JP4048332B2 - Method for producing hydrogen - Google Patents

Method for producing hydrogen Download PDF

Info

Publication number
JP4048332B2
JP4048332B2 JP33312197A JP33312197A JP4048332B2 JP 4048332 B2 JP4048332 B2 JP 4048332B2 JP 33312197 A JP33312197 A JP 33312197A JP 33312197 A JP33312197 A JP 33312197A JP 4048332 B2 JP4048332 B2 JP 4048332B2
Authority
JP
Japan
Prior art keywords
reaction
gas
catalyst
reactor
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33312197A
Other languages
Japanese (ja)
Other versions
JPH11157803A (en
Inventor
淳 岡本
幹男 米岡
秀司 江端
賢司 中村
太志 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP33312197A priority Critical patent/JP4048332B2/en
Publication of JPH11157803A publication Critical patent/JPH11157803A/en
Application granted granted Critical
Publication of JP4048332B2 publication Critical patent/JP4048332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明はメタノールを水と共に改質することにより水素ガスを製造する方法に関し、詳しくは触媒の存在下にメタノール水溶液を改質することにより水素ガスを製造する方法に関する。
【0002】
【従来の技術】
水素ガスは化成品の原料ガス、ガラスや電子材料の処理ガス、ロケットや燃料電池の燃料ガスなど非常に多岐に渡って大量に利用されている工業的に重要なガスである。特に近年では水素消費プラントに近接したオンサイト型水素製造プラントの需要が多く、これに適した水素の製造方法としてメタノールを水と共に改質して水素と二酸化炭素の混合ガスを得た後に分離して高純度な水素ガスを製造する方法が脚光を浴びている。
【0003】
従来、メタノールを水と共に改質して水素と二酸化炭素の混合ガスを得る方法は主に気相接触のメタノールの水蒸気改質による方法が行われている(特公昭62−3761号、特公昭62−43921号、特公昭62−46482号、特開昭59−184706号、特開昭59−203702号、特開昭62−207701号、特開平3−257001号等)。
【0004】
気相接触の水蒸気改質法以外の例として特開昭63−233001号には液相の炭化水素化合物中での接触改質法が開示されている。この方法では供給するメタノールと水を気化してから液相炭化水素に混合して触媒層に供給する為に、メタノールと水は気体として炭化水素溶媒に溶解して触媒と接触するようになっており気相接触の改質法と同様の欠点を有する。更に大量の液相炭化水素を加熱、循環させるための機器が必要になり好ましくない。
また、特開昭59−203701号にはメタノール水溶液から光触媒的に水素と二酸化炭素を製造する方法が開示されている。この方法では常温付近で水素が生成するなどの利点もあるものの、光触媒反応を起こすために高圧水銀灯などを用いて紫外光を作り出す必要があり、且つ水素の生成速度が遅いために工業的には不適である。
【0005】
【発明が解決しようとする課題】
気相接触の水蒸気改質法は、液体で貯蔵されているメタノールと水を気化させて触媒層へ供給するための機器と熱量を必要とする。また改質反応が吸熱反応であるために工業的に充分な改質速度を得るためには高い反応温度が必要とされ、一般に240〜290℃以上の反応温度が採用されている。これよりも低い反応温度域ではメタノールの転化率が著しく低下するために未反応メタノールや水を凝縮させて生成ガスと分離した後に回収する必要が生じる。
これらの要素によってプロセス装置は複雑なものになり、エネルギー利用の見地からも好ましいものではない。
【0006】
また、水素ガスを半導体材料の処理ガスや燃料電池の燃料ガス等の用途に用いる場合には副生する一酸化炭素ガスは極力少ないことが望ましいが、気相接触の水蒸気改質法では前述の理由により高い反応温度が採用されるために熱力学的に一酸化炭素の副生に有利な傾向にある。よって一般には供給メタノールに対して過剰量の水を加えることにより一酸化炭素の副生を抑制するか、または改質反応器の後段に水性ガスシフト反応器を連結するなどして副生した一酸化炭素を減量する措置が更に必要になる。
本発明の目的は、以上の如き状況に鑑み、より簡素なプロセス装置でより低い反応温度条件下にメタノールを水と共に改質して水素ガスを得る方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは上記の課題を解決するために鋭意検討を行った結果、固体触媒の存在下にメタノール水溶液を液相で改質することにより、簡素なプロセス装置でより低い反応温度条件下でメタノールを改質できること、固体触媒として特に銅と亜鉛及び/またはクロムを含有する触媒が好適であることを見い出し、本発明に至った。
即ち本発明は固体触媒の存在下にメタノール水溶液を液相で改質することを特徴とする水素ガスの製造方法であり、固体触媒として銅と亜鉛及び/またはクロムを含有する触媒が好適に用いられる。
【0008】
【発明の実施の形態】
本発明のメタノールの改質反応は下式で表される。
CH3 OH + H2 O → 3H2 + CO2
本発明の方法ではメタノール水溶液を分解して加圧された水素と二酸化炭素の混合ガスを得るので、反応生成物が原料のメタノール水溶液から容易に分離されることになり、従来の気相接触のメタノール水蒸気改質法と比較して、より簡素なプロセスと装置で加圧された水素と二酸化炭素の混合ガスが得られるのが特徴である。また、水素の利用目的によっては好ましくないとされる一酸化炭素の副生を、従来の気相接触法よりも低い反応温度域で改質反応を進行させることによって抑制できると言う利点も併せ持つ。
【0009】
本発明で用いられる固体触媒は制限されないが、銅と、亜鉛及び/またはクロムを含有する触媒が好適に用いられる。銅と亜鉛やクロム化合物が最終的に組み合わされて含有されておればよく、各元素の出発物質について特に制限はない。例えば当該元素の酸化物、水酸化物、ハロゲン化物、炭酸塩、塩基性炭酸塩、硝酸塩、酢酸塩、ギ酸塩、ピロ酸塩、錯体化合物等を用いることができる。また当該元素の二つ以上を含有するクロム酸銅、クロム酸亜鉛等の複合酸化物や複合塩等も用いることができる。
【0010】
本発明で用いられる触媒の調製方法には特に制限はなく、例えば混練法、共沈法、含浸法等の既知の固体触媒の調製方法を用いることができる。具体的には前述の銅化合物と亜鉛化合物やクロム化合物を湿式混練して調製する方法、銅化合物と亜鉛化合物やクロム化合物の混合溶液を適当な沈澱剤を用いて共沈させる方法、銅化合物と亜鉛化合物やクロム化合物の混合溶液を適当な触媒担体に含浸させる方法、銅化合物の溶液を適当な亜鉛化合物やクロム化合物に担持する方法等を用いることができる。また既知の銅−亜鉛複合酸化物、銅−クロム複酸化物、銅−亜鉛−クロム複合酸化物等を調製する方法も用いることができる。
【0011】
本発明で用いられる触媒は銅と亜鉛やクロム以外に反応に不活性な成分を含有していても良い。不活性な成分とは銅成分等を分散させるための分散剤、触媒成型助剤、触媒担体や支持構造物等であって、例えばシリカ、アルミナ、活性炭、タルク、グラファイト、金属板、金属フィン等である。これらを前述の触媒調製工程中に添加したり、これらの上で触媒を調製することによって触媒を調製することができる。
【0012】
本発明で用いられる触媒にはマンガン化合物やアルカリ土類金属化合物の添加が有効である。固体触媒成分にマンガン化合物やアルカリ土類金属化合物を含有させて用いる場合には、これらの化合物が最終的に触媒に組み合わされて含有されておればよい。添加されるアルカリ土類金属化合物は周期律表IIa族元素の化合物であって、マグネシウム、カルシウム、ストロンチウム、バリウムの中から選ばれる一種類または二種類以上の元素の一種類または二種類以上の化合物が用いられる。マンガン化合物、アルカリ土類金属化合物の出発物質について特に制限はない。例えば当該元素の金属、酸化物、水酸化物、ハロゲン化物、炭酸塩、塩基性炭酸塩、硝酸塩、酢酸塩、錯体化合物等を用いることができる。マンガン化合物やアルカリ土類金属化合物を含有する触媒の調製方法に特に制限はない。例えばマンガン化合物やアルカリ土類金属化合物の出発物質を触媒担体として用いたり、前述の触媒調製工程中に添加したり、触媒に含浸担持させることによってマンガン化合物やアルカリ土類金属化合物を構成成分に含有する触媒を調製することができる。
【0013】
本発明で用いられる触媒中に含まれる銅濃度に特に制限はない。0.1〜95重量%、好ましくは1〜70重量%の範囲が有効である。触媒中に含まれる銅と亜鉛またはクロムの組成比に特に制限はない。銅/亜鉛またはクロム原子比で1/100〜100/1、好ましくは1/20〜20/1程度の範囲で用いることができる。マンガン化合物やアルカリ土類金属化合物を含有する固体触媒を用いる場合の触媒中の銅金属重量に対するマンガン化合物やアルカリ土類金属化合物重量の比は各々0.001〜50、好ましくは0.01〜2の範囲にあることが望ましい。
【0014】
本発明で用いられる触媒の形状に特に制限はない。即ち粉末状、粒状、打錠成型ペレット、押出成型ペレット等の形状で使用することができる。
本発明の触媒は反応に用いる前に必要に応じて焼成、還元等の処理を行うことが望ましい。焼成処理は、その方法に特に制限はなく一般に焼成炉内に静置または流動させ、空気または不活性ガス雰囲気下に200〜600℃の温度範囲で処理することが好ましい。還元処理は常法を採用することができ、100〜500℃の温度範囲で水素ガス、一酸化炭素ガス、メタノールによる還元等が有効である。本発明の方法では市販の酸化銅を含有する未還元触媒を用いて反応を行っても水素ガスが生成することを確認しているが、還元処理した触媒に比較して水素の生成速度に劣る傾向があり還元処理を施すことが望ましい。
【0015】
本発明に用いられるメタノールは、その製造方法に特に制限はなく如何なる製法によって製造されたものも使用することができる。その純度はできる限り高純度である方が望ましいが、最も入手し易く廉価な工業的蒸留グレード品を用いても何等差し支えなく、従来の気相接触改質法に用いられている程度の純度で充分に使用可能である。
本発明に用いられる水についても、その製造方法に特に制限はなく、またその純度はできる限り高純度である方が望ましいが、最も入手し易いイオン交換水や蒸留水であっても何等差し支えなく、従来の気相接触改質法に用いられている程度の純度で充分に使用可能である。
【0016】
本発明に用いられる反応方式は、メタノールと水の混合物が液相状態で固体触媒と接触して生成ガスが得られるものであれば反応器の形状、原料の供給方法、生成ガスの採取方法等に特に制限はない。例えば次の様な形式で行なうことができる。
1)予め反応器にメタノール水溶液を仕込んで閉鎖系で反応を行い、反応中に原料液成分、生成ガスが系外に出さない方法。この場合には反応器を冷却して生成ガスを得ることができる。
2)予め反応器にメタノール水溶液を仕込んで反応を行い、反応器中の蒸気相の凝縮成分を冷却することにより反応中に生成ガスを系外に抜き出す方法。
3)予め反応器にメタノール水溶液を仕込んで反応を行い、反応器中の蒸気相の一部を冷却するかまたは全く冷却しないで、反応中にメタノール、水、生成ガスを系外に抜き出す方法。
4)予め反応器にメタノール水溶液を仕込んで反応を行い、反応器中の蒸気相の凝縮成分を冷却することにより反応中に生成ガスを系外に抜き出しつつ、反応器中にメタノール水溶液を供給する方法。
5)予め反応器にメタノール水溶液を仕込んで反応を行い、反応器中の蒸気相の一部を冷却するかまたは全く冷却しないで、反応中にメタノール、水、生成ガスを系外に抜き出しつつ、反応器中にメタノール水溶液を供給する方法等である。
【0017】
しかしながら、反応系が閉鎖系である場合には改質反応の進行と共に逆反応が進行しやすくなるために改質反応は徐々に進行しにくくなり、原理的には平衡状態までしか改質反応は進行しない。よって、この不利益を解決するためには生成ガスの少なくとも一部を反応中に反応系外に抜き出すことが好ましい。生成ガスを反応系外へ抜き出す際には、反応器内のガスの一部もしくは全部を冷却して凝縮成分を反応器に還流させることにより生成ガスのみを抜き出す方法やメタノールや水と生成ガスを同時に抜き出す方法を用いることができる。この時の抜き出しガスと凝縮成分の比率及び凝縮成分の還流比は反応器内のガスの温度、圧力、組成及び冷却装置の運転状態等により好適値が選ばれる。
また、生成ガスを連続的に製造する為には、メタノールと水を個々にまたは混合して反応器に供給することが好ましい。この場合のメタノールと水の供給比率、供給方法に制限はなく、供給状態についても気相、液相、気液混相いずれの状態でも供給することができる。
【0018】
本発明における液相状態で固体触媒と接触するメタノールと水の比率に特に制限はないが、水/メタノールモル比で0.01〜100、好ましくは0.05〜10の範囲が選ばれる。水とメタノールの蒸気圧に差があるために初期充填液中の比率、供給物中の比率、反応条件、反応器及び冷却装置の運転状態等で固体触媒と接触するメタノールと水の比率は可変であり、前述の範囲から好適値が選ばれる。
【0019】
本発明における反応温度は100℃〜240℃の範囲、好ましくは150〜230℃の範囲が用いられる。反応圧力は3〜150気圧の範囲であって、反応器内で安定にメタノールを液相状態に保つためには反応温度におけるメタノールの蒸気圧以上の反応圧力を用いられる。本発明では反応雰囲気下に窒素、アルゴン、ヘリウム等の不活性ガス等を共存させて用いることができる。
【0020】
本発明における触媒の利用方法は、反応器内でメタノール水溶液と触媒が接触して生成ガスが得られるものであれば特に制限はない。例えば反応器内の一部に固定して固定床として用いる方法、反応液中に分散させて懸濁床として用いる方法等を前述のいずれの反応形式においても用いることができる。
本発明で得られる水素と二酸化炭素を主成分とする生成ガスから純度の高い水素ガスを得る方法に特に制限はなく、従来の気相接触改質法に用いられているような水素ガス精製プロセスを利用することができる。
【0021】
【実施例】
本発明について以下に実施例により具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
なお各実施例において水素生成速度の算出には下式を用いた。
水素生成速度(mol-H2 /kg-cat・ hr) =
生成水素量(mol) /触媒重量(kg)/反応時間(hr)
ここで固体触媒の重量は還元処理後の重量を用いて算出した。なお以下の実施例において実施例1〜9は閉鎖系で改質反応を行った場合であり、実施例10〜13は生成ガスを抜き出しながら改質反応を行った場合である。
【0022】
実施例1
日産ガードラー製G-66B 触媒(酸化銅30wt%、酸化亜鉛60wt%含有)の円柱状打錠成型ペレットを粉砕、篩い分けして 0.5〜1.0mm に整えた。ガラス製還元管に3.30g を充填して、水素/窒素混合ガスを流通させて常圧下で 240℃、2時間の還元処理を行った。還元済み触媒 2.89gと 64.0wt%メタノール水溶液 23.5gを100mL オートクレーブに充填して、系内を常圧の窒素ガスに置換してから 203℃に加熱して 3時間振盪して反応させた。反応終了時の反応圧力は 80Kg/cm2 (ゲージ圧)であった。反応終了後、氷水で冷却してからオートクレーブ内のガス成分、液成分を各々回収してガスクロマトグラフ分析によって定量した。結果を表1に示す。
【0023】
実施例2
実施例1の触媒(0.5〜1.0mm粒径)3.30gを実施例1に記載の方法によって還元処理した。還元済み触媒 2.91gと 64.0wt%メタノール水溶液 23.2gを 100mLオートクレーブに充填して、実施例1に記載の反応操作によって 221℃で 3時間振盪して反応させた。反応終了時の反応圧力は 125 Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理しオートクレーブの内容物の定量を行った。結果を表1に示す。
【0024】
実施例3
実施例1の触媒(0.5〜1.0mm粒径)3.30gを実施例1に記載の方法によって還元処理した。還元済み触媒 2.90gと 77.9wt%メタノール水溶液 19.7gを 100mLオートクレーブに充填して、実施例1に記載の反応操作によって 221℃で 2時間振盪して反応させた。反応終了時の反応圧力は 128 Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理しオートクレーブの内容物の定量を行った。結果を表1に示す。
【0025】
【表1】

Figure 0004048332
【0026】
実施例4
日産ガードラー製G-13A 触媒(銅42wt%、クロム26wt% 含有)の円柱状打錠成型ペレットを粉砕、篩い分けして 0.5〜1.0mm に整えた。ガラス製還元管に3.40g を充填して水素/窒素混合ガスを流通させて常圧下で 200℃、 5時間の還元処理を行った。還元済み触媒 2.94gと 63.9wt%メタノール水溶液24.01gを 100mLオートクレーブに充填して、実施例1に記載の反応操作によって 221℃で 3時間振盪して反応させた。反応終了時の反応圧力は 108 Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理しオートクレーブの内容物の定量を行った。結果を表2に示す。
【0027】
実施例5
日揮化学製N-201 触媒(酸化銅36.5wt%、酸化クロム45.5wt%、酸化マンガン 3.4wt% 含有)の円柱状打錠成型ペレットを粉砕、篩い分けして 0.5〜1.0mm に整えた。ガラス製還元管に 3.35gを充填して実施例4に記載の方法によって還元処理した。還元済み触媒 3.08gと 64.0wt%メタノール水溶液24.03gを 100mLオートクレーブに充填して、実施例1に記載の反応操作によって 221℃で 3時間振盪して反応させた。反応終了時の反応圧力は 119 Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理してオートクレーブの内容物の定量を行った。結果を表2に示す。
【0028】
実施例6
日産ガードラー製G-99C 触媒(銅36wt%、クロム32wt%、バリウム2.2wt%、 マンガン2.4wt%含有)の円柱状打錠成型ペレットを粉砕、篩い分けして 0.5〜1.0mm に整えた。ガラス製還元管に 3.30gを充填して、実施例4に記載の方法によって還元処理した。還元済み触媒 3.03gと 63.9wt%メタノール水溶液24.04gを 100mLオートクレーブに充填して実施例1に記載の反応操作によって 221℃で 3時間振盪して反応させた。反応終了時の反応圧力は 117 Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理しオートクレーブの内容物の定量を行った。結果を表2に示す。
【0029】
【表2】
Figure 0004048332
【0030】
実施例7
日産ガードラー製G-89触媒(銅39wt%、クロム37wt%、マンガン3wt%含有)の円柱状打錠成型ペレットを粉砕、篩い分けして 0.5〜1.0mm に整えた。ガラス製還元管に 3.31gを充填して、実施例4に記載の方法によって還元処理した。還元済み触媒 3.12gと 64.0wt%メタノール水溶液24.01gを 100mLオートクレーブに充填して、実施例1に記載の反応操作によって 204℃で 3時間振盪して反応させた。反応終了時の反応圧力は 84Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理してオートクレーブの内容物の定量を行った。結果を表3に示す。
【0031】
実施例8
実施例7の触媒(0.5〜1.0mm粒径)3.31gを実施例4に記載の方法によって還元処理した。還元済み触媒 3.12gと 64.0wt%メタノール水溶液24.01gを 100mLオートクレーブに充填して、実施例1に記載の反応操作によって 221℃で 2時間振盪して反応させた。反応終了時の反応圧力は 122 Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理しオートクレーブの内容物の定量を行った。結果を表3に示す。
【0032】
実施例9
実施例7の触媒(0.5〜1.0mm 粒径)3.30gを実施例4に記載の方法によって還元処理した。還元済み触媒 3.11gと 78.0wt%メタノール水溶液19.75gを 100mLオートクレーブに充填して実施例1に記載の反応操作によって 221℃で 1.3時間振盪して反応させた。反応終了時の反応圧力は 124 Kg/cm2 (ゲージ圧) であった。反応終了後、実施例1と同様に処理しオートクレーブの内容物の定量を行った。結果を表3に示す。
【0033】
【表3】
Figure 0004048332
【0034】
実施例10
外部ヒーター、撹拌機、安全弁、窒素ガス導入ライン及び冷却管を経由して調圧弁に至るガス抜出ラインを備え付けた SUS製 100mL耐圧槽型反応器に、実施例1の触媒(0.5〜1.0mm 粒径) 6.6gを実施例1に記載した方法で還元処理したもの5.9gと 64.0wt%メタノール水溶液 48.0gを充填し、系内を窒素ガスで置換してから所定圧力まで充填した。外部循環する冷媒によって冷却管を約 0℃に冷却しつつ、撹拌機により 1200rpmの速度で反応器内部を撹拌した。調圧弁を閉じて反応系を閉鎖系にして、反応器を内部の液温度が約200℃となるように加熱した。加熱開始から 1.5時間後に外部ヒーター温度 226℃において反応器内の液温度 193℃、反応圧力 51Kg/cm2 (ゲージ圧) に達した。調圧弁を調整して反応圧力を50〜51 Kg/cm2 に保持して生成ガスを抜き出しながら反応器内の液温度を 200〜203 ℃に保って 4.0時間反応を継続した。反応終了後、再び調圧弁を閉じて反応器を氷水で冷却して反応器内の内容物を回収した。反応中の抜出ガス成分、反応終了後の反応器内の回収ガス成分及び回収液成分を各々ガスクロマトグラフ分析して生成物を定量した。結果を表4に示す。
【0035】
実施例11
実施例1の触媒(0.5〜1.0mm 粒径) 6.6gを実施例1に記載した方法で還元処理したもの5.9gと 87.7wt%メタノール水溶液 48.0gを実施例10に記載した SUS製 100mL耐圧槽型反応器に充填し、実施例10と同様の操作によって反応器内部の液温度が約 200℃となるように加熱した。加熱開始から 1.3時間後に外部ヒーター温度 225℃において反応器内の液温度 191℃、反応圧力 50Kg/cm2 に達した。調圧弁を調整して反応圧力を 50Kg/cm2 に保持して生成ガスを抜き出しながら反応器内の液温度を 200〜203 ℃に保って 2.5時間反応を継続した。反応終了後、実施例10と同様に処理して反応器内の内容物を回収し、ガスクロマトグラフ分析して生成物を定量した。結果を表4に示す。
【0036】
実施例12
実施例7の触媒(0.5〜1.0mm 粒径) 6.6gを実施例4に記載した方法で還元処理したもの6.2gと 64.0wt%メタノール水溶液 48.0gを実施例10に記載した SUS製 100mL耐圧槽型反応器に充填し、実施例10と同様の操作によって反応器内部の液温度が約 200℃となるように加熱した。加熱開始から 1.2時間後に外部ヒーター温度 221℃において反応器内の液温度 188℃、反応圧力 50Kg/cm2 に達した。調圧弁を調整して反応圧力を 50Kg/cm2 に保持して生成ガスを抜き出しながら反応器内の液温度を 198〜204 ℃に保って 3.0時間反応を継続した。反応終了後、実施例10と同様に処理して反応器内の内容物を回収し、ガスクロマトグラフ分析して生成物を定量した。結果を表4に示す。
【0037】
実施例13
実施例7の触媒(0.5〜1.0mm 粒径) 6.6gを実施例1に記載した方法で還元処理したもの6.2gと 87.7wt%メタノール水溶液 48.0gを実施例10に記載した SUS製 100mL耐圧槽型反応器に充填し、実施例10と同様の操作によって反応器内部の液温度が約 200℃となるように加熱した。加熱開始から 1.2時間後に外部ヒーター温度 221℃において反応器内の液温度 182℃、反応圧力 50Kg/cm2 に達した。調圧弁を調整して反応圧力を 50Kg/cm2 に保持して生成ガスを抜き出しながら反応器内の液温度を 189〜200 ℃に保って 1.7時間反応を継続した。反応終了後、実施例10と同様に処理して反応器内の内容物を回収し、ガスクロマトグラフ分析して生成物を定量した。結果を表4に示す。
【0038】
【表4】
Figure 0004048332
【0039】
【発明の効果】
以上の実施例からも明らかなように、銅と亜鉛及び/またはクロムを含有する固体触媒の存在下にメタノール水溶液を液相で改質することにより、230℃以下の穏やかな反応条件下で加圧された水素ガスを得ることができ、且つ生成ガス中に含まれる副生一酸化炭素が少ないと云う利点がある。従って生成ガスの精製が容易になり、工業的に極めて有利に水素ガスを製造することができる。
また本発明の方法では、メタノール水溶液を改質して加圧された水素ガスを得るので、反応生成物が原料のメタノール水溶液から容易に分離されることになり、従来の気相メタノールの水蒸気改質反応を行なう場合と比較して、より簡素なプロセスと装置で加圧された水素ガスが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrogen gas by reforming methanol with water, and more particularly to a method for producing hydrogen gas by reforming an aqueous methanol solution in the presence of a catalyst.
[0002]
[Prior art]
Hydrogen gas is an industrially important gas that is used in a great variety of ways, such as raw material gas for chemical products, processing gas for glass and electronic materials, and fuel gas for rockets and fuel cells. Particularly in recent years, there is a great demand for an on-site hydrogen production plant close to a hydrogen consuming plant. As a suitable hydrogen production method, methanol is reformed together with water to obtain a mixed gas of hydrogen and carbon dioxide and then separated. The method of producing high purity hydrogen gas is in the spotlight.
[0003]
Conventionally, a method of reforming methanol together with water to obtain a mixed gas of hydrogen and carbon dioxide is mainly performed by steam reforming of methanol in a gas phase contact (Japanese Examined Patent Publication No. 62-3761 and Japanese Examined Publication No. 62). No. -43921, JP-B 62-46482, JP-A 59-184706, JP-A 59-203702, JP-A 62-207701, JP-A-3-257001, etc.).
[0004]
As an example other than the steam reforming method in the gas phase contact, Japanese Patent Application Laid-Open No. 63-233001 discloses a catalytic reforming method in a liquid phase hydrocarbon compound. In this method, since methanol and water to be supplied are vaporized, mixed with liquid phase hydrocarbons and supplied to the catalyst layer, methanol and water are dissolved in a hydrocarbon solvent as a gas and come into contact with the catalyst. It has the same disadvantages as the gas phase contact reforming method. Furthermore, an apparatus for heating and circulating a large amount of liquid-phase hydrocarbon is required, which is not preferable.
JP-A-59-203701 discloses a method for photocatalytically producing hydrogen and carbon dioxide from an aqueous methanol solution. Although this method has the advantage that hydrogen is generated near room temperature, it is necessary to create ultraviolet light using a high-pressure mercury lamp to cause a photocatalytic reaction, and industrially because the generation rate of hydrogen is slow. Unsuitable.
[0005]
[Problems to be solved by the invention]
The gas phase contact steam reforming method requires equipment and heat for vaporizing methanol and water stored in liquid and supplying them to the catalyst layer. Further, since the reforming reaction is an endothermic reaction, a high reaction temperature is required to obtain an industrially sufficient reforming rate, and a reaction temperature of 240 to 290 ° C. or higher is generally employed. In the reaction temperature range lower than this, since the conversion rate of methanol is remarkably lowered, it is necessary to recover the unreacted methanol and water after condensing them and separating them from the product gas.
These elements complicate the process equipment, which is not preferable from the viewpoint of energy utilization.
[0006]
In addition, when hydrogen gas is used for applications such as processing gas for semiconductor materials and fuel gas for fuel cells, it is desirable that the amount of carbon monoxide produced as a by-product be as small as possible. For high reasons, a high reaction temperature is employed, which tends to favor the byproduct of carbon monoxide thermodynamically. Therefore, in general, carbon monoxide by-product is suppressed by adding an excessive amount of water to the supplied methanol, or by-produced monoxide by connecting a water gas shift reactor downstream of the reforming reactor. Further measures are needed to reduce carbon.
In view of the above circumstances, an object of the present invention is to provide a method for obtaining hydrogen gas by reforming methanol together with water under a lower reaction temperature with a simpler process apparatus.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reformed an aqueous methanol solution in the liquid phase in the presence of a solid catalyst, so that a simple process apparatus can be used under a lower reaction temperature condition. The inventors have found that methanol can be modified and that a catalyst containing copper and zinc and / or chromium is particularly suitable as the solid catalyst, and the present invention has been achieved.
That is, the present invention is a method for producing hydrogen gas characterized in that an aqueous methanol solution is reformed in the liquid phase in the presence of a solid catalyst, and a catalyst containing copper and zinc and / or chromium is preferably used as the solid catalyst. It is done.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The methanol reforming reaction of the present invention is represented by the following formula.
CH 3 OH + H 2 O → 3H 2 + CO 2
In the method of the present invention, the methanol aqueous solution is decomposed to obtain a pressurized mixed gas of hydrogen and carbon dioxide, so that the reaction product is easily separated from the raw methanol aqueous solution, Compared with the methanol steam reforming method, it is characterized in that a mixed gas of hydrogen and carbon dioxide pressurized by a simpler process and apparatus can be obtained. In addition, there is an advantage that carbon monoxide by-product, which is undesirable depending on the purpose of using hydrogen, can be suppressed by allowing the reforming reaction to proceed in a reaction temperature range lower than that of the conventional gas phase contact method.
[0009]
The solid catalyst used in the present invention is not limited, but a catalyst containing copper and zinc and / or chromium is preferably used. There is no particular limitation on the starting material of each element as long as copper and zinc or chromium compounds are finally combined and contained. For example, oxides, hydroxides, halides, carbonates, basic carbonates, nitrates, acetates, formates, pyrosates, complex compounds, and the like of the elements can be used. In addition, composite oxides and composite salts such as copper chromate and zinc chromate containing two or more of the elements can also be used.
[0010]
The method for preparing the catalyst used in the present invention is not particularly limited, and known solid catalyst preparation methods such as a kneading method, a coprecipitation method, and an impregnation method can be used. Specifically, a method of wet kneading and preparing the above-mentioned copper compound and zinc compound or chromium compound, a method of co-precipitation of a mixed solution of a copper compound and zinc compound or chromium compound using an appropriate precipitant, and a copper compound A method of impregnating an appropriate catalyst carrier with a mixed solution of a zinc compound or a chromium compound, a method of supporting a solution of a copper compound on an appropriate zinc compound or a chromium compound, and the like can be used. Moreover, the method of preparing known copper-zinc complex oxide, copper-chromium complex oxide, copper-zinc-chromium complex oxide, etc. can also be used.
[0011]
The catalyst used in the present invention may contain a component inert to the reaction in addition to copper, zinc and chromium. Inactive components are dispersants for dispersing copper components, catalyst molding aids, catalyst carriers, support structures, etc., such as silica, alumina, activated carbon, talc, graphite, metal plates, metal fins, etc. It is. A catalyst can be prepared by adding these during the above-mentioned catalyst preparation process or preparing a catalyst on these.
[0012]
Addition of a manganese compound or an alkaline earth metal compound is effective for the catalyst used in the present invention. When the solid catalyst component is used containing a manganese compound or an alkaline earth metal compound, it is sufficient that these compounds are finally combined with the catalyst. The added alkaline earth metal compound is a compound of Group IIa element of the periodic table, and one or more compounds of one or more elements selected from magnesium, calcium, strontium and barium Is used. There are no particular restrictions on the starting material of the manganese compound or alkaline earth metal compound. For example, metals, oxides, hydroxides, halides, carbonates, basic carbonates, nitrates, acetates, complex compounds, and the like of the elements can be used. There is no particular limitation on the method for preparing the catalyst containing a manganese compound or an alkaline earth metal compound. For example, manganese compounds or alkaline earth metal compounds are used as catalyst carriers, added during the catalyst preparation process described above, or impregnated on the catalyst to contain manganese compounds or alkaline earth metal compounds. A catalyst can be prepared.
[0013]
There is no restriction | limiting in particular in the copper concentration contained in the catalyst used by this invention. A range of 0.1 to 95% by weight, preferably 1 to 70% by weight is effective. There is no particular restriction on the composition ratio of copper and zinc or chromium contained in the catalyst. The copper / zinc or chromium atomic ratio can be used in the range of about 1/100 to 100/1, preferably about 1/20 to 20/1. In the case of using a solid catalyst containing a manganese compound or an alkaline earth metal compound, the ratio of the manganese compound or alkaline earth metal compound weight to the copper metal weight in the catalyst is 0.001 to 50, preferably 0.01 to 2, respectively. It is desirable to be in the range.
[0014]
There is no restriction | limiting in particular in the shape of the catalyst used by this invention. That is, it can be used in the form of powder, granules, tablet-molded pellets, extrusion-molded pellets and the like.
The catalyst of the present invention is desirably subjected to treatment such as calcination and reduction before use in the reaction. There is no particular limitation on the method for the firing treatment, and it is generally preferred that the firing treatment is allowed to stand or flow in a firing furnace, and the treatment is performed in a temperature range of 200 to 600 ° C. in an air or inert gas atmosphere. For the reduction treatment, a conventional method can be adopted, and reduction with hydrogen gas, carbon monoxide gas, methanol, or the like is effective within a temperature range of 100 to 500 ° C. In the method of the present invention, it has been confirmed that hydrogen gas is generated even when a reaction is carried out using an unreduced catalyst containing a commercially available copper oxide, but the hydrogen generation rate is inferior to the reduction-treated catalyst. There is a tendency and it is desirable to perform a reduction treatment.
[0015]
The methanol used in the present invention is not particularly limited in its production method, and those produced by any production method can be used. It is desirable that the purity be as high as possible, but there is no problem even if the most available and inexpensive industrial distillation grade product is used, and the purity is as high as that used in the conventional gas phase catalytic reforming method. It is fully usable.
The water used in the present invention is not particularly limited in its production method, and its purity is preferably as high as possible. However, there is no problem even with the most readily available ion-exchanged water or distilled water. Thus, it can be sufficiently used with the purity of the level used in the conventional gas phase catalytic reforming method.
[0016]
The reaction system used in the present invention is a reactor shape, a raw material supply method, a production gas collection method, etc., as long as a product gas can be obtained by contacting a solid catalyst in a liquid phase with a mixture of methanol and water. There are no particular restrictions. For example, it can be performed in the following format.
1) A method in which a methanol aqueous solution is charged in advance in a reactor and the reaction is carried out in a closed system, and the raw material liquid components and the product gas are not discharged outside the system during the reaction. In this case, the product gas can be obtained by cooling the reactor.
2) A method in which a methanol aqueous solution is charged into a reactor in advance to carry out the reaction, and a condensed component in the vapor phase in the reactor is cooled to withdraw the product gas from the system during the reaction.
3) A method in which an aqueous methanol solution is charged in advance in a reactor to carry out the reaction, and methanol, water, and product gas are withdrawn from the system during the reaction without cooling a part of the vapor phase in the reactor or not at all.
4) A methanol aqueous solution is charged into the reactor in advance to carry out the reaction, and the vapor phase condensed component in the reactor is cooled to extract the product gas out of the system during the reaction while supplying the aqueous methanol solution into the reactor. Method.
5) A methanol aqueous solution is charged into the reactor in advance to carry out the reaction, and while cooling a part of the vapor phase in the reactor or not at all, extracting methanol, water and product gas out of the system during the reaction, For example, a methanol aqueous solution is supplied into the reactor.
[0017]
However, when the reaction system is a closed system, the reverse reaction is likely to proceed with the progress of the reforming reaction, so that the reforming reaction is difficult to proceed gradually. Does not progress. Therefore, in order to solve this disadvantage, it is preferable to extract at least a part of the product gas out of the reaction system during the reaction. When extracting the product gas out of the reaction system, a method of extracting only the product gas by cooling part or all of the gas in the reactor and refluxing the condensed component to the reactor, or methanol, water and the product gas are used. The method of extracting simultaneously can be used. The ratio of the extracted gas to the condensed component and the reflux ratio of the condensed component at this time are preferably selected depending on the temperature, pressure, composition of the gas in the reactor, the operating state of the cooling device, and the like.
In order to continuously produce the product gas, it is preferable to supply methanol and water individually or mixed to the reactor. In this case, there is no limitation on the supply ratio and supply method of methanol and water, and the supply state can be supplied in any state of a gas phase, a liquid phase, and a gas-liquid mixed phase.
[0018]
Although there is no restriction | limiting in particular in the ratio of methanol and water which contacts a solid catalyst in the liquid phase state in this invention, The range of 0.01-100, preferably 0.05-10 is chosen by water / methanol molar ratio. Due to the difference in vapor pressure between water and methanol, the ratio of methanol and water in contact with the solid catalyst is variable depending on the ratio in the initial filling liquid, the ratio in the feed, the reaction conditions, the operating conditions of the reactor and the cooling device, etc. And a suitable value is selected from the aforementioned range.
[0019]
The reaction temperature in this invention is the range of 100 to 240 degreeC, Preferably the range of 150 to 230 degreeC is used. The reaction pressure is in the range of 3 to 150 atmospheres, and a reaction pressure equal to or higher than the vapor pressure of methanol at the reaction temperature is used to stably maintain methanol in a liquid phase in the reactor. In the present invention, an inert gas such as nitrogen, argon or helium can be used in the reaction atmosphere.
[0020]
The method of using the catalyst in the present invention is not particularly limited as long as the product gas can be obtained by contacting the methanol aqueous solution with the catalyst in the reactor. For example, a method of fixing to a part of the reactor and using it as a fixed bed, a method of dispersing in a reaction solution and using it as a suspension bed, etc. can be used in any of the above-described reaction modes.
There is no particular limitation on the method for obtaining high-purity hydrogen gas from the product gas mainly composed of hydrogen and carbon dioxide obtained in the present invention, and the hydrogen gas purification process used in the conventional gas phase catalytic reforming method Can be used.
[0021]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In each example, the following formula was used to calculate the hydrogen production rate.
Hydrogen production rate (mol-H 2 / kg-cat · hr) =
Hydrogen content (mol) / Catalyst weight (kg) / Reaction time (hr)
Here, the weight of the solid catalyst was calculated using the weight after the reduction treatment. In the following Examples, Examples 1 to 9 are cases where the reforming reaction is performed in a closed system, and Examples 10 to 13 are cases where the reforming reaction is performed while extracting the generated gas.
[0022]
Example 1
A cylindrical tableting pellet of Nissan Gardler G-66B catalyst (containing 30 wt% copper oxide and 60 wt% zinc oxide) was pulverized and sieved to 0.5 to 1.0 mm. A glass reducing tube was filled with 3.30 g, and a hydrogen / nitrogen mixed gas was circulated for reduction treatment at 240 ° C. for 2 hours under normal pressure. 2.89 g of the reduced catalyst and 23.5 g of 64.0 wt% methanol aqueous solution were charged into a 100 mL autoclave, the inside of the system was replaced with normal pressure nitrogen gas, heated to 203 ° C., and shaken for 3 hours to react. The reaction pressure at the end of the reaction was 80 kg / cm 2 (gauge pressure). After completion of the reaction, the mixture was cooled with ice water, and then the gas component and the liquid component in the autoclave were recovered and quantified by gas chromatographic analysis. The results are shown in Table 1.
[0023]
Example 2
The catalyst of Example 1 (0.5 to 1.0 mm particle size) 3.30 g was reduced by the method described in Example 1. 2.91 g of reduced catalyst and 23.2 g of 64.0 wt% aqueous methanol solution were charged into a 100 mL autoclave and reacted by shaking at 221 ° C. for 3 hours according to the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 125 Kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 1.
[0024]
Example 3
The catalyst of Example 1 (0.5 to 1.0 mm particle size) 3.30 g was reduced by the method described in Example 1. 2.90 g of reduced catalyst and 19.7 g of a 77.9 wt% aqueous methanol solution were charged into a 100 mL autoclave and reacted by shaking at 221 ° C. for 2 hours by the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 128 Kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 1.
[0025]
[Table 1]
Figure 0004048332
[0026]
Example 4
A cylindrical tablet-molded pellet of Nissan Gardler G-13A catalyst (containing 42 wt% copper and 26 wt% chromium) was crushed and sieved to 0.5 to 1.0 mm. The glass reduction tube was filled with 3.40 g and a hydrogen / nitrogen mixed gas was circulated, and reduction treatment was performed at 200 ° C. for 5 hours under normal pressure. 2.94 g of the reduced catalyst and 24.01 g of a 63.9 wt% methanol aqueous solution were charged into a 100 mL autoclave and reacted by shaking at 221 ° C. for 3 hours according to the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 108 Kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 2.
[0027]
Example 5
A cylindrical tableting pellet of JGC N-201 catalyst (containing 36.5 wt% copper oxide, 45.5 wt% chromium oxide, and 3.4 wt% manganese oxide) was crushed and sieved to 0.5 to 1.0 mm. A glass reducing tube was filled with 3.35 g and subjected to reduction treatment by the method described in Example 4. A 100 mL autoclave was charged with 3.08 g of the reduced catalyst and 24.03 g of a 64.0 wt% aqueous methanol solution, and reacted by shaking at 221 ° C. for 3 hours according to the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 119 Kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 2.
[0028]
Example 6
A cylindrical tableting pellet of Nissan Gardler G-99C catalyst (containing 36 wt% copper, 32 wt% chromium, 2.2 wt% barium and 2.4 wt% manganese) was crushed and sieved to 0.5 to 1.0 mm. A glass reducing tube was filled with 3.30 g and subjected to reduction treatment by the method described in Example 4. 3.03 g of the reduced catalyst and 24.04 g of a 63.9 wt% aqueous methanol solution were charged into a 100 mL autoclave and reacted by shaking at 221 ° C. for 3 hours according to the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 117 Kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 2.
[0029]
[Table 2]
Figure 0004048332
[0030]
Example 7
A cylindrical tableting pellet of Nissan Gardler G-89 catalyst (containing 39 wt% copper, 37 wt% chromium, 3 wt% manganese) was crushed and sieved to a thickness of 0.5 to 1.0 mm. A glass reducing tube was filled with 3.31 g and subjected to reduction treatment by the method described in Example 4. A 100 mL autoclave was charged with 3.12 g of the reduced catalyst and 24.01 g of a 64.0 wt% aqueous methanol solution, and reacted by shaking at 204 ° C. for 3 hours according to the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 84 kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 3.
[0031]
Example 8
The catalyst of Example 7 (0.5 to 1.0 mm particle size) 3.31 g was reduced by the method described in Example 4. A 100 mL autoclave was charged with 3.12 g of the reduced catalyst and 24.01 g of a 64.0 wt% methanol aqueous solution, and the reaction was carried out by shaking at 221 ° C. for 2 hours according to the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 122 Kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 3.
[0032]
Example 9
3.30 g of the catalyst of Example 7 (0.5 to 1.0 mm particle size) was reduced by the method described in Example 4. A 100 mL autoclave was charged with 3.11 g of the reduced catalyst and 19.75 g of a 78.0 wt% aqueous methanol solution, and the reaction was performed by shaking at 221 ° C. for 1.3 hours according to the reaction procedure described in Example 1. The reaction pressure at the end of the reaction was 124 Kg / cm 2 (gauge pressure). After completion of the reaction, the contents of the autoclave were quantified in the same manner as in Example 1. The results are shown in Table 3.
[0033]
[Table 3]
Figure 0004048332
[0034]
Example 10
The catalyst of Example 1 (0.5 to 1.0 mm) was added to a SUS 100 mL pressure tank reactor equipped with an external heater, stirrer, safety valve, nitrogen gas introduction line, and a gas extraction line leading to the pressure regulating valve via the cooling pipe. Particle size) 6.6 g of 6.6 g reduced by the method described in Example 1 and 68.0 wt% methanol aqueous solution 48.0 g were charged, the system was replaced with nitrogen gas, and then charged to a predetermined pressure. The inside of the reactor was stirred at a speed of 1200 rpm by a stirrer while the cooling pipe was cooled to about 0 ° C. by a refrigerant circulating outside. The pressure regulating valve was closed to close the reaction system, and the reactor was heated so that the internal liquid temperature was about 200 ° C. 1.5 hours after the start of heating, the liquid temperature in the reactor reached 193 ° C. and the reaction pressure reached 51 kg / cm 2 (gauge pressure) at an external heater temperature of 226 ° C. The reaction pressure was maintained at 50 to 51 Kg / cm 2 by adjusting the pressure regulating valve, and the reaction was continued for 4.0 hours while maintaining the liquid temperature in the reactor at 200 to 203 ° C. while extracting the generated gas. After completion of the reaction, the pressure regulating valve was closed again and the reactor was cooled with ice water to recover the contents in the reactor. The extracted gas component during the reaction, the recovered gas component in the reactor after the completion of the reaction, and the recovered liquid component were each analyzed by gas chromatography to quantify the product. The results are shown in Table 4.
[0035]
Example 11
Catalyst of Example 1 (0.5 to 1.0 mm particle size) 6.6 g of 6.6 g reduced by the method described in Example 1 and 87.7 wt% aqueous methanol solution 48.0 g of SUS 100 mL pressure resistant tank described in Example 10 The reactor was charged into the mold reactor and heated so that the liquid temperature inside the reactor became about 200 ° C. by the same operation as in Example 10. 1.3 hours after the start of heating, the liquid temperature in the reactor reached 191 ° C. and the reaction pressure reached 50 kg / cm 2 at an external heater temperature of 225 ° C. The reaction was continued for 2.5 hours while maintaining the liquid temperature in the reactor at 200 to 203 ° C. while adjusting the pressure regulating valve to maintain the reaction pressure at 50 kg / cm 2 and extracting the produced gas. After completion of the reaction, the same procedure as in Example 10 was performed to recover the contents in the reactor, and the product was quantified by gas chromatographic analysis. The results are shown in Table 4.
[0036]
Example 12
The catalyst of Example 7 (0.5 to 1.0 mm particle size) 6.6 g of the product reduced by the method described in Example 4 6.2 g and 64.0 wt% aqueous methanol solution 48.0 g of SUS 100 mL pressure-resistant tank described in Example 10 The reactor was charged into the mold reactor and heated so that the liquid temperature inside the reactor became about 200 ° C. by the same operation as in Example 10. 1.2 hours after the start of heating, the liquid temperature in the reactor reached 188 ° C. and the reaction pressure reached 50 kg / cm 2 at an external heater temperature of 221 ° C. The reaction pressure was maintained at 50 kg / cm 2 by adjusting the pressure regulating valve, and the reaction was continued for 3.0 hours while keeping the liquid temperature in the reactor at 198 to 204 ° C. while extracting the product gas. After completion of the reaction, the same procedure as in Example 10 was performed to recover the contents in the reactor, and the product was quantified by gas chromatographic analysis. The results are shown in Table 4.
[0037]
Example 13
The catalyst of Example 7 (0.5 to 1.0 mm particle size) 6.6 g of the product reduced by the method described in Example 1 6.2 g and 87.7 wt% aqueous methanol solution 48.0 g of SUS 100 mL pressure resistant tank described in Example 10 The reactor was charged into the mold reactor and heated so that the liquid temperature inside the reactor became about 200 ° C. by the same operation as in Example 10. 1.2 hours after the start of heating, the liquid temperature in the reactor reached 182 ° C. and the reaction pressure reached 50 kg / cm 2 at an external heater temperature of 221 ° C. The reaction was continued for 1.7 hours while maintaining the liquid temperature in the reactor at 189 to 200 ° C. while adjusting the pressure regulating valve to maintain the reaction pressure at 50 kg / cm 2 and extracting the produced gas. After completion of the reaction, the same procedure as in Example 10 was performed to recover the contents in the reactor, and the product was quantified by gas chromatographic analysis. The results are shown in Table 4.
[0038]
[Table 4]
Figure 0004048332
[0039]
【The invention's effect】
As is clear from the above examples, the aqueous methanol solution was reformed in the liquid phase in the presence of a solid catalyst containing copper and zinc and / or chromium, and the reaction was performed under mild reaction conditions of 230 ° C. or lower. There is an advantage that a pressurized hydrogen gas can be obtained and the amount of by-product carbon monoxide contained in the product gas is small. Accordingly, purification of the product gas is facilitated, and hydrogen gas can be produced very advantageously industrially.
Further, in the method of the present invention, pressurized hydrogen gas is obtained by reforming the methanol aqueous solution, so that the reaction product is easily separated from the raw methanol aqueous solution. Compared with the case where a quality reaction is performed, hydrogen gas pressurized by a simpler process and apparatus can be obtained.

Claims (3)

銅と亜鉛及び/またはクロムを含有する固体触媒の存在下に反応温度150〜230℃、反応圧力3〜150気圧にてメタノール水溶液を液相で改質することを特徴とする水素の製造方法。 A method for producing hydrogen, comprising reforming an aqueous methanol solution in a liquid phase at a reaction temperature of 150 to 230 ° C and a reaction pressure of 3 to 150 atm in the presence of a solid catalyst containing copper, zinc and / or chromium . マンガン化合物及び/またはアルカリ土類金属化合物を含有する固体触媒を用いる請求項に記載の水素の製造方法。The method for producing hydrogen according to claim 1 , wherein a solid catalyst containing a manganese compound and / or an alkaline earth metal compound is used. 生成するガスを反応系外に抜き出しながら改質反応を行う請求項1に記載の水素の製造方法。The method for producing hydrogen according to claim 1, wherein the reforming reaction is performed while extracting the generated gas out of the reaction system.
JP33312197A 1997-12-03 1997-12-03 Method for producing hydrogen Expired - Fee Related JP4048332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33312197A JP4048332B2 (en) 1997-12-03 1997-12-03 Method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33312197A JP4048332B2 (en) 1997-12-03 1997-12-03 Method for producing hydrogen

Publications (2)

Publication Number Publication Date
JPH11157803A JPH11157803A (en) 1999-06-15
JP4048332B2 true JP4048332B2 (en) 2008-02-20

Family

ID=18262533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33312197A Expired - Fee Related JP4048332B2 (en) 1997-12-03 1997-12-03 Method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP4048332B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173302A (en) * 2000-12-04 2002-06-21 Mitsubishi Gas Chem Co Inc Method of producing gaseous mixture of carbon monoxide with hydrogen
EP1533271B1 (en) * 2003-11-22 2013-01-09 Haldor Topsoe A/S Process for the preparation of hydrogen or synthesis gas
JP4601992B2 (en) * 2004-04-30 2010-12-22 日産自動車株式会社 Fuel reformer

Also Published As

Publication number Publication date
JPH11157803A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
RU2132228C1 (en) Nickel catalyst on carrier for producing hydrogen and/or carbon monoxide-rich gas and method of preparing such gas
JPH0451481B2 (en)
AU2004201447A1 (en) Process for preparation of methanol
AU2016261285B2 (en) A novel method for methanol synthesis
JP2612736B2 (en) Method for producing synthesis gas or hydrogen by catalytic conversion of liquid-phase methanol
JP4048332B2 (en) Method for producing hydrogen
RU1838289C (en) Method of methanol synthesis
EP0004456B1 (en) Methanation of carbon monoxide without prior separation of inert gases
EP0133778B1 (en) Methanol conversion process
JP2764114B2 (en) Method for producing methanol
JP3968532B2 (en) Method for producing mixed gas of carbon monoxide and hydrogen
JPH03258737A (en) Production of methanol
JP4120717B2 (en) Method for producing a mixed gas of carbon monoxide and hydrogen
JPH10194703A (en) Catalyst for producing synthesis gas and production of synthesis gas
JP3972153B2 (en) Method for producing mixed gas of carbon monoxide and hydrogen
JP4671006B2 (en) Carbon monoxide production method
JPH0736893B2 (en) Catalyst for catalytic reduction of carbon dioxide and method for producing methanol using the same
JPH0371174B2 (en)
WO2018020345A1 (en) Process for producing oxo-synthesis syngas composition by high-pressure hydrogenation of c02 over spent chromium oxide/aluminum catalyst
JPH09286603A (en) Production of gaseous mixture of carbon monoxide and hydrogen
WO2018015827A1 (en) Process for high-pressure hydrogenation of carbon dioxide to syngas in the presence of copper-manganese-aluminum mixed metal oxide catalysts
JPS63254188A (en) Production of hydrocarbon from synthesis gas
KR102556477B1 (en) Method for producing alcohol from carbon dioxide using slurry reactor
JP2008037843A (en) Method for synthesizing methanol
JPH09286602A (en) Production of gaseous mixture of carbon monoxide and hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees