JP4048527B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4048527B2
JP4048527B2 JP2002184139A JP2002184139A JP4048527B2 JP 4048527 B2 JP4048527 B2 JP 4048527B2 JP 2002184139 A JP2002184139 A JP 2002184139A JP 2002184139 A JP2002184139 A JP 2002184139A JP 4048527 B2 JP4048527 B2 JP 4048527B2
Authority
JP
Japan
Prior art keywords
electrode
drain electrode
source electrode
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184139A
Other languages
Japanese (ja)
Other versions
JP2004031552A5 (en
JP2004031552A (en
Inventor
康之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002184139A priority Critical patent/JP4048527B2/en
Publication of JP2004031552A publication Critical patent/JP2004031552A/en
Publication of JP2004031552A5 publication Critical patent/JP2004031552A5/ja
Application granted granted Critical
Publication of JP4048527B2 publication Critical patent/JP4048527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、安定な動作を期待でき、信頼性が高い半導体素子を製造するのに有効な方法に関する。
【0002】
【従来の技術】
一般に、ロジック回路や記憶回路を搭載したLSIを製造した場合、素子間電流漏洩が起こったり、或いは、トランジスタ動作が不良な素子を含むなど安定に動作しないものが製造されてしまう率はかなり高い。
【0003】
このような不良率を低減するには、瞠目すべきような解決策はなく、一つ一つ細かく対応策を立ててゆくことが肝要であり、例えばソース及びドレインとゲートとの間に発生する電流漏洩やソース及びドレインと基板との間に発生する電流漏洩などを低減しなければならない旨の問題もその一つである。
【0004】
図4及び図5は従来の半導体素子を製造する工程を説明する為の工程要所に於ける半導体素子を表す要部切断側面図であり、以下、これ等の図を参照しつつ製造工程を説明する。尚、ここでは、簡明にする為、従来の技術を説明する為の主要構造以外の構造、例えば、ゲート絶縁膜、不純物をドーピングして形成したソース領域及びドレイン領域などは省略してある。
【0005】
図4(A)参照
(1)
通常の技法を適用することに依り、Si基板1にSTI(shallow trench isolation)からなる素子間分離領域2を形成する。
【0006】
(2)
通常の技法を適用することに依り、Siゲート電極3を形成し、その側面を覆うサイド・ウォール4を形成する。
【0007】
図4(B)参照
(3)
スパッタリング法を適用することに依り、Co膜5を成膜してから一次熱処理を行ってSi露出面にCoSi化合物膜を生成させる。
【0008】
図5(A)参照
(4)
Siと未反応のCo膜を除去する。
【0009】
図5(B)参照
(5)
二次熱処理を行ってCoSi化合物をCoSi2 からなるソース電極5S、ドレイン電極5D、ゲート電極5Gとする。
【0010】
前記製造工程に依って作製した半導体素子に於いて、例えばドレイン電極5Dについて記号A1 及びA2 で指示した接触箇所に於いて、素子間分離領域2やゲート電極5Gとの間に漏洩電流が流れる旨の問題がある。
【0011】
【発明が解決しようとする課題】
本発明では、半導体素子を製造するに際し、ソース電極及びドレイン電極の形状に簡単な改変を加える製造工程を付加することで、安定に動作し、信頼性が高い半導体素子を得ようとする。
【0012】
【課題を解決するための手段】
本発明に依る半導体素子の製造方法に於いては、ソース電極形成予定領域及びドレイン電極形成予定領域にSi面が表出されている基板上に遷移金属膜を形成する工程と、次いで、該遷移金属膜のシリサイド化処理を行ってソース電極及びドレイン電極を形成する工程と、次いで、該ソース電極及びドレイン電極のシンニング処理を行って該ソース電極及びドレイン電極のエッジを素子間分離領域及び少なくとも側面が絶縁膜で覆われたゲート電極を有するゲートから離隔する工程とが含まれてなることが基本になっている。
【0013】
前記手段を採ることに依り、ソース電極及びドレイン電極と素子間分離領域との間、或いは、ソース電極及びドレイン電極とゲート電極との間に起こる電流漏洩は抑止することができ、正常なトランジスタ動作を行うことができる半導体素子を高い製造歩留りで作製することができる。
【0014】
【発明の実施の形態】
実施の形態1
図1及び図2は実施の形態1を説明する為の工程要所に於ける半導体素子を表す要部切断側面図であり、以下、これ等の図を参照しつつ説明する。尚、全面にCo膜を形成するまでの工程は、図4及び図5について説明した従来の技術と変わりないので省略する。
【0015】
図1(A)参照
(1)
スパッタリング法を適用することに依り、Co膜15を全面に成膜するが、その膜厚は特に厚くすることが必要であり、例えば、前記説明した従来例の場合の1.5倍程度の厚さ、従って、15〔nm〕程度にすると良い。
【0016】
尚、ここで、11はSi基板、12はSiO2 を埋め込んだSTIからなる素子間分離領域、13はSiゲート電極、14はSiO2 からなるサイド・ウォールをそれぞれ示している。
【0017】
図1(B)参照
(2)
温度500〔℃〕、時間30〔秒〕の一次熱処理を行って、Co膜15及び表出されていたSiとを反応させてCoSi化合物膜を生成させる(モノシリサイド化処理)。
【0018】
(3)
アンモニア+過酸化水素+水、或いは、硫酸+過酸化水素+水をエッチャントとするウエット・エッチング法を適用することに依り、Co膜15の未反応
部分を除去する。
【0019】
この未反応部分の除去を行う工程を経ることで、未だ完全ではないが、CoSi化合物膜はソース電極15S、ドレイン電極15D、ゲート電極15Gのパターンになる。
【0020】
図2(A)参照
(4)
Arイオンを用いたドライ・エッチング法を適用することに依り、均一イオン・エッチングを行ってCoSi化合物からなるソース電極15S、ドレイン電極15D、ゲート電極15Gを薄膜化する(シンニング処理)。
【0021】
この工程を経ることで、ソース電極15S、ドレイン電極15D、ゲート電極15Gは薄膜化されるだけでなく、平面的なパターンとしても狭小化されることになり、従って、ソース電極15S及びドレイン電極15Dは素子間分離領域12やサイド・ウォール14から離隔して間隙が生成される。
【0022】
図2(B)参照
(5)
温度800〔℃〕、時間2〔分〕の二次熱処理を行って、ソース電極15S及びドレイン電極15Dとゲート電極15Gを構成していたCoSi化合物をCoSi2 に変化させて完成する(大シリサイド化処理)。
【0023】
前記した実施の形態1の工程を採って試料素子を100個作製して、不良素子を検査したところ0個であったが、図4及び図5について説明した従来の技術で試料素子を100個作製して、不良素子を検査したところ1個であった。
【0024】
実施の形態1に於いては、ソース電極15S、ドレイン電極15D、ゲート電極15Gの薄膜化をArイオンを用いたドライ・エッチング法を適用して実施したが、これには他の方法を用いることができる。また、電極材料の如何に依っては、モノシリサイド化処理が不要な場合もあり、その際は大シリサイド化処理のみで良く、その処理はシンニング処理の前に実施される。
【0025】
実施の形態2
実施の形態2と実施の形態1とを比較した場合、ソース電極15S、ドレイン電極15D、ゲート電極15Gを薄膜化する方法が異なるのみであるから、その工程を重点的に説明する。
【0026】
実施の形態1に於いて、図1(B)を参照して説明した工程(2)を終了した後、図3に見られるように、エッチャントとして硝酸系の混合液(硝酸+フッ酸0.5〔%〕)を満たした容器16中に全体を浸漬してCoSi化合物からなるソース電極15S、ドレイン電極15D、ゲート電極15Gを薄膜化する。
【0027】
この工程を経ることで、実施の形態1と同様、ソース電極15S、ドレイン電極15D、ゲート電極15Gは薄膜化されるだけでなく、平面的なパターンとしても狭小化されることになり、従って、ソース電極15S及びドレイン電極15Dは素子間分離領域12或いはサイド・ウォール14から離隔し、それ等の間に間隙が生成される。
【0028】
前記した実施の形態2の工程を採って試料素子を100個作製して、不良素子を検査したところ、実施の形態1と同様、0個であった。
【0029】
前記各実施の形態に於いては、Coを用い、CoSi2 からなる電極を形成する実施例について説明したが、CoをNiやTiに代替して本発明を実施したところ、何れもCoの場合と同様に好結果を得ることができた。
【0030】
ここで、CoをNiに代替した場合について概略を説明するが、この場合、実施の形態1を説明した図1及び図2を参照すると理解が容易である。
(1)
Co膜に代えて厚さ15〔nm〕程度のNi膜を全面に成膜する。
(2)
温度400〔℃〕、時間30〔秒〕の熱処理を行う。
この熱処理に依って、NiSiからなるモノシリサイド膜が得られる。
(3)
Co膜の場合と同様、不要な部分をエッチングで除去する。
(4)
実施の形態1と同様、Arイオンに依る均一イオン・エッチングを行ってNiSi化合物からなるソース電極、ドレイン電極、ゲート電極の薄膜化を行う(シンニング処理)。
(5)
この後、実施の形態1と全く同じ工程を経て完成させる。
【0031】
【発明の効果】
本発明に依る半導体素子の製造方法に於いては、ソース電極形成予定領域及びドレイン電極形成予定領域にSi面が表出されている基板上に遷移金属膜を形成する工程と、次いで、該遷移金属膜のシリサイド化処理を行ってソース電極及びドレイン電極を形成する工程と、次いで、該ソース電極及びドレイン電極のシンニング処理を行って該ソース電極及びドレイン電極のエッジを素子間分離領域及び少なくとも側面が絶縁膜で覆われたゲート電極を有するゲートから離隔する工程とが含まれる。
【0032】
前記構成を採ることに依り、ソース電極及びドレイン電極と素子間分離領域との間、或いは、ソース電極及びドレイン電極とゲート電極との間に起こる電流漏洩は抑止することができ、正常なトランジスタ動作を行うことができる半導体素子を高い製造歩留りで作製することができる。
【図面の簡単な説明】
【図1】実施の形態1を説明する為の工程要所に於ける半導体素子を表す要部切断側面図である。
【図2】実施の形態1を説明する為の工程要所に於ける半導体素子を表す要部切断側面図である。
【図3】実施の形態2を説明する為の工程要所に於ける半導体素子及び製造装置を表す要部切断側面図である。
【図4】従来の半導体素子を製造する工程を説明する為の工程要所に於ける半導体素子を表す要部切断側面図である。
【図5】従来の半導体素子を製造する工程を説明する為の工程要所に於ける半導体素子を表す要部切断側面図である。
【符号の説明】
11 Si基板
12 SiO2 を埋め込んだSTIからなる素子間分離領域
13 Siゲート電極
14 SiO2 からなるサイド・ウォール
15 Co膜
15S ソース電極
15D ドレイン電極
15G ゲート電極
[0001]
BACKGROUND OF THE INVENTION
The present invention can be expected stable operation relates to an effective method for manufacturing a highly reliable semiconductor element.
[0002]
[Prior art]
In general, when an LSI equipped with a logic circuit or a memory circuit is manufactured, the rate at which inter-element current leakage occurs or an element that does not operate stably such as including an element with a defective transistor operation is manufactured is quite high.
[0003]
In order to reduce such a defect rate, there is no solution that should be taken care of, and it is important to make detailed countermeasures one by one, for example, between the source and drain and the gate. One of the problems is that current leakage and current leakage generated between the source and drain and the substrate must be reduced.
[0004]
4 and 5 are fragmentary cutaway side views showing a semiconductor element at a process point for explaining a process of manufacturing a conventional semiconductor element. Hereinafter, the manufacturing process will be described with reference to these drawings. explain. Here, for the sake of simplicity, structures other than the main structure for explaining the prior art, such as a gate insulating film, a source region and a drain region formed by doping impurities, are omitted.
[0005]
Refer to FIG. 4A (1)
By applying a normal technique, an element isolation region 2 made of STI (shallow trench isolation) is formed on the Si substrate 1.
[0006]
(2)
By applying a normal technique, the Si gate electrode 3 is formed, and the side wall 4 covering the side surface is formed.
[0007]
Refer to FIG. 4B (3)
By applying the sputtering method, the Co film 5 is formed and then a primary heat treatment is performed to form a CoSi compound film on the exposed Si surface.
[0008]
Refer to FIG. 5A (4)
The Co film that has not reacted with Si is removed.
[0009]
Refer to FIG. 5B (5)
Second heat treatment to be performed CoSi compound source electrode 5S made of CoSi 2, the drain electrode 5D, a gate electrode 5G.
[0010]
In the semiconductor element manufactured by the above manufacturing process, for example, a leakage current is generated between the element isolation region 2 and the gate electrode 5G at the contact point indicated by the symbols A 1 and A 2 for the drain electrode 5D. There is a problem of flowing.
[0011]
[Problems to be solved by the invention]
In the present invention, when a semiconductor element is manufactured, a manufacturing process in which simple modifications are made to the shapes of the source electrode and the drain electrode is added to obtain a semiconductor element that operates stably and has high reliability.
[0012]
[Means for Solving the Problems]
In the method of manufacturing a semiconductor element according to the present invention includes the steps of forming a transition metal layer on a substrate that Si surface is exposed to the source electrode formation region and a drain electrode forming region, then the Performing a silicidation process on the transition metal film to form a source electrode and a drain electrode; and then performing a thinning process on the source electrode and the drain electrode so that the edges of the source electrode and the drain electrode are separated from the element isolation region and at least And a step of separating from a gate having a gate electrode whose side surface is covered with an insulating film .
[0013]
By adopting the above means, current leakage that occurs between the source and drain electrodes and the element isolation region or between the source and drain electrodes and the gate electrode can be suppressed, and normal transistor operation is achieved. Thus, a semiconductor element capable of performing the above can be manufactured with a high manufacturing yield.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
FIG. 1 and FIG. 2 are side sectional views showing a main part of the semiconductor element at the main points for explaining the first embodiment. Hereinafter, explanation will be given with reference to these drawings. The steps until the Co film is formed on the entire surface are the same as those in the conventional technique described with reference to FIGS.
[0015]
See FIG. 1A (1)
Although the Co film 15 is formed on the entire surface by applying the sputtering method, the film thickness needs to be particularly thick, for example, about 1.5 times the thickness of the conventional example described above. Therefore, it is preferable to set the thickness to about 15 [nm].
[0016]
Here, 11 denotes a Si substrate, 12 denotes an element isolation region made of STI embedded with SiO 2 , 13 denotes a Si gate electrode, and 14 denotes a side wall made of SiO 2 .
[0017]
Refer to FIG. 1 (B) (2)
A primary heat treatment is performed at a temperature of 500 [° C.] for a time of 30 [seconds] to react the Co film 15 and the exposed Si to form a CoSi compound film (monosilicidation process).
[0018]
(3)
By applying a wet etching method using ammonia + hydrogen peroxide + water or sulfuric acid + hydrogen peroxide + water as an etchant, the unreacted portion of the Co film 15 is removed.
[0019]
The CoSi compound film becomes a pattern of the source electrode 15S, the drain electrode 15D, and the gate electrode 15G, though not completely yet through the process of removing the unreacted portion.
[0020]
Refer to FIG. 2 (A) (4)
By applying a dry etching method using Ar ions, uniform ion etching is performed to thin the source electrode 15S, the drain electrode 15D, and the gate electrode 15G made of a CoSi compound (thinning process).
[0021]
Through this process, the source electrode 15S, the drain electrode 15D, and the gate electrode 15G are not only thinned but also narrowed as a planar pattern. Therefore, the source electrode 15S and the drain electrode 15D are reduced. Are separated from the element isolation region 12 and the side wall 14 to generate a gap.
[0022]
Refer to FIG. 2 (B) (5)
A secondary heat treatment is performed at a temperature of 800 ° C. for a time of 2 minutes, and the CoSi compound constituting the source electrode 15S, the drain electrode 15D, and the gate electrode 15G is changed to CoSi 2 to complete (large silicidation). processing).
[0023]
100 sample elements were manufactured by taking the steps of the first embodiment described above, and when the defective elements were inspected, the number was 0, but 100 sample elements were obtained by the conventional technique described with reference to FIGS. 4 and 5. When it was fabricated and the defective element was inspected, it was one.
[0024]
In the first embodiment, the source electrode 15S, the drain electrode 15D, and the gate electrode 15G are thinned by applying a dry etching method using Ar ions. For this, another method is used. Can do. Further, depending on the electrode material, there is a case where the monosilicidation process is not necessary, and in this case, only the large silicidation process is required, and the process is performed before the thinning process.
[0025]
Embodiment 2
When the second embodiment is compared with the first embodiment, only the method of thinning the source electrode 15S, the drain electrode 15D, and the gate electrode 15G is different, and the process will be described mainly.
[0026]
In the first embodiment, after the step (2) described with reference to FIG. 1B is completed, as shown in FIG. 3, a nitric acid-based mixed solution (nitric acid + hydrofluoric acid, 0. The source electrode 15S, the drain electrode 15D, and the gate electrode 15G made of a CoSi compound are thinned by immersing the whole in a container 16 filled with 5 [%]).
[0027]
Through this process, the source electrode 15S, the drain electrode 15D, and the gate electrode 15G are not only thinned but also narrowed as a planar pattern as in the first embodiment. The source electrode 15S and the drain electrode 15D are separated from the element isolation region 12 or the side wall 14, and a gap is generated between them.
[0028]
When 100 sample elements were produced by taking the steps of the second embodiment described above and the defective elements were inspected, the number was 0 as in the first embodiment.
[0029]
In each of the above embodiments, Co was used to form an electrode made of CoSi 2 , but Co was replaced with Ni or Ti, and the present invention was carried out. As well as good results.
[0030]
Here, an outline of the case where Co is replaced with Ni will be described. In this case, it is easy to understand with reference to FIG. 1 and FIG. 2 describing the first embodiment.
(1)
Instead of the Co film, a Ni film having a thickness of about 15 nm is formed on the entire surface.
(2)
Heat treatment is performed at a temperature of 400 [° C.] for a time of 30 [seconds].
By this heat treatment, a monosilicide film made of NiSi is obtained.
(3)
As in the case of the Co film, unnecessary portions are removed by etching.
(4)
As in the first embodiment, uniform ion etching using Ar ions is performed to thin the source electrode, drain electrode, and gate electrode made of a NiSi compound (thinning process).
(5)
Thereafter, it is completed through the same process as in the first embodiment.
[0031]
【The invention's effect】
In the method of manufacturing a semiconductor element according to the present invention includes the steps of forming a transition metal layer on a substrate that Si surface is exposed to the source electrode formation region and a drain electrode forming region, then the Performing a silicidation process on the transition metal film to form a source electrode and a drain electrode; and then performing a thinning process on the source electrode and the drain electrode so that the edges of the source electrode and the drain electrode are separated from the element isolation region and at least And a step of separating from a gate having a gate electrode whose side surface is covered with an insulating film.
[0032]
By adopting the above configuration, current leakage that occurs between the source and drain electrodes and the element isolation region or between the source and drain electrodes and the gate electrode can be suppressed, and normal transistor operation is achieved. Thus, a semiconductor element capable of performing the above can be manufactured with a high manufacturing yield.
[Brief description of the drawings]
FIG. 1 is a cutaway side view showing a main part of a semiconductor element in a process key point for explaining a first embodiment;
FIG. 2 is a cutaway side view of a main part showing a semiconductor element in a process key point for explaining the first embodiment;
FIG. 3 is a cutaway side view of a main part showing a semiconductor element and a manufacturing apparatus at process points for explaining a second embodiment;
FIG. 4 is a cutaway side view showing a main part of a semiconductor element at a process point for explaining a process of manufacturing a conventional semiconductor element.
FIG. 5 is a cut-away side view of a main part showing a semiconductor element at a process point for explaining a process of manufacturing a conventional semiconductor element.
[Explanation of symbols]
11 Si substrate 12 side wall 15 Co film 15S source electrode 15D drain electrode 15G gate electrode made of the element isolation region 13 Si gate electrode 14 SiO 2 consisting of embedded STI of SiO 2

Claims (1)

ソース電極形成予定領域及びドレイン電極形成予定領域にSi面が表出されている基板上に遷移金属膜を形成する工程と、Forming a transition metal film on a substrate on which a Si surface is exposed in the source electrode formation planned region and the drain electrode formation planned region;
次いで、該遷移金属膜のシリサイド化処理を行ってソース電極及びドレイン電極を形成する工程と、Next, a step of forming a source electrode and a drain electrode by performing silicidation treatment of the transition metal film,
次いで、該ソース電極及びドレイン電極のシンニング処理を行って該ソース電極及びドレイン電極のエッジを素子間分離領域及び少なくとも側面が絶縁膜で覆われたゲート電極を有するゲートから離隔する工程とNext, performing a thinning process on the source electrode and the drain electrode to separate an edge of the source electrode and the drain electrode from an inter-element isolation region and a gate having a gate electrode having at least a side surface covered with an insulating film;
が含まれてなることを特徴とする半導体素子の製造方法。A method for manufacturing a semiconductor device, comprising:
JP2002184139A 2002-06-25 2002-06-25 Manufacturing method of semiconductor device Expired - Fee Related JP4048527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184139A JP4048527B2 (en) 2002-06-25 2002-06-25 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184139A JP4048527B2 (en) 2002-06-25 2002-06-25 Manufacturing method of semiconductor device

Publications (3)

Publication Number Publication Date
JP2004031552A JP2004031552A (en) 2004-01-29
JP2004031552A5 JP2004031552A5 (en) 2005-10-13
JP4048527B2 true JP4048527B2 (en) 2008-02-20

Family

ID=31180120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184139A Expired - Fee Related JP4048527B2 (en) 2002-06-25 2002-06-25 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4048527B2 (en)

Also Published As

Publication number Publication date
JP2004031552A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
TWI288432B (en) Semiconductor device and method for manufacturing the same
KR100754262B1 (en) Semiconductor device, and manufacturing method thereof
JPH10233392A (en) Manufacture of semiconductor device
JP4048527B2 (en) Manufacturing method of semiconductor device
JP2008021935A (en) Electronic device and manufacturing method thereof
US6642592B2 (en) Semiconductor device and method for fabricating same
JPH11220122A (en) Manufacture of semiconductor device
US7148108B2 (en) Method of manufacturing semiconductor device having step gate
JP2005197676A (en) Semiconductor device and manufacturing method thereof
KR100672739B1 (en) Method for Forming Gate in Semiconductor Device
KR100190060B1 (en) Silicide forming method
JP4924451B2 (en) Cleaning method and semiconductor device manufacturing method
JP3444280B2 (en) Method for manufacturing semiconductor device
JP2008159834A (en) Method for manufacturing semiconductor device and semiconductor device
JPH10125623A (en) Manufacture of semiconductor device
KR100281144B1 (en) Semiconductor device and manufacturing method
KR100953489B1 (en) Method of forming self align silicide in semiconductor device
CN110600369A (en) Preparation method of semiconductor device and semiconductor device
KR100577307B1 (en) Method for manufacturing of semiconductor device
KR101004808B1 (en) Method for forming silicide of semiconductor device
KR100628218B1 (en) method for manufacturing of semiconductor device
JPH1050636A (en) Manufacture of semiconductor device
JPH06181219A (en) Manufacture of semiconductor device
JP2000040808A (en) Semiconductor nonvolatile storage element
US6455404B1 (en) Semiconductor device and method for fabricating same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees