JP4042040B2 - Polyethylene fiber, woven and knitted fabric excellent in cut resistance and use thereof - Google Patents
Polyethylene fiber, woven and knitted fabric excellent in cut resistance and use thereof Download PDFInfo
- Publication number
- JP4042040B2 JP4042040B2 JP2002176130A JP2002176130A JP4042040B2 JP 4042040 B2 JP4042040 B2 JP 4042040B2 JP 2002176130 A JP2002176130 A JP 2002176130A JP 2002176130 A JP2002176130 A JP 2002176130A JP 4042040 B2 JP4042040 B2 JP 4042040B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- molecular weight
- cut
- average molecular
- woven
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000835 fiber Substances 0.000 title claims description 72
- -1 Polyethylene Polymers 0.000 title claims description 27
- 239000004698 Polyethylene Substances 0.000 title claims description 26
- 229920000573 polyethylene Polymers 0.000 title claims description 26
- 239000004744 fabric Substances 0.000 title claims description 18
- 238000012360 testing method Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 8
- 238000009940 knitting Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical compound [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Landscapes
- Professional, Industrial, Or Sporting Protective Garments (AREA)
- Gloves (AREA)
- Knitting Of Fabric (AREA)
- Artificial Filaments (AREA)
- Woven Fabrics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐切創性に優れた繊維及び該繊維を含む織り編物及び該繊維を含む耐切創手袋、ベストに関するものである。
【従来の技術】
従来、天然繊維の綿や一般的な有機繊維が耐切創性素材として用いられてきた。また、それらの繊維などを編みあげた手袋が耐切創性を必要とする分野で多く用いられてきた。
【0002】
そこで耐切創性機能の付与としてアラミド繊維などの高強度繊維の紡績糸からなる編物や織物などが考案されてきた。しかしながら、毛抜けや耐久性の観点で不満があった。一方別の手段として、金属繊維を有機繊維や天然繊維と合わせて用いることにより耐切創性を向上させる試みが行われているが、金属繊維を合わせることにより、風合いが堅くなり、柔軟性が損なわれる問題点がある。
【0003】
【発明が解決しようとする課題】
本発明は、優れた耐切創性を有する新規なポリエチレン繊維を開発し、該繊維を用いた耐切創性織編物及び耐切創性に優れた手袋やベストを提供する。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決すべく鋭意研究を重ね、耐切創性に優れるポリエチレン繊維、織編物、手袋及びベストを得る為に、下記の手段をとる。
1.引っ張り強度が15cN/dtex以上、及び引っ張り弾性率が500cN/dtex以上のポリエチレン繊維であり、該繊維からなる筒編物のクープテスターのインデックス値が3.0以上であることを特徴とする耐切創性に優れるポリエチレン繊維。
2.繊維状態での重量平均分子量が300,000以下、重量平均分子量と数平均分子量の比(Mw/Mn)が4.0以下であることを特徴とする上記第1記載のポリエチレン繊維。
3.上記第1に記載のポリエチレン繊維を含む織編物からなることを特徴とする耐切創性に優れるポリエチレン繊維織編物。
4.上記第1に記載のポリエチレン繊維を含むことを特徴とする耐切創性手袋。
5.上記第1に記載のポリエチレン繊維を含むことを特徴とする耐切創性ベスト。
以下本発明を詳述する
【0005】
本発明の耐切創性に優れるポリエチレン繊維の原料ポリエチレンとは、その繰り返し単位が実質的にエチレンであることを特徴とし、少量の他のモノマー例えばα−オレフィン,アクリル酸及びその誘導体,メタクリル酸及びその誘導体,ビニルシラン及びその誘導体などとの共重合体であっても良いし、これら共重合物どうし、あるいはエチレン単独ポリマーとの共重合体、さらには他のα−オレフィン等のホモポリマーとのブレンド体であってもよい。特にプロピレン,ブテンー1などのαオレフィンと共重合体を用いることで長鎖の分岐をある程度含有させることは本繊維を製造する上で、特に紡糸・延伸においての製糸上の安定を与えることとなり、より好ましい。しかしながら、長鎖分岐の量が増加しすぎると欠陥となり繊維の強度が低下する。また、繊維状態での重量平均分子量が300,000以下であり、重量平均分子量と数平均分子量の比(Mw/Mn)が4.0以下となる事が重要である。好ましくは、繊維状態での重量平均分子量が250,000以下であり、重量平均分子量と数平均分子量の比(Mw/Mn)が3.5以下となる事が重要である。さらに好ましくは、繊維状態での重量平均分子量が200,000以下であり、重量平均分子量と数平均分子量の比(Mw/Mn)が3.0以下となる事が重要である。
【0006】
繊維状態のポリエチレンの重量平均分子量が300、000を越えるような重合度のポリエチレンを原料と使用した場合では、溶融粘度が極めて高くなり、溶融成型加工が極めて困難となる。又、繊維状態の重量平均分子量と数平均分子量の比が4.0以上となると同じ重量平均分子量のポリマーを用いた場合と比較し最高延伸倍率が低く又、得られた糸の強度は低いものとなる。これは、同じ重量平均のポリエチレンで比較した場合、緩和時間の長い分子鎖が延伸を行う際に延びきる事ができずに破断が生じてしまう事と、分子量分布が広くなる事によって低分子量成分が増加するために分子末端が増加する事により強度低下が起こると推測している。また、繊維状態での分子量と分子量分布をコントロールする為に溶解・押し出し工程や紡糸工程で意図的にポリマーを劣化させても良いし、予め狭い分子量分布を持つポリエチレンを使っても良い。
【0007】
本発明の耐切創性に優れるポリエチレン繊維の推奨する製造方法においては、このようなポリエチレンを押し出し機で溶融押し出ししギアポンプにて定量的に紡糸口金を介して吐出させる。その後冷風にて該糸状を冷却し、所定の速度で引き取る。この時充分素早く引き取る事が重要である。即ち、吐出線速度と巻き取り速度の比が100以上で有ることが重要である、好ましくは150以上、さらに好ましくは200以上である。吐出線速度と巻き取り速度の比は、口金口径、単孔吐出量、溶融状態のポリマー密度、巻き取り速度から計算することが出来る。
【0008】
さらに該繊維を以下に示す様な方法で延伸することが非常に重要である。即ち該繊維を、該繊維の結晶分散温度以下の温度で延伸を行い、該繊維の結晶分散温度以上融点以下の温度でさらに延伸を行うことにより驚く程繊維の物性が向上する事を見いだした。この時さらに多段に繊維を延伸しても良い。
【0009】
本発明では、延伸に際して、1台目のゴデットロールの速度を5m/minと固定して、その他のゴデットロールの速度を変更する事により所定の延伸倍率の糸を得た。
【0010】
上記により得られたポリエチレン繊維を既知の方法で織編物にすることが可能である。本発明の織編物は、織編物を構成する原糸の主成分からなる繊維のみの場合はもちろん、他の繊維を混入することを妨げるものではなく、意匠や機能により例えば他の合成繊維や天然繊維を加えてもかまわない。同様に既知の方法で耐切創手袋及びベストを作成することが可能である。本発明の耐切創手袋及びベストは、同様に構成する原糸の主成分からなる繊維のみの場合はもちろん、他の繊維を混入することを妨げるものではなく、意匠や機能により例えば他の合成繊維や天然繊維を加えてもかまわない。
【0011】
以下に本発明における特性値に関する測定法および測定条件を説明する。
【0012】
(強度・弾性率)
本発明における強度,弾性率は、オリエンテック社製「テンシロン」を用い、試料長200mm(チャック間長さ)、伸長速度100%/分の条件で歪ー応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、曲線の破断点での応力を強度(cN/dtex)、曲線の原点付近の最大勾配を与える接線より弾性率(cN/dtex)を計算して求めた。なお、各値は10回の測定値の平均値を使用した。
【0013】
(重量平均分子量Mw、数平均分子量Mn及びMw/Mn)
重量平均分子量Mw、数平均分子量Mn及びMw/Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置としては、Waters製GPC 150C ALC/GPCを持ち、カラムとしてはSHODEX製GPC UT802.5を一本UT806Mを2本用いて測定した。測定溶媒は、o−ジクロロベンゼンを使用しカラム温度を145度した。試料濃度は1.0mg/mlとし、200マイクロリットル注入し測定した。分子量の検量線は、ユニバーサルキャリブレーション法により分子量既知のポリスチレン試料を用いて構成されている。
【0014】
(動的粘弾弾性測定)
本発明における動的粘度測定は、オリエンテック社製「レオバイブロンDDV−01FP型」を用いて行った。繊維は全体として100デニール±10デニールとなるように分繊あるいは合糸し、各単繊維ができる限り均一に配列するように配慮して、測定長(鋏金具間距離)が20mmとなるように繊維の両末端をアルミ箔で包みセルロース系接着剤で接着する。その際の糊代ろ長さは、鋏金具との固定を考慮して5mm程度とする。各試験片は、20mmの初期幅に設定された鋏金具(チャック)に糸が弛んだり捩じれたりしないように慎重に設置され、予め60℃の温度、110Hzの周波数にて数秒、予備変形を与えてから本実験を実施した。本実験では−150℃から150℃の温度範囲で約1℃/分の昇温速度において110Hzの周波数での温度分散を低温側より求めた。測定においては静的な荷重を5gfに設定し、繊維が弛まない様に試料長を自動調整させた。動的な変形の振幅は15μmに設定した。
【0015】
(吐出線速度と紡糸速度の比(ドラフト比)
ドラフト比(Ψ)は、以下の式で与えられる。
ドラフト比(Ψ)=紡糸速度(Vs)/吐出線速度(V)
【0016】
(耐切創性測定用サンプルの調整)
440dtex±40dTexの原糸を準備し、100本丸編み機で測定する繊維を編み立てた。サンプリングは、編み立ての糸跳びがない部分を選んで、7×7cm以上のサイズになるよう切断した。編目が粗いので、薬包紙をサンプルの下に1枚敷いて試験を行った。測定する部分は、丸編みの外側部分で、編目方向に対し90°になるようセットした。
【0017】
(耐切創性測定)
評価方法としては、クープテスターを用いた。この装置は、円形の刃を試料の上を走行方向と逆方向に回転しながら走らせ、試料を切断していき、切断しきると試料の裏にアルミ箔があり、円形刃とアルミが触れることにより電気が通り、カット試験が終了したことを感知する。カッターが作動している間中、装置に取り付けられているカウンターがカウントを行うので、その数値を記録する。
【0018】
この試験は、目付け約200g/m2の平織りの綿布をブランクとし、試験サンプルとの切創レベルを評価する。ブランクからテストを開始し、ブランクと試験サンプルとを交互にテストを行い、試験サンプルが5回テストし、最後にブランクが6回目のテストをされた後、この1回のテストは終了する。
【0019】
ここで算出される評価値はIndexと呼ばれ、次式により算出される。
A=(サンフ゜ルテスト前の綿布のカウント値+サンフ゜ルテスト前の綿布のカウント値)/2
Index=(サンプルのカウント値+A)/A
【0020】
今回の評価に使用したカッターは、OLFA社製のロータリーカッターL型用φ45mmを用いた。材質はSKS−7タングステン鋼であり、刃厚0.3ミリ厚であった。
【0021】
また、テスト時にかかる荷重は320gにして評価を行った。
【0022】
【実施例】
以下、実施例をもって本発明を説明する。
【0023】
(実施例1)
重量平均分子量115,000、重量平均分子量と数平均分子量の比が2.3、5個以上の炭素を有する長さの分岐鎖が炭素1,000個あたり0.4個である高密度ポリエチレンをφ0.8mm、390Hからなる紡糸口金から290℃で単孔吐出量0.5g/minの速度で押し出した。押し出された繊維は、15cmの保温区間を通りその後20℃、0.5m/sのクエンチで冷却され、300m/minの速度で巻き取られる。該未延伸糸を、複数台の温度コントロールの可能なネルソンロールにて延伸した。1段延伸は、25℃で2.8倍の延伸を行った。さらに115℃まで加熱し5.0倍の延伸を行い、延伸糸を得た。得られた繊維の物性を表1に示した。また、得られた繊維を丸編み機で編み立て、耐切創性を評価した。結果を表1に合わせて示した。
【0024】
(実施例2)
実施例1の延伸糸を125℃に加熱し、さらに1.3倍の延伸を行った。得られた繊維の物性を表1に示した。同様に得られた繊維を丸編み機で編み立て、耐切創性を評価した。結果を表1に合わせて示した。
【0025】
(比較例1〜4)
市販のナイロン繊維、ポリエステル繊維、ポリエチレン繊維、ポリプロピレン繊維の特性を表1に合わせて示した。同様に繊維を丸編み機で編み立て、耐切創性を評価した。結果を表1に合わせて示した。
【0026】
【表1】
【0027】
【表2】
【0028】
実施例1、2及び比較例1乃至4の原糸を用いて、編み機を用いて既知の方法で手袋を作成した。耐切創評価の結果を表2に示す。比較例1乃至4に比べ、実施例1又は2はいずれも、耐切創レベルに優れるという結果が得られた。
【0029】
繊維を全体として440dtex±40dtexとなるように分繊あるいは合糸し、織り密度が経緯とも40本/25mmの平織物を作成した。得られた織物を裁断し、耐切創性ベスト中材を作成した。表皮材と組み合わせて耐切切創性ベストを作成し耐切創性を評価したところ良好な結果が得られた。
【0030】
【発明の効果】
本発明によると、耐切創性に優れる新規なポリエチレン繊維を使用した耐切創性織編物、手袋及びベストの製造を可能とした。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber excellent in cut resistance, a woven or knitted fabric including the fiber, a cut resistant glove including the fiber, and a vest.
[Prior art]
Conventionally, natural fiber cotton and general organic fiber have been used as cut resistant materials. In addition, gloves made of these fibers have been used in many fields that require cut resistance.
[0002]
Therefore, knitted fabrics and woven fabrics made of spun yarns of high-strength fibers such as aramid fibers have been devised to give cut resistance. However, there was dissatisfaction in terms of hair loss and durability. As another means, attempts have been made to improve cut resistance by using metal fibers in combination with organic fibers and natural fibers, but by combining metal fibers, the texture becomes stiff and the flexibility is impaired. There are problems.
[0003]
[Problems to be solved by the invention]
The present invention develops a novel polyethylene fiber having excellent cut resistance, and provides a cut resistant woven or knitted fabric using the fiber, and a glove or vest excellent in cut resistance.
[0004]
[Means for Solving the Problems]
In order to obtain the polyethylene fiber, the knitted fabric, the glove, and the vest excellent in cut resistance, the present invention takes the following means.
1. Cut resistance, characterized by being a polyethylene fiber having a tensile strength of 15 cN / dtex or more and a tensile elastic modulus of 500 cN / dtex or more, and an index value of a coup tester of a cylindrical knitted fabric made of the fiber being 3.0 or more. Excellent polyethylene fiber.
2. The polyethylene fiber as described in the above item 1, wherein the weight average molecular weight in a fiber state is 300,000 or less, and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 4.0 or less.
3. A polyethylene fiber woven or knitted fabric excellent in cut resistance, characterized by comprising a woven or knitted fabric containing the polyethylene fiber as described in the above (1).
4). A cut resistant glove comprising the polyethylene fiber according to the first aspect.
5. A cut-resistant vest comprising the polyethylene fiber according to the first aspect.
The present invention is described in detail below.
The polyethylene fiber raw material polyethylene excellent in cut resistance of the present invention is characterized in that the repeating unit is substantially ethylene, and a small amount of other monomers such as α-olefin, acrylic acid and derivatives thereof, methacrylic acid and It may be a copolymer with its derivatives, vinyl silane and its derivatives, etc., or a copolymer with these copolymers, or a copolymer with an ethylene homopolymer, or a homopolymer such as another α-olefin. It may be a body. In particular, the use of a copolymer with an α-olefin such as propylene and butene-1 to add a certain amount of long-chain branching gives stability in spinning, particularly in spinning and drawing, in producing this fiber. More preferred. However, if the amount of long chain branching increases too much, it becomes a defect and the strength of the fiber decreases. Further, it is important that the weight average molecular weight in the fiber state is 300,000 or less, and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 4.0 or less. Preferably, the weight average molecular weight in the fiber state is 250,000 or less, and it is important that the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 3.5 or less. More preferably, the weight average molecular weight in the fiber state is 200,000 or less, and it is important that the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 3.0 or less.
[0006]
When polyethylene having a polymerization degree such that the weight average molecular weight of the polyethylene in the fiber state exceeds 300,000 is used as the raw material, the melt viscosity becomes extremely high, and the melt molding process becomes extremely difficult. In addition, when the ratio of the weight average molecular weight to the number average molecular weight in the fiber state is 4.0 or more, the maximum draw ratio is lower than when a polymer having the same weight average molecular weight is used, and the strength of the obtained yarn is low. It becomes. This is because when compared with the same weight average polyethylene, the molecular chain with a long relaxation time cannot be fully extended when stretched and breakage occurs, and the molecular weight distribution becomes wide, resulting in a low molecular weight component. It is speculated that the decrease in strength occurs due to the increase in molecular terminals due to the increase in the number of molecules. Further, in order to control the molecular weight and molecular weight distribution in the fiber state, the polymer may be intentionally deteriorated in the dissolution / extrusion process or spinning process, or polyethylene having a narrow molecular weight distribution in advance may be used.
[0007]
In the method for producing polyethylene fibers excellent in cut resistance according to the present invention, such polyethylene is melt-extruded with an extruder and quantitatively discharged with a gear pump through a spinneret. Thereafter, the filament is cooled with cold air and taken up at a predetermined speed. It is important to pick it up quickly enough. That is, it is important that the ratio between the discharge linear speed and the winding speed is 100 or more, preferably 150 or more, and more preferably 200 or more. The ratio between the discharge linear speed and the winding speed can be calculated from the die diameter, the single hole discharge amount, the polymer density in the molten state, and the winding speed.
[0008]
Furthermore, it is very important that the fiber is drawn by the following method. That is, it was found that the physical properties of the fiber are surprisingly improved by stretching the fiber at a temperature not higher than the crystal dispersion temperature of the fiber and further stretching at a temperature not lower than the crystal dispersion temperature of the fiber and not higher than the melting point. At this time, the fibers may be drawn in multiple stages.
[0009]
In the present invention, a yarn having a predetermined draw ratio was obtained by fixing the speed of the first godet roll at 5 m / min and changing the speed of the other godet rolls during drawing.
[0010]
The polyethylene fiber obtained as described above can be made into a woven or knitted fabric by a known method. The woven or knitted fabric of the present invention does not prevent mixing of other fibers, not to mention only fibers composed of the main components of the yarn constituting the woven or knitted fabric. Fiber may be added. Similarly, cut resistant gloves and vests can be made by known methods. The cut-resistant gloves and vests of the present invention are not limited to the fibers composed of the main components of the raw yarn similarly configured, and do not prevent other fibers from being mixed. Or natural fiber may be added.
[0011]
Hereinafter, measurement methods and measurement conditions relating to characteristic values in the present invention will be described.
[0012]
(Strength / elastic modulus)
For the strength and elastic modulus in the present invention, “Tensilon” manufactured by Orientec Co., Ltd. was used, the strain-stress curve was set at an ambient temperature of 20 ° C. and relative humidity under the conditions of a sample length of 200 mm (length between chucks) and an elongation rate of 100% / min. Measured under the conditions of 65%, the stress at the breaking point of the curve was obtained by calculating the strength (cN / dtex) and the elastic modulus (cN / dtex) from the tangent line that gives the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 times of measured values.
[0013]
(Weight average molecular weight Mw, number average molecular weight Mn and Mw / Mn)
The weight average molecular weight Mw, the number average molecular weight Mn, and Mw / Mn were measured by gel permeation chromatography (GPC). A GPC 150C ALC / GPC manufactured by Waters was used as a GPC apparatus, and a single GPC UT802.5 manufactured by SHODEX was used as a column, and two UT806M were used. As a measurement solvent, o-dichlorobenzene was used, and the column temperature was 145 degrees. The sample concentration was 1.0 mg / ml, and 200 microliters were injected and measured. The molecular weight calibration curve is constructed using a polystyrene sample with a known molecular weight by the universal calibration method.
[0014]
(Dynamic viscoelasticity measurement)
The dynamic viscosity measurement in the present invention was performed using “Leovibron DDV-01FP type” manufactured by Orientec. The fibers are split or combined so that the entire fiber is 100 denier ± 10 denier, and the measurement length (distance between the brace) is 20 mm in consideration of arranging the single fibers as uniformly as possible. Wrap both ends of the fiber in aluminum foil and bond with cellulosic adhesive. In this case, the glue allowance length is set to about 5 mm in consideration of fixing with the metal fitting. Each test piece was carefully placed on a brace (chuck) set to an initial width of 20 mm so that the yarn would not loosen or twist and was preliminarily deformed for several seconds at a temperature of 60 ° C. and a frequency of 110 Hz. This experiment was conducted after that. In this experiment, temperature dispersion at a frequency of 110 Hz was obtained from the low temperature side at a temperature increase rate of about 1 ° C./min in the temperature range of −150 ° C. to 150 ° C. In the measurement, the static load was set to 5 gf, and the sample length was automatically adjusted so that the fibers did not loosen. The amplitude of dynamic deformation was set to 15 μm.
[0015]
(Ratio of discharge line speed and spinning speed (draft ratio)
The draft ratio (Ψ) is given by the following equation.
Draft ratio (Ψ) = spinning speed (Vs) / discharge linear speed (V)
[0016]
(Adjustment of cut resistance measurement sample)
A raw yarn of 440 dtex ± 40 dTex was prepared, and fibers to be measured with a 100 circular knitting machine were knitted. For sampling, a portion without knitting yarn jumping was selected and cut to a size of 7 × 7 cm or more. Since the stitches were rough, the test was performed with one sheet of medicine paper wrapped under the sample. The part to be measured was set to be 90 ° with respect to the stitch direction at the outer part of the circular knitting.
[0017]
(Cut resistance measurement)
As an evaluation method, a coup tester was used. In this device, a circular blade is run on the sample while rotating in the direction opposite to the traveling direction, and the sample is cut. When the sample is completely cut, there is an aluminum foil on the back of the sample. It senses that electricity has passed and the cut test has been completed. While the cutter is operating, the counter attached to the device counts and records the value.
[0018]
In this test, a plain-woven cotton cloth having a basis weight of about 200 g / m 2 is used as a blank, and the level of cut with the test sample is evaluated. The test is started from the blank, the blank and the test sample are alternately tested, the test sample is tested five times, and finally the blank is tested for the sixth time, and then this one test is finished.
[0019]
The evaluation value calculated here is called “Index” and is calculated by the following equation.
A = (count value of cotton cloth before sample test + count value of cotton cloth before sample test) / 2
Index = (sample count value + A) / A
[0020]
As a cutter used for this evaluation, φ45 mm for rotary cutter L-type manufactured by OLFA was used. The material was SKS-7 tungsten steel, and the blade thickness was 0.3 mm.
[0021]
In addition, the load applied during the test was evaluated at 320 g.
[0022]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0023]
Example 1
A high-density polyethylene having a weight-average molecular weight of 115,000, a ratio of the weight-average molecular weight to the number-average molecular weight of 2.3, 0.4 branched chains having a length of 5 or more carbons per 0.4 carbons The material was extruded from a spinneret consisting of φ0.8 mm and 390H at 290 ° C. at a single hole discharge rate of 0.5 g / min. The extruded fiber passes through a 15 cm heat insulation section and is then cooled at 20 ° C. with a quench of 0.5 m / s and wound at a speed of 300 m / min. The undrawn yarn was drawn by a plurality of Nelson rolls capable of temperature control. In the first-stage stretching, stretching at 2.8 times was performed at 25 ° C. Furthermore, it heated to 115 degreeC and extended | stretched 5.0 times and obtained the drawn yarn. Table 1 shows the physical properties of the obtained fiber. Moreover, the obtained fiber was knitted with a circular knitting machine, and cut resistance was evaluated. The results are shown in Table 1.
[0024]
(Example 2)
The drawn yarn of Example 1 was heated to 125 ° C. and further drawn 1.3 times. Table 1 shows the physical properties of the obtained fiber. Similarly, the obtained fiber was knitted with a circular knitting machine, and cut resistance was evaluated. The results are shown in Table 1.
[0025]
(Comparative Examples 1-4)
Table 1 shows the characteristics of commercially available nylon fibers, polyester fibers, polyethylene fibers, and polypropylene fibers. Similarly, the fiber was knitted with a circular knitting machine, and cut resistance was evaluated. The results are shown in Table 1.
[0026]
[Table 1]
[0027]
[Table 2]
[0028]
Using the yarns of Examples 1 and 2 and Comparative Examples 1 to 4, gloves were prepared by a known method using a knitting machine. The results of the cut resistance evaluation are shown in Table 2. As compared with Comparative Examples 1 to 4, the results of either Example 1 or 2 were excellent in the level of cut resistance.
[0029]
The fibers were split or combined so that the total fiber was 440 dtex ± 40 dtex, and a plain woven fabric having a weaving density of 40 yarns / 25 mm was produced. The resulting woven fabric was cut to create a cut-resistant best middle material. When the cut resistant vest was prepared in combination with the skin material and the cut resistance was evaluated, good results were obtained.
[0030]
【The invention's effect】
According to the present invention, it became possible to produce cut-resistant woven or knitted fabrics, gloves and vests using a novel polyethylene fiber excellent in cut resistance.
Claims (4)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002176130A JP4042040B2 (en) | 2002-06-17 | 2002-06-17 | Polyethylene fiber, woven and knitted fabric excellent in cut resistance and use thereof |
US10/510,565 US7247372B2 (en) | 2002-04-09 | 2003-04-04 | Polyethylene filament and a process for producing the same |
AT03745910T ATE540146T1 (en) | 2002-04-09 | 2003-04-04 | POLYETHYLENE FIBER AND THE PRODUCTION PROCESS THEREOF |
CNB03807737XA CN100376730C (en) | 2002-04-09 | 2003-04-04 | Polyethylene fiber and process for producing the same |
PCT/JP2003/004310 WO2003085176A1 (en) | 2002-04-09 | 2003-04-04 | Polyethylene fiber and process for producing the same |
KR1020097026505A KR100985938B1 (en) | 2002-04-09 | 2003-04-04 | Polyethylene Fiber and Process for Producing the Same |
KR1020047015949A KR100943592B1 (en) | 2002-04-09 | 2003-04-04 | Polyethylene Fiber and Process for Producing the Same |
EP03745910A EP1493851B1 (en) | 2002-04-09 | 2003-04-04 | Polyethylene fiber and process for producing the same |
TW92116331A TWI315359B (en) | 2002-06-17 | 2003-06-17 | Polyethylene fiber, polyethylene fiber knitted/woven fabric, cut wound resistant glove, cut wound resistant vest, fibrous product for reinforcing cement mortar and concrete, concrete composition |
US11/723,548 US7736564B2 (en) | 2002-04-09 | 2007-03-20 | Process of making a high strength polyolefin filament |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002176130A JP4042040B2 (en) | 2002-06-17 | 2002-06-17 | Polyethylene fiber, woven and knitted fabric excellent in cut resistance and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004019050A JP2004019050A (en) | 2004-01-22 |
JP4042040B2 true JP4042040B2 (en) | 2008-02-06 |
Family
ID=31174577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002176130A Expired - Fee Related JP4042040B2 (en) | 2002-04-09 | 2002-06-17 | Polyethylene fiber, woven and knitted fabric excellent in cut resistance and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4042040B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110138516A1 (en) * | 2008-08-20 | 2011-06-16 | Toyo Boseki Kabushiki Kaisha | Highly functional polyethylene fiber, woven/knitted textile comprising same, and glove thereof |
US9546446B2 (en) | 2009-10-23 | 2017-01-17 | Toyo Boseki Kabushiki Kaisha | Highly functional polyethylene fibers, woven or knit fabric, and cut-resistant glove |
KR101792035B1 (en) * | 2014-12-31 | 2017-11-20 | 주식회사 휴비스 | Polyethylene fiber having improved cut resistance, manufacturing method thereof and articles comprising the polyethylene fiber |
CN109610027B (en) | 2018-01-08 | 2021-01-19 | 江苏恒辉安防股份有限公司 | Graphene composite ultra-high molecular weight polyethylene fiber and preparation method thereof |
EP4183907A1 (en) * | 2020-12-30 | 2023-05-24 | Kolon Industries, Inc. | Cut-resistant polyethylene yarn |
WO2022146040A1 (en) * | 2020-12-30 | 2022-07-07 | 코오롱인더스트리 주식회사 | Cut-resistant polyethylene yarn |
-
2002
- 2002-06-17 JP JP2002176130A patent/JP4042040B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004019050A (en) | 2004-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2537965B1 (en) | Highly-moldable, highly-functional polyethylene fiber | |
CN1703546B (en) | Process for making a monofilament-like product,and monofilament-like product use | |
US20220049378A1 (en) | Cut resistant polyethylene yarn, method for manufacturing the same, and protective article produced using the same | |
JP4389142B2 (en) | Method for producing high-strength polyethylene fiber | |
KR101918049B1 (en) | Polyamide fiber and method for producing same | |
TW580527B (en) | Stretchable fibers of polymers, spinnerets useful to form the fibers, and articles produced therefrom | |
JP3704015B2 (en) | Polyketone fiber and method for producing the same | |
KR20070121856A (en) | Poly(trimethylene terephthalate) tetrachannel cross-section staple fiber | |
JP4042040B2 (en) | Polyethylene fiber, woven and knitted fabric excellent in cut resistance and use thereof | |
JP3734077B2 (en) | High strength polyethylene fiber | |
JP4066226B2 (en) | High-strength polyolefin fiber and method for producing the same | |
US20050161854A1 (en) | Dimensionally stable yarns | |
JP3895190B2 (en) | Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same | |
TWI397621B (en) | Highly-moldable,highly-functional polyethylene fiber | |
JP4389143B2 (en) | Method for producing high-strength polyolefin fiber | |
JP6691857B2 (en) | Polyamide latent crimped yarn and method for producing the same | |
WO2021193056A1 (en) | High-strength polyamide 610 multifilament | |
JP2003328257A (en) | Net | |
JP3849861B2 (en) | rope | |
JP4042039B2 (en) | High-strength polyolefin fiber and method for producing the same | |
JPH0518935B2 (en) | ||
JP2004092007A (en) | Polyester fiber for fishing net and method for forming the same | |
JP2000136453A (en) | Nylon combined filament yarn with different shrinkage and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071018 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071031 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4042040 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |