JP4048402B2 - Permanent magnet type rotating electrical machine rotor - Google Patents

Permanent magnet type rotating electrical machine rotor Download PDF

Info

Publication number
JP4048402B2
JP4048402B2 JP17945699A JP17945699A JP4048402B2 JP 4048402 B2 JP4048402 B2 JP 4048402B2 JP 17945699 A JP17945699 A JP 17945699A JP 17945699 A JP17945699 A JP 17945699A JP 4048402 B2 JP4048402 B2 JP 4048402B2
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
magnetic pole
type rotating
pole unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17945699A
Other languages
Japanese (ja)
Other versions
JP2001016808A (en
Inventor
敏則 板垣
功 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP17945699A priority Critical patent/JP4048402B2/en
Publication of JP2001016808A publication Critical patent/JP2001016808A/en
Application granted granted Critical
Publication of JP4048402B2 publication Critical patent/JP4048402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、永久磁石により回転子の磁極を構成した永久磁石形回転電機に関し、詳しくは回転子の鉄心に永久磁石を装着するための構造に関する。
【0002】
【従来の技術】
図11は永久磁石形回転電機の回転子の従来例を示す外観斜視図である。回転子軸1に積層鉄心2が取り付けられ、この積層鉄心2には極数(図示は8極)に応じて、方形断面の軸方向の通し穴3が各極別に設けられている。図11に示すように、通し穴3には複数個の立方体形状の永久磁石片(以下、単に磁石片という。)4が矢印方向に連続して挿入され、接着剤などで固定される。磁石片4は図11の上下面がそれぞれN(又はS)極及びS(又はN)極に着磁されている。図12は異なる従来例を示すもので、積層鉄心2に外周面側が開口した凸状断面の溝5が設けられ、この溝5に磁石片4が挿入される。なお、この場合の磁極片4は左右面がN,S極に着磁されている。
【0003】
【発明が解決しようとする課題】
図13は、図11における通し穴部分の要部縦断面図である。回転子鉄心2は鋼鈑(珪素鋼鈑や磁極鋼鈑)6の積層構造であることから、通し穴3の内側面にはどうしても鋼鈑6ごとの細かい段差が生じる。そのため、通し穴3に磁石片4を挿入する際、磁石片4の先端角部が図示の通り鋼鈑6の段差に突き当たり、磁石片4を円滑に挿入することができない。特に、最初に挿入した磁石片4が段差に突き当たると、その時点で後続の挿入が不能となり、また通し穴3の奥の方で突き当たると手が届かず、反対方向からいったん押し出さなければならない。これを解決するために、磁石片4の角部に面取りをしたり、丸みを持たせたりすることも考えられるが、これは磁石のコストアップの要因となる。
【0004】
図14は、冷却用のエアダクトを有する回転子を示す要部縦断面図である。図14において、積層鉄心2として、一定の積層厚さを持つ複数個の鉄心ブロック2aが軸方向に一定の間隔を介して回転子軸1に取付けられ、鉄心ブロック2a,2a間にエアダクト7が形成されている。また、各鉄心ブロック2aには回転子軸1の外周面に沿って、エアダクト7に通じるエアダクト8が形成されている。エアダクト7,8には、矢印で示すように冷却風が通流される。
【0005】
さて、図14に示すようなエアダクト付回転子に永久磁石片4を挿入する場合には、上述した鋼鈑6(図13)間の段差に加えてエアダクト7による障害がある。すなわち、磁石片4は挿入の過程で先端角部がエアダクト7に落ち込み、次の鉄心ブロック2aに突き当たるため、磁石片4の挿入作業が一層困難になる。一方、積層鉄心2内のエアダクト部分には永久磁石は不要であり、通常、この部分には非磁性材の間隔片9が介挿される。その場合、間隔片9は鉄心ブロック2aから外れた位置、つまりエアダクト7内にあるため、間隔片9をその位置に保持するための手段が必要である。上記の問題は、回転子の溝5(図12)への磁石片4の挿入についても同じである。
そこで、この発明の課題は、永久磁石形回転電機の回転子において、回転子積層鉄心への磁石片の挿入作業を容易にし、併せてエアダクト付回転子における間隔片の保持手段を不要にすることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、この発明は、回転子に取り付けられた積層鉄心に、軸方向の通し穴又は溝が各極別に設けられ、内部に前記積層鉄心を構成する積層鋼板による段差を有するこの通し穴または溝に複数個の永久磁石片を連続して挿入してなる永久磁石形回転電機の回転子において、磁極ユニットを前記通し穴又は溝に挿入する際に、この磁極ユニットが前記段差に突き当たったときに手元で操作して段差から外せるようにした非磁性のケースに前記複数個の磁石片を収容することにより一体化して各極別の磁極ユニットを構成し、この磁極ユニットを前記積層鉄心の通し穴または溝に挿入する。
また、積層鉄心がエアーダクトを有する場合は、複数個の永久磁石片をその間に非磁性の間隔片を介挿して一緒に非磁性のケースに収容することにより一体化して各極別の磁極ユニットを構成するのがよい。
【0007】
このような手段によれば、磁石片はケースにより磁極ユニットとして一体化されて積層鉄心に挿入されるため、複数個の磁石片が個別に挿入される場合に比べて段差に突き当たる回数が少なく、また磁極ユニットの先端が突き当たっても手元で操作して容易に段差から外すことができる。一方、磁石片間に間隔片を介挿する場合には、間隔片も磁石片と一緒にケース内に保持することができるので、別途の間隔片保持手段が不要となる。
【0008】
【発明の実施の形態】
以下、図に基づいて積層鉄心の通し穴に磁石片を挿入する場合における実施の形態について説明する。図1はこの発明の基本的な実施の形態を示す回転子の分解斜視図である。図1において、各極の複数個の磁石片4は、非磁性材のケース10に矢印方向に順次挿入・収容されることにより、磁極ユニット11として一体化され、回転子積層鉄心2の通し穴3に挿入される。ケース10はステンレスなどの非磁性金属あるいは樹脂からなり、磁石片挿入端が開放した角筒体として構成され、開放端に形成された耳片10aの折り曲げにより磁石片4の抜け止めが行なわれる。
【0009】
磁石片4はケース10への挿入前に着磁しておいてもよいが、挿入後にケース10ごと着磁するようすれば、挿入時に磁石片間に磁気反発力が生じないので挿入作業が容易になる。ケース10内の磁石片4は回転電機運転時の振動などに耐え得るように、必要に応じて接着剤などで固定される。また、通し穴3に挿入された磁極ユニット11は、接着剤あるいは適宜の締結手段により固定される。
【0010】
図示実施の形態によれば、磁石片4はケース10により磁極ユニット11として一体化されて積層鉄心2の通し穴3に挿入されるため、通し穴3内の段差に突き当たるのはケース10の先端のみとなり、複数個の磁石片4が個別に挿入される従来構成に比べて段差に突き当たる回数が少なくなる。また、仮にケース10の先端が段差に突き当たっても、通し穴3の手前から突出する磁極ユニット11を手元で操作して容易に段差から外すことができるので、磁石片4の積層鉄心2への挿入作業は従来よりもはるかに容易になる。
【0011】
図2はエアダクトを有する回転子(図14参照)において、磁極片4,4間に非磁性材の間隔片9を介挿する場合の実施の形態を示すもので、間隔片9は磁石片4と一緒にケース10に挿入され、そのまま積層鉄心2の通し穴3(図1参照)に装着される。従って、間隔片9はケース10に保持され、別途の間隔片保持手段が不要である。
【0012】
磁石片4はケース10内に、種々のパターンで配置することができる。図3〜図5に、磁石片4のそれぞれ異なる配置例を示す。図3は大きな磁極を形成するために、磁石片4を回転子の軸方向だけではなく上下方向(半径方向)にも積んだものである。図4は幅の広い磁極を形成するために、磁石片4を回転子の軸方向だけではなく幅方向(周方向)にも並べたものである。図5は磁石片4を軸方向だけでなく上下方向にも積む場合において、磁石片4を千鳥に配置したものである。
【0013】
次に、図6〜図9は、ケース10の種々の実施の形態を示すものである。図6はケース10を上下一対のトレー状の箱体10´により構成したもので、磁極片4の全面を覆うのではなく、磁極片4の上面と下面及び側面の一部を覆うようにしたものである。図7はケース10をトレー状の箱体として構成し、磁極片4の下面と側面の一部を覆うようにしたものである。図8はケース10を前後端を開放した角筒体として構成し、磁石片4の上下面及び左右側面を覆うようにしたものである。図9はケース10を左右端を開放した角筒体として構成し、磁石片4の上下面及び前後面を覆うようにしたものである。なお、上記実施の形態は溝5(図12)を有する回転子に対しても同様に実施可能である。
【0014】
【発明の効果】
以上の通り、この発明によれば、複数個の永久磁石片を非磁性材からなるケースに収容し、それらを一体化した磁極ユニットとして回転子積層鉄心の通し穴又は溝に挿入することにより、永久磁石片が個々に段差に突き当たることがなくなり、挿入作業がきわめて容易になる。また、エアダクトを有する回転子において、永久磁石片間に間隔片を介挿する場合にも、この間隔片を永久磁石片と一緒にケース内に収容・保持することができるので、間隔片をエアダクト内に保持する別途の手段が不要で回転子の構造が簡単になる。
【図面の簡単な説明】
【図1】この発明の実施の形態を示す回転子の分解斜視図である。
【図2】この発明の異なる実施の形態を示す磁極ユニットの分解斜視図である。
【図3】この発明における永久磁石片の配置例を示す斜視図である。
【図4】この発明における永久磁石片の異なる配置例を示す斜視図である。
【図5】この発明における永久磁石片の更に異なる配置例を示す斜視図である。
【図6】この発明の更に異なる実施の形態を示す磁極ユニットの斜視図である。
【図7】この発明の更に異なる実施の形態を示す磁極ユニットの斜視図である。
【図8】この発明の更に異なる実施の形態を示す磁極ユニットの斜視図である。
【図9】この発明の更に異なる実施の形態を示す磁極ユニットの斜視図である。
【図10】永久磁石形回転電機の回転子の従来例を示す外観斜視図である。
【図11】図11の回転子における通し穴への永久磁石片の挿入を説明する要部拡大図である。
【図12】永久磁石形回転電機の回転子の異なる従来例を示す要部斜視図である。
【図13】図11における通し穴部分の縦断面図である。
【図14】エアダクトを有する回転子の従来例を示す要部縦断面図である。
【符号の説明】
1 回転子軸
2 積層鉄心
3 通し穴
4 永久磁石片
5 溝
6 積層鋼鈑
9 間隔片
10 ケース
11 磁極ユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permanent magnet type rotating electric machine in which a magnetic pole of a rotor is constituted by a permanent magnet, and more particularly to a structure for mounting a permanent magnet on an iron core of a rotor.
[0002]
[Prior art]
FIG. 11 is an external perspective view showing a conventional example of a rotor of a permanent magnet type rotating electric machine. A laminated iron core 2 is attached to the rotor shaft 1, and an axial through hole 3 having a square cross section is provided for each pole according to the number of poles (8 poles in the figure). As shown in FIG. 11, a plurality of cubic permanent magnet pieces (hereinafter simply referred to as magnet pieces) 4 are continuously inserted in the through holes 3 in the direction of the arrows and fixed with an adhesive or the like. The upper and lower surfaces of the magnet piece 4 are magnetized to N (or S) poles and S (or N) poles, respectively. FIG. 12 shows a different conventional example, in which a laminated core 2 is provided with a groove 5 having a convex cross section that is open on the outer peripheral surface side, and a magnet piece 4 is inserted into this groove 5. In this case, the left and right surfaces of the magnetic pole piece 4 are magnetized to N and S poles.
[0003]
[Problems to be solved by the invention]
FIG. 13 is a longitudinal sectional view of an essential part of the through hole portion in FIG. Since the rotor core 2 has a laminated structure of steel plates (silicon steel plate or pole steel plate) 6, a small step for each steel plate 6 inevitably occurs on the inner surface of the through hole 3. For this reason, when the magnet piece 4 is inserted into the through hole 3, the tip corner portion of the magnet piece 4 hits the step of the steel plate 6 as shown in the figure, and the magnet piece 4 cannot be inserted smoothly. In particular, when the magnet piece 4 inserted first hits a step, subsequent insertion becomes impossible at that time, and if it hits the back of the through hole 3, it cannot reach and must be pushed out from the opposite direction. In order to solve this problem, it is conceivable to chamfer or round the corners of the magnet piece 4, but this increases the cost of the magnet.
[0004]
FIG. 14 is a longitudinal sectional view of a main part showing a rotor having an air duct for cooling. In FIG. 14, as the laminated iron core 2, a plurality of iron core blocks 2a having a constant laminated thickness are attached to the rotor shaft 1 with a constant interval in the axial direction, and an air duct 7 is provided between the iron core blocks 2a and 2a. Is formed. Each iron core block 2 a is formed with an air duct 8 that communicates with the air duct 7 along the outer peripheral surface of the rotor shaft 1. Cooling air flows through the air ducts 7 and 8 as indicated by arrows.
[0005]
Now, when the permanent magnet piece 4 is inserted into a rotor with an air duct as shown in FIG. 14, there is an obstacle due to the air duct 7 in addition to the step between the steel plates 6 (FIG. 13) described above. That is, in the magnet piece 4, the corner of the tip falls into the air duct 7 in the process of insertion, and hits the next iron core block 2 a, so that the work of inserting the magnet piece 4 becomes more difficult. On the other hand, a permanent magnet is not required in the air duct portion in the laminated iron core 2, and a non-magnetic spacing piece 9 is usually inserted in this portion. In that case, since the spacing piece 9 is located at a position away from the iron core block 2a, that is, in the air duct 7, means for holding the spacing piece 9 at that position is required. The above problem also applies to the insertion of the magnet piece 4 into the rotor groove 5 (FIG. 12).
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to make it easy to insert a magnet piece into a rotor laminated core in a rotor of a permanent magnet type rotating electrical machine, and to eliminate the need for holding means for an interval piece in a rotor with an air duct. It is in.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention has an axial through hole or groove provided for each pole in a laminated iron core attached to a rotor, and has a step due to the laminated steel sheet constituting the laminated iron core inside. In a rotor of a permanent magnet type rotating electrical machine in which a plurality of permanent magnet pieces are continuously inserted into the through hole or groove, when the magnetic pole unit is inserted into the through hole or groove, the magnetic pole unit is A magnetic pole unit for each pole is formed by integrating the plurality of magnet pieces in a non-magnetic case that can be removed from the step when operated by hand. Insert into the through hole or groove of the laminated core.
Also, when the laminated iron core has an air duct, a plurality of permanent magnet pieces are integrated by interposing a non-magnetic spacing piece between them and accommodated together in a non-magnetic case. It is good to constitute.
[0007]
According to such means, since the magnet piece is integrated as a magnetic pole unit by the case and inserted into the laminated iron core, the number of times of hitting the step is smaller than when a plurality of magnet pieces are individually inserted, Even if the tip of the magnetic pole unit hits, it can be easily removed from the step by operating it at hand. On the other hand, when the gap piece is inserted between the magnet pieces, the gap piece can be held in the case together with the magnet piece, so that no separate gap piece holding means is required.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in the case of inserting a magnet piece into a through hole of a laminated core will be described with reference to the drawings. FIG. 1 is an exploded perspective view of a rotor showing a basic embodiment of the present invention. In FIG. 1, a plurality of magnet pieces 4 of each pole are integrated as a magnetic pole unit 11 by being sequentially inserted and accommodated in a nonmagnetic material case 10 in the direction of the arrow, and a through hole of the rotor laminated core 2 is obtained. 3 is inserted. The case 10 is made of a non-magnetic metal such as stainless steel or resin, and is configured as a rectangular tube body with an open end of the magnet piece, and the magnet piece 4 is prevented from coming off by bending the ear piece 10a formed at the open end.
[0009]
The magnet piece 4 may be magnetized before insertion into the case 10, but if the entire case 10 is magnetized after insertion, there will be no magnetic repulsive force between the magnet pieces during insertion, so the insertion work is easy. become. The magnet piece 4 in the case 10 is fixed with an adhesive or the like as necessary so that it can withstand vibrations during operation of the rotating electrical machine. The magnetic pole unit 11 inserted into the through hole 3 is fixed by an adhesive or appropriate fastening means.
[0010]
According to the illustrated embodiment, the magnet piece 4 is integrated as a magnetic pole unit 11 by the case 10 and is inserted into the through hole 3 of the laminated iron core 2. As compared with the conventional configuration in which the plurality of magnet pieces 4 are individually inserted, the number of times of hitting the step is reduced. Even if the tip of the case 10 hits the step, the magnetic pole unit 11 protruding from the front of the through hole 3 can be easily removed from the step by hand. The insertion work is much easier than before.
[0011]
FIG. 2 shows an embodiment in which a spacing piece 9 made of a nonmagnetic material is inserted between the magnetic pole pieces 4 and 4 in a rotor having an air duct (see FIG. 14). And is inserted into the case 10 together with the through hole 3 (see FIG. 1) of the laminated iron core 2 as it is. Therefore, the spacing piece 9 is held by the case 10, and a separate spacing piece holding means is unnecessary.
[0012]
The magnet pieces 4 can be arranged in various patterns in the case 10. 3 to 5 show different arrangement examples of the magnet pieces 4. In FIG. 3, magnet pieces 4 are stacked not only in the axial direction of the rotor but also in the vertical direction (radial direction) in order to form a large magnetic pole. FIG. 4 shows magnet pieces 4 arranged not only in the axial direction of the rotor but also in the width direction (circumferential direction) in order to form a wide magnetic pole. FIG. 5 shows the magnet pieces 4 arranged in a staggered manner when the magnet pieces 4 are stacked not only in the axial direction but also in the vertical direction.
[0013]
Next, FIGS. 6 to 9 show various embodiments of the case 10. In FIG. 6, the case 10 is composed of a pair of upper and lower tray-like box bodies 10 ', and instead of covering the entire surface of the pole piece 4, it covers the upper and lower surfaces of the pole piece 4 and part of the side surfaces. Is. In FIG. 7, the case 10 is configured as a tray-like box and covers the lower surface and part of the side surface of the pole piece 4. In FIG. 8, the case 10 is configured as a rectangular tube with the front and rear ends open, and covers the upper and lower surfaces and the left and right side surfaces of the magnet piece 4. In FIG. 9, the case 10 is configured as a rectangular cylinder with the left and right ends open, and covers the upper and lower surfaces and the front and rear surfaces of the magnet piece 4. The above embodiment can be similarly applied to a rotor having the groove 5 (FIG. 12).
[0014]
【The invention's effect】
As described above, according to the present invention, a plurality of permanent magnet pieces are accommodated in a case made of a nonmagnetic material, and inserted into a through hole or a groove of a rotor laminated core as a magnetic pole unit in which they are integrated, The permanent magnet pieces do not individually bump into the steps, and the insertion work becomes extremely easy. In addition, in a rotor having an air duct, even when a spacing piece is inserted between the permanent magnet pieces, the spacing piece can be accommodated and held in the case together with the permanent magnet pieces. There is no need for a separate means for holding in the rotor, and the structure of the rotor is simplified.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a rotor showing an embodiment of the present invention.
FIG. 2 is an exploded perspective view of a magnetic pole unit showing a different embodiment of the present invention.
FIG. 3 is a perspective view showing an example of arrangement of permanent magnet pieces according to the present invention.
FIG. 4 is a perspective view showing different arrangement examples of permanent magnet pieces in the present invention.
FIG. 5 is a perspective view showing still another example of arrangement of permanent magnet pieces according to the present invention.
FIG. 6 is a perspective view of a magnetic pole unit showing still another embodiment of the present invention.
FIG. 7 is a perspective view of a magnetic pole unit showing still another embodiment of the present invention.
FIG. 8 is a perspective view of a magnetic pole unit showing still another embodiment of the present invention.
FIG. 9 is a perspective view of a magnetic pole unit showing still another embodiment of the present invention.
FIG. 10 is an external perspective view showing a conventional example of a rotor of a permanent magnet type rotating electric machine.
11 is an enlarged view of a main part for explaining insertion of a permanent magnet piece into a through hole in the rotor of FIG.
FIG. 12 is a perspective view of a principal part showing a different conventional example of a rotor of a permanent magnet type rotating electric machine.
13 is a longitudinal sectional view of a through hole portion in FIG.
FIG. 14 is a longitudinal sectional view of an essential part showing a conventional example of a rotor having an air duct.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor shaft 2 Laminated iron core 3 Through hole 4 Permanent magnet piece 5 Groove 6 Laminated steel rod 9 Spacing piece 10 Case 11 Magnetic pole unit

Claims (2)

回転子軸に取り付けられた積層鉄心に、軸方向の通し穴又は溝が各極別に設けられ、内部に前記積層鉄心を構成する積層鋼板による段差を有するこの通し穴または溝に複数個の永久磁石片を連続して挿入してなる永久磁石形回転電機の回転子において、磁極ユニットを前記通し穴又は溝に挿入する際に、この磁極ユニットが前記段差に突き当たったときに手元で操作して段差から外せるようにした非磁性のケースに前記複数個の磁石片を収容することにより一体化して各極別の磁極ユニットを構成し、この磁極ユニットを前記積層鉄心の通し穴または溝に挿入することを特徴とする永久磁石形回転電機の回転子。A laminated iron core attached to the rotor shaft is provided with axial through holes or grooves for each pole, and a plurality of permanent magnets are provided in the through holes or grooves having a step due to the laminated steel plates constituting the laminated iron core inside. In a rotor of a permanent magnet type rotating electrical machine in which pieces are continuously inserted, when the magnetic pole unit is inserted into the through hole or groove, the step is operated by hand when the magnetic pole unit hits the step. A plurality of magnet pieces are housed in a non-magnetic case that can be removed from each other to form a magnetic pole unit for each pole, and the magnetic pole unit is inserted into the through hole or groove of the laminated core. A rotor of a permanent magnet type rotating electrical machine characterized by 請求項1に記載の永久磁石形回転電機の回転子において、前記積層鉄心が内部にエアーダクトを有する場合は、複数個の永久磁石片をその間に非磁性の間隔片を介挿して一緒に非磁性のケースに収容することにより一体化して各極別の磁極ユニットを構成することを特徴とする永久磁石形回転電機の回転子。2. The rotor of the permanent magnet type rotating electric machine according to claim 1, wherein when the laminated iron core has an air duct therein, a plurality of permanent magnet pieces are inserted together with nonmagnetic spacing pieces interposed therebetween. A rotor of a permanent magnet type rotating electrical machine, wherein the magnetic pole unit is integrated with each other by being housed in a magnetic case.
JP17945699A 1999-06-25 1999-06-25 Permanent magnet type rotating electrical machine rotor Expired - Fee Related JP4048402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17945699A JP4048402B2 (en) 1999-06-25 1999-06-25 Permanent magnet type rotating electrical machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17945699A JP4048402B2 (en) 1999-06-25 1999-06-25 Permanent magnet type rotating electrical machine rotor

Publications (2)

Publication Number Publication Date
JP2001016808A JP2001016808A (en) 2001-01-19
JP4048402B2 true JP4048402B2 (en) 2008-02-20

Family

ID=16066181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17945699A Expired - Fee Related JP4048402B2 (en) 1999-06-25 1999-06-25 Permanent magnet type rotating electrical machine rotor

Country Status (1)

Country Link
JP (1) JP4048402B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1786085B1 (en) * 2005-11-15 2016-08-03 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotating electric machine
FI118839B (en) * 2006-07-11 2008-03-31 Abb Oy Locking the permanent magnets in an electric machine
FI122122B (en) 2007-12-11 2011-08-31 Abb Oy Permanent magnet unit for electric machine, method of mounting permanent magnet units and rotor of electric machine
FI121291B (en) 2007-12-11 2010-09-15 Abb Oy Permanent magnetic module and electric machine rotor comprising said module
JP5396972B2 (en) * 2009-03-31 2014-01-22 アイシン精機株式会社 Motor rotor
JP2012039746A (en) * 2010-08-06 2012-02-23 Nissan Motor Co Ltd Magnet insertion method, rotor, and motor
JP5776275B2 (en) * 2011-03-31 2015-09-09 Tdk株式会社 Composite magnet structure
DE102012016402A1 (en) * 2011-11-21 2013-05-23 Krohne Ag Magnetic assembly for a nuclear magnetic Druchflussmessgerät
JP5929272B2 (en) * 2012-02-07 2016-06-01 株式会社デンソー Rotor for rotating electrical machine for vehicle and method for manufacturing the same
JP2014023265A (en) * 2012-07-18 2014-02-03 Fuji Electric Co Ltd Rotor of permanent magnet type rotary electric machine
CN103066769B (en) * 2012-12-20 2014-09-03 南车株洲电机有限公司 Permanent magnet motor embedded-type magnetic pole assembly device and assembly technique thereof
JP6251900B2 (en) * 2013-03-08 2017-12-27 株式会社明電舎 Permanent magnet rotating electric machine
EP2985890B1 (en) * 2013-04-10 2017-09-20 Nissan Motor Co., Ltd. Magnet inserting apparatus for magnet insertion into magnet insertion slots of rotor core and method thereof
DE102015201493A1 (en) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Magnetic field generating component for an electrical machine
KR101685403B1 (en) * 2016-04-26 2016-12-13 (주) 서풍 Magnet laminated jig
CN112865364A (en) * 2020-12-31 2021-05-28 西门子电动汽车动力总成系统(上海)有限公司 Motor component, motor vehicle and method for assembling motor component

Also Published As

Publication number Publication date
JP2001016808A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
JP4048402B2 (en) Permanent magnet type rotating electrical machine rotor
JP4755117B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
CA2301535A1 (en) Electric machine with a rotor constructed of permanent magnets and magnetic flux guides
JPS6079231U (en) Stator for magnetic rotating electric machines
JP5891089B2 (en) Permanent magnet synchronous machine
US6249066B1 (en) Stepping motor
JP4712059B2 (en) Synchronous motor rotor and compressor
JP2003339141A5 (en)
TW364234B (en) Rotor for an electric motor
JP2005304286A (en) Rotor unit for motor and permanent magnet type motor
JPH05219706A (en) Electric machine with permanent magnet rotor
JP4673825B2 (en) Embedded magnet rotor and manufacturing method of embedded magnet rotor
JP2004023864A (en) Rotor of permanent magnet rotary electric machine
JP2006034024A (en) Permanent magnet rotor of dynamo-electric machine
JP2007282325A (en) Permanent-magnet motor
JP2001178047A5 (en)
JP4393829B2 (en) Electric motor rotor
JP5148019B1 (en) Embedded magnet rotor
US6512317B2 (en) Motor using permanent magnet rotor
JPH02246748A (en) Permanent magnet rotor
JPH1189137A (en) Permanent magnet type motor
US20220190659A1 (en) Motor
JP7395869B2 (en) Manufacturing method of embedded magnet type rotor
JP4152637B2 (en) Molded motor
JP2001339883A (en) Rotor for salient-pole dynamo-electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees