JP4904806B2 - Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range - Google Patents

Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range Download PDF

Info

Publication number
JP4904806B2
JP4904806B2 JP2005371792A JP2005371792A JP4904806B2 JP 4904806 B2 JP4904806 B2 JP 4904806B2 JP 2005371792 A JP2005371792 A JP 2005371792A JP 2005371792 A JP2005371792 A JP 2005371792A JP 4904806 B2 JP4904806 B2 JP 4904806B2
Authority
JP
Japan
Prior art keywords
less
strength
toughness
steel
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005371792A
Other languages
Japanese (ja)
Other versions
JP2007169747A (en
Inventor
隆二 村岡
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005371792A priority Critical patent/JP4904806B2/en
Publication of JP2007169747A publication Critical patent/JP2007169747A/en
Application granted granted Critical
Publication of JP4904806B2 publication Critical patent/JP4904806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、室温ならびに中温域において降伏強さが550MPa以上の鋼板の製造方法に関し、特に蒸気配管用高強度高靭性溶接鋼管用途に好適なものに関する。   The present invention relates to a method for producing a steel sheet having a yield strength of 550 MPa or more at room temperature and in an intermediate temperature range, and particularly relates to a material suitable for high strength and high toughness welded steel pipe use for steam piping.

本発明に係る鋼板は、厚板ミルや熱延ミルにて製造され、UOE成形、プレスベンド成形、ロール成形などにより冷間成形され、サブマージドアーク溶接などの溶接法により溶接接合されて、高温・高圧の蒸気を輸送するための鋼管として利用される。   The steel plate according to the present invention is manufactured by a thick plate mill or a hot rolling mill, is cold formed by UOE forming, press bend forming, roll forming, etc., and is welded and joined by a welding method such as submerged arc welding.・ Used as a steel pipe for transporting high-pressure steam.

油層からオイルサンドを回収する方法として、露天堀による方法と高温・高圧の蒸気を鋼管により挿入するスチームインジェクション法があるが、露天掘りが適用可能な地域は少なく、多くの地域ではスチームインジェクション法が適用されている。     There are two methods for recovering oil sand from the oil reservoir: the open-pit method and the steam injection method in which high-temperature and high-pressure steam is inserted through steel pipes. Has been.

スチームインジェクション法では、油層内へ300〜350℃の温度域(以下、中温域)の蒸気を、13MPa前後の高圧で送り込むが、従来、この中温・高圧の蒸気に耐えうるスチームインジェクション用の蒸気輸送鋼管として、特許文献1、特許文献2、特許文献3に示されるAPI X65、70グレード相当の継目無管が使用され、鋼管外径は最大で16インチであった。
特許1393876号公報 特許1930910号公報 特開2000−290728号公報
In the steam injection method, steam in the temperature range of 300 to 350 ° C. (hereinafter, medium temperature range) is sent into the oil reservoir at a high pressure of about 13 MPa. Conventionally, steam transport for steam injection that can withstand this medium temperature and high pressure steam is used. As the steel pipe, a seamless pipe corresponding to API X65, 70 grade shown in Patent Document 1, Patent Document 2, and Patent Document 3 was used, and the maximum diameter of the steel pipe was 16 inches.
Japanese Patent No. 1393876 Japanese Patent No. 1930910 JP 2000-290728 A

ところで、近年、エネルギー需要の増加に伴う重質油の回収率の向上ならびに敷設コストの低減を目的として、鋼管の大径化ならびに高強度化が要望され、更に、埋設時や地震などによる地盤変動により加わる外力により鋼管が変形させられる場合があるため、優れた変形能が鋼管特性として要求される。   By the way, in recent years, for the purpose of improving the recovery rate of heavy oil accompanying the increase in energy demand and reducing the laying cost, it is required to increase the diameter and strength of steel pipes. Since the steel pipe may be deformed by an external force applied by this, excellent deformability is required as a steel pipe characteristic.

上述した要求は蒸気配管用高強度溶接鋼管についても同様であるが、特許文献1〜3記載の鋼管では十分な対応が困難である。   Although the demand mentioned above is the same also about the high intensity | strength welded steel pipe for steam piping, sufficient response | compatibility is difficult with the steel pipe of patent documents 1-3.

そこで、本発明は、APIグレードX80以上の蒸気輸送用高強度高靭性溶接鋼管に要求される、中温域においても降伏強さ550MPa以上(APIグレードX80以上)の変形能の優れた高強度高靭性鋼板を安価に提供することを目的とする。   Therefore, the present invention is required for high-strength and high-toughness welded steel pipes for steam transport of API grade X80 or higher, and has high strength and high toughness with excellent deformability of yield strength of 550 MPa or higher (API grade X80 or higher) even in the intermediate temperature range. It aims at providing a steel plate at low cost.

本発明者らは高強度大径溶接管における中温域での特性について鋭意検討し、以下の知見を得た。   The inventors of the present invention diligently studied the characteristics in the middle temperature range of the high-strength large-diameter welded pipe and obtained the following knowledge.

1.式(1)で示されるNbeff.を0.025%以上確保した鋼に、制御圧延後の加速冷却とその後の再加熱を施すことにより、ベイナイト変態途中において再加熱を行い、加速冷却時のベイナイト変態による強化に加え、再加熱時にベイナイトならびに未変態オーステナイトから析出する微細析出物による析出強化ならびに中温域での転位回復の抑制によって、中温域での強度低下の抑制が可能になる。
Nbeff.(%)=0.002×(1−25Ti)/(C+0.86N)・・・(1)
Ti,C,N:質量%
TiNが存在する場合Nbが固溶し難くなり、Tiを添加しない場合に比べて加速冷却後の再加熱時の微細なNb炭化物の分散析出が低下し、中温域での強度低下の抑制が困難となるが、式(1)で求められるNbeff.値が0.025以上の場合にはTi添加の場合においても再加熱時の微細なNb炭化物の分散析出が十分に得られ、中温域での強度低下の抑制が可能になる。
1. Nb eff. Is applied to the steel with 0.025% or more, accelerated cooling after controlled rolling and subsequent reheating, thereby performing reheating in the middle of bainite transformation, in addition to strengthening by bainite transformation during accelerated cooling, Precipitation strengthening due to fine precipitates precipitated from bainite and untransformed austenite and suppression of dislocation recovery in the intermediate temperature range can suppress a decrease in strength in the intermediate temperature range.
Nb eff. (%) = 0.002 × (1-25Ti) / (C + 0.86N) (1)
Ti, C, N: mass%
When TiN is present, it becomes difficult for Nb to dissolve, and compared to the case where Ti is not added, the dispersion and precipitation of fine Nb carbides during reheating after accelerated cooling is reduced, and it is difficult to suppress the strength reduction in the middle temperature range. However, Nb eff. When the value is 0.025 or more, even when Ti is added, fine dispersion of fine Nb carbide during reheating is sufficiently obtained, and it is possible to suppress a decrease in strength in the intermediate temperature range.

2.加速冷却後の加熱による微細炭化物の分散析出に先立ち、粒内組織中に多量の転位を導入するため900℃以下での累積圧下率と圧延仕上温度を規定し、圧延ならびに加速冷却の両工程にて粒内の転位を増加させると、圧延と加速冷却による転位の増加と、加速冷却後の加熱により分散析出する微細炭化物による中温域での転位の回復抑制により、中温域での優れた高強度の確保が可能である。   2. Prior to dispersion precipitation of fine carbides by heating after accelerated cooling, in order to introduce a large amount of dislocations in the intragranular structure, the cumulative reduction ratio and rolling finish temperature below 900 ° C are specified, and both rolling and accelerated cooling processes are performed. By increasing the number of dislocations in the grains, it is possible to increase the dislocations by rolling and accelerated cooling, and to suppress the recovery of dislocations in the intermediate temperature range due to fine carbides that are dispersed and precipitated by heating after accelerated cooling. Can be secured.

3.更に、化学成分を適切に選定し、加速冷却の停止温度をベイナイト変態初期とし、多量の未変態オーステナイトを確保した段階で、再加熱することにより未変態オーステナイトへのCの濃化を促進し、その後の空冷段階で多量の島状マルテンサイト(以後、MAと呼ぶ)を析出させると、微細析出物を含むベイナイトとMAを主体とする複合組織が得られ、変形能の指標である一様伸びを向上させることが可能である。   3. Furthermore, the chemical components are appropriately selected, the stop temperature of accelerated cooling is set to the initial stage of bainite transformation, and at the stage where a large amount of untransformed austenite is secured, the concentration of C to untransformed austenite is promoted by reheating, When a large amount of island martensite (hereinafter referred to as MA) is precipitated in the subsequent air-cooling stage, a composite structure mainly composed of bainite containing fine precipitates and MA is obtained, and uniform elongation is an index of deformability. It is possible to improve.

4.従来の工業的に用いられている大気炉での加熱速度よりも高速で加熱することにより、Nbを基本とする炭化物の成長を抑制させ、粒径が10nm未満の極めて微細な析出物を2×10個/μm以上析出させると降伏強度が550MPa以上の高強度鋼板とすることが可能である。 4). By heating at a speed higher than the heating rate in a conventional atmospheric furnace used industrially, the growth of carbides based on Nb is suppressed, and extremely fine precipitates having a particle size of less than 10 nm are reduced to 2 ×. When 10 3 pieces / μm 3 or more are deposited, a high-strength steel sheet having a yield strength of 550 MPa or more can be obtained.

本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1 質量%で、C:0.05〜0.08%、Si:0.05〜0.2%、Mn:1.6〜2%、P:0.02%以下、S:0.002%以下、Mo:0.05〜0.3%、Nb:0.03〜0.07%、Ti:0.02%以下、Al:0.04%以下、REM:0.015%以下、N:0.006%以下を含有し、残部がFe及び不可避的不純物からなり、式(1)で示されるNbeff.:0.025%以上である鋼を、1100〜1200℃に加熱後、900℃以下での累積圧下率が50%以上、かつ圧延終了温度が850℃以下で熱間圧延後、5℃/秒以上の冷却速度にて550℃超え650℃以下に加速冷却した後、直ちに0.5℃/s以上の昇温速度で610〜720℃まで再加熱を行うことを特徴とする、中温域での強度ならびに変形能に優れた高強度高靭性鋼板の製造方法。
Nbeff.=0.002×(1−25Ti)/(C+0.86N)・・・(1)
Ti,C,Nは質量%
2 更に、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、V:0.08%以下、Ca:0.0005〜0.004%のうち1種または2種以上を含有する、1に記載の中温域での強度ならびに変形能に優れた高強度高靭性鋼板の製造方法。
3 1または2に記載の方法で得られた鋼板を管状に冷間成形し、その突合せ部を溶接することを特徴とする、中温域での強度ならびに変形能に優れた高強度高靭性溶接鋼管の製造方法。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1% by mass, C: 0.05 to 0.08%, Si: 0.05 to 0.2%, Mn: 1.6 to 2%, P: 0.02% or less, S: 0.002% Hereinafter, Mo: 0.05 to 0.3%, Nb: 0.03 to 0.07%, Ti: 0.02% or less, Al: 0.04% or less, REM: 0.015% or less, N: Nb eff. Containing 0.006% or less, the balance being Fe and inevitable impurities, and represented by the formula (1) . : After heating the steel which is 0.025% or more to 1100 to 1200 ° C, the hot rolling at 900 ° C or less is 50% or more and the rolling finish temperature is 850 ° C or less, 5 ° C / second After accelerated cooling to over 550 ° C. and below 650 ° C. at the above cooling rate, immediately reheating to 610-720 ° C. at a temperature rising rate of 0.5 ° C./s or more is performed. A method for producing a high-strength, high-toughness steel sheet having excellent strength and deformability.
Nb eff. = 0.002 × (1-25Ti) / (C + 0.86N) (1)
Ti, C, N is mass%
2 Further, in terms of mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, V: 0.08% or less, Ca: 0.0005 to 0.004% The manufacturing method of the high intensity | strength high toughness steel plate excellent in the intensity | strength in the intermediate temperature range of 1 and the deformability which contain 1 type or 2 types among them.
3. A high-strength, high-toughness welded steel pipe excellent in strength and deformability in an intermediate temperature range, characterized in that the steel plate obtained by the method according to 1 or 2 is cold-formed into a tubular shape and its butt portion is welded Manufacturing method.

本発明によれば、操業の効率化が達成できる、常温ならびに中温域において降伏強さが550MPa以上を有し、変形能が優れた大径の蒸気輸送用高強度高靭性溶接鋼管の製造可能な原板が安定して得られ、産業上極めて有益である。   According to the present invention, it is possible to manufacture a high-strength, high-toughness welded steel pipe for steam transport having a large diameter and having a yield strength of 550 MPa or more and excellent deformability at room temperature and medium temperature range, which can achieve operational efficiency. The original plate can be obtained stably, which is extremely useful for industry.

以下に、成分組成の限定理由を示す。%は質量%とする。   Below, the reason for limitation of a component composition is shown. % Means mass%.

C:0.05〜0.08%
Cは固溶強化ならびに析出強化により鋼の強度を確保するために必要な元素であり、特に固溶C量の増加と析出物の形成は中温域での強度確保に重要である。
C: 0.05-0.08%
C is an element necessary for ensuring the strength of the steel by solid solution strengthening and precipitation strengthening. In particular, the increase in the amount of solid solution C and the formation of precipitates are important for securing the strength in the intermediate temperature range.

また、加速冷却後の再加熱時に未変態オーステナイトへCを濃化させ、その後の空冷時に多量のMAを析出させ、室温ならびに中温域において十分な一様伸びを確保するために重要である。   Further, it is important for concentrating C into untransformed austenite at the time of reheating after accelerated cooling and precipitating a large amount of MA at the subsequent air cooling, thereby ensuring sufficient uniform elongation at room temperature and in the middle temperature range.

0.08%を超える過剰なCの添加は靭性ならびに溶接性の劣化を招くため添加量の上限を0.08%とした。   Addition of excess C exceeding 0.08% causes deterioration of toughness and weldability, so the upper limit of the addition amount was set to 0.08%.

一方、0.05%未満では加速冷却後の再加熱時の未変態オーステナイトへのCの濃化量が少なくMA量が減少し、室温ならびに中温域において十分な一様伸びを確保することが難しくなるため、Cの含有量は0.05〜0.08%とした。   On the other hand, if it is less than 0.05%, the amount of C enriched in untransformed austenite at the time of reheating after accelerated cooling is small and the amount of MA decreases, making it difficult to ensure sufficient uniform elongation at room temperature and in the middle temperature range. Therefore, the C content is set to 0.05 to 0.08%.

Si:0.05〜0.2%
Siは脱酸のために添加され、0.05%未満では充分な脱酸効果が得られない。一方、0.2%を越えると靱性の劣化を招くため、Siの含有量は0.05〜0.2%とした。
Si: 0.05 to 0.2%
Si is added for deoxidation, and if it is less than 0.05%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.2%, the toughness is deteriorated, so the Si content is set to 0.05 to 0.2%.

Mn:1.6〜2%
Mnは鋼の強度および靱性の向上に有効な元素で、1.6%未満ではその効果が小さく、また2%を越えると靭性ならびに溶接性が著しく劣化するため、Mnの含有量は1.6〜2%とした。
Mn: 1.6-2%
Mn is an element effective for improving the strength and toughness of steel. If the content is less than 1.6%, the effect is small, and if it exceeds 2%, the toughness and weldability are significantly deteriorated. ˜2%.

P:0.02%以下
Pは不純物元素であり靱性を著しく劣化させるため、極力低減することが望ましいが、過度のP低減は製造コストの上昇を招くため、Pの含有量を0.02%以下とした。
P: 0.02% or less P is an impurity element and significantly deteriorates toughness, so it is desirable to reduce it as much as possible. However, excessive P reduction causes an increase in manufacturing cost, so the content of P is 0.02%. It was as follows.

S:0.002%以下
Sは不純物元素であり靭性を著しく劣化させるため、極力低減することが望ましい。また、Caを添加してMnSからCaS系の介在物に形態制御を行ったとしても、X80グレードの高強度材の場合には微細に分散したCaS系介在物も靱性劣化の要因となり得るため、Sの含有量を0.002%以下とした。
S: 0.002% or less Since S is an impurity element and significantly deteriorates toughness, it is desirable to reduce it as much as possible. In addition, even if Ca is added to control the morphology from MnS to CaS inclusions, in the case of X80 grade high strength material, finely dispersed CaS inclusions can also cause toughness deterioration. The S content was 0.002% or less.

Mo:0.05〜0.3%
Moは固溶あるいは析出物の形成により室温ならびに中温域での強度上昇に大きく寄与するが、0.05%未満ではその効果が小さく室温ならびに中温域で十分な強度が得られない。一方、0.3%を超えて添加すると靭性ならびに溶接性を劣化させるため、Moの添加量を0.05〜0.3%とした。
Mo: 0.05-0.3%
Mo greatly contributes to an increase in strength at room temperature and medium temperature by solid solution or formation of precipitates, but if it is less than 0.05%, the effect is small and sufficient strength cannot be obtained at room temperature and medium temperature. On the other hand, if adding over 0.3%, the toughness and weldability are deteriorated, so the addition amount of Mo was made 0.05 to 0.3%.

Nb:0.03〜0.07%
Nbは本発明において重要な元素であり、炭化物を形成し室温ならびに中温域での強度確保に必要な成分である。また、スラブ加熱時と圧延時の結晶粒の成長を抑制することによりミクロ組織を微細化し、充分な強度と靱性を付与するためにも必要である。その効果は0.03%以上で顕著であり、0.07%を超えるとその効果がほぼ飽和して靭性を劣化させるため、Nbの含有量を0.005〜0.07%とした。
Nb: 0.03 to 0.07%
Nb is an important element in the present invention, and is a component that forms carbides and is required for securing strength at room temperature and in the middle temperature range. It is also necessary to refine the microstructure by suppressing the growth of crystal grains during slab heating and rolling, and to impart sufficient strength and toughness. The effect is remarkable at 0.03% or more, and when it exceeds 0.07%, the effect is almost saturated and the toughness is deteriorated. Therefore, the Nb content is set to 0.005 to 0.07%.

Ti:0.02%以下
TiはTiNを形成してスラブ加熱時や溶接熱影響部の粒成長を抑制し、ミクロ組織の微細化をもたらして靱性を改善する効果があるが、0.02%を越えて添加すると靱性の劣化を引き起こすため、Tiの含有量を0.02%以下とした。
Ti: 0.02% or less Ti forms TiN and suppresses grain growth at the time of slab heating or welding heat affected zone, brings about refinement of the microstructure and improves toughness, but 0.02% If added over the range, the toughness is deteriorated, so the Ti content is set to 0.02% or less.

Al:0.04%以下
Alは脱酸剤として添加されるが、0.04%を超えると鋼の清浄性が低下し靱性の劣化を引き起こすため、Alの含有量を0.04%以下とした。
Al: 0.04% or less Al is added as a deoxidizer, but if it exceeds 0.04%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is 0.04% or less. did.

REM:0.015%以下
REMは酸硫化物の形成により組織粗大化を抑制し靭性の向上に寄与するが、0.015%を超えると靭性が劣化するため、REM含有量は0.015%以下に規定する。好ましくは0.001〜0.007%である。
REM: 0.015% or less REM contributes to the improvement of toughness by suppressing the coarsening of the structure due to the formation of oxysulfides. However, if it exceeds 0.015%, the toughness deteriorates, so the REM content is 0.015%. It is defined below. Preferably it is 0.001 to 0.007%.

N:0.006%以下
NはTiと共にTiNを形成し、1350℃以上に達する溶接熱影響部の高温域において微細分散することにより、溶接熱影響部の旧オーステナイト粒を細粒化し溶接熱影響部の靭性向上に大きく寄与する。0.006%を超えて添加すると、析出物の粗大化ならびに固溶Nの増加による母材靭性の劣化と、鋼管での溶接金属の靭性劣化を招くため、N含有量は0.006%以下とした。
N: 0.006% or less N forms TiN together with Ti and finely disperses in the high temperature region of the weld heat affected zone reaching 1350 ° C. or higher, thereby refining the prior austenite grains in the weld heat affected zone and affecting the heat of welding. This greatly contributes to improving the toughness of the part. Addition exceeding 0.006% leads to deterioration of base metal toughness due to coarsening of precipitates and increase in solute N, and toughness deterioration of weld metal in steel pipes, so the N content is 0.006% or less. It was.

Nbeff.:0.025以上
Nbeff.=0.002×(1−25Ti)/(C+0.86N)・・・(1)
但し、Ti,C,Nは鋼中含有量(質量%)とする。
Nb eff. : 0.025 or more Nb eff. = 0.002 × (1-25Ti) / (C + 0.86N) (1)
However, Ti, C, and N are made into content (mass%) in steel.

本パラメータ式は上記成分範囲で構成される鋼を中温域で優れた強度を有する鋼とするための重要な因子で、Nbeff.(%)が0.025%未満の場合には冷却後の再加熱時に析出する微細分散炭化物が少なく、強度、特に中温域での強度を確保することが困難であるため、Nbeff.(%)は0.025%以上とした。 This parameter equation is an important factor for making the steel having the above-mentioned composition range into a steel having excellent strength in the middle temperature range, and Nb eff. When (%) is less than 0.025%, the amount of finely dispersed carbide that precipitates during reheating after cooling is small, and it is difficult to ensure strength, particularly strength in the middle temperature range, so Nb eff. (%) Was 0.025% or more.

本発明は以上の成分組成で優れた特性が得られるが、更に特性を向上させる場合、Cu,Ni,Cr,V,Caの一種または二種以上を添加する。   In the present invention, excellent properties can be obtained with the above component composition. However, when further improving the properties, one or more of Cu, Ni, Cr, V, and Ca are added.

Cu:0.5%以下
Cuは靭性の改善と強度の上昇に有効な元素の1つであるが、0.5%を超えるCuの含有は溶接性を阻害するため、Cuを添加する場合は0.5%以下とした。
Cu: 0.5% or less Cu is one of the elements effective for improving toughness and increasing strength. However, when Cu is added in excess of 0.5%, weldability is impaired. 0.5% or less.

Ni:0.5%以下
Niは靭性の改善と強度の上昇に有効な元素の1つであるが、0.5%を超えると効果が飽和し製造コストの上昇を招くため、Niを添加する場合は0.5%以下とした。
Ni: 0.5% or less Ni is one of elements effective in improving toughness and increasing strength. However, if it exceeds 0.5%, the effect is saturated and the manufacturing cost is increased, so Ni is added. In the case, it was 0.5% or less.

Cr:0.5%以下
Crは強度の上昇に有効な元素の一つであるが、0.5%を超えて添加すると溶接性に悪影響を与えるため、Crを添加する場合は0.5%以下とした。
Cr: 0.5% or less Cr is one of the elements effective in increasing the strength, but if added over 0.5%, the weldability is adversely affected. Therefore, when Cr is added, 0.5% It was as follows.

V:0.08%以下
VはTiと共に複合析出物を形成し、強度上昇に寄与する。しかし、0.08%を超えると溶接熱影響部の靭性が劣化するため、Vを添加する場合は0.08%以下とした。
V: 0.08% or less V forms a composite precipitate with Ti and contributes to an increase in strength. However, if it exceeds 0.08%, the toughness of the weld heat-affected zone deteriorates, so when V is added, the content was made 0.08% or less.

Ca:0.0005〜0.004%
Caは硫化物系介在物の形態を制御し靱性を改善するが、0.0005%以上でその効果が現われ、0.004%を超えると効果が飽和し、逆に清浄度を低下させて靱性を劣化させるため、Caを添加する場合は0.0005〜0.004%とした。
Ca: 0.0005 to 0.004%
Ca improves the toughness by controlling the form of sulfide inclusions, but its effect appears at 0.0005% or more, and when it exceeds 0.004%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is reduced. When Ca is added, the content is made 0.0005 to 0.004%.

次に、製造方法の限定理由について説明する。   Next, the reason for limiting the manufacturing method will be described.

加熱温度:1100〜1200℃
熱間圧延に際し、オーステナイト化ならびに炭化物の固溶を十分に進行させ、室温ならびに中温域での十分な強度を得るため、鋼片の加熱温度を1100℃以上とする。
Heating temperature: 1100-1200 ° C
At the time of hot rolling, the heating temperature of the steel slab is set to 1100 ° C. or more in order to sufficiently advance austenitization and solid solution of carbides and obtain sufficient strength at room temperature and in the middle temperature range.

一方、加熱温度が1200℃を超えると、オーステナイト粒の成長が著しく、母材靱性が劣化するため、加熱温度は1100〜1200℃とした。   On the other hand, when the heating temperature exceeds 1200 ° C., the austenite grains grow remarkably and the base material toughness deteriorates, so the heating temperature was set to 1100 to 1200 ° C.

900℃以下での累積圧下率≧50%、かつ圧延終了温度:850℃以下
本プロセスは本発明の重要な製造条件である。900℃以下での温度域において累積にて圧延を行い、仕上温度を850℃以下とすることにより、オーステナイト粒が伸展し板厚、板幅方向で細粒となると共に、圧延により導入される粒内の転位密度が増加する。
Cumulative rolling reduction at 900 ° C. or less ≧ 50% and rolling end temperature: 850 ° C. or less This process is an important production condition of the present invention. Rolling is performed cumulatively in a temperature range of 900 ° C. or less, and by setting the finishing temperature to 850 ° C. or less, austenite grains are expanded and become fine grains in the plate thickness and width directions, and grains introduced by rolling The dislocation density inside increases.

900℃以下での累積圧下率が50%以上で圧延終了温度を850℃以下とすることにより、この効果が顕著に発揮され、強度、特に中温域での強度が上昇し靱性が著しく向上する。   When the cumulative rolling reduction at 900 ° C. or less is 50% or more and the rolling end temperature is 850 ° C. or less, this effect is remarkably exhibited, and the strength, particularly the strength in the middle temperature range, is increased and the toughness is remarkably improved.

900℃以下での累積圧下率が50%未満あるいは圧延終了温度が850℃を超える場合には、オーステナイト粒の細粒化が不十分で、粒内の転位の増加量が小さく、中温域での強度ならびに靭性が劣化するため、900℃以下での累積圧下率は50%以上、かつ圧延終了温度は850℃以下とする。   When the cumulative rolling reduction at 900 ° C. or less is less than 50% or the rolling end temperature exceeds 850 ° C., the austenite grains are not sufficiently refined, and the amount of increase in dislocations in the grains is small. Since strength and toughness deteriorate, the cumulative rolling reduction at 900 ° C. or lower is set to 50% or more and the rolling end temperature is set to 850 ° C. or lower.

加速冷却の冷却速度:5℃/秒以上
鋼板強度は加速冷却での冷却速度の増加に伴い上昇する傾向を示す。加速冷却時の冷却速度が5℃/秒未満の場合、冷却時にパーライトが生成しMAが生成せず、室温ならびに中温域にて一様伸びが小さく、冷却中に転位の回復も進行するため、室温ならびに中温域にて十分な強度を得ることができない。よって、加速冷却の冷却速度を5℃/秒以上とする。
Cooling rate of accelerated cooling: 5 ° C./second or more The steel sheet strength tends to increase as the cooling rate of accelerated cooling increases. When the cooling rate during accelerated cooling is less than 5 ° C./second, pearlite is generated during cooling and MA is not generated, the uniform elongation is small at room temperature and medium temperature range, and the recovery of dislocation proceeds during cooling. Sufficient strength cannot be obtained at room temperature and medium temperature. Therefore, the cooling rate of accelerated cooling is set to 5 ° C./second or more.

加速冷却の冷却停止温度:550℃超え650℃以下
加速冷却の冷却停止温度が低下するに従い転位密度が増加し、鋼板強度は上昇する傾向を示すが、加速冷却の冷却停止温度が650℃を超える場合、十分な転位密度が得られず、さらに炭化物の成長が促進するため、十分な強度、特に中温域での十分な強度が得られない。
Cooling stop temperature for accelerated cooling: 550 ° C. and below 650 ° C. As the cooling stop temperature for accelerated cooling decreases, the dislocation density increases and the steel sheet strength tends to increase, but the cooling stop temperature for accelerated cooling exceeds 650 ° C. In this case, a sufficient dislocation density cannot be obtained, and further, the growth of carbides is promoted, so that a sufficient strength, particularly in the middle temperature range, cannot be obtained.

一方、冷却停止温度が550℃以下の場合には、ベイナイト変態が進行し未変態オーステナイト量が減少するため後工程の再加熱時に未変態オーステナイトに濃化する炭素量が減少し、その後の空冷過程で炭素が濃化した未変態オーステナイトから得られるMA量が減少するため、室温ならびに中温域にて、一様伸びが低下する。このため、加速冷却の冷却停止温度は550℃超え650℃以下とする。   On the other hand, when the cooling stop temperature is 550 ° C. or lower, the bainite transformation proceeds and the amount of untransformed austenite decreases, so that the amount of carbon concentrated in untransformed austenite during reheating in the subsequent process decreases, and the subsequent air cooling process Since the amount of MA obtained from untransformed austenite enriched with carbon decreases, the uniform elongation decreases at room temperature and in the middle temperature range. For this reason, the cooling stop temperature of accelerated cooling is set to 550 ° C. and 650 ° C. or less.

加速冷却後の昇温速度:速度0.5℃/秒以上、再加熱温度:610〜720℃
本プロセスは本発明において重要で、室温ならびに中温域での強化に寄与する微細析出物を再加熱時に析出させ、更に、再加熱時の未変態オーステナイトからフェライト変態と、それに伴う未変態オーステナイトへの炭素の排出により、再加熱後の空冷時に炭素が濃化した未変態オーステナイトをMAへと変態させる。
Temperature increase rate after accelerated cooling: speed 0.5 ° C / second or more, reheating temperature: 610-720 ° C
This process is important in the present invention. Fine precipitates that contribute to strengthening at room temperature and medium temperature range are precipitated during reheating, and further, from untransformed austenite during reheating to ferrite transformation and accompanying untransformed austenite. By discharging carbon, untransformed austenite in which carbon is concentrated during air cooling after reheating is transformed into MA.

再加熱温度が610℃未満では十分な析出駆動力が得られずまたパーライトが生成するため、微細析出物の分散析出やMAが得られず、室温ならびに中温域にて、十分な強度ならびに高一様伸びを得ることができない。   When the reheating temperature is lower than 610 ° C., sufficient precipitation driving force cannot be obtained, and pearlite is generated, so that fine precipitates cannot be dispersed and MA cannot be obtained. I can't get like growth.

一方、720℃を超えると析出物が粗大化し室温ならびに中温域で十分な強度が得られないため、再加熱の温度を600〜720℃に規定する。   On the other hand, if the temperature exceeds 720 ° C., the precipitates become coarse and sufficient strength cannot be obtained at room temperature and in the middle temperature range.

尚、再加熱温度において、特に温度保持時間を設定する必要はない。また、再加熱後の冷却過程でもベイナイト変態と共に析出が進行するため、再加熱後の冷却速度は基本的には空冷とする。   Note that it is not necessary to set the temperature holding time at the reheating temperature. In addition, since precipitation proceeds with bainite transformation even in the cooling process after reheating, the cooling rate after reheating is basically air cooling.

本発明で規定する加速冷却後の昇温速度:速度0.5℃/s以上は、板厚によっては大気炉で達成することが難しく、加熱装置として、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましく、加速冷却を行うための冷却設備の下流側で搬送ライン上に設置するとより好ましい。   Heating rate after accelerated cooling specified in the present invention: A rate of 0.5 ° C./s or more is difficult to achieve in an atmospheric furnace depending on the plate thickness, and gas combustion that allows rapid heating of a steel plate as a heating device It is preferable to use a furnace or an induction heating device, and it is more preferable to install it on the transport line downstream of the cooling equipment for performing accelerated cooling.

誘導加熱装置は均熱炉等に比べて温度制御が容易でありコストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。   The induction heating device is particularly preferable because temperature control is easier than in a soaking furnace, the cost is relatively low, and the cooled steel sheet can be heated quickly.

また、複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数や供給電力を任意に設定するだけで、昇温速度、再加熱温度を自在に操作することが可能である。   In addition, by arranging a plurality of induction heating devices continuously in series, even if the line speed and the type and dimensions of the steel plate are different, just set the number of induction heating devices to be energized and the supply power, The heating rate and reheating temperature can be freely controlled.

なお、鋼の製鋼方法については特に限定しないが、経済性の観点から、転炉法による製鋼プロセスと、連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。   In addition, although it does not specifically limit about the steel making method of steel, From a viewpoint of economical efficiency, it is desirable to cast the steel piece by the steelmaking process by a converter method, and the continuous casting process.

鋼管の成型方法は、冷間にて成形することが好ましく、UOE成形、プレスベンド成形、ロール成形などにより成形し、サブマージドアーク溶接等により溶接接合して、溶接鋼管を製造する。鋼管製造後の熱処理は所望する特性に応じて実施すれば良く、特に規定しない。   The method of forming the steel pipe is preferably formed in the cold, and is formed by UOE forming, press bend forming, roll forming, or the like, and welded and joined by submerged arc welding or the like to produce a welded steel pipe. The heat treatment after the production of the steel pipe may be performed according to the desired characteristics, and is not particularly defined.

尚、本発明に係る製造方法で得られる鋼の常温強度は550MPa以上、700MPa以下である。   In addition, the normal temperature strength of steel obtained by the manufacturing method according to the present invention is 550 MPa or more and 700 MPa or less.

表1に示す化学成分を有する鋼A〜Oを用いて、表2に示す製造条件にて作製した鋼板(板厚15〜25mm)を冷間成形後シーム溶接により、外径610mm×管厚15〜25mmの鋼管を作製した。   Using steels A to O having chemical components shown in Table 1, a steel plate (plate thickness of 15 to 25 mm) produced under the manufacturing conditions shown in Table 2 was subjected to seam welding after cold forming, and an outer diameter of 610 mm × tube thickness of 15 A steel pipe of ˜25 mm was produced.

鋼板特性として、鋼板圧延方向と直角方向に引張試験片を採取し、室温ならびに350℃での降伏強度(単位MPa)を求めた。   As steel sheet characteristics, tensile specimens were collected in a direction perpendicular to the rolling direction of the steel sheet, and the yield strength (unit MPa) at room temperature and 350 ° C. was determined.

室温での引張試験はISO 6892に準拠し、全厚のAPI矩形試験片を用いて実施した。350℃での引張試験はISO 783に準拠し、直径8.75mmの丸棒試験片を用いて実施した。   The tensile test at room temperature was carried out in accordance with ISO 6892, using a full thickness API rectangular test piece. The tensile test at 350 ° C. was performed according to ISO 783, using a round bar test piece having a diameter of 8.75 mm.

鋼管の強度は、円周方向に引張試験片を採取し、室温ならびに350℃での降伏強度を求めた。室温での引張試験はISO 6892に準拠し、全厚のAPI矩形試験片を用いて実施した。   For the strength of the steel pipe, tensile test specimens were collected in the circumferential direction, and the yield strength at room temperature and 350 ° C. was obtained. The tensile test at room temperature was carried out in accordance with ISO 6892, using a full thickness API rectangular test piece.

350℃での引張試験はISO 783に準拠し、直径8.75mmの丸棒試験片を用いて実施した。   The tensile test at 350 ° C. was performed according to ISO 783, using a round bar test piece having a diameter of 8.75 mm.

鋼板の変形能については、圧延方向に直径8.75mmの引張試験片を採取し、試験方法は室温ではISO 6892、350℃ではISO 783に準拠して引張試験を行い、室温ならびに350℃での一様伸びを求めた。なお、一様伸びは弾性変形開始から最高荷重までの伸び量とした。   Regarding the deformability of the steel sheet, a tensile test piece having a diameter of 8.75 mm was taken in the rolling direction, and the test method was a tensile test in accordance with ISO 6892 at 350 ° C and ISO 783 at 350 ° C. Uniform elongation was determined. The uniform elongation was defined as the amount of elongation from the start of elastic deformation to the maximum load.

鋼管の変形能については、管軸方向に採取した直径6mmの丸棒試験片を採取し、試験方法は室温ではISO 6892、350℃ではISO 783に準拠して引張試験を行い、室温ならびに350℃での一様伸びを求めた。   Regarding the deformability of the steel pipe, a round bar test piece with a diameter of 6 mm collected in the direction of the pipe axis was collected, and the test method was a tensile test according to ISO 6892 at 350 ° C and ISO 783 at 350 ° C. The uniform elongation at was determined.

鋼管の溶接熱影響部シャルピー試験は、入熱約50kJ/cmのSAWにてシーム溶接を行った鋼管を用いて、管厚中央部を中心にノッチ全体が溶接熱影響部となるように溶接ボンド部近接側から円周方向に2mmVノッチのフルサイズ試験片を3本採取し実施した。試験方法はISO 148に準拠し、試験温度を−20℃ならびに350℃にて行った。   The welded heat-affected zone Charpy test for steel pipes uses a steel pipe that has been seam welded at a SAW with a heat input of about 50 kJ / cm. Three full-size test pieces of 2 mmV notch were sampled in the circumferential direction from the side close to the head. The test method conformed to ISO 148, and the test temperature was -20 ° C and 350 ° C.

尚、−20℃での試験にはアルコールで、350℃での試験では加熱炉を用いて所定の温度に保持した。靭性値はシャルピー吸収エネルギーの3本の平均値(単位J)で評価した。鋼板ならびに鋼管の試験結果を表2に併せて示す。   The test at −20 ° C. was alcohol, and the test at 350 ° C. was maintained at a predetermined temperature using a heating furnace. The toughness value was evaluated by the average value (unit J) of the three Charpy absorbed energy. The test results of the steel plate and the steel pipe are also shown in Table 2.

室温ならびに350℃での圧延と直角方向あるいは円周方向の降伏強度(単位MPa)が550MPa以上、圧延方向あるいは管軸方向の一様伸びが10%以上で、‐20℃ならびに350℃でのシャルピー吸収エネルギーが100J以上の場合を良好とした。   The yield strength (unit MPa) in the direction perpendicular to or circumferential to that at room temperature and 350 ° C. is 550 MPa or more, the uniform elongation in the rolling direction or the tube axis direction is 10% or more, and Charpy at −20 ° C. and 350 ° C. The case where the absorbed energy was 100 J or more was considered good.

化学成分、鋼板製造条件とも本発明範囲内である本発明鋼(1〜12)は鋼板、鋼管の室温ならびに350℃での降伏強度(単位MPa)が550MPa以上で一様伸びが10%以上を有し、且つ、多量のMA析出によるベイナイト組織中の微細炭化物の分散析出ならびに転位密度に及ぼす影響は認めらず、良好な溶接熱影響部靱性が得られている。   The present invention steels (1-12), which are within the scope of the present invention in terms of chemical composition and steel plate production conditions, have a yield strength (unit MPa) of 550 MPa or more at room temperature and 350 ° C. of steel plates and steel pipes and uniform elongation of 10% or more In addition, no influence on the dispersion precipitation and dislocation density of fine carbides in the bainite structure due to a large amount of MA precipitation is observed, and good weld heat affected zone toughness is obtained.

一方、化学成分あるいは鋼板製造条件が本発明範囲外である比較鋼(13〜17、19〜25)は、室温あるいは350℃での降伏強度および/または一様伸びおよび/または溶接熱影響部靱性が本発明鋼に対して劣っていた。   On the other hand, comparative steels (13-17, 19-25) whose chemical composition or steel plate production conditions are outside the scope of the present invention have yield strength and / or uniform elongation at room temperature or 350 ° C. and / or weld heat affected zone toughness. However, it was inferior to the steel of the present invention.

また、製管後、熱処理(Q−T処理)を施した比較鋼18は、350℃での強度が本発明鋼に対して劣っていた。   In addition, the comparative steel 18 subjected to heat treatment (QT treatment) after pipe making was inferior in strength at 350 ° C. to the steel of the present invention.

Figure 0004904806
Figure 0004904806

Figure 0004904806
Figure 0004904806

Figure 0004904806
Figure 0004904806

Claims (3)

質量%で、C:0.05〜0.08%、Si:0.05〜0.2%、Mn:1.6〜2%、P:0.02%以下、S:0.002%以下、Mo:0.05〜0.3%、Nb:0.03〜0.07%、Ti:0.02%以下、Al:0.04%以下、REM:0.015%以下、N:0.006%以下を含有し、残部がFe及び不可避的不純物からなり、式(1)で示されるNbeff.:0.025%以上である鋼を、1100〜1200℃に加熱後、900℃以下での累積圧下率が50%以上、かつ圧延終了温度が850℃以下で熱間圧延後、5℃/秒以上の冷却速度にて550℃超え650℃以下に加速冷却した後、直ちに0.5℃/s以上の昇温速度で610〜720℃まで再加熱を行うことを特徴とする、中温域での強度ならびに変形能に優れた高強度高靭性鋼板の製造方法。
Nbeff.=0.002×(1−25Ti)/(C+0.86N)・・・(1)
Ti,C,Nは質量%
In mass%, C: 0.05 to 0.08%, Si: 0.05 to 0.2%, Mn: 1.6 to 2%, P: 0.02% or less, S: 0.002% or less , Mo: 0.05 to 0.3%, Nb: 0.03 to 0.07%, Ti: 0.02% or less, Al: 0.04% or less, REM: 0.015% or less, N: 0 0.006% or less, the balance being Fe and inevitable impurities, Nb eff. : After heating the steel which is 0.025% or more to 1100 to 1200 ° C, the hot rolling at 900 ° C or less is 50% or more and the rolling finish temperature is 850 ° C or less, 5 ° C / second After accelerated cooling to over 550 ° C. and below 650 ° C. at the above cooling rate, immediately reheating to 610-720 ° C. at a temperature rising rate of 0.5 ° C./s or more is performed. A method for producing a high-strength, high-toughness steel sheet having excellent strength and deformability.
Nb eff. = 0.002 × (1-25Ti) / (C + 0.86N) (1)
Ti, C, N is mass%
更に、質量%で、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、V:0.08%以下、Ca:0.0005〜0.004%のうち1種または2種以上を含有する、請求項1に記載の中温域での強度ならびに変形能に優れた高強度高靭性鋼板の製造方法。   Furthermore, in mass%, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, V: 0.08% or less, Ca: 0.0005 to 0.004% The manufacturing method of the high intensity | strength high toughness steel plate excellent in the intensity | strength in the intermediate temperature range of Claim 1, and the deformability which contains 1 type (s) or 2 or more types. 請求項1または2に記載の方法で得られた鋼板を管状に冷間成形し、その突合せ部を溶接することを特徴とする、中温域での強度ならびに変形能に優れた高強度高靭性溶接鋼管の製造方法。
A high-strength, high-toughness weld having excellent strength and deformability in a medium temperature range, characterized in that the steel plate obtained by the method according to claim 1 or 2 is cold-formed into a tubular shape and the butt portion is welded. Steel pipe manufacturing method.
JP2005371792A 2005-12-26 2005-12-26 Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range Active JP4904806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371792A JP4904806B2 (en) 2005-12-26 2005-12-26 Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371792A JP4904806B2 (en) 2005-12-26 2005-12-26 Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range

Publications (2)

Publication Number Publication Date
JP2007169747A JP2007169747A (en) 2007-07-05
JP4904806B2 true JP4904806B2 (en) 2012-03-28

Family

ID=38296686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371792A Active JP4904806B2 (en) 2005-12-26 2005-12-26 Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range

Country Status (1)

Country Link
JP (1) JP4904806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107429353A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 The manufacture method of high strength steel and its manufacture method and steel pipe and the steel pipe
CN107429354A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 High strength steel and its manufacture method and steel pipe and its manufacture method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532800B2 (en) * 2009-09-30 2014-06-25 Jfeスチール株式会社 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
WO2012108027A1 (en) * 2011-02-10 2012-08-16 住友金属工業株式会社 High-strength steel material for steam piping, and process for production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153217A (en) * 1986-12-15 1988-06-25 Sumitomo Metal Ind Ltd Production of steel having excellent hydrogen induced cracking resistance
JP2652538B2 (en) * 1987-08-10 1997-09-10 株式会社神戸製鋼所 Method for producing high-strength steel with excellent weldability and low-temperature toughness
JPH04235218A (en) * 1991-01-11 1992-08-24 Kobe Steel Ltd Production of steel plate having high strength and high toughness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107429353A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 The manufacture method of high strength steel and its manufacture method and steel pipe and the steel pipe
CN107429354A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 High strength steel and its manufacture method and steel pipe and its manufacture method
CN107429353B (en) * 2015-03-27 2019-12-27 杰富意钢铁株式会社 High-strength steel, method for producing same, steel pipe, and method for producing same
US10570477B2 (en) 2015-03-27 2020-02-25 Jfe Steel Corporation High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe
CN107429354B (en) * 2015-03-27 2020-06-09 杰富意钢铁株式会社 High-strength steel and method for producing same, and steel pipe and method for producing same

Also Published As

Publication number Publication date
JP2007169747A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
JP4904774B2 (en) Manufacturing method of high-strength, high-toughness steel with excellent strength in the medium temperature range
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP4819186B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP4819185B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP4837789B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP5217773B2 (en) High-strength welded steel pipe for low temperature having a tensile strength of 570 MPa or more and 760 MPa or less excellent in weld heat-affected zone toughness and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP6137435B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the same
JP5055736B2 (en) Manufacturing method of high-strength steam piping steel plate with excellent weld heat-affected zone toughness
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP6241570B2 (en) High strength steel and method for manufacturing the same, steel pipe and method for manufacturing the steel pipe
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP2007270194A (en) Method for producing high-strength steel sheet excellent in sr resistance property
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
JP4904806B2 (en) Manufacturing method of high-strength, high-toughness steel sheet with excellent strength and deformability in the middle temperature range
JP5157387B2 (en) Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability
JP2009084598A (en) Method for manufacturing steel sheet superior in deformability and low-temperature toughness for ultrahigh-strength line pipe, and method for manufacturing steel pipe for ultrahigh-strength line pipe
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JP4385622B2 (en) Manufacturing method of high-strength steel sheet
JP2012072423A (en) Method of manufacturing high-strength steel plate for line pipe
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP2000104116A (en) Production of steel excellent in strength and toughness
JP4299743B2 (en) High strength steel for high strength welded structure with excellent base metal toughness and super high heat input weld HAZ toughness, and its manufacturing method
JP4762450B2 (en) Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250