JP3972153B2 - Method for producing mixed gas of carbon monoxide and hydrogen - Google Patents

Method for producing mixed gas of carbon monoxide and hydrogen Download PDF

Info

Publication number
JP3972153B2
JP3972153B2 JP17819097A JP17819097A JP3972153B2 JP 3972153 B2 JP3972153 B2 JP 3972153B2 JP 17819097 A JP17819097 A JP 17819097A JP 17819097 A JP17819097 A JP 17819097A JP 3972153 B2 JP3972153 B2 JP 3972153B2
Authority
JP
Japan
Prior art keywords
reaction
methanol
gas
reactor
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17819097A
Other languages
Japanese (ja)
Other versions
JPH1121102A (en
Inventor
賢司 中村
淳 岡本
幹男 米岡
秀司 江端
太志 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17819097A priority Critical patent/JP3972153B2/en
Publication of JPH1121102A publication Critical patent/JPH1121102A/en
Application granted granted Critical
Publication of JP3972153B2 publication Critical patent/JP3972153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液相のメタノールを分解することにより一酸化炭素及び水素の混合ガスを製造する方法に関し、詳しくは触媒の存在下に液相のメタノールを分解することにより一酸化炭素及び窒素ガスを製造する方法に関する。
【0002】
【従来の技術】
一酸化炭素及び水素の混合ガスは化成品の合成原料等に利用される他に、一酸化炭素と水素を分離して一酸化炭素及び水素ガスとして各々利用される。またメタノールを分解してできる一酸化炭素及び水素の混合ガスは、燃焼によって水、二酸化炭素のみを生じる。環境に低負荷で且つクリーンな燃料ガスとしても利用され、原料メタノールよりも大きな燃焼力を持つ。
メタノールから一酸化炭素及び水素の混合ガスを得る方法は主に気相のメタノールを分解する方法が行われている。例えば特開昭55−154302号では亜鉛とクロムまたは銅と亜鉛とバナジウム化合物の組み合わせからなる触媒、特開昭59−190201号にはマンガン、銅、クロム化合物からなる触媒、特開昭63−55101号にはリン、ニッケル化合物からなる触媒、特開平1−180250号には銅、ニッケル、アルミニウム化合物、リン化合物からなる触媒を用い、気相でメタノールを分解する方法が開示されている。
【0003】
【発明が解決しようとする課題】
気相のメタノール接触分解法(気相法)は液体で貯蔵されているメタノールを気化させて触媒層へ供給するための設備と熱量を必要とする。また分解反応が著しい吸熱反応であるため工業的に十分な反応速度を得るためには高い反応温度が必要とされ、一般に280℃以上の反応温度となっている。これよりも低い反応温度域ではメタノールの分解率が著しく低下するために未反応メタノールを凝縮させて生成ガスと分離した後に回収する必要が生じる。これらの要素によってプロセス装置は複雑なものになり、エネルギー利用の見地からも好ましくない。
更に気相法では生成した水素及び一酸化炭素がメタノールの分解反応に阻害効果を示すため、これらの成分の分圧を上げることが難しい。即ち反応圧力を高くする程メタノールの分解率が低下するために一般に10気圧以下の反応圧力が採用されている。よって生成した水素/一酸化炭素の混合ガスを分離精製したり、化成品の合成原料等に用いる場合には利用目的の圧力まで昇圧するための設備と動力を要する。
【0004】
これに対して液相のメタノールを分解する方法(液相法)は液相という反応媒体を利用するため、蒸発/熱回収と凝縮/熱吸収を行い、効率的な熱の回収および吸収のシステムを組むことが液相を保つ低温下で可能である。更に分解生成ガスである水素、一酸化炭素が容易に液相から気相に移動するため、分離精製でのプロセスが簡易化される。分解生成ガスも連続して抜き出すので、平衡条件が常に破れ分解反応の進行も容易となる。
本発明の目的は、以上の如き状況に鑑み、液相のメタノールを分解する方法を用い、より簡便なプロセス装置で、穏和な温度条件下に一酸化炭素及び水素の混合ガスを得る方法を提供することにある。
【0005】
【問題を解決するための手段】
発明者等は上記の利点を有する液相法によるメタノール分解についての検討を行い、パラジウムと亜鉛化合物を含有する触媒および銅と亜鉛を含有する触媒を見い出し、特許出願を行った(特願平8−102668号、特願平8−102669号)。しかしこれらの方法によるメタノール分解速度は十分に満足できるものとは言えず、更に銅とクロムを含有する触媒を見い出し、特許出願を行った(特願平9−63146号)。
銅とクロムを含有する触媒は、反応成績が優れているものの、生成物にはギ酸メチル、二酸化炭素、メタンなどの副生成物が生じ、一酸化炭素の選択率を低下させる。
【0006】
本発明者らは以上の如き課題を解決するために更に検討を行った結果、ラネー銅触媒は上記の欠点が無く、より簡単な調製法で、かつ、高活性を有すること、また特にラネー銅とアルカリ金属化合物の存在下に液相のメタノールを分解することにより、簡素なプロセス装置でより低い反応温度条件でメタノールを分解できることを見い出し、本発明に到達した。
即ち本発明は、ラネー銅触媒の存在下に液相のメタノールを一酸化炭素及び水素の混合ガスに分解することを特徴とする一酸化炭素及び水素の混合ガスの製造方法である。
【0007】
【発明の実施の形態】
本発明のメタノールの分解反応は下式で表される。
CH3 OH → CO + 2H2
本発明の方法では液相のメタノールを分解して加圧された一酸化炭素及び水素の混合ガスを得るので、反応生成物が原料のメタノールから容易に分離されることになり、従来の気相のメタノールの分解を行なう場合と比較して、より簡素なプロセスと装置で加圧された一酸化炭素及び水素の混合ガスが得られるのが特徴である。
【0008】
本発明で用いられるラネー銅触媒は、銅とアルミニウムから成る合金をアルカリ金属化合物の水溶液で展開して得ることができる。銅アルミニウム合金の組成としては、例えば日興リカ(株)から商品名R−30として市販されているCu:Al=50:50の比である合金組成のものなどが挙げられる。
本発明におけるラネー銅触媒の形態は特に制限はなく、例えば粉末状、粒状、ブロック状、錠剤状、ペレット状、細片状、板状、合金粉末をステンレスや金網などの充填物表面にプラズマ溶射したものなどを用いることができる。
【0009】
本発明においてラネー銅触媒は、使用に先だってアルカリ金属化合物の水溶液を用いて展開する。用いられるアルカリ金属化合物の水溶液として、例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液などが挙げられる。これらのアルカリ金属化合物の濃度は1〜30重量%、好ましくは5〜10重量%である。展開温度10〜100℃、好ましくは20〜80℃であり、通常の展開法に従って行うことができる。
【0010】
本発明で用いられるラネー銅触媒は更にアルカリ金属化合物を反応液に添加することが有効である。添加されるアルカリ金属化合物は周期律表のIa族元素の化合物であって、リチウム、ナトリウム、カリウム、ルビジウム、セシウムの中から選ばれる一種類または二種類以上の化合物が用いられる。アルカリ金属化合物の出発物質については特に制限はない。例えば当該元素の金属、水素化物、酸化物、水酸化物やアルコラート、アルコキシ炭酸塩、炭酸塩、炭酸水素塩、酢酸塩、ギ酸塩、リン酸塩、ハロゲン化物、等の塩を用いることができる。これらを添加した場合の添加量は触媒量全体の1〜20重量%、好ましくは1〜10重量%である。
【0011】
本発明に用いられるメタノールはその製造方法に特に制限はなく如何なる製法によって製造されたものでも良い。その純度はできる限り高純度である方が望ましいが、最も入手し易く工業的な蒸留品グレードを用いても良い。また本発明に用いられる触媒は反応に際してギ酸メチルを生成するので、本発明に用いられるメタノールはギ酸メチルを含んでいても良く、ギ酸メチルを0〜50重量%含有するメタノールを反応に用いることができる。
【0012】
本発明に用いられる反応方式は液相のメタノールと触媒が接触して生成ガスが得られるものであればメタノールの供給方法、生成ガスの採取方法等に特に制限はない。例えば次の様な形式で行うことができる。
1)予め反応器にメタノールを仕込んで反応を行い、反応中にメタノール、生成ガスが系外に出ない方法。この場合は反応器に冷却して生成ガスを得ることができる。
2)予め反応器にメタノールを仕込んで反応を行い、反応器中の蒸気相の凝縮成分を冷却することにより反応中に生成ガスを系外に抜き出す方法。
3)予め反応器にメタノールを仕込んで反応を行い、反応器中の蒸気相の一部を冷却するか、または全く冷却しないで、反応中にメタノールと生成ガスを系外に抜き出す方法。
4)予め反応器にメタノールを仕込んで行い、反応器中の蒸気相の凝縮成分を冷却することにより反応中に生成ガスを系外に抜き出しつつ、反応器中にメタノールを供給する方法。
5)予め反応器にメタノールを仕込んで反応を行い、反応器中の蒸気相の一部を冷却するか、または全く冷却しないで、反応中にメタノールと生成ガスを系外に抜き出しつつ、反応器中にメタノールを供給する方法等である。
【0013】
以上の反応方式において、1)の如く反応系が閉鎖系である場合には、分解反応の進行と共に逆反応が進行しやすくなるために分解反応は徐々に進行し難くなり、原理的には平衡状態までしか分解反応は進行しない。従って分解反応の平衡をずらし、反応を進行させるには生成ガスの少なくとも一部を反応中に系外に抜き出すことが好ましい。生成ガスを反応系外へ抜き出す際にはその一部もしくは全てを冷却して凝縮成分を反応器に還流させることにより生成ガスのみを抜き出す方法やメタノールと凝縮成分の比率及び凝縮成分の還流比は反応器内のガスの温度、圧力、組成及び冷却装置の運転状態等により好適値が選ばれる。
また、生成ガスを連続的に製造するためには、4)や5)の如くにメタノールを継続して反応器に供給することが好ましく、この場合のメタノールの供給方法は気相、液相、気液混相のいずれの状態でも供給することができる。
【0014】
本発明における触媒の使用法は、反応器内で液相のメタノールと触媒が接触して生成ガスが得られるものであれば特に制限はない。例えば反応器内の一部に固定して固定床として用いる方法、反応液中に分散させて懸濁床として用いる方法等を前述のいずれの反応形式においても用いることができる。
本発明におけるアルカリ金属化合物の使用方法についても液相メタノールの中に存在して、触媒と共に用いられる方法であればに特に制限はない。例えば触媒とは別に反応器に充填する方法、原料メタノールに添加して反応器に供給する方法、またはこれらを組み合わせた方法等を用いることができる。
【0015】
本発明におけるメタノール分解温度は100℃〜メタノールの臨界温度未満の範囲、好ましくは160〜230℃の範囲が用いられる。反応圧力は3〜150気圧の範囲であって、反応器内で安定にメタノールを液相状態に保つためには反応温度におけるメタノールの蒸気圧の1.0倍以上の反応圧力を用いることが望ましい。
即ち、液相メタノールと気液平衡状態にあるメタノール蒸気の分圧は3気圧〜メタノール臨界圧力未満の範囲が用いられ、反応圧力とメタノール蒸気分圧との差は反応器内に共存するガスの圧力によって補われる。ここで用いられる共存ガス成分の種類としてはメタノールの分解反応で生成したガスや窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
【0016】
【実施例】
本発明について以下に実施例で具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
なお各実施例においてメタノール分解速度の算出には下式を用いた。
分解速度(mol-CO/kg-cat・hr)=
生成一酸化炭素(mol)/触媒量(kg)/反応時間(hr)
ここで触媒量はラネー銅合金をアルカリ金属水溶液で展開後、不活性ガス雰囲気下で乾燥させた重量である。なお添加物がある場合には、該触媒重量に添加物重量を加算した値を触媒重量とした。
【0017】
実施例1
日興リカ(株)製の粉末ラネー銅合金(R-30C) 7gを60℃の5wt%水酸化ナトリウム水溶液中に徐々に投入した。全量投入後、2〜3時間で水素気泡の発生がなくなり、純水で中性領域となるまで水洗した後、更に触媒を含む水溶液をメタノールで置換した。続いて、不活性ガス雰囲気下で乾燥し、重量を測定した。
以上により展開して得られたラネー銅触媒 3.42g、ナトリウムメトキシド 0.12g、メタノール 47.4gを 100ml振盪式オートクレーブに充填して、系内をアルゴンで置換してから 200℃で3時間振盪して反応させた。反応終了時の圧力は5.8MPa、温度 195℃であった。反応終了後、氷水で冷却してからオートクレーブ内のガス成分、液成分を各々回収してガスクロマトグラフィーによる分析を行った。結果を表1に示す。
【0018】
実施例2
外部ヒーター、攪拌機、安全弁、窒素ガス導入ライン及び冷却管を経由して調圧弁に至るガス抜き出しラインを備え付けた SUS製 100ml槽型反応器に実施例1に従って調製したラネー銅触媒 4.25g、ナトリウムメトキシド 0.25g、メタノール47.6g(純度99.9wt%)を充填し、系内を窒素ガスで置換した後、所定圧力まで充填した。外部循環する冷媒によって冷却管を 3〜4 ℃に冷却しつつ、撹拌機により 1000rpmの速度で反応器内部を撹拌した。調圧弁を閉じて反応系を閉鎖系にして反応器の内部温度を 175℃になるまで加熱した。調圧弁を抜き出し圧力3.0MPa、反応器内の液温度を 175℃となるように保持して生成ガスを抜き出しながら、 2.5時間反応を行った。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表1に示す。
【0019】
実施例3
実施例1に従って調製したラネー銅触媒 5.17g、ナトリウムメトキシド0.25g、メタノール47.4g(純度99.9wt%)を実施例2の 100ml槽型反応器に充填し、系内を窒素ガスで置換した後、所定圧力まで充填した。調圧弁を閉じて反応系内を閉鎖系にして反応器の内部温度を 185℃になるまで加熱した。調圧弁を抜き出し圧力4.0MPaとなるように保持し、撹拌機にて 1000rpmで撹拌しつつ、 2.5時間反応を行った。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表1に示す。
【0020】
実施例4
実施例1に従って調製したラネー銅触媒 4.26g、ナトリウムメトキシド 0.25g、メタノール47.6g(純度99.9wt%)を実施例2の 100ml槽型反応器に充填し、系内を窒素ガスで置換した後、所定圧力まで充填した。調圧弁を閉じて反応系内を閉鎖系にして反応器の内部温度を 200℃になるまで加熱した。調圧弁を抜き出し圧力5.0MPaとなるように保持し、撹拌機にて 1000rpmで撹拌しつつ、 2.5時間反応を行った。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表1に示す。
【0021】
実施例5
実施例1に従って調製したラネー銅触媒 4.84g、ナトリウムメトキシド 0.50g、メタノール48.1g(純度99.9wt%)を実施例2の 100ml槽型反応器に充填し、系内を窒素ガスで置換した後、所定圧力まで充填した。調圧弁を閉じて反応系内を閉鎖系にして反応器の内部温度を 185℃になるまで加熱した。調圧弁を抜き出し圧力4.0MPaとなるように保持し、撹拌機にて 1000rpmで撹拌しつつ 2.5時間反応を行った。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表2に示す。
【0022】
実施例6
実施例1に従って調製したラネー銅触媒 3.66g、炭酸カリウム 0.64g、メタノール50.1g(純度99.9wt%)を実施例2の 100ml槽型反応器に充填し、系内を窒素ガスで置換した後、所定圧力まで充填した。調圧弁を閉じて反応系内を閉鎖系にして反応器の内部温度を 200℃になるまで加熱した。調圧弁を抜き出し圧力5.0MPaとなるように保持し、撹拌機にて 1000rpmで撹拌しつつ 2.5時間反応を行った。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表2に示す。
【0023】
【表1】

Figure 0003972153
【0024】
【表2】
Figure 0003972153
【0025】
比較例1
市販の粉末状酸化亜鉛22.75gに硝酸パラジウム 1.00gを希硝酸水溶液から含浸担持した。得られた粉末を 400℃ 3時間空気中で焼成した後に水素ガスによって還元して 2wt%パラジウム担持酸化亜鉛とした。この触媒6.0gとメタノール 48.0g(純度99.7wt%)を実施例2に記載の反応器に充填し、系内ガスを窒素ガスで置換してから1.6MPaまで充填した。実施例2に記載の方法によって反応器内部の液温度が約 200℃になるように加熱した。加熱開始から 3時間後に外部ヒーター温度 220〜230 ℃において反応器内の液温度 195℃、4.2MPaに達した。調圧弁を調整して4.3MPaで生成ガスを抜き出しながら反応器内の内部温度を 195℃〜201 ℃に保って 9時間反応を継続した。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表3に示す。
【0026】
比較例2
市販の酸化銅−酸化亜鉛を主成分とする円柱打状成型ペレット触媒(酸化銅30wt%、酸化亜鉛3.60wt%含有)を粉砕し、篩分けして 0.5〜1.0mm に整えた。ガラス製還元管に 3.60gを充填して、水素/窒素混合ガスを流通させて常圧下で 220℃で 3時間の還元処理を行った。この還元済み触媒6.4g、ナトリウムメトキシド0.25g,メタノール 48.0g(純度99.7wt%)を実施例2に記載の反応器に充填し、系内を窒素ガスで置換してから3.0MPaになるように充填した。実施例2に記載の方法によって反応器内部の液温度が約 220℃となるように加熱した。加熱開始から 1.5時間後に外部ヒーター温度 245℃において反応器内の液温度 215℃、反応圧力7.0MPaに達した。調圧弁を調整して 7.0〜7.1MPaで生成ガスを抜き出しながら反応器内の液温度を 220〜221 ℃に保って 8.5時間反応を継続した。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表3に示す。
【0027】
比較例3
日産ガードラー製G-89(銅39wt%、クロム37wt%、マンガン 3wt%含有)の円柱状打錠成型ペレットを粉砕し、篩分けして 0.5〜1.0mm に整えた。ガラス製還元管に3.41gを充填し、比較例2に記載の方法によって還元処理した。この還元済み触媒6.2g、ナトリウムメチラート 0.25g、メタノール 48.0g(純度99.7wt%)を実施例2に記載の反応器に充填し、系内を窒素ガスで置換してから所定圧力になるまで充填した。実施例2に記載の方法によって反応器内部の液温度が約 200℃となるように加熱した。加熱開始から 1.3時間後に外部ヒーター温度 221℃において反応器内の液温度184℃、反応圧力4.9MPaに達した。調圧弁を調整して5.0MPaで生成ガスを抜き出しながら反応器内の液温度を 197〜200 ℃に保って 2.3時間反応を継続した。反応終了後、反応器を冷却し、反応ライン内のガス及び液成分を回収し、各々ガスクロマトグラフィーにより分析を行った。結果を表3に示す。
【0028】
【表3】
Figure 0003972153
【0029】
【発明の効果】
本発明によればラネー銅触媒の存在下に液相のメタノールを分解することにより、200℃以下の穏やかな反応条件下で加圧された一酸化炭素及び水素の混合ガスを得ることができる。
また本発明の方法では、液相のメタノールを分解して加圧された一酸化炭素及び水素の混合ガスを得るので、反応生成物が原料のメタノールから容易に分離されることになり、従来の気相のメタノール分解を行なう場合と比較して、より簡素なプロセスと装置で加圧された一酸化炭素及び水素の混合ガスが得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a mixed gas of carbon monoxide and hydrogen by decomposing liquid phase methanol, and more specifically, producing carbon monoxide and nitrogen gas by decomposing liquid phase methanol in the presence of a catalyst. On how to do.
[0002]
[Prior art]
A mixed gas of carbon monoxide and hydrogen is used as a raw material for synthesis of a chemical product, and carbon monoxide and hydrogen are separated and used as carbon monoxide and hydrogen gas, respectively. Moreover, the mixed gas of carbon monoxide and hydrogen produced by decomposing methanol produces only water and carbon dioxide by combustion. It is also used as a clean fuel gas with a low environmental load and has a greater combustion power than raw material methanol.
As a method of obtaining a mixed gas of carbon monoxide and hydrogen from methanol, a method of decomposing gas phase methanol is mainly performed. For example, JP-A-55-154302 discloses a catalyst comprising a combination of zinc and chromium or copper, zinc and a vanadium compound, JP-A-59-190201 discloses a catalyst comprising manganese, copper and a chromium compound, and JP-A-63-55101. No. 1 discloses a method of decomposing methanol in the gas phase using a catalyst comprising phosphorus and a nickel compound, and JP-A-1-180250 using a catalyst comprising copper, nickel, an aluminum compound and a phosphorus compound.
[0003]
[Problems to be solved by the invention]
The gas phase methanol catalytic cracking method (gas phase method) requires equipment and heat for vaporizing methanol stored in liquid and supplying it to the catalyst layer. Further, since the decomposition reaction is a significant endothermic reaction, a high reaction temperature is required to obtain an industrially sufficient reaction rate, and the reaction temperature is generally 280 ° C. or higher. In the reaction temperature range lower than this, since the decomposition rate of methanol is remarkably lowered, it is necessary to recover the unreacted methanol after condensing it and separating it from the product gas. These elements complicate the process apparatus, which is not preferable from the viewpoint of energy utilization.
Furthermore, in the gas phase method, the produced hydrogen and carbon monoxide have an inhibitory effect on the decomposition reaction of methanol, so it is difficult to increase the partial pressure of these components. That is, since the decomposition rate of methanol decreases as the reaction pressure is increased, a reaction pressure of 10 atm or less is generally employed. Therefore, when the produced hydrogen / carbon monoxide mixed gas is separated and refined or used as a synthetic raw material for chemical products, facilities and power for raising the pressure to the intended use are required.
[0004]
On the other hand, the method for decomposing liquid-phase methanol (liquid-phase method) uses a reaction medium called liquid-phase, so it performs evaporation / heat recovery and condensation / heat absorption, and an efficient heat recovery and absorption system. Can be assembled at low temperatures while maintaining the liquid phase. Furthermore, hydrogen and carbon monoxide, which are decomposition product gases, easily move from the liquid phase to the gas phase, thereby simplifying the separation and purification process. Since the decomposition product gas is also continuously extracted, the equilibrium condition is always broken and the progress of the decomposition reaction is facilitated.
The object of the present invention is to provide a method for obtaining a mixed gas of carbon monoxide and hydrogen under mild temperature conditions using a method for decomposing liquid phase methanol in a simpler process apparatus in view of the above situation. There is to do.
[0005]
[Means for solving problems]
The inventors have studied methanol decomposition by the liquid phase method having the above-mentioned advantages, found a catalyst containing palladium and a zinc compound and a catalyst containing copper and zinc, and filed a patent application (Japanese Patent Application No. 8). -102668, Japanese Patent Application No. 8-102669). However, the methanol decomposition rate by these methods cannot be said to be sufficiently satisfactory, and a catalyst containing copper and chromium was found and a patent application was filed (Japanese Patent Application No. 9-63146).
Although the catalyst containing copper and chromium has excellent reaction results, by-products such as methyl formate, carbon dioxide and methane are produced in the product, and the selectivity for carbon monoxide is lowered.
[0006]
As a result of further studies to solve the above-mentioned problems, the present inventors have found that the Raney copper catalyst does not have the above-mentioned drawbacks, has a simpler preparation method, and has a high activity. It was found that by decomposing liquid-phase methanol in the presence of alkenyl and an alkali metal compound, methanol could be decomposed at a lower reaction temperature with a simple process apparatus, and the present invention was achieved.
That is, the present invention is a method for producing a mixed gas of carbon monoxide and hydrogen, which comprises decomposing liquid phase methanol into a mixed gas of carbon monoxide and hydrogen in the presence of a Raney copper catalyst.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The methanol decomposition reaction of the present invention is represented by the following formula.
CH 3 OH → CO + 2H 2
In the method of the present invention, the liquid phase methanol is decomposed to obtain a pressurized mixed gas of carbon monoxide and hydrogen, so that the reaction product is easily separated from the raw material methanol, Compared with the case of decomposing methanol, it is characterized in that a mixed gas of carbon monoxide and hydrogen pressurized by a simpler process and apparatus can be obtained.
[0008]
The Raney copper catalyst used in the present invention can be obtained by developing an alloy composed of copper and aluminum with an aqueous solution of an alkali metal compound. As a composition of a copper aluminum alloy, the thing of the alloy composition which is the ratio of Cu: Al = 50: 50 marketed as a brand name R-30 from Nikko Rica Co., Ltd., etc. are mentioned, for example.
The form of the Raney copper catalyst in the present invention is not particularly limited. For example, powder, granular, block, tablet, pellet, strip, plate, or alloy powder is plasma sprayed on the surface of a packing material such as stainless steel or wire mesh. Can be used.
[0009]
In the present invention, the Raney copper catalyst is developed using an aqueous solution of an alkali metal compound prior to use. Examples of the aqueous solution of the alkali metal compound used include an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous sodium carbonate solution, and an aqueous potassium carbonate solution. The concentration of these alkali metal compounds is 1 to 30% by weight, preferably 5 to 10% by weight. The development temperature is 10 to 100 ° C., preferably 20 to 80 ° C., and can be performed according to a normal development method.
[0010]
For the Raney copper catalyst used in the present invention, it is effective to further add an alkali metal compound to the reaction solution. The alkali metal compound to be added is a compound of Group Ia element of the periodic table, and one or more compounds selected from lithium, sodium, potassium, rubidium and cesium are used. There are no particular restrictions on the starting material of the alkali metal compound. For example, salts such as metals, hydrides, oxides, hydroxides and alcoholates, alkoxy carbonates, carbonates, bicarbonates, acetates, formates, phosphates, halides, and the like of the elements can be used. . When these are added, the addition amount is 1 to 20% by weight, preferably 1 to 10% by weight, based on the total amount of the catalyst.
[0011]
The methanol used in the present invention is not particularly limited in its production method, and may be produced by any production method. The purity is preferably as high as possible, but the most readily available industrial grade product may be used. Further, since the catalyst used in the present invention produces methyl formate upon the reaction, the methanol used in the present invention may contain methyl formate, and methanol containing 0 to 50% by weight of methyl formate may be used in the reaction. it can.
[0012]
The reaction system used in the present invention is not particularly limited in the method for supplying methanol, the method for collecting the produced gas, etc., as long as the produced gas can be obtained by contacting the liquid phase methanol with the catalyst. For example, it can be performed in the following format.
1) A method in which methanol is charged in a reactor in advance to carry out the reaction, and methanol and product gas do not come out of the system during the reaction. In this case, the product gas can be obtained by cooling the reactor.
2) A method in which methanol is preliminarily charged into a reactor to carry out the reaction, and the condensed component of the vapor phase in the reactor is cooled to withdraw the product gas from the system during the reaction.
3) A method in which methanol is preliminarily charged into a reactor to carry out the reaction, and a part of the vapor phase in the reactor is cooled or not cooled at all, and methanol and product gas are extracted out of the system during the reaction.
4) A method of supplying methanol into the reactor while extracting methanol from the system during the reaction by cooling the vapor phase condensation component in the reactor in advance by charging methanol into the reactor.
5) The reactor is charged with methanol in advance, and the reactor is cooled while extracting part of the vapor phase in the reactor or with no cooling, and withdrawing methanol and product gas out of the system during the reaction. For example, a method of supplying methanol therein.
[0013]
In the above reaction system, when the reaction system is a closed system as in 1), the reverse reaction is likely to proceed with the progress of the decomposition reaction, so that the decomposition reaction is difficult to proceed gradually. The decomposition reaction proceeds only to the state. Therefore, in order to shift the equilibrium of the decomposition reaction and advance the reaction, it is preferable to extract at least a part of the product gas out of the system during the reaction. When extracting the product gas out of the reaction system, the method of extracting only the product gas by cooling a part or all of the product and refluxing the condensed component to the reactor, the ratio of methanol to the condensed component, and the reflux ratio of the condensed component are: A suitable value is selected depending on the temperature, pressure, composition of the gas in the reactor, the operating state of the cooling device, and the like.
In order to continuously produce the product gas, it is preferable to continuously supply methanol to the reactor as in 4) and 5). In this case, the methanol is supplied in the gas phase, liquid phase, It can be supplied in any state of a gas-liquid mixed phase.
[0014]
The method of using the catalyst in the present invention is not particularly limited as long as the product gas can be obtained by contacting the liquid phase methanol with the catalyst in the reactor. For example, a method of fixing to a part of the reactor and using it as a fixed bed, a method of dispersing in a reaction solution and using it as a suspension bed, etc. can be used in any of the above-described reaction modes.
The method for using the alkali metal compound in the present invention is not particularly limited as long as it is a method that is present in liquid phase methanol and used together with a catalyst. For example, a method of filling the reactor separately from the catalyst, a method of adding to the raw material methanol and supplying it to the reactor, a method combining these, or the like can be used.
[0015]
The methanol decomposition temperature in the present invention is in the range of 100 ° C. to less than the critical temperature of methanol, preferably in the range of 160 to 230 ° C. The reaction pressure is in the range of 3 to 150 atmospheres, and it is desirable to use a reaction pressure that is 1.0 times or more the vapor pressure of methanol at the reaction temperature in order to stably maintain methanol in the liquid phase in the reactor. .
That is, the partial pressure of methanol vapor in a gas-liquid equilibrium state with liquid phase methanol is in the range of 3 atm to less than the critical pressure of methanol, and the difference between the reaction pressure and the methanol vapor partial pressure is the difference between the gas coexisting in the reactor. Supplemented by pressure. As a kind of the coexisting gas component used here, a gas generated by a decomposition reaction of methanol or an inert gas such as nitrogen, argon or helium can be used.
[0016]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In each example, the following equation was used to calculate the methanol decomposition rate.
Decomposition rate (mol-CO / kg-cat · hr) =
Carbon monoxide produced (mol) / Amount of catalyst (kg) / Reaction time (hr)
Here, the catalyst amount is a weight obtained by developing a Raney copper alloy with an alkali metal aqueous solution and then drying it under an inert gas atmosphere. When there was an additive, the catalyst weight was obtained by adding the additive weight to the catalyst weight.
[0017]
Example 1
7 g of powdered Raney copper alloy (R-30C) manufactured by Nikko Rica Co., Ltd. was gradually put into a 5 wt% sodium hydroxide aqueous solution at 60 ° C. After the entire amount was added, hydrogen bubbles disappeared in 2 to 3 hours and washed with pure water until it became a neutral region, and the aqueous solution containing the catalyst was further replaced with methanol. Then, it dried under inert gas atmosphere and measured the weight.
Raney copper catalyst (3.42g), sodium methoxide (0.12g), and methanol (47.4g) obtained as described above were charged into a 100ml shaking autoclave, and the system was replaced with argon, followed by shaking at 200 ° C for 3 hours. Reacted. The pressure at the end of the reaction was 5.8 MPa, and the temperature was 195 ° C. After completion of the reaction, the reaction mixture was cooled with ice water, and then the gas component and liquid component in the autoclave were recovered and analyzed by gas chromatography. The results are shown in Table 1.
[0018]
Example 2
4.25 g of Raney copper catalyst prepared according to Example 1 in a 100 ml tank reactor made of SUS equipped with an external heater, stirrer, safety valve, nitrogen gas introduction line and a gas extraction line leading to a pressure regulating valve via a cooling pipe, sodium methoxy 0.25 g of methanol and 47.6 g of methanol (purity 99.9 wt%) were charged, the system was replaced with nitrogen gas, and then charged to a predetermined pressure. The inside of the reactor was stirred with a stirrer at a speed of 1000 rpm while the cooling pipe was cooled to 3 to 4 ° C. by a refrigerant circulating outside. The pressure control valve was closed to close the reaction system, and the reactor was heated to an internal temperature of 175 ° C. The reaction was carried out for 2.5 hours while extracting the pressure control valve and maintaining the liquid temperature in the reactor at 175 ° C. while extracting the product gas. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 1.
[0019]
Example 3
After the Raney copper catalyst prepared according to Example 1 5.17 g, sodium methoxide 0.25 g, and methanol 47.4 g (purity 99.9 wt%) were charged into the 100 ml tank reactor of Example 2, the system was replaced with nitrogen gas. And filled to a predetermined pressure. The pressure regulating valve was closed to close the reaction system, and the reactor was heated to an internal temperature of 185 ° C. The pressure regulating valve was extracted and held at a pressure of 4.0 MPa, and the reaction was carried out for 2.5 hours while stirring at 1000 rpm with a stirrer. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 1.
[0020]
Example 4
After charging Raney copper catalyst prepared according to Example 1 4.26g, sodium methoxide 0.25g, methanol 47.6g (purity 99.9wt%) into the 100ml tank reactor of Example 2, the system was replaced with nitrogen gas. And filled to a predetermined pressure. The pressure regulating valve was closed to close the reaction system, and the internal temperature of the reactor was heated to 200 ° C. The pressure regulating valve was extracted and held at a pressure of 5.0 MPa, and the reaction was carried out for 2.5 hours while stirring with a stirrer at 1000 rpm. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 1.
[0021]
Example 5
After the Raney copper catalyst prepared according to Example 1 4.84g, sodium methoxide 0.50g, methanol 48.1g (purity 99.9wt%) was charged into the 100ml tank reactor of Example 2, and the system was replaced with nitrogen gas. And filled to a predetermined pressure. The pressure regulating valve was closed to close the reaction system, and the reactor was heated to an internal temperature of 185 ° C. The pressure regulating valve was extracted and held at 4.0 MPa, and the reaction was carried out for 2.5 hours while stirring at 1000 rpm with a stirrer. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 2.
[0022]
Example 6
After the Raney copper catalyst prepared according to Example 1 3.66g, potassium carbonate 0.64g, methanol 50.1g (purity 99.9wt%) was charged into the 100ml tank reactor of Example 2, and the system was replaced with nitrogen gas, Filled to predetermined pressure. The pressure regulating valve was closed to close the reaction system, and the internal temperature of the reactor was heated to 200 ° C. The pressure regulating valve was extracted and held at a pressure of 5.0 MPa, and the reaction was carried out for 2.5 hours while stirring at 1000 rpm with a stirrer. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 2.
[0023]
[Table 1]
Figure 0003972153
[0024]
[Table 2]
Figure 0003972153
[0025]
Comparative Example 1
Commercially available powdered zinc oxide (22.75 g) was impregnated with 1.00 g of palladium nitrate from a dilute nitric acid aqueous solution. The obtained powder was calcined in air at 400 ° C. for 3 hours and then reduced with hydrogen gas to obtain 2 wt% palladium-supported zinc oxide. 6.0 g of this catalyst and 48.0 g of methanol (purity 99.7 wt%) were charged into the reactor described in Example 2, and the gas in the system was replaced with nitrogen gas, and then charged to 1.6 MPa. The liquid temperature in the reactor was heated to about 200 ° C. by the method described in Example 2. Three hours after the start of heating, the liquid temperature in the reactor reached 195 ° C. and 4.2 MPa at an external heater temperature of 220 to 230 ° C. The reaction was continued for 9 hours while maintaining the internal temperature of the reactor between 195 ° C and 201 ° C while adjusting the pressure regulating valve and extracting the product gas at 4.3 MPa. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 3.
[0026]
Comparative Example 2
A commercially available cylindrical pellet-shaped pellet catalyst mainly containing copper oxide-zinc oxide (containing 30 wt% copper oxide and 3.60 wt% zinc oxide) was pulverized and sieved to a thickness of 0.5 to 1.0 mm. A glass reducing tube was filled with 3.60 g, a hydrogen / nitrogen mixed gas was circulated, and reduction treatment was performed at 220 ° C. for 3 hours under normal pressure. 6.4 g of this reduced catalyst, 0.25 g of sodium methoxide, 48.0 g of methanol (purity 99.7 wt%) are charged into the reactor described in Example 2, and the system is replaced with nitrogen gas so that the pressure becomes 3.0 MPa. Filled. The liquid temperature inside the reactor was heated to about 220 ° C. by the method described in Example 2. 1.5 hours after the start of heating, the liquid temperature in the reactor reached 215 ° C and the reaction pressure reached 7.0 MPa at an external heater temperature of 245 ° C. The reaction was continued for 8.5 hours while maintaining the liquid temperature in the reactor at 220-221 ° C. while adjusting the pressure regulating valve and extracting the product gas at 7.0-7.1 MPa. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 3.
[0027]
Comparative Example 3
A cylindrical tableting pellet made of Nissan Gardler G-89 (containing 39 wt% copper, 37 wt% chromium and 3 wt% manganese) was crushed and sieved to 0.5 to 1.0 mm. A glass reducing tube was filled with 3.41 g and subjected to reduction treatment by the method described in Comparative Example 2. 6.2 g of this reduced catalyst, 0.25 g of sodium methylate, and 48.0 g of methanol (purity 99.7 wt%) are charged into the reactor described in Example 2, and after the inside of the system is replaced with nitrogen gas, until a predetermined pressure is reached. Filled. By the method described in Example 2, the liquid temperature inside the reactor was heated to about 200 ° C. 1.3 hours after the start of heating, the liquid temperature in the reactor reached 184 ° C. and the reaction pressure reached 4.9 MPa at an external heater temperature of 221 ° C. The reaction was continued for 2.3 hours while maintaining the liquid temperature in the reactor at 197 to 200 ° C. while adjusting the pressure regulating valve and extracting the product gas at 5.0 MPa. After completion of the reaction, the reactor was cooled, and the gas and liquid components in the reaction line were collected and analyzed by gas chromatography. The results are shown in Table 3.
[0028]
[Table 3]
Figure 0003972153
[0029]
【The invention's effect】
According to the present invention, by decomposing liquid phase methanol in the presence of a Raney copper catalyst, a mixed gas of carbon monoxide and hydrogen pressurized under mild reaction conditions of 200 ° C. or less can be obtained.
Further, in the method of the present invention, since the liquid phase methanol is decomposed to obtain a pressurized mixed gas of carbon monoxide and hydrogen, the reaction product is easily separated from the raw material methanol. Compared with the case of performing gas phase methanol decomposition, a gas mixture of carbon monoxide and hydrogen pressurized by a simpler process and apparatus can be obtained.

Claims (3)

アルカリ金属化合物を含有させたラネー銅触媒の存在下に液相のメタノールを一酸化炭素及び水素の混合ガスに分解することを特徴とする一酸化炭素及び水素の混合ガスの製造方法。 A method for producing a mixed gas of carbon monoxide and hydrogen, comprising decomposing liquid phase methanol into a mixed gas of carbon monoxide and hydrogen in the presence of a Raney copper catalyst containing an alkali metal compound . 生成するガスを反応系外に抜き出しながら分解反応を行う請求項に記載の一酸化炭素及び水素の製造方法。The method for producing carbon monoxide and hydrogen according to claim 1 , wherein the decomposition reaction is performed while extracting the generated gas out of the reaction system. ギ酸メチルを含有するメタノールを用いる請求項に記載の一酸化炭素及び水素の製造方法。The method for producing carbon monoxide and hydrogen according to claim 1 , wherein methanol containing methyl formate is used.
JP17819097A 1997-07-03 1997-07-03 Method for producing mixed gas of carbon monoxide and hydrogen Expired - Fee Related JP3972153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17819097A JP3972153B2 (en) 1997-07-03 1997-07-03 Method for producing mixed gas of carbon monoxide and hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17819097A JP3972153B2 (en) 1997-07-03 1997-07-03 Method for producing mixed gas of carbon monoxide and hydrogen

Publications (2)

Publication Number Publication Date
JPH1121102A JPH1121102A (en) 1999-01-26
JP3972153B2 true JP3972153B2 (en) 2007-09-05

Family

ID=16044177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17819097A Expired - Fee Related JP3972153B2 (en) 1997-07-03 1997-07-03 Method for producing mixed gas of carbon monoxide and hydrogen

Country Status (1)

Country Link
JP (1) JP3972153B2 (en)

Also Published As

Publication number Publication date
JPH1121102A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
US8637580B2 (en) Process for the preparation of ethanol and higher alcohols
JPS588073A (en) Manufacture of 5-alkylbutyrolactone
WO1993010069A1 (en) Process for producing dimethyl ether
JPWO2012067222A1 (en) Method for producing methanol
CN102050700A (en) Method for preparing alkoxy aluminum
JPS6228081B2 (en)
JPH0232312B2 (en)
JP3972153B2 (en) Method for producing mixed gas of carbon monoxide and hydrogen
JP4120717B2 (en) Method for producing a mixed gas of carbon monoxide and hydrogen
JP3968532B2 (en) Method for producing mixed gas of carbon monoxide and hydrogen
JP3506602B2 (en) Method for producing methanol
JP4048332B2 (en) Method for producing hydrogen
JP4967517B2 (en) Methanol synthesis method
JP3865148B2 (en) Reactor for synthesis of dimethyl ether
JP2529161B2 (en) Method for producing dimethyl ether
JP2007245138A (en) Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP4671006B2 (en) Carbon monoxide production method
JP2001263828A (en) Energy converting system using hydrogenating reaction of methyl formate
JPH09286603A (en) Production of gaseous mixture of carbon monoxide and hydrogen
JPH10195008A (en) Apparatus for production of dimethyl ether
JP2002173302A (en) Method of producing gaseous mixture of carbon monoxide with hydrogen
JPH09286602A (en) Production of gaseous mixture of carbon monoxide and hydrogen
JP4344846B2 (en) Method and apparatus for producing dimethyl ether
JP2002155004A (en) Method for producing dimethyl ether
JPH10212259A (en) Production of dimethyl ether from by-product gas from iron mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees