is necessary is just to strengthen by carrying out the dispersion | distribution precipitation as a fine fine carbide | carbonized_material.
[0010]
b) As a result of examining various precipitates precipitated in steel, a composite carbide composed of one or more of Ti, Nb, and V and Mo and Mo is 10 nm or less based on an appropriate balance of components. It becomes a very fine precipitate and is also thermally stable.
[0011]
c) Steel in which a composite carbide composed of one or more of Ti, Nb, and V of b) and Mo and Mo is dispersed and precipitated not only has high strength by precipitation strengthening, but also has a temperature of about 700 ° C. or less. Since the fine carbides are not decomposed or coarsened even by heating, the high strength and toughness are maintained even after the SR treatment.
[0012]
Hereinafter, the manufacturing method of the high strength steel plate of this invention is demonstrated in detail. First, chemical components of the high-strength steel plate of the present invention will be described. In the following description, all units represented by% are mass%.
[0013]
C: Not less than 0.03% and less than 0.07%. C is an element that contributes to precipitation strengthening as a carbide. However, if it is less than 0.03%, sufficient strength cannot be ensured, and if it is 0.07% or more, the toughness deteriorates, so the C content is 0.03% or more. It is specified to be less than 0.07%.
[0014]
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%.
[0015]
Mn: 0.5 to 2%. Mn is added for strength and toughness, but the effect is not sufficient if it is less than 0.5%, and if it exceeds 2%, martensite (MA) is generated during reheating, so the strength after SR treatment only deteriorates. However, since the weldability deteriorates, the Mn content is regulated to 0.5 to 2%.
[0016]
Al: 0.08% or less. Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.08% or less. Desirably, the content is 0.01% to 0.08%.
[0017]
Mo: 0.1 to 0.5%. Mo is an important element in the present invention. By containing 0.1% or more, Mo contributes to an increase in strength due to bainite transformation during accelerated cooling. Further, at the time of SR, fine composite precipitates with Ti, Nb, and V are formed, so that the strength reduction due to tempering of bainite is compensated for, thereby greatly contributing to strength retention or strength increase after SR. However, if it exceeds 0.5%, the weld heat-affected zone toughness is deteriorated, so the Mo content is specified to be 0.1 to 0.5%.
[0018]
Ti: 0.005 to 0.04%. By adding 0.005% or more of Ti, fine composite precipitates with Mo are formed at the time of SR. Therefore, by making up for the decrease in strength due to tempering of bainite, it greatly contributes to maintaining strength or increasing strength after SR. . However, since addition exceeding 0.04% causes deterioration of weld heat affected zone toughness and base metal toughness, the Ti content is specified to be 0.005 to 0.04%.
[0019]
Nb: 0.005 to 0.07%. Nb improves toughness by refining the structure. In addition, during SR, fine composite precipitates with Mo are formed, so that the decrease in strength due to tempering of bainite is compensated for, thereby greatly contributing to strength retention or strength increase after SR. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.
[0020]
V: Set to 0.005 to 0.1%. V also forms a fine composite precipitate with Mo at the time of SR. Therefore, V compensates for a decrease in strength due to tempering of bainite, and greatly contributes to strength retention or strength increase after SR. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.005 to 0.1%.
[0021]
Ceq value: 0.32 or more.
[0022]
The Ceq value is expressed by the following formula (1) using the mass% of the alloy element. However, if this Ceq value is less than 0.32, high strength of API X80 grade cannot be obtained, so it is specified to be 0.32 or more. From the viewpoint of weldability and toughness, the upper limit of the Ceq value is preferably 0.55. The element symbol of the following formula (1) indicates mass% of each contained element.
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5 (1)
Total amount of Mo, Ti, Nb, and V in atomic%: 0.14% or more. Mo, Ti, Nb, and V are elements that contribute to precipitation strengthening as fine carbides and are effective in maintaining strength after SR. The precipitation strengthening amount increases according to the total amount in these atomic%, but if it is less than 0.14%, the effect is insufficient and sufficient strength cannot be obtained, so the total in the atomic% of Mo, Ti, Nb, and V. The amount is 0.14% or more. The total amount of the above elements in atomic% is the sum of the number of atoms of Mo, Ti, Nb, V contained in the steel, and the total number of atoms of Fe, Mo, Ti, Nb, V and other alloy elements. However, it can also be obtained by the following equation (2) using the content of Mo, Ti, Nb, and V in mass%. The element symbol in the following formula (2) is mass% of each contained element.
(Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) / (100 / 55.85) × 100 (2)
Furthermore, [C] / ([Mo] + [Ti] + [Nb] + [V]): 0.6 to 1 which is a ratio of the amount of C and the total amount of Mo, Ti, Nb, and V. 7 Here, [C], [Mo], [Ti], [Nb], and [V] indicate the atomic percent content (at%) of the component. Strengthening in the steel sheet of the present invention is due to composite precipitates (carbides) containing Mo and Ti, Nb, and V. In order to effectively use the precipitation strengthening by this composite precipitate, the relationship between the amount of C and the amounts of carbide forming elements Mo, Ti, Nb, and V is important, and these elements must be balanced in an appropriate balance. By adding, a thermally stable and very fine composite precipitate can be obtained. At this time, [C] / ([Mo] + [Ti] + [Nb]) is a ratio of the content of C in atomic% and the total content of atomic content of Mo, Ti, Nb, and V. The value of + [V]) is 0.6 to 1.7. When the value of [C] / ([Mo] + [Ti] + [Nb] + [V]) is less than 0.6 or exceeds 1.7, the amount of any element is excessive, and the composite of the present invention The value of [C] / ([Mo] + [Ti] + [Nb] + [V]) because the hardened structure other than precipitates is excessively formed, leading to the deterioration of SR resistance and toughness. Is defined as 0.6 to 1.7. In addition, when using content of the mass%, it calculates using the following (3) formulas, and makes the value 0.6-1.7.
[0023]
(C / 12.01) / (Mo / 95.9 + Nb / 92.91 + V / 50.94 + Ti / 47.9) (3)
In the present invention, for the purpose of further improving the strength of the steel sheet, one or more of Cu, Ni, Cr and Ca shown below may be contained.
[0024]
Cu: 0.5% or less. Cu is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.5%.
[0025]
Ni: 0.5% or less. Ni is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.5%.
[0026]
Cr: 0.5% or less. Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. However, if a large amount is added, weldability deteriorates, so when added, the upper limit is 0.5%.
[0027]
Ca: 0.0005 to 0.0035%. Ca is an element effective for improving the toughness by controlling the form of sulfide inclusions, but if it is less than 0.0005%, the effect is not sufficient, and even if added over 0.0035%, the effect is saturated, Rather, since the toughness is deteriorated due to a decrease in the cleanliness of the steel, the Ca content is specified to be 0.0005 to 0.0035% when added.
[0028]
The remainder other than the above consists essentially of Fe. The balance substantially consisting of Fe means that an element containing an inevitable impurity and other trace elements can be included in the scope of the present invention unless the effects of the present invention are lost.
[0029]
Next, the manufacturing method of the high strength steel plate of this invention using the steel of the said composition is demonstrated.
[0030]
The high-strength steel sheet of the present invention uses steel having the above composition, and is hot-rolled at a heating temperature of 1100 to 1300 ° C. and a rolling end temperature of 750 ° C. or higher, and then 400 at a cooling rate of 20 ° C./s or higher. By accelerating cooling to a temperature of less than 0 ° C., a bainite phase structure in which C is supersaturated is dissolved, and fine composite carbides composed of one or more of Mo, Ti, Nb, and V are dispersed and precipitated during SR treatment. can do. Here, the temperature is the average temperature of the steel sheet. Hereinafter, each manufacturing condition will be described in detail.
[0031]
Heating temperature: 1100 to 1300 ° C. If the heating temperature is less than 1100 ° C, the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C, the toughness deteriorates, so the temperature is set to 1100-1300 ° C.
[0032]
Rolling end temperature: 750 ° C. or higher. When the rolling end temperature is low, a soft ferrite phase is generated before accelerated cooling and the strength is lowered. Therefore, the rolling end temperature is set to 750 ° C. or higher.
[0033]
Immediately after the end of rolling, it is cooled at a cooling rate of 20 ° C./s or more. If the cooling rate is less than 20 ° C./s, a soft ferrite phase and cementite are precipitated, so that sufficient strength cannot be obtained after accelerated cooling. Moreover, since the amount of solid solution C decreases due to precipitation of cementite, strengthening due to precipitation of fine carbides during SR treatment cannot be obtained. Therefore, the cooling rate after the end of rolling is regulated to 20 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process.
[0034]
Cooling stop temperature: less than 400 ° C. In the present invention, precipitation strengthening due to fine precipitates can be obtained during SR treatment by forming a bainite single phase in which C is supersaturated by accelerated cooling after completion of rolling. However, when the cooling stop temperature is 400 ° C. or higher, the bainite transformation is not completed, so that not only does pearlite precipitate during air cooling after cooling stop and sufficient strength is not obtained after accelerated cooling, but the amount of dissolved C is insufficient and SR Precipitation of fine carbide in the treatment becomes insufficient, and the strength after SR cannot be obtained. Therefore, the accelerated cooling stop temperature is defined to be less than 400 ° C.
[0035]
【Example】
Steels (steel types A to L) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 17) having a plate thickness of 19 mm were produced using the slabs.
[0036]
[Table 1]
Figure 0004048985
[0037]
The heated slab was rolled by hot rolling and immediately cooled using a water-cooled accelerated cooling facility. Table 2 shows the production conditions of each steel plate (No. 1 to 17).
[0038]
As for the tensile properties of the steel sheet produced as described above, a tensile test was performed using a full thickness test piece in the rolling direction as a tensile test piece, and the tensile strength was measured. A yield strength of 551 MPa or more and a tensile strength of 620 MPa or more were determined as strengths required for the present invention. For the weld heat affected zone (HAZ) toughness, a Charpy test was performed using a test piece to which a heat history corresponding to a heat input of 40 kJ / cm was added by a reproducible heat cycle apparatus. And the thing whose Charpy absorbed energy in -10 degreeC is 100J or more was made favorable.
[0039]
In order to investigate the SR resistance, each steel plate was subjected to SR treatment using a gas atmosphere furnace. The heat treatment conditions at this time were set at 650 ° C. for 2 hours, then removed from the furnace and cooled to room temperature by air cooling. And the tensile characteristic and Charpy impact characteristic of the steel plate before and after SR processing were measured. The measurement results are also shown in Table 2.
[0040]
[Table 2]
Figure 0004048985
[0041]
In Table 2, all of Nos. 1 to 9, which are examples of the present invention, have chemical components and production methods within the scope of the present invention, and before and after SR treatment, high strength with yield strength of 551 MPa or more and tensile strength of 620 MPa or more. Furthermore, the base material toughness and the weld heat affected zone toughness were also good.
[0042]
In Nos. 10 to 12, the chemical components are within the scope of the present invention, but the production method is outside the scope of the present invention, so fine carbides may not be dispersed and precipitated, and the strength was insufficient. Nos. 13 to 17 had chemical components outside the scope of the present invention, so that sufficient strength was not obtained or welding heat affected zone toughness was inferior.
[0043]
【The invention's effect】
As described above, according to the present invention, a steel sheet having high strength of API X80 grade or higher and excellent in strength toughness even after SR treatment can be obtained. For this reason, it is particularly suitable for use in steel pipes and pressure vessels that may be subjected to SR treatment.

Claims (2)

質量%で、C:0.03%以上、0.07%未満、Si:0.01〜0.5%、Mn:0.5〜2%、Mo:0.1〜0.5%、Al:0.08%以下を含有し、さらにTi:0.005〜0.04%、Nb:0.005〜0.07%、V:0.005〜0.1%の1種又は2種以上を含有し、残部Feおよび不可避不純物からなり、下記(1)式で示されるCeq値が0.32以上であり、さらに、原子%でのMo、Ti、Nb、Vの合計量が0.14%以上で、かつ原子%でのC量との比である[C]/([Mo]+[Ti]+[Nb]+[V])が0.6〜1.43である鋼を、1100〜1300℃の温度に加熱し、750℃以上の圧延終了温度で熱間圧延した後、26℃/s以上の冷却速度で400℃未満の温度まで加速冷却を行うことを特徴とする、高強度鋼板の製造方法。
Ceq値=C+Mn/6+(Cu+Ni)/12+(Cr+Mo+V)/5・・・・(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
In mass%, C: 0.03% or more, less than 0.07%, Si: 0.01 to 0.5%, Mn: 0.5 to 2%, Mo: 0.1 to 0.5%, Al : Containing 0.08% or less, Ti: 0.005-0.04%, Nb: 0.005-0.07%, V: 0.005-0.1%, one or more The balance is composed of Fe and unavoidable impurities, the Ceq value represented by the following formula (1) is 0.32 or more, and the total amount of Mo, Ti, Nb, and V in atomic% is 0.14. %, And the ratio of [C] / ([Mo] + [Ti] + [Nb] + [V]), which is a ratio to the amount of C in atomic%, is 0.6 to 1.43 , 1100-1300 is heated to a temperature of ° C., after hot rolling at a rolling end temperature of not less than 750 ° C., characterized by performing the accelerated cooling to a temperature below 400 ° C. at 26 ° C. / s or more cooling rate To, the method of producing a high strength steel sheet.
Ceq value = C + Mn / 6 + (Cu + Ni) / 12 + (Cr + Mo + V) / 5 (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
さらに、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、Ca:0.0005〜0.0035%の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1に記載の高強度鋼板の製造方法。Furthermore, by mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Ca: 0.0005 to 0.0035% The method for producing a high-strength steel sheet according to claim 1, comprising the above.
JP2003070512A 2003-03-14 2003-03-14 Manufacturing method of high-strength steel sheet Expired - Fee Related JP4048985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003070512A JP4048985B2 (en) 2003-03-14 2003-03-14 Manufacturing method of high-strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003070512A JP4048985B2 (en) 2003-03-14 2003-03-14 Manufacturing method of high-strength steel sheet

Publications (2)

Publication Number Publication Date
JP2004277809A JP2004277809A (en) 2004-10-07
JP4048985B2 true JP4048985B2 (en) 2008-02-20

Family

ID=33287248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003070512A Expired - Fee Related JP4048985B2 (en) 2003-03-14 2003-03-14 Manufacturing method of high-strength steel sheet

Country Status (1)

Country Link
JP (1) JP4048985B2 (en)

Also Published As

Publication number Publication date
JP2004277809A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP6256654B2 (en) Thick steel plate for structural pipe, method for manufacturing thick steel plate for structural pipe, and structural pipe
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
CN107429339B (en) High-strength steel and method for producing same, and steel pipe and method for producing same
JP2007270194A (en) Method for producing high-strength steel sheet excellent in sr resistance property
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
US11001905B2 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP4385622B2 (en) Manufacturing method of high-strength steel sheet
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP4904806B2 (en) Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP3780956B2 (en) High strength steel plate with excellent SR resistance and method for producing the same
JP4048985B2 (en) Manufacturing method of high-strength steel sheet
JP4273824B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4273825B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3891030B2 (en) High strength steel plate and manufacturing method thereof
JP2003321729A (en) High strength steel sheet having excellent weld heat affected zone toughness and production method thereof
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same
JP2005133163A (en) High-strength steel sheet superior in balance between strength and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees