JP4042592B2 - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP4042592B2
JP4042592B2 JP2003057946A JP2003057946A JP4042592B2 JP 4042592 B2 JP4042592 B2 JP 4042592B2 JP 2003057946 A JP2003057946 A JP 2003057946A JP 2003057946 A JP2003057946 A JP 2003057946A JP 4042592 B2 JP4042592 B2 JP 4042592B2
Authority
JP
Japan
Prior art keywords
far
processed
infrared
infrared radiation
radiation source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003057946A
Other languages
Japanese (ja)
Other versions
JP2004273125A (en
Inventor
由紀夫 上嶋
晃男 星丘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2003057946A priority Critical patent/JP4042592B2/en
Publication of JP2004273125A publication Critical patent/JP2004273125A/en
Application granted granted Critical
Publication of JP4042592B2 publication Critical patent/JP4042592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Coating Apparatus (AREA)
  • Tunnel Furnaces (AREA)
  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、近赤外線放射源と遠赤外線放射源とを組み合わせて被処理物(ワーク)を加熱する加熱装置に関する。
【0002】
【従来の技術】
従来、部分的に塗料を塗布したガラス等の、分光吸収波長特性の異なる被処理物を加熱する際には、一般的には、分光吸収波長特性の影響が少ない伝導方式や対流方式を主とした加熱源、例えば、熱風循環炉や雰囲気炉等が使用されている。
また、輻射方式を主とした加熱源としては、被処理物の分光吸収波長特性に対して比較的影響差が少なく安定して加熱できる遠赤外線ヒータ(セラミックヒータやシーズヒータなど)がよく使われる。
【0003】
ここで、赤外線とは、波長域0.75μm〜1000μmの電磁波の一種であり、通常0.75μm〜3μmを近赤外線、3μm〜1000μmを遠赤外線とされるものであり、本願ではこれらの定義に従う。
【0004】
次に、近赤外線ヒータまたは遠赤外線ヒータを用いて、例えば、素ガラスに黒色セラミック塗料を塗布した被処理物の塗布部(塗膜部)だけの温度を上げて乾燥させる場合について説明する。
【0005】
まず、近赤外線ヒータのみを用いて加熱処理しようとすると、塗布部が集中的に昇温されてしまうため、塗布部と素ガラス部で温度差を生ずる。そのため、素ガラス部と塗布部の境界付近を起点として素ガラス部にクラックを生じてしまう。
【0006】
また、遠赤外線ヒータのみを用いて加熱処理しようとすると、素ガラス部の温度は上昇するが、塗布部の温度上昇が不十分となり、十分に乾燥させることができないという問題を生じる。
【0007】
また、近赤外線ヒータと遠赤外線ヒータとを組み合わせた加熱装置としては、特開平10−189220号公報に記載されているように、近赤外線ヒータと遠赤外線ヒータとを被処理物の搬送方向に順に並べて配置したものが知られている。
【0008】
この加熱装置は、図9に示すように、複数本の近赤外線ヒータ11と複数本の遠赤外線ヒータ12のそれぞれを被処理物13の進行方向と平行に配列している。ここで、近赤外線ヒータ11は透光性ガラス管内にフィラメント線が設けられ、フィラメント線から放射する近赤外線を利用して被処理物13を加熱する。また、遠赤外線ヒータ12はフィラメント線を内封したガラス管の周囲にセラミックが被覆されたものやシーズ線が用いられ、遠赤外線ヒータ12の外囲管表面から輻射する遠赤外線を利用して被処理物13を加熱する。被処理物13はチェーンコンベア14上を搬送され、最初近赤外線ヒータ11によって加熱され、次に遠赤外線ヒータ2によって加熱される。
【0009】
【特許文献1】
特開平10−189220号公報
【0010】
【発明が解決しようとする課題】
しかし、図9に示すような加熱装置においては、遠赤外線を放射する熱源自体が大気中にさらされているため、遠赤外線ヒータ12周囲の雰囲気による対流の影響を受けやすく、対流による熱損失を生じてしまう。そのため、遠赤外線ヒータ2の下方に被処理物13があると、熱の上方への逃げによる熱損失、即ち、エネルギー損が大きくなる。また、被処理物13を透過した近赤外線は迷光となり炉体内の温度上昇を招くと共に、エネルギー損を生じてしまう。
【0011】
本発明の目的は、上記の問題点に鑑み、単一の所定の厚さを有する透明な被処理物等を加熱する際には、近赤外線放射源によって被処理物を効果的に加熱するとともに、遠赤外線放射源の加熱効率を向上させ、また、分光吸収波長特性の異なる被処理物等を加熱する際には、エネルギー損を少なくし、被処理物の昇温が必要な部分とそれ以外の部分との温度差を大きくしないようにして、変形や破損を生じることのない加熱装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、次のような手段を採用した。
第1の手段は、近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、前記被処理物は分光吸収波長特性の異なる領域を有する被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線放射プレートから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線放射プレートに照射されて遠赤外線を放射して前記被処理物を加熱することを特徴とする。
第2の手段は、近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、前記被処理物は分光吸収波長特性の異なる領域を有する被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線ヒータから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線ヒータに照射されて遠赤外線を放射すると共に前記遠赤外線ヒータは自ら発熱して遠赤外線を放射して前記被処理物を加熱することを特徴とする。
第3の手段は、近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、前記被処理物は厚さに応じて分光透過率の異なる被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線放射プレートから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線放射プレートに照射されて遠赤外線を放射して前記被処理物を加熱することを特徴とする。
第4の手段は、近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、前記被処理物は厚さに応じて分光透過率の異なる被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線ヒータから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線ヒータに照射されて遠赤外線を放射すると共に前記遠赤外線ヒータは自ら発熱して遠赤外線を放射して前記被処理物を加熱することを特徴とする。
【0015】
【発明の実施の形態】
本発明の第1の実施形態を図1乃至図5を用いて説明する。
図1は、本実施形態の発明に係る加熱装置の正面断面図、図2は図1に示した被処理物3の平面図である。
【0016】
これらの図において、1は被処理物3の上方に設けられるとともに、被処理物3の進行方向と平行に配列された複数本の近赤外線放射源としての近赤外線ヒータであり、この近赤外線ヒータ1は透光性ガラス管内に設けられたフィラメント線から近赤外線を放射する。2は被処理物3の下方に設けられ、被処理物3の進行方向と平行に配列された単一の部材からなる遠赤外線放射源としての遠赤外線放射プレートであり、この遠赤外線放射プレート2は、近赤外線ヒータ1から放射された近赤外線を吸収して遠赤外線を上方に輻射する波長変換部材である。3は、例えば、自動車の後部窓ガラス等に用いられる、素ガラス部31と素ガラス部31の周縁部に黒色塗料が塗布された塗布部32とからなる分光吸収波長特性の異なる被処理物(ワーク)であり、この被処理物3はチェーンコンベア4上を図示左から右方向に移動する間に加熱処理される。4は被処理物3を搬送するチェーンコンベア、5は近赤外線ヒータ1から放射される近赤外線を反射するために設けられたミラーである。
【0017】
ここで、黒色塗料が塗布された塗布部32は、例えば、近赤外線の吸収率が90%、それ以外の素ガラス部31の吸収率は10%(透過率90%)であり、黒色塗料の材質としては、例えば、Al+SiO+MgOの混合物が用いられる。
【0018】
また、遠赤外線放射プレート2は、例えば、石英ガラス(板厚2mm)の表面に黒色のセラミック塗料を塗布したものが用いられる。
【0019】
上述のごとく、本実施形態の加熱装置によれば、被処理物3の上方に近赤外線ヒータ1を配置し、下方に遠赤外線の放射率の優れた遠赤外線放射プレート2を配置した。そのため、被処理物3の塗布部32は上方から照射される近赤外線により昇温し、素ガラス部31は近赤外線の大半を吸収せず、透過した光が被処理物3の下方にある遠赤外線放射プレート2を加熱する。遠赤外線放射プレート2は加熱されると温度上昇し、遠赤外線の放射や熱対流を生じ、被処理物3全体を加熱する。
【0020】
ここで、近赤外線は近赤外線ヒータ1の管球内のフィラメントから放射されるため、対流による熱損失は少なく、また、遠赤外線放射プレート2から発生する対流熱は上昇するため、被処理物3の昇温に寄与し、加熱効率を向上させる。
また、塗布部32以外の素ガラス部31は、下方からの遠赤外線放射により、ある程度温度上昇されるため、温度差による変形や破損の発生を抑制することができる。
【0021】
さらに、本実施形態の加熱装置によれば、被処理物3の昇温させたい部分と昇温させたくない部分との温度差を最大限に抑えることができるので、加熱後の冷却時間を短縮でき、生産タクトを向上させることができる。
【0022】
図3は、従来例に係る加熱装置と本発明の実施例に係る加熱装置とを用いて被処理物を加熱処理した結果を示す表である。
ここで、各加熱装置における加熱処理は、消費電力80kW、加熱時間30秒の条件下で行った。
【0023】
従来例1は、図2に示すような被処理物3の上方から近赤外線ヒータのみを照射した場合の加熱結果を示すものであり、近赤外線が照射されると黒色の塗布部32は昇温が大きく、30秒の加熱で180℃にまで到達した。しかしこのとき素ガラス部31は約80℃までしか昇温せず、界面にてガラスの割れが発生した。
【0024】
従来例2は、図2に示すような被処理物3の上方から遠赤外線ヒータのみを照射した場合の加熱結果を示すものであり、この場合は、消費電力80kW、加熱時間30秒では、塗布部32の温度は120℃にまでしか上昇せず、塗布部32の乾燥が不十分であった。
【0025】
従来例3は、図9に示すような従来技術に係る加熱装置を用いて、被処理物13の上方から近赤外線ヒータ11による照射に続き、被処理物13の上方から遠赤外線ヒータ12による照射を行った場合の加熱結果を示すものであり、この場合は、消費電力80kW、加熱時間30秒では、塗布部132の温度は160℃にまでしか昇温せず、塗布部132の乾燥が不十分であった。
【0026】
本発明の実施例は、図1に示す加熱装置を用いて、被処理物3の上方から近赤外線ヒータ1による照射を行い、被処理物3の下方からは、被処理物3の下方に配置された遠赤外線放射プレート2による照射を行った場合の加熱結果を示すものであり、この場合は、被処理物3の上面からの近赤外線により、遠赤外線放射プレート2の表面が約50℃にまで加熱され、遠赤外線および熱対流を発生させた。消費電力80kW、加熱時間30秒では、被処理物2の塗布部32の温度は180℃になり、塗布部32は十分乾燥し、このとき素ガラス部31の温度は約120℃まで昇温され、塗布部32との温度差が少なかった。
【0027】
このように、図3の対比結果に示すように、本発明の実施例の加熱装置によれば、従来例1〜従来例3の加熱装置と比べて、被処理物面内での温度差を抑えることができ、変形や割れを防止でき、また昇温させたくない部分の温度を極力抑えることができるので、後工程での冷却時間の短縮が図られ、生産タクトを向上させることができる。
【0028】
なお、本発明の加熱装置においては、被処理物3として、透明ガラスの周辺部のみに黒色塗料が塗布されたものを用いたが、この他にも、看板等に使用されるアクリル透明樹脂と黒色塗料との組み合わせや、LCDやPDPといった各種フラットパネルのガラス基板用のガラスと有機膜や金属膜の組み合わせからなるものを用いても、本発明の加熱装置の適用は可能である。
【0029】
また、本発明の加熱装置において、遠赤外線放射源として遠赤外線放射プレート2を用いたが、遠赤外線放射プレート2に代えて、図4に示すように遠赤外線ヒータ(ランプヒータ)6や、図5に示すようにセラミックヒータ7を用いてもよい。
遠赤外線ヒータ(ランプヒータ)6やセラミックヒータ7を用いた場合は、これら自らが発熱して遠赤外線を放射するとともに、図示されていない近赤外線ヒータ1から放射された近赤外線を吸収して遠赤外線を輻射する機能も有するので、自らの発熱によってのみ遠赤外線を放射させる場合に比べて、電力消費を軽減することができる。
【0030】
次に、本発明の第2の実施形態を図6乃至図8を用いて説明する。
図6は本実施形態の発明に係る加熱装置の正面断面図、図7は近赤外線波長に対するアクリル板の分光透過率の特性を示す図、図8は図6に示した被処理物8における近赤外線吸収を説明するための模式図である。
これら図において、8は単一の所定の厚さを有する透明なアクリル板等からなる被処理物(ワーク)である。なお、その他の構成は図1に示す同符号の構成に対応するので説明を省略する。
【0031】
通常、近赤外線を透過し遠赤外線を吸収するような被処理物を加熱する場合、一般的には遠赤外線ヒータが使用されることが多い。しかし、遠赤外線を照射した場合は、遠赤外線は被処理物の表面で多くが吸収され、その後伝導によって厚み方向に熱が伝達される。従って、一定以上の厚みを有する被処理物を加熱した場合、表面(ヒータ側)と裏面(非ヒータ側)との温度差が大きくなり、加熱ムラや被処理物の反り返り等の不具合が発生し易い。
【0032】
それに対して、このような被処理物を近赤外線で照射する場合、近赤外線は図7の特性に示すように、被処理物(アクリル板)の厚さに応じて分光透過率が異なる。即ち、被処理物(アクリル板)の厚みが厚くなる程近赤外線は透過しにくくなるので、図8にも示すように、近赤外線は被処理物8の厚み方向に進行するにつれて徐々に吸収されていく。そのため、被処理物8を内部から加熱することができ、表面と裏面の温度差を小さくすることができる。
また被処理物8を透過した近赤外線は遠赤外線放射プレート2にて吸収され、遠赤外線放射プレート2の温度を上昇させることによって被処理物8に遠赤外線を照射させることができる。
【0033】
この時、遠赤外線放射プレート2から放射された遠赤外線は、主に被処理物8の裏面で吸収されることになるが、実際には、近赤外線によって被処理物8の内部から加熱できるとはいうものの、近赤外線ヒータ1からもある程度の遠赤外線が放射されているため、表面(近赤外線ヒータ側)の方が温度が高くなる傾向にある。従って、被処理物8の裏面側で遠赤外線放射プレート2からの遠赤外線を吸収したとしても表面と裏面の温度差に影響を及ぼすこともなく、被処理物の加熱効率を向上させることができる。
【0034】
なお、遠赤外線放射プレート2の代わりに、近赤外線を反射する反射板を用いることも考えられるが、反射板で反射した近赤外線は再度被処理物8を照射し、最終的にミラー5と反射板とを反復しながら被処理物8を加熱することになる。しかし、反射を繰り返す近赤外線は、ミラー5や近赤外線ヒータ1のバルブの温度を上昇させてしまい、ミラー5の酸化、変形や、近赤外線ヒータ1の短寿命化の原因となってしまうおそれがある。また、これらを回避しようとして強制冷却機構を設けると、装置の大型化やコストアップを招き、得策とはいえない。
【0035】
【発明の効果】
請求項1に記載の発明によれば、近赤外線放射源から放射される近赤外線は一般に対流による熱損失は少なく、また遠赤外線放射源から発生する対流熱は上昇するため、被処理物の昇温に寄与し、加熱効率をアップすることができる。また分光吸収波長特性の異なる被処理物を加熱する場合には、エネルギー損を少なくし、被処理物の昇温が必要な部分とそれ以外の部分との温度差を大きくしないようにして、変形や破損を生じないようにすることができる。また遠赤外線放射源は、近赤外線放射源から放射された近赤外線によって遠赤外線を放射する遠赤外線放射プレートから構成されているので、簡便な構成で遠赤外線放射源を実現することができる。
請求項2に記載の発明によれば、近赤外線放射源から放射される近赤外線は一般に対流による熱損失は少なく、また遠赤外線放射源から発生する対流熱は上昇するため、被処理物の昇温に寄与し、加熱効率をアップすることができる。また分光吸収波長特性の異なる被処理物を加熱する場合には、エネルギー損を少なくし、被処理物の昇温が必要な部分とそれ以外の部分との温度差を大きくしないようにして、変形や破損を生じないようにすることができる。また遠赤外線放射源は、自ら発熱することによって遠赤外線を放射すると共に、近赤外線放射源から放射された近赤外線によって遠赤外線を放射する遠赤外線ヒータから構成されているので、簡便な構成で所望の強さを有する遠赤外線を放射する遠赤外線放射源を容易に実現することができる。
請求項3に記載の発明によれば、近赤外線放射源から放射される近赤外線は一般に対流による熱損失は少なく、また遠赤外線放射源から発生する対流熱は上昇するため、被処理物の昇温に寄与し、加熱効率をアップすることができる。また所定の厚さを有する単一の透明なアクリル板等からなる被処理物を加熱する場合には、近赤外線は被処理物の厚み方向に進行するにつれて徐々に吸収されていくため、被処理物を内部から加熱することができ、表面と裏面の温度差を小さくすることができる。また遠赤外線放射源は、近赤外線放射源から放射された近赤外線によって遠赤外線を放射する遠赤外線放射プレートから構成されているので、簡便な構成で遠赤外線放射源を実現することができる。
請求項4に記載の発明によれば、近赤外線放射源から放射される近赤外線は一般に対流による熱損失は少なく、また遠赤外線放射源から発生する対流熱は上昇するため、被処理物の昇温に寄与し、加熱効率をアップすることができる。また所定の厚さを有する単一の透明なアクリル板等からなる被処理物を加熱する場合には、近赤外線は被処理物の厚み方向に進行するにつれて徐々に吸収されていくため、被処理物を内部から加熱することができ、表面と裏面の温度差を小さくすることができる。また遠赤外線放射源は、自ら発熱することによって遠赤外線を放射すると共に、近赤外線放射源から放射された近赤外線によって遠赤外線を放射する遠赤外線ヒータから構成されているので、簡便な構成で所望の強さを有する遠赤外線を放射する遠赤外線放射源を容易に実現することができる。
【図面の簡単な説明】
【図1】第1の実施形態の発明に係る加熱装置の正面断面図である。
【図2】図1に示した被処理物3の平面図である。
【図3】 従来例に係る加熱装置と本発明の実施例に係る加熱装置とを用いて被処理物を加熱処理した結果を示す表である。
【図4】図1に示した加熱装置の遠赤外線放射プレート2に代えて遠赤外線ヒータ(ランプヒータ)6を用いた加熱装置を示す図である。
【図5】図1に示した加熱装置の遠赤外線放射プレート2に代えてセラミックヒータ7を用いた加熱装置を示す図である。
【図6】第2の実施形態の発明に係る加熱装置の正面断面図である。
【図7】近赤外線波長に対するアクリル板の分光透過率の特性を示す図である。
【図8】図6に示した被処理物8における近赤外線吸収を説明するための模式図である。
【図9】従来技術に係る加熱装置の正面断面図である。
【符号の説明】
1 近赤外線ヒータ
2 遠赤外線放射プレート
3 被処理物(ワーク)
31 素ガラス部
32 塗布部
4 チェーンコンベア
5 ミラー
6 遠赤外線ヒータ(ランプヒータ)
7 セラミックヒータ
8 単一の透明なアクリル板等からなる被処理物(ワーク)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heating apparatus that heats an object (workpiece) by combining a near-infrared radiation source and a far-infrared radiation source.
[0002]
[Prior art]
Conventionally, when heating an object to be processed with different spectral absorption wavelength characteristics, such as partially coated glass, generally the conduction method or convection method is less affected by the spectral absorption wavelength characteristics. A heated source such as a hot air circulating furnace or an atmospheric furnace is used.
As a heating source mainly using a radiation method, a far-infrared heater (such as a ceramic heater or a sheathed heater) that can be stably heated with a relatively small difference in influence on the spectral absorption wavelength characteristics of the workpiece is often used. .
[0003]
Here, infrared rays are a kind of electromagnetic waves having a wavelength range of 0.75 μm to 1000 μm, and normally 0.75 μm to 3 μm are near infrared rays, and 3 μm to 1000 μm are far infrared rays. .
[0004]
Next, a case will be described in which a near-infrared heater or a far-infrared heater is used to elevate the temperature of only the application part (coating part) of the object to be processed in which a black ceramic paint is applied to raw glass, for example.
[0005]
First, when an attempt is made to perform heat treatment using only a near-infrared heater, the temperature of the coating part is intensively increased, and thus a temperature difference occurs between the coating part and the raw glass part. For this reason, a crack is generated in the raw glass portion starting from the vicinity of the boundary between the raw glass portion and the coating portion.
[0006]
Moreover, when it is going to heat-process only using a far-infrared heater, the temperature of a raw glass part will rise, but the temperature rise of an application part will become inadequate and the problem that it cannot fully dry will arise.
[0007]
Moreover, as a heating device combining a near-infrared heater and a far-infrared heater, as described in Japanese Patent Laid-Open No. 10-189220, a near-infrared heater and a far-infrared heater are sequentially arranged in the conveying direction of the workpiece. Those arranged side by side are known.
[0008]
As shown in FIG. 9, the heating device has a plurality of near-infrared heaters 11 and a plurality of far-infrared heaters 12 arranged in parallel with the traveling direction of the workpiece 13. Here, the near-infrared heater 11 is provided with a filament wire in the translucent glass tube, and heats the workpiece 13 using near-infrared radiation radiated from the filament wire. Further, the far-infrared heater 12 is made of a glass tube enclosing a filament wire and coated with ceramics or a sheathed wire. The far-infrared heater 12 is covered with far-infrared rays radiated from the outer tube surface of the far-infrared heater 12. The processed product 13 is heated. The workpiece 13 is transported on the chain conveyor 14, and is first heated by the near infrared heater 11 and then heated by the far infrared heater 2.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-189220
[Problems to be solved by the invention]
However, in the heating apparatus as shown in FIG. 9, since the heat source that radiates far infrared rays is exposed to the atmosphere, it is easily affected by convection due to the atmosphere around the far infrared heater 12, and heat loss due to convection is reduced. It will occur. Therefore, if the workpiece 13 is present below the far-infrared heater 2, the heat loss due to the upward escape of heat, that is, the energy loss increases. Moreover, near infrared rays that have passed through the workpiece 13 become stray light, leading to an increase in temperature in the furnace and energy loss.
[0011]
In view of the above problems, the object of the present invention is to effectively heat a workpiece by a near infrared radiation source when heating a transparent workpiece having a single predetermined thickness. , Improve the heating efficiency of the far-infrared radiation source, and when heating the object to be processed with different spectral absorption wavelength characteristics, reduce the energy loss and other parts that need to be heated It is an object of the present invention to provide a heating device that does not cause deformation or breakage without increasing the temperature difference from this part.
[0012]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
The first means is a heating apparatus that heats the object to be processed by the near infrared ray emitted from the near infrared radiation source and the far infrared ray emitted from the far infrared radiation source, wherein the object to be treated has different spectral absorption wavelength characteristics. A near-infrared radiation source disposed on the workpiece, the far-infrared radiation source comprising a far-infrared radiation plate and disposed under the workpiece. The near infrared ray irradiated from the near infrared radiation source and absorbed by the object to be processed heats the object to be processed, and the near infrared ray transmitted through the object to be processed is irradiated to the far infrared radiation plate to obtain a far infrared ray. And the object to be processed is heated .
The second means is a heating apparatus that heats the object to be processed by the near infrared ray emitted from the near infrared radiation source and the far infrared ray emitted from the far infrared radiation source, wherein the object to be treated has different spectral absorption wavelength characteristics. A near-infrared radiation source disposed on the workpiece, the far-infrared radiation source comprising a far-infrared heater and disposed under the workpiece; The near infrared ray irradiated from the near infrared radiation source and absorbed by the object to be processed heats the object to be processed, and the near infrared ray transmitted through the object to be processed is irradiated to the far infrared heater and radiates far infrared rays. In addition, the far-infrared heater generates heat by itself and emits far-infrared rays to heat the object to be processed.
The third means is a heating apparatus that heats the object to be processed by the near infrared ray emitted from the near infrared radiation source and the far infrared ray emitted from the far infrared radiation source. An object to be processed having different transmittances, wherein the near-infrared radiation source is disposed on the object to be treated, and the far-infrared radiation source is constituted by a far-infrared radiation plate and disposed below the object to be treated. The near-infrared radiation irradiated from the near-infrared radiation source and absorbed by the object to be processed heats the object to be processed, and the near-infrared light transmitted through the object to be processed is irradiated to the far-infrared radiation plate and travels far away. The object to be processed is heated by emitting infrared rays.
The fourth means is a heating device that heats the object to be processed by the near infrared ray emitted from the near infrared radiation source and the far infrared ray emitted from the far infrared radiation source. An object to be processed having different transmittances, wherein the near-infrared radiation source is disposed on the object to be treated, and the far-infrared radiation source includes a far-infrared heater and is disposed below the object to be treated. The near infrared ray irradiated from the near infrared radiation source and absorbed by the object to be processed heats the object to be processed, and the near infrared ray that has passed through the object to be processed is irradiated to the far infrared heater to generate the far infrared ray. The far-infrared heater generates heat and emits far-infrared radiation to heat the object to be processed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a front sectional view of a heating device according to the invention of this embodiment, and FIG. 2 is a plan view of the workpiece 3 shown in FIG.
[0016]
In these figures, reference numeral 1 denotes a near-infrared heater as a plurality of near-infrared radiation sources provided above the workpiece 3 and arranged in parallel with the traveling direction of the workpiece 3. 1 emits near infrared rays from a filament wire provided in a translucent glass tube. Reference numeral 2 denotes a far-infrared radiation plate as a far-infrared radiation source provided as a far-infrared radiation source, which is provided below the workpiece 3 and is arranged in parallel with the traveling direction of the workpiece 3. Is a wavelength conversion member that absorbs near infrared rays emitted from the near infrared heater 1 and radiates far infrared rays upward. 3 is an object to be processed having different spectral absorption wavelength characteristics (e.g., composed of a raw glass part 31 and a coating part 32 in which a black paint is applied to the peripheral edge of the raw glass part 31, which is used for a rear window glass of an automobile, etc. This workpiece 3 is heated while moving on the chain conveyor 4 from the left to the right in the figure. 4 is a chain conveyor that conveys the workpiece 3, and 5 is a mirror that is provided to reflect near infrared rays emitted from the near infrared heater 1.
[0017]
Here, the application part 32 to which the black paint is applied has, for example, a near infrared absorptivity of 90%, and the other glass part 31 has an absorptivity of 10% (transmittance of 90%). As a material, for example, a mixture of Al 2 O 3 + SiO 2 + MgO is used.
[0018]
The far-infrared radiation plate 2 is, for example, a quartz glass (plate thickness 2 mm) surface coated with a black ceramic paint.
[0019]
As described above, according to the heating apparatus of the present embodiment, the near infrared heater 1 is disposed above the workpiece 3 and the far infrared radiation plate 2 having excellent far infrared emissivity is disposed below. Therefore, the application part 32 of the workpiece 3 is heated by near infrared rays irradiated from above, and the bare glass portion 31 does not absorb most of the near infrared rays, and the transmitted light is far below the workpiece 3. The infrared radiation plate 2 is heated. When the far-infrared radiation plate 2 is heated, the temperature rises, and far-infrared radiation and thermal convection are generated to heat the entire workpiece 3.
[0020]
Here, since near infrared rays are radiated from the filament in the tube of the near infrared heater 1, heat loss due to convection is small, and convection heat generated from the far infrared radiation plate 2 rises, so that the workpiece 3 is processed. It contributes to the temperature rise of and improves the heating efficiency.
Moreover, since the glass glass part 31 other than the application part 32 is heated to some extent by far-infrared radiation from below, it is possible to suppress deformation and breakage due to temperature differences.
[0021]
Furthermore, according to the heating apparatus of the present embodiment, the temperature difference between the portion of the workpiece 3 that is to be heated and the portion that is not desired to be heated can be suppressed to the maximum, so that the cooling time after heating is shortened. And production tact can be improved.
[0022]
FIG. 3 is a table showing the results of heat treatment of an object to be processed using the heating device according to the conventional example and the heating device according to the example of the present invention.
Here, the heat treatment in each heating apparatus was performed under the conditions of power consumption of 80 kW and heating time of 30 seconds.
[0023]
Conventional example 1 shows the heating result when only the near infrared heater is irradiated from above the workpiece 3 as shown in FIG. 2, and when the near infrared ray is irradiated, the black coating portion 32 is heated. The temperature reached 180 ° C. by heating for 30 seconds. At this time, however, the temperature of the raw glass portion 31 was raised only to about 80 ° C., and a glass crack occurred at the interface.
[0024]
Conventional example 2 shows the heating result when only the far-infrared heater is irradiated from above the workpiece 3 as shown in FIG. 2, and in this case, when the power consumption is 80 kW and the heating time is 30 seconds, the coating is performed. The temperature of the part 32 rose only to 120 ° C., and the application part 32 was not sufficiently dried.
[0025]
Conventional Example 3 uses a heating device according to the prior art as shown in FIG. 9 to irradiate from the upper side of the workpiece 13 with the near-infrared heater 11 and then irradiate the workpiece 13 with the far-infrared heater 12 from above. In this case, when the power consumption is 80 kW and the heating time is 30 seconds, the temperature of the application unit 132 is raised only to 160 ° C., and the application unit 132 is not dried. It was enough.
[0026]
In the embodiment of the present invention, irradiation with the near-infrared heater 1 is performed from above the workpiece 3 using the heating apparatus shown in FIG. 1, and the workpiece 3 is disposed below the workpiece 3 from below. The result of heating when irradiation is performed with the far-infrared radiation plate 2 is shown. In this case, the surface of the far-infrared radiation plate 2 is brought to about 50 ° C. by the near-infrared radiation from the upper surface of the workpiece 3. To generate far infrared and thermal convection. When the power consumption is 80 kW and the heating time is 30 seconds, the temperature of the coating portion 32 of the workpiece 2 is 180 ° C., and the coating portion 32 is sufficiently dried. At this time, the temperature of the raw glass portion 31 is raised to about 120 ° C. The temperature difference with the application part 32 was small.
[0027]
Thus, as shown in the comparison result of FIG. 3, according to the heating device of the embodiment of the present invention, the temperature difference in the surface of the object to be processed is compared with the heating devices of Conventional Example 1 to Conventional Example 3. Since it can be suppressed, deformation and cracking can be prevented, and the temperature of the portion where the temperature is not desired to be raised can be suppressed as much as possible, the cooling time in the subsequent process can be shortened and the production tact can be improved.
[0028]
In addition, in the heating apparatus of the present invention, the object to be processed 3 is one in which a black paint is applied only to the peripheral portion of the transparent glass, but in addition, an acrylic transparent resin used for a signboard or the like The heating apparatus of the present invention can be applied even when a combination of black paint or a combination of glass for various flat panel glass substrates such as LCD and PDP and an organic film or a metal film is used.
[0029]
Further, in the heating device of the present invention, the far infrared radiation plate 2 is used as the far infrared radiation source. However, instead of the far infrared radiation plate 2, as shown in FIG. As shown in FIG. 5, a ceramic heater 7 may be used.
When the far-infrared heater (lamp heater) 6 or the ceramic heater 7 is used, these themselves generate heat to emit far-infrared rays, and absorb the near-infrared rays emitted from the near-infrared heater 1 (not shown). Since it also has a function of radiating infrared rays, power consumption can be reduced compared to the case of emitting far infrared rays only by its own heat generation.
[0030]
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 6 is a front sectional view of the heating apparatus according to the invention of this embodiment, FIG. 7 is a diagram showing the spectral transmittance characteristics of the acrylic plate with respect to the near-infrared wavelength, and FIG. 8 is a near view of the workpiece 8 shown in FIG. It is a schematic diagram for demonstrating infrared absorption.
In these drawings, reference numeral 8 denotes an object to be processed (work) made of a transparent acrylic plate or the like having a single predetermined thickness. Other configurations correspond to the same reference numerals shown in FIG.
[0031]
Usually, when heating an object that transmits near infrared rays and absorbs far infrared rays, a far infrared heater is generally used in many cases. However, when far-infrared rays are irradiated, much of the far-infrared rays are absorbed on the surface of the object to be processed, and then heat is transferred in the thickness direction by conduction. Therefore, when a workpiece having a certain thickness or more is heated, the temperature difference between the front surface (heater side) and the back surface (non-heater side) increases, causing problems such as uneven heating and warping of the workpiece. easy.
[0032]
On the other hand, when such an object to be processed is irradiated with near infrared rays, as shown in the characteristics of FIG. 7, near infrared rays have different spectral transmittances depending on the thickness of the object to be processed (acrylic plate). That is, as the thickness of the object to be processed (acrylic plate) increases, near-infrared light is less likely to be transmitted. Therefore, as shown in FIG. 8, the near-infrared light is gradually absorbed as it proceeds in the thickness direction of the object to be processed 8. To go. Therefore, the workpiece 8 can be heated from the inside, and the temperature difference between the front surface and the back surface can be reduced.
Further, the near-infrared ray that has passed through the workpiece 8 is absorbed by the far-infrared radiation plate 2, and the far-infrared radiation can be irradiated to the workpiece 8 by raising the temperature of the far-infrared radiation plate 2.
[0033]
At this time, the far infrared rays emitted from the far-infrared radiation plate 2 are mainly absorbed by the back surface of the object 8 to be processed, but actually, if the near infrared rays can be heated from the inside of the object 8 to be processed. Nevertheless, since a certain amount of far-infrared rays are emitted from the near-infrared heater 1, the surface (near-infrared heater side) tends to have a higher temperature. Therefore, even if far-infrared rays from the far-infrared radiation plate 2 are absorbed on the back surface side of the workpiece 8, the heating efficiency of the workpiece can be improved without affecting the temperature difference between the front surface and the back surface. .
[0034]
Although it is conceivable to use a reflecting plate that reflects near infrared rays instead of the far infrared radiation plate 2, the near infrared rays reflected by the reflecting plate again irradiate the object 8 to be processed, and finally reflect with the mirror 5. The workpiece 8 is heated while repeating the plate. However, near-infrared rays that repeatedly reflect increase the temperature of the mirror 5 and the bulb of the near-infrared heater 1, which may cause oxidation and deformation of the mirror 5 and shorten the life of the near-infrared heater 1. is there. In addition, if a forced cooling mechanism is provided in order to avoid these problems, the size of the apparatus is increased and the cost is increased.
[0035]
【The invention's effect】
According to the invention described in claim 1, near infrared rays emitted from the near-infrared radiation source generally heat loss by convection is small, and because the convective heat generated from the far infrared radiation source is increased, the treatment object temperature Contributes to temperature and can improve heating efficiency. In addition, when heating an object to be processed with different spectral absorption wavelength characteristics, the energy loss is reduced, and the temperature difference between the part requiring the temperature increase of the object to be processed and the other part is not increased. Or damage can be prevented. Moreover, since the far-infrared radiation source is composed of a far-infrared radiation plate that emits far-infrared radiation by the near-infrared radiation emitted from the near-infrared radiation source, the far-infrared radiation source can be realized with a simple configuration.
According to the second aspect of the present invention, the near-infrared radiation emitted from the near-infrared radiation source generally has little heat loss due to convection, and the convection heat generated from the far-infrared radiation source rises. Contributes to temperature and can improve heating efficiency. In addition, when heating an object to be processed with different spectral absorption wavelength characteristics, the energy loss is reduced, and the temperature difference between the part requiring the temperature increase of the object to be processed and the other part is not increased. Or damage can be prevented. The far-infrared radiation source is composed of a far-infrared heater that radiates far-infrared by emitting heat by itself and radiates far-infrared by the near-infrared emitted from the near-infrared radiation source. It is possible to easily realize a far-infrared radiation source that emits far-infrared radiation having the intensity of.
According to the third aspect of the present invention, the near-infrared radiation emitted from the near-infrared radiation source generally has little heat loss due to convection, and the convection heat generated from the far-infrared radiation source rises. Contributes to temperature and can improve heating efficiency. In addition, when heating an object to be processed consisting of a single transparent acrylic plate or the like having a predetermined thickness, near infrared light is gradually absorbed as it proceeds in the thickness direction of the object to be processed. The object can be heated from the inside, and the temperature difference between the front surface and the back surface can be reduced. Moreover, since the far-infrared radiation source is composed of a far-infrared radiation plate that emits far-infrared radiation by the near-infrared radiation emitted from the near-infrared radiation source, the far-infrared radiation source can be realized with a simple configuration.
According to the fourth aspect of the present invention, the near-infrared radiation emitted from the near-infrared radiation source generally has little heat loss due to convection, and the convective heat generated from the far-infrared radiation source rises. Contributes to temperature and can improve heating efficiency. In addition, when heating an object to be processed consisting of a single transparent acrylic plate or the like having a predetermined thickness, near infrared light is gradually absorbed as it proceeds in the thickness direction of the object to be processed. The object can be heated from the inside, and the temperature difference between the front surface and the back surface can be reduced. The far-infrared radiation source is composed of a far-infrared heater that radiates far-infrared by emitting heat by itself and radiates far-infrared by the near-infrared emitted from the near-infrared radiation source. It is possible to easily realize a far-infrared radiation source that emits far-infrared radiation having the intensity of.
[Brief description of the drawings]
FIG. 1 is a front sectional view of a heating device according to the invention of a first embodiment.
FIG. 2 is a plan view of the workpiece 3 shown in FIG.
FIG. 3 is a table showing a result of heat-treating an object to be processed using a heating device according to a conventional example and a heating device according to an example of the present invention.
4 is a view showing a heating device using a far infrared heater (lamp heater) 6 in place of the far infrared radiation plate 2 of the heating device shown in FIG. 1;
5 is a view showing a heating device using a ceramic heater 7 instead of the far-infrared radiation plate 2 of the heating device shown in FIG. 1. FIG.
FIG. 6 is a front sectional view of a heating device according to the invention of the second embodiment.
FIG. 7 is a diagram showing the spectral transmittance characteristics of an acrylic plate with respect to near infrared wavelengths.
8 is a schematic diagram for explaining near-infrared absorption in the workpiece 8 shown in FIG. 6. FIG.
FIG. 9 is a front sectional view of a heating device according to the prior art.
[Explanation of symbols]
1 Near-infrared heater 2 Far-infrared radiation plate 3 Object to be processed (workpiece)
31 Raw glass part 32 Application part 4 Chain conveyor 5 Mirror 6 Far-infrared heater (lamp heater)
7 Ceramic heater 8 Object to be processed (work) made of a single transparent acrylic plate

Claims (4)

近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、
前記被処理物は分光吸収波長特性の異なる領域を有する被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線放射プレートから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線放射プレートに照射されて遠赤外線を放射して前記被処理物を加熱することを特徴とする加熱装置。
In a heating apparatus for heating an object to be processed by a near infrared ray emitted from a near infrared ray source and a far infrared ray emitted from a far infrared ray source,
The object to be processed has a region having different spectral absorption wavelength characteristics, the near-infrared radiation source is disposed on the object to be processed, and the far-infrared radiation source is composed of a far-infrared radiation plate. And the near infrared ray disposed under the object to be processed, irradiated from the near infrared radiation source and absorbed by the object to be processed heats the object to be processed, and the near infrared light transmitted through the object to be processed is A heating apparatus that heats the object to be processed by irradiating the far-infrared radiation plate to emit far-infrared radiation .
近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、In a heating apparatus for heating an object to be processed by a near infrared ray emitted from a near infrared ray source and a far infrared ray emitted from a far infrared ray source,
前記被処理物は分光吸収波長特性の異なる領域を有する被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線ヒータから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線ヒータに照射されて遠赤外線を放射すると共に前記遠赤外線ヒータは自ら発熱して遠赤外線を放射して前記被処理物を加熱することを特徴とする加熱装置。  The object to be processed has a region having different spectral absorption wavelength characteristics, the near infrared radiation source is disposed on the object to be processed, and the far infrared radiation source is constituted by a far infrared heater. The near-infrared rays disposed under the object to be processed, irradiated from the near-infrared radiation source and absorbed by the object to be processed heat the object to be processed, and the near-infrared light transmitted through the object to be processed is the A heating apparatus, wherein the far-infrared heater emits far-infrared radiation, and the far-infrared heater generates heat and emits far-infrared radiation to heat the object to be processed.
近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、In a heating apparatus for heating an object to be processed by a near infrared ray emitted from a near infrared ray source and a far infrared ray emitted from a far infrared ray source,
前記被処理物は厚さに応じて分光透過率の異なる被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線放射プレートから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線放射プレートに照射されて遠赤外線を放射して前記被処理物を加熱することを特徴とする加熱装置。  The object to be processed is an object to be processed having different spectral transmittances according to thickness, the near-infrared radiation source is disposed on the object to be processed, and the far-infrared radiation source is composed of a far-infrared radiation plate. The near-infrared light that is disposed under the object to be processed, irradiated from the near-infrared radiation source, and absorbed by the object to be processed heats the object to be processed, and passes through the object to be processed. Irradiates the far-infrared radiation plate and emits far-infrared radiation to heat the object to be processed.
近赤外線放射源から放射される近赤外線および遠赤外線放射源から放射される遠赤外線とによって被処理物を加熱する加熱装置において、  In a heating apparatus for heating an object to be processed by a near infrared ray emitted from a near infrared ray source and a far infrared ray emitted from a far infrared ray source,
前記被処理物は厚さに応じて分光透過率の異なる被処理物であって、前記近赤外線放射源は前記被処理物の上に配置され、前記遠赤外線放射源は遠赤外線ヒータから構成されると共に前記被処理物の下に配置され、前記近赤外線放射源から照射され、前記被処理物に吸収された近赤外線は前記被処理物を加熱し、前記被処理物を透過した近赤外線は前記遠赤外線ヒータに照射されて遠赤外線を放射すると共に前記遠赤外線ヒータは自ら発熱して遠赤外線を放射して前記被処理物を加熱することを特徴とする加熱装置。  The object to be processed is an object to be processed whose spectral transmittance varies depending on the thickness, the near infrared radiation source is disposed on the object to be processed, and the far infrared radiation source is constituted by a far infrared heater. And the near infrared ray disposed under the object to be processed, irradiated from the near infrared radiation source and absorbed by the object to be processed heats the object to be processed, and the near infrared light transmitted through the object to be processed is A heating apparatus, wherein the far-infrared heater emits far-infrared radiation, and the far-infrared heater generates heat and emits far-infrared radiation to heat the object to be processed.
JP2003057946A 2003-03-05 2003-03-05 Heating device Expired - Fee Related JP4042592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057946A JP4042592B2 (en) 2003-03-05 2003-03-05 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057946A JP4042592B2 (en) 2003-03-05 2003-03-05 Heating device

Publications (2)

Publication Number Publication Date
JP2004273125A JP2004273125A (en) 2004-09-30
JP4042592B2 true JP4042592B2 (en) 2008-02-06

Family

ID=33121179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057946A Expired - Fee Related JP4042592B2 (en) 2003-03-05 2003-03-05 Heating device

Country Status (1)

Country Link
JP (1) JP4042592B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4566711B2 (en) * 2004-11-25 2010-10-20 株式会社リコー Heating device
JP2006292328A (en) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd Drier
JP4947344B2 (en) * 2006-01-31 2012-06-06 ウシオ電機株式会社 Heating device
JP2007261869A (en) * 2006-03-28 2007-10-11 Brother Ind Ltd Method for forming ceramic film and annealing apparatus
JP2009192141A (en) * 2008-02-14 2009-08-27 Hitachi Plant Technologies Ltd Continuous heating device
US20090308860A1 (en) * 2008-06-11 2009-12-17 Applied Materials, Inc. Short thermal profile oven useful for screen printing
JP5600885B2 (en) * 2009-03-19 2014-10-08 凸版印刷株式会社 Organic EL drying equipment
JP5797413B2 (en) * 2011-01-25 2015-10-21 光洋サーモシステム株式会社 Heater unit and heat treatment apparatus
JP6076631B2 (en) * 2012-07-12 2017-02-08 光洋サーモシステム株式会社 Heater unit and heat treatment apparatus
JP5760060B2 (en) * 2013-09-27 2015-08-05 株式会社茨城技研 Metal film forming method, metal film forming product manufacturing method and manufacturing apparatus
CN113446846A (en) * 2021-07-22 2021-09-28 深圳市鸿富诚屏蔽材料有限公司 High-efficient tunnel furnace
CN113645719A (en) * 2021-08-16 2021-11-12 攀钢集团攀枝花钢钒有限公司 Cold-rolled strip steel passivation near-infrared heater lamp tube arrangement structure

Also Published As

Publication number Publication date
JP2004273125A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4042592B2 (en) Heating device
JP5450331B2 (en) Method and apparatus for uniformly heating glass and / or glass ceramic using infrared radiation
JP6388488B2 (en) Glass ceramic cooking plate with locally increased transmittance and method for producing such glass ceramic cooking plate
CN1438973A (en) A method for the rapid thermal treatment of glass and glass-like materials using microwave radiation
US6348676B2 (en) Rapid cooking device using infrared light
JP2009164525A (en) Heat treatment apparatus
JP3531567B2 (en) Flash irradiation heating device
JP2011099567A (en) Infrared heating device, infrared irradiating device, and infrared irradiating direction adjusting device
JP4696736B2 (en) Light heating device
JP4947344B2 (en) Heating device
JP2008117892A (en) Semiconductor manufacturing device and manufacturing method of semiconductor device
KR101574336B1 (en) supporter and substrate processing apparatus having the same and treatment method thereof
JP4436565B2 (en) Apparatus for heat treating a substrate
JP2002289548A (en) Heat treatment device
JP7211029B2 (en) Method for manufacturing glass article and method for heating thin glass
JP5891255B2 (en) Heat treatment equipment
US20030146202A1 (en) Lightwave oven with radiant lamps of different color temperature
JP2007335344A (en) Heating apparatus
JPH0942685A (en) Heating cooking apparatus
JP2007333250A (en) Far-infrared panel heater
JP2001336878A (en) Dryer and drying method
JP5176364B2 (en) Light heating apparatus and light heating method
JP2015000401A (en) Ultraviolet irradiator
JP2017060907A (en) Curing method for ultraviolet curable coating material
JP2005231910A (en) Apparatus for heating glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Ref document number: 4042592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees