JP4042039B2 - High-strength polyolefin fiber and method for producing the same - Google Patents

High-strength polyolefin fiber and method for producing the same Download PDF

Info

Publication number
JP4042039B2
JP4042039B2 JP2002176129A JP2002176129A JP4042039B2 JP 4042039 B2 JP4042039 B2 JP 4042039B2 JP 2002176129 A JP2002176129 A JP 2002176129A JP 2002176129 A JP2002176129 A JP 2002176129A JP 4042039 B2 JP4042039 B2 JP 4042039B2
Authority
JP
Japan
Prior art keywords
molecular weight
fiber
average molecular
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002176129A
Other languages
Japanese (ja)
Other versions
JP2004019049A (en
Inventor
勝二 小田
悟堂 阪本
浩貴 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002176129A priority Critical patent/JP4042039B2/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to EP03745910A priority patent/EP1493851B1/en
Priority to KR1020047015949A priority patent/KR100943592B1/en
Priority to PCT/JP2003/004310 priority patent/WO2003085176A1/en
Priority to US10/510,565 priority patent/US7247372B2/en
Priority to CNB03807737XA priority patent/CN100376730C/en
Priority to KR1020097026505A priority patent/KR100985938B1/en
Priority to AT03745910T priority patent/ATE540146T1/en
Priority to TW92116329A priority patent/TWI318251B/en
Publication of JP2004019049A publication Critical patent/JP2004019049A/en
Priority to US11/723,548 priority patent/US7736564B2/en
Application granted granted Critical
Publication of JP4042039B2 publication Critical patent/JP4042039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種スポーツ衣料や防弾・防護衣料・防護手袋や各種安全用品などの高性能テキスタイル、タグロープ・係留ロープ、ヨットロープ、建築用ロープなどの各種ロープ製品、釣り糸、ブラインドケーブルなどの各種組み紐製品、漁網・防球ネットなどの網製品さらには化学フィルター・電池セパレーター・コンデンサーセパレーターや各種不織布の補強材あるいはテントなどの幕材、又はヘルメットやスキー板などのスポーツ用やスピーカーコーン用やプリプレグなどのコンポジット用の補強繊維など、産業上広範囲に応用可能な新規な高強度ポリオレフィン繊維の製造方法およびそれより得られた高強度ポリオレフィン繊維に関する。
【0002】
【従来の技術】
高強度ポリオレフィン繊維に関しては例えば、特公昭60−47922号公報、特公昭62−257414号公報に開示されるごとく、超高分子量のポリエチレンを原料にし、いわゆる“ゲル紡糸法・溶液紡糸”により従来に無い高強度・高弾性率繊維が得られることが知られており、既に産業上広く利用されている。
【0003】
溶融紡糸による高強度ポリオレフィン繊維に関しては例えば、USP4228118に開示されている。同特許によれば、少なくとも20,000の数平均分子量および125,000より小さい重量平均分子量を有するポリエチレンを220〜335℃に保たれた紡糸口金から押し出し少なくとも30m/minの速度で引き取り、115〜132℃で20倍以上延伸することにより少なくとも強度10.6cN/dtex以上の高強度ポリエチレン繊維の製造方法が開示されている。
【0004】
また特表平8−504891号公報には、高密度を有するポリエチレンを紡糸口金を介して溶融紡糸し、得られた繊維を50〜150℃で延伸することによって製造される高強度ポリエチレン繊維に於いて、溶融紡糸に供せられるポリエチレンがエチレンの単独重合体であって、重量平均分子量Mwが125000〜175000であること、数平均分子量Mnが26000〜33000であること、ポリマー分散性(Mw/Mn)が5未満であること、および密度が0.955g/cm3より大きいこと、という条件を満たすと共に、延伸段階における延伸の度合いが少なくとも400%であることを特徴とする高強度ポリエチレン繊維の製造方法が開示されている。該特許の特徴は、ポリマー分散性と原料ポリエチレンの密度を上記値にコントロールすることである。
【0005】
さらに、特開平11−269717号公報には、重量平均分子量が200,000〜450,000の結晶性ポリプロピレンからなる、高強度ポリプロピレン繊維が開示されているものの、該特許で得られる高強度繊維の強度は、高々13cN/dtex程である。該特許の特徴は、メルトフローレートの異なる2種の原料ポリプロピレンをプレンドし溶融紡糸を行い、加圧水蒸気を使用して、120〜180℃の延伸温度下で前記繊維を5倍以上に延伸することである。
【0006】
ゲル紡糸・溶液紡糸に於いては溶媒・重合体との混合物を使用することから、工業的に見るとコストが非常に高くなる。つまり、該特許に開示されている方法では、原料ポリエチレンの濃度は高々50%以下であり生産性に乏しい。又、溶媒を使用すると回収・精製設備などの付帯設備が必ず必要になりコストがかかる。さらに、環境面でも好ましく無い。
【0007】
さらに溶融紡糸では、いくつかの技術が開示されているが、いずれにしても非常に限定された生産条件でのみ該繊維の高強度化が達成されている。
【0008】
【発明が解決しようとする課題】
ゲル紡糸・溶液紡糸の用に溶媒・重合体との混合物を用いないで高強度ポリオレフィン繊維を製造する方法を提供する。又、従来の溶融紡糸法で開示されている、非常に限られた分子量範囲、ポリマー密度、生産条件以外で、生産性に優れる高強度ポリオレフィン繊維の製造方法を提供する。つまり本発明は、新規な高強度ポリオレフィン繊維の製造方法およびそれより得られた高強度ポリオレフィン繊維に関する。
【0009】
【課題を解決する為の手段】
即ち、本発明は以下の構成からなる。
1.重量平均分子量が60,000〜600,000、重量平均分子量と数平均分子量の比(Mw/Mn)が4.5以下で複屈折率(Δn)が0.008以上のポリオレフィン未延伸糸を、当該未延伸糸の結晶分散温度以下の温度で延伸することを特徴とする高強度ポリオレフィン繊維の製造方法。
2.紡糸から延伸までの総延伸倍率が1500倍以上であることを特徴とする上記第1記載の高強度ポリオレフィン繊維の製造方法。
3.ポリオレフィンが、実質エチレンからなるポリエチレンであることを特徴とする上記第1又は2記載の高強度ポリオレフィン繊維の製造方法。
4.未延伸糸の結晶分散温度以下の温度で延伸した後、更に一段以上延伸することを特徴とする上記第1〜3記載の高強度ポリオレフィン繊維の製造方法。
5.上記第1記載の製造方法により得られた平均強度が15cN/dtex以上、平均弾性率が500cN/dtexであることを特徴とする高強度ポリオレフィン繊維。
【0010】
以下、本発明を詳述する
本発明の最大の特徴は、重合体の重量平均分子量が60,000〜600,000であり、重量平均分子量と数平均分子量の比(Mw/Mn)が4.5以下である重合体を、複屈折率(Δn)が0.008以上となる引取り速度と吐出線速度の比(ドラフト比)で溶融紡糸して、得られた当該未延伸糸の結晶分散温度以下の温度で延伸することである。
【0011】
即ち本繊維の製造に当たっては、重合体の重量平均分子量が60,000〜600,000であることが重要であり、重量平均分子量と数平均分子量の比(Mw/Mn)が4.5以下となることが重要である。好ましくは、重合体の重量平均分子量が60,000〜300,000であることが重要であり、重量平均分子量と数平均分子量の比(Mw/Mn)が4.0以下となることが重要である。更に好ましくは、重合体の重量平均分子量が60,000〜200,000であることが重要であり、重量平均分子量と数平均分子量の比(Mw/Mn)が3.0以下となることが極めて重要である。
【0012】
本発明における重合体とは、その繰り返し単位が実質的にエチレンであるポリエチレンであることを特徴とする。このようなポリエチレンは、例えば、特許2963199に開示されるようにメタロセン触媒を用いて重合することが可能であるが、それにより限定されるものでは無い。
【0013】
重合体の重量平均分子量が60,000未満となると溶融成形加工をし易いものの分子量が低い為に実際に得られる糸の強度は小さいものとなる。又、重合体の重量平均分子量が600,000を越えるような高分子量では溶融粘度が極めて高くなり、溶融成型加工が極めて困難となる。又、繊維状態の重量平均分子量と数平均分子量の比が4.5以上となると同じ重量平均分子量の重合体を用いた場合と比較し最高延伸倍率が低く又、得られた糸の強度は低いものとなる。これは、緩和時間の長い分子鎖が延伸を行う際に延びきることが出来ずに破断が生じてしまうことと、分子量分布が広くなることによって低分子量成分が増加する為に分子末端が増加することにより強度低下が起こると推測している。
【0014】
本発明では、鋭意検討することにより上記の様な重合体から、高強度ポリオレフィン繊維を得る手法を発明した。つまり、このような重合体を押し出し機で溶融し、ギアポンプにて定量的に紡糸口金を介して吐出させる。その後、複屈折率(Δn)が0.008以上、好ましくは0.010以上、更に好ましくは0.014以上となる、引取り速度と吐出線速度の比(ドラフト比)で冷風にて該糸状を冷却固化しながら未延伸糸を得ることが重要である。即ち、引き取り速度と吐出線速度との比が100以上、好ましくは150以上、更に好ましくは200以上であることが重要である。吐出線速度と引取り速度の比は、紡糸口金口径、単孔吐出量、オレフィンポリマー密度、引取り速度から計算することが出来る。
【0015】
次いで得られた未延伸糸を、少なくとも該繊維の結晶分散温度以下の温度で延伸を行ない、次いで該一段延伸糸を結晶分散温度以上の温度で一段以上延伸を行うことが重要であるが、この時、紡糸から延伸までの総延伸倍率を1500倍以上、好ましくは2000倍以上、更に好ましくは3000倍以上とすることが極めて重要である。この様な延伸条件を採用することにより驚く程、繊維の物性が向上することを見いだした。延伸工程は、一度巻き取った未延伸糸をオフラインにて延伸工程を行っても良いし、紡糸工程から一旦巻き取ることなしにそのまま延伸工程を行ってももちろん良い。延伸方法は特にこだわらない。これまでに公知な手法、例えばローラー延伸、ふく射パネル延伸、スチームジェット延伸、ピン延伸などが推奨されるがこれに限定されるものでは無い。
【0016】
通常ポリエチレン配向物の最も高温側に観察される吸収は、結晶分散と呼ばれており、結晶相内の分子鎖熱運動に直接関与していると考えられている。この結晶分散温度は、動的粘弾性測定を行うことで測定することが出来る。即ち、測定で得られた貯蔵弾性率、損失弾性率から、損失正接を計算し、各温度で得られたこれらの三つの値を対数で縦軸に取り、横軸を温度でプロットし最も高温側に現れる吸収が結晶分散である。
【0017】
USP4228118号、特表平8−504891号公報、特開平5−186908号公報等、多数の文献に開示されるように、ポリオレフィン繊維を延伸する場合、該繊維を加熱し少なくとも50℃以上で延伸することが、物性面・生産性面でも好ましいことが開示されている。しかしながら、本発明では驚くべきことに、これまでの技術と相反して該繊維の結晶分散温度以下の温度条件で該繊維を延伸すると飛躍的に繊維物性が向上することを見いだし、本発明に到達した。
【0018】
即ち、該未延伸糸の結晶分散温度以下の温度、具体的には65℃以下で延伸を行い、該未延伸糸の結晶分散温度以上融点以下の温度、具体的には90℃以上で更に延伸することが望ましい。好ましくは未延伸繊維の結晶分散温度より10℃以上低い温度、更に好ましくは20℃以上低い温度で一段目の延伸を行うことが極めて重要である。又、二段目の延伸以降は、該繊維の結晶分散温度より好ましくは20℃以上高い温度、さらに好ましくは30℃以上高い温度で延伸を行うことが重要である。
【0019】
該未延伸糸の結晶分散温度散以下の温度で一段目の延伸を行うことによって、繊維物性が向上する理由は定かでは無いが、以下の様に推測している。つまり、該繊維の結晶分散温度以下の温度で延伸を行うこととにより、繊維により延伸張力がかかる。又、該繊維の結晶分散温度以下で延伸を行っているが為に、結晶自体は延伸によって動きにくく、主に非晶部分のみの延伸が行われる。つまり、超延伸の様に結晶からの分子鎖の引きずり出しが極めて起こりにくい。このことによって、二段目以降の延伸がスムーズに行われる様な構造が繊維に形成され、二段目以降の延伸がスムーズに行われ、延伸後の繊維の物性が向上するものと推測しているが、詳細は定かで無い。
【0020】
また、本発明においては延伸温度も然ることながら、紡糸において未延伸糸の複屈折率(Δn)を高くすること、即ち、分子配向をより促進させることが極めて重要である。分子を高度に配向させることによって、一段目以降の延伸がよりスムーズに行なえるものと推測する。
【0021】
以下に本発明における特性値に関する測定法および測定条件を説明する
【0022】
(強度・弾性率)
本発明における強度,弾性率は、オリエンティック社製「テンシロン」を用い、試料長200mm(チャック間長さ)、伸長速度100%/分の条件で歪ー応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、破断点での応力を強度(cN/dtex)、曲線の原点付近の最大勾配を与える接線より弾性率(cN/dtex)を計算して求めた。なお、各値は10回の測定値の平均値を使用した。
【0023】
(重量平均分子量Mw、数平均分子量MnおよびMw/Mn)
重量平均分子量Mw、数平均分子量MnおよびMw/Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置としては、Waters製GPC 150C ALC/GPCを持ち、カラムとしてはSHODEX製GPC UT802.5を一本UT806Mを2本用いて測定した。測定溶媒は、o−ジクロロベンゼンを使用しカラム温度を145℃した。試料濃度は1.0mg/mlとし、200マイクロリットル注入し測定した。分子量の検量線は、ユニバーサルキャリブレーション法により分子量既知のポリスチレン試料を用いて構成されている。
【0024】
(動的粘弾弾性測定)
本発明における動的粘度測定は、オリエンテック社製「レオバイブロンDDV−01FP型」を用いて行った。繊維は全体として100デニール±10デニールとなるように分繊あるいは合糸し、各単繊維ができる限り均一に配列するように配慮して、測定長(鋏金具間距離)が20mmとなるように繊維の両末端をアルミ箔で包みセルロース系接着剤で接着する。その際の糊代ろ長さは、鋏金具との固定を考慮して5mm程度とする。各試験片は、20mmの初期幅に設定された鋏金具(チャック)に糸が弛んだり捩じれたりしないように慎重に設置され、予め60℃の温度、110Hzの周波数にて数秒、予備変形を与えてから本実験を実施した。本実験では−150℃から150℃の温度範囲で約1℃/分の昇温速度において110Hzの周波数での温度分散を低温側より求めた。測定においては静的な荷重を5gfに設定し、繊維が弛まない様に試料長を自動調整させた。動的な変形の振幅は15μmに設定した。
【0025】
(複屈折率)
本発明における複屈折率測定は、ニコン製「OPTIPHOT−POL」を用いて行った。スライドグラス上に封入液(ツェーデル油または流動パラフィン)を滴下し、5〜6mm長の繊維軸に対し45°の角度に切断した試料を切断面を上にして液中に浸漬する。試料スライドグラスを回転ステージに載せて、スケールと繊維が平行になるように調整してアナライザーを挿入し暗視界にした後、コンペセーターを30にして縞数nを数える。次に、コンペセーターを30〜40の方向に廻して試料が最初に最も暗くなる点のコンペセーターの目盛aと、反対方向に廻して試料が最初に最も暗くなるコンペセーターの目盛bを測定して、その後、コンペセーターを30に戻してアナライザーを外し、試料の直径dを測定する。以上の測定を数回繰り返した後、以下の式に基づいて複屈折率(Δn)を算出する。
Δn=Γ/d
Γ(レターデーション)=nλο+ε
λο=589nm
ε:C/10000(装置定数=0.816)とiより求める。
i=(a−b)
【0026】
(吐出線速度と紡糸速度の比(ドラフト比))
ドラフト比(Ψ)は、以下の式で与えられる。
ドラフト比(Ψ)=紡糸速度(Vs)/吐出線速度(V)
【0027】
(総延伸倍率)
紡糸から延伸までの総延伸倍率は、以下の式で与えられる。
総延伸倍率=ドラフト比(Ψ)×一段延伸倍率×多段延伸倍率
【0028】
【実施例】
以下、実施例をもって本発明を説明する。
【0029】
(実施例1)
重量平均分子量115,000、重量平均分子量と数平均分子量の比が2.8である高密度ポリエチレンをφ0.8mm、30Hからなる紡糸口金から290℃で単孔吐出量0.5g/minの速度で押し出した。押し出された繊維は、10cmの保温区間を通りその後20℃、0.5m/sのクエンチで冷却し、500m/minの速度で巻き取った。該未延伸糸を、複数台の温度コントロールの可能なネルソンロールにて延伸した。一段延伸は25℃で2.0倍、更にその後100℃まで加熱して6.0倍の延伸を行ない、総延伸倍率4494倍の延伸糸を作成した。得られた繊維の物性を表1に示した。この時、未延伸糸の複屈折率は0.021であった。
【0030】
(実施例2)
実施例1の高密度ポリエチレンを同様の条件で押し出し冷却された繊維を、300m/minの速度で巻き取った。該未延伸糸を一段延伸は25℃で2.0倍、更にその後100℃まで加熱して6.75倍の延伸を行ない、総延伸倍率3033倍の延伸糸を作成した。得られた繊維の物性を表1に示した。この時、未延伸糸の複屈折率は0.009であった。
【0031】
(実施例3)
実施例1の高密度ポリエチレンを同様の条件で押し出し冷却された繊維を、400m/minの速度で巻き取った。該未延伸糸を一段延伸は25℃で2.0倍、更にその後100℃まで加熱して6.5倍の延伸を行ない、総延伸倍率3895倍の延伸糸を作成した。得られた繊維の物性を表1に示した。この時、未延伸糸の複屈折率は0.015であった。
【0032】
(実施例4)
一段延伸温度を10℃とした以外は、実施例1と同様の条件で総延伸倍率4494倍の延伸糸を作成した。得られた繊維の物性を表1に示した。
【0033】
(実施例5)
一段延伸を25℃で2.0倍、二段延伸を100℃で3.0倍、三段延伸を130℃で2.5倍とした以外は、実施例1と同様の条件で総延伸倍率5618倍の延伸糸を作成した。得られた繊維の物性を表1に示した。
【0034】
(実施例6)
重量平均分子量152,000、重量平均分子量と数平均分子量の比が2.4である高密度ポリエチレンを、φ1.2mm、30Hの紡糸口金から300℃で単孔吐出量0.5g/minの速度で押し出し、実施例1と同様の条件で冷却された繊維を200m/minの速度で巻き取った。該未延伸糸を一段延伸は25℃で2.0倍、更にその後100℃まで加熱して6.0倍の延伸を行ない、総延伸倍率4044倍の延伸糸を作成した。得られた繊維の物性を表1に示した。この時、未延伸糸の複屈折率は0.018であった。
【0035】
(比較例1)
実施例1の高密度ポリエチレンを同様の条件で押し出し冷却した繊維を、100m/minで巻き取った。該未延伸糸を一段延伸は25℃で2.0倍、更にその後100℃まで加熱して7.0倍の延伸を行ない、総延伸倍率1049倍の延伸糸を作成した。得られた繊維の物性を表2に示した。この時、未延伸糸の複屈折率は0.002であった。
【0036】
(比較例2)
一段延伸を90℃で2.0倍とした以外は、実施例1と同様の条件で総延伸倍率4494倍の延伸糸を作成した。得られた繊維の物性を表2に示した。
【0037】
(比較例3)
重量平均分子量121,500、重量平均分子量と数平均分子量の比が5.1である高密度ポリエチレンをφ0.8mm、30Hからなる紡糸口金から270℃で単孔吐出量0.5g/minの速度で押し出し、その後、実施例1と同様の条件で冷却された繊維を作成しようとしたところ、糸切れが多発して300m/minの未延伸糸しか作成できなかった。得られた該未延伸糸を一段延伸は25℃で2.0倍、更にその後100℃まで加熱し4.5倍の延伸を行ない、総延伸倍率2022倍の延伸糸を得た。得られた繊維の物性を表2に示した。この時、未延伸糸の複屈折率は0.030であった。
【0038】
(比較例4)
重量平均分子量55,000、重量平均分子量と数平均分子量の比が2.3である高密度ポリエチレンをφ0.8mm、30Hからなる紡糸口金から255℃で、単孔吐出量0.5g/minの速度で押し出し、実施例1と同様の条件で冷却された繊維を、300m/minで巻き取った。該未延伸糸を一段延伸は25℃で2.0倍、更にその後100℃まで加熱し7.0倍の延伸を行ない、総延伸倍率3146倍の延伸糸を得た。得られた繊維の物性を表2に示した。この時、未延伸の複屈折率は0.008であった。
【0039】
(比較例5)
重量平均分子量820,000、重量平均分子量と数平均分子量の比が2.5である高密度ポリエチレンを用いて紡糸を行おうとしたが、溶融粘度が高く過ぎて均一に押し出すことが出来なかった。
【0040】
【表1】

Figure 0004042039
【0041】
【表2】
Figure 0004042039
【0042】
【発明の効果】
本発明によると新規な高強度ポリオレフィン繊維を効率的に製造する方法を提供することを可能とした。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to various sports clothing, high-performance textiles such as bulletproof / protective clothing / protective gloves and various safety goods, various rope products such as tag ropes, mooring ropes, yacht ropes, construction ropes, various braids such as fishing lines and blind cables. Products, net products such as fishing nets and ball-proof nets, chemical filters, battery separators, condenser separators, various non-woven reinforcing materials or curtains such as tents, sports such as helmets and skis, speaker cones, prepregs, etc. The present invention relates to a method for producing a novel high-strength polyolefin fiber that can be applied in a wide range of industries, such as reinforcing fibers for composites, and a high-strength polyolefin fiber obtained therefrom.
[0002]
[Prior art]
As for high-strength polyolefin fibers, for example, as disclosed in Japanese Patent Publication Nos. 60-47922 and 62-257414, ultrahigh molecular weight polyethylene is used as a raw material, so-called “gel spinning method / solution spinning”. It is known that high-strength and high-modulus fibers can be obtained and are already widely used in industry.
[0003]
For example, USP 4228118 discloses high-strength polyolefin fibers obtained by melt spinning. According to the patent, a polyethylene having a number average molecular weight of at least 20,000 and a weight average molecular weight of less than 125,000 is extruded from a spinneret maintained at 220 to 335 ° C. and taken at a speed of at least 30 m / min. A method for producing a high-strength polyethylene fiber having a strength of at least 10.6 cN / dtex by stretching 20 times or more at 132 ° C. is disclosed.
[0004]
JP-A-8-504891 discloses a high-strength polyethylene fiber produced by melt spinning a polyethylene having a high density through a spinneret and drawing the obtained fiber at 50 to 150 ° C. The polyethylene used for melt spinning is a homopolymer of ethylene, the weight average molecular weight Mw is 125,000 to 175000, the number average molecular weight Mn is 26000 to 33000, polymer dispersibility (Mw / Mn ) Is less than 5 and the density is greater than 0.955 g / cm 3, and the degree of stretching in the stretching stage is at least 400%, Is disclosed. The feature of this patent is to control the polymer dispersibility and the density of the raw polyethylene to the above values.
[0005]
Further, JP-A-11-269717 discloses a high-strength polypropylene fiber made of crystalline polypropylene having a weight average molecular weight of 200,000 to 450,000, but the high-strength fiber obtained by the patent is not disclosed. The strength is about 13 cN / dtex at most. The feature of this patent is that two kinds of raw material polypropylenes having different melt flow rates are blended and melt-spun, and the fibers are stretched 5 times or more under a stretching temperature of 120 to 180 ° C. using pressurized steam. It is.
[0006]
In gel spinning and solution spinning, since a mixture of a solvent and a polymer is used, the cost becomes very high from an industrial viewpoint. That is, in the method disclosed in the patent, the concentration of the raw material polyethylene is at most 50%, and the productivity is poor. In addition, if a solvent is used, ancillary facilities such as recovery / purification facilities are necessarily required, which is costly. Furthermore, it is not preferable in terms of environment.
[0007]
Furthermore, several techniques have been disclosed for melt spinning, but in any case, high strength of the fiber is achieved only under very limited production conditions.
[0008]
[Problems to be solved by the invention]
Provided is a method for producing a high-strength polyolefin fiber without using a mixture of a solvent and a polymer for gel spinning and solution spinning. Further, the present invention provides a method for producing a high-strength polyolefin fiber that is excellent in productivity except for a very limited molecular weight range, polymer density, and production conditions disclosed in the conventional melt spinning method. That is, the present invention relates to a novel method for producing high-strength polyolefin fibers and high-strength polyolefin fibers obtained therefrom.
[0009]
[Means for solving the problems]
That is, the present invention has the following configuration.
1. A polyolefin undrawn yarn having a weight average molecular weight of 60,000 to 600,000, a ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) of 4.5 or less, and a birefringence (Δn) of 0.008 or more, A method for producing a high-strength polyolefin fiber, characterized by drawing at a temperature below the crystal dispersion temperature of the undrawn yarn.
2. The method for producing a high-strength polyolefin fiber as described in the above item 1, wherein the total draw ratio from spinning to drawing is 1500 times or more.
3. 3. The method for producing a high-strength polyolefin fiber as described in the above item 1 or 2, wherein the polyolefin is polyethylene substantially consisting of ethylene.
4). The method for producing a high-strength polyolefin fiber according to any one of the first to third aspects, wherein the stretched fiber is further stretched one or more stages after being stretched at a temperature not higher than the crystal dispersion temperature of the unstretched yarn.
5. A high-strength polyolefin fiber having an average strength of 15 cN / dtex or more and an average elastic modulus of 500 cN / dtex obtained by the production method of the first aspect.
[0010]
Hereinafter, the greatest feature of the present invention that details the present invention is that the polymer has a weight average molecular weight of 60,000 to 600,000, and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 4. A crystal dispersion of the undrawn yarn obtained by melt spinning a polymer having a birefringence (Δn) of 0.008 or more at a ratio between the take-off speed and the discharge linear speed (draft ratio) of 5 or less. It is extending | stretching at the temperature below temperature.
[0011]
That is, in the production of this fiber, it is important that the polymer has a weight average molecular weight of 60,000 to 600,000, and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 4.5 or less. It is important to be. Preferably, it is important that the weight average molecular weight of the polymer is 60,000 to 300,000, and it is important that the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is 4.0 or less. is there. More preferably, it is important that the polymer has a weight average molecular weight of 60,000 to 200,000, and the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is extremely preferably 3.0 or less. is important.
[0012]
The polymer in the present invention is characterized in that it is polyethylene whose repeating unit is substantially ethylene. Such polyethylene can be polymerized using a metallocene catalyst as disclosed in, for example, Japanese Patent No. 2963199, but is not limited thereto.
[0013]
When the weight average molecular weight of the polymer is less than 60,000, although it is easy to be melt-molded, the actually obtained yarn has a low strength because the molecular weight is low. On the other hand, if the polymer has a high molecular weight exceeding 600,000, the melt viscosity becomes extremely high and melt molding becomes very difficult. Further, when the ratio of the weight average molecular weight to the number average molecular weight in the fiber state is 4.5 or more, the maximum draw ratio is lower than when a polymer having the same weight average molecular weight is used, and the strength of the obtained yarn is low. It will be a thing. This is because a molecular chain with a long relaxation time cannot be extended during stretching and breakage occurs, and the molecular weight increases due to an increase in low molecular weight components due to a broad molecular weight distribution. It is speculated that this causes a decrease in strength.
[0014]
In the present invention, a method for obtaining high-strength polyolefin fibers from the above-described polymer has been invented through intensive studies. That is, such a polymer is melted by an extruder and discharged quantitatively by a gear pump through a spinneret. Thereafter, the birefringence (Δn) is 0.008 or more, preferably 0.010 or more, more preferably 0.014 or more. It is important to obtain an undrawn yarn while cooling and solidifying. That is, it is important that the ratio between the take-off speed and the discharge linear speed is 100 or more, preferably 150 or more, more preferably 200 or more. The ratio between the discharge linear speed and the take-off speed can be calculated from the spinneret diameter, the single-hole discharge amount, the olefin polymer density, and the take-up speed.
[0015]
Next, it is important to stretch the obtained undrawn yarn at least at a temperature equal to or lower than the crystal dispersion temperature of the fiber, and then to stretch the one-stage drawn yarn at a temperature equal to or higher than the crystal dispersion temperature. Sometimes, it is extremely important that the total draw ratio from spinning to drawing is 1500 times or more, preferably 2000 times or more, more preferably 3000 times or more. It has been found that by adopting such drawing conditions, the physical properties of the fiber are surprisingly improved. In the stretching process, the unstretched yarn once wound may be stretched off-line, or the stretching process may be performed as it is without being wound once from the spinning process. The stretching method is not particularly particular. Conventionally known methods such as roller stretching, radiation panel stretching, steam jet stretching, pin stretching and the like are recommended, but are not limited thereto.
[0016]
The absorption observed on the highest temperature side of the polyethylene orientation is usually called crystal dispersion and is considered to be directly related to the molecular chain thermal motion in the crystal phase. This crystal dispersion temperature can be measured by performing dynamic viscoelasticity measurement. That is, the loss tangent is calculated from the storage elastic modulus and loss elastic modulus obtained by measurement, and these three values obtained at each temperature are plotted on the vertical axis, and the horizontal axis is plotted on the horizontal axis to plot the highest temperature. Absorption appearing on the side is crystal dispersion.
[0017]
US Pat. No. 4,228,118, JP-A-8-504891, JP-A-5-186908, and the like, as disclosed in many publications, when a polyolefin fiber is drawn, the fiber is heated and drawn at least at 50 ° C. or more. It is disclosed that this is preferable in terms of physical properties and productivity. However, surprisingly, in the present invention, it has been found that, when the fiber is stretched under a temperature condition lower than the crystal dispersion temperature of the fiber, the physical properties of the fiber are remarkably improved, contrary to the conventional techniques. did.
[0018]
That is, stretching is performed at a temperature below the crystal dispersion temperature of the undrawn yarn, specifically 65 ° C. or less, and further stretching is performed at a temperature above the crystal dispersion temperature of the undrawn yarn and below the melting point, specifically 90 ° C. or more. It is desirable to do. It is very important to perform the first drawing at a temperature that is preferably 10 ° C. or more lower than the crystal dispersion temperature of the undrawn fiber, more preferably 20 ° C. or more. In addition, after the second stage of stretching, it is important to perform stretching at a temperature that is preferably 20 ° C. or higher, more preferably 30 ° C. or higher than the crystal dispersion temperature of the fiber.
[0019]
The reason why the fiber properties are improved by performing the first-stage drawing at a temperature equal to or lower than the crystal dispersion temperature of the undrawn yarn is not clear, but is presumed as follows. That is, by performing stretching at a temperature lower than the crystal dispersion temperature of the fiber, stretching tension is applied by the fiber. In addition, since the drawing is performed at a temperature lower than the crystal dispersion temperature of the fiber, the crystal itself is difficult to move by drawing, and only the amorphous part is drawn. That is, the molecular chain is hardly pulled out of the crystal as in the case of super-stretching. By this, it is assumed that a structure is formed in the fiber so that the second and subsequent stages are smoothly stretched, the second and subsequent stages are smoothly stretched, and the physical properties of the fiber after stretching are improved. The details are not clear.
[0020]
In the present invention, it is extremely important to increase the birefringence index (Δn) of the undrawn yarn in spinning, that is, to further promote the molecular orientation, as well as the drawing temperature. It is presumed that the first and subsequent steps can be stretched more smoothly by highly orienting the molecules.
[0021]
The measurement method and measurement conditions relating to the characteristic values in the present invention will be described below.
(Strength / elastic modulus)
For the strength and elastic modulus of the present invention, “Tensilon” manufactured by Orientic Co., Ltd. was used, and the strain-stress curve was measured at an ambient temperature of 20 ° C. and relative humidity under the conditions of a sample length of 200 mm (length between chucks) and an elongation rate of 100% / min Measured under the conditions of 65%, the stress at the breaking point was obtained by calculating the strength (cN / dtex) and the elastic modulus (cN / dtex) from the tangent that gives the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 times of measured values.
[0023]
(Weight average molecular weight Mw, number average molecular weight Mn and Mw / Mn)
The weight average molecular weight Mw, the number average molecular weight Mn, and Mw / Mn were measured by gel permeation chromatography (GPC). A GPC 150C ALC / GPC manufactured by Waters was used as a GPC apparatus, and a single GPC UT802.5 manufactured by SHODEX was used as a column, and two UT806M were used. The measurement solvent used was o-dichlorobenzene and the column temperature was 145 ° C. The sample concentration was 1.0 mg / ml, and 200 microliters were injected and measured. The molecular weight calibration curve is constructed using a polystyrene sample with a known molecular weight by the universal calibration method.
[0024]
(Dynamic viscoelasticity measurement)
The dynamic viscosity measurement in the present invention was performed using “Leovibron DDV-01FP type” manufactured by Orientec. The fibers are split or combined so that the entire fiber is 100 denier ± 10 denier, and the measurement length (distance between the brace) is 20 mm in consideration of arranging the single fibers as uniformly as possible. Wrap both ends of the fiber in aluminum foil and bond with cellulosic adhesive. In this case, the glue allowance length is set to about 5 mm in consideration of fixing with the metal fitting. Each test piece was carefully placed on a brace (chuck) set to an initial width of 20 mm so that the yarn would not loosen or twist and was preliminarily deformed for several seconds at a temperature of 60 ° C. and a frequency of 110 Hz. This experiment was conducted after that. In this experiment, temperature dispersion at a frequency of 110 Hz was obtained from the low temperature side at a temperature increase rate of about 1 ° C./min in the temperature range of −150 ° C. to 150 ° C. In the measurement, the static load was set to 5 gf, and the sample length was automatically adjusted so that the fibers did not loosen. The amplitude of dynamic deformation was set to 15 μm.
[0025]
(Birefringence)
The birefringence measurement in the present invention was performed using “OPTIPHOT-POL” manufactured by Nikon. An encapsulating liquid (Zedel oil or liquid paraffin) is dropped on a slide glass, and a sample cut at an angle of 45 ° with respect to a fiber axis having a length of 5 to 6 mm is immersed in the liquid with the cut surface facing upward. A sample slide glass is placed on a rotating stage, adjusted so that the scale and the fiber are parallel, and an analyzer is inserted to make a dark field of view. Then, the competition sweater is set to 30, and the number of fringes n is counted. Next, turn the competition sweater in the direction of 30 to 40, and measure the scale a of the competition sweater where the sample is darkest first and the scale b of the competition sweater where the sample is darkest first when turning in the opposite direction. Thereafter, the competer is returned to 30, the analyzer is removed, and the diameter d of the sample is measured. After repeating the above measurement several times, the birefringence (Δn) is calculated based on the following equation.
Δn = Γ / d
Γ (retardation) = nλο + ε
λο = 589nm
ε: C / 10000 (equipment constant = 0.816) and i are obtained.
i = (ab)
[0026]
(Ratio between discharge line speed and spinning speed (draft ratio))
The draft ratio (Ψ) is given by the following equation.
Draft ratio (Ψ) = spinning speed (Vs) / discharge linear speed (V)
[0027]
(Total draw ratio)
The total draw ratio from spinning to drawing is given by the following equation.
Total draw ratio = draft ratio (Ψ) × single-stage draw ratio × multi-stage draw ratio [0028]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0029]
Example 1
A high-density polyethylene having a weight average molecular weight of 115,000 and a ratio of the weight average molecular weight to the number average molecular weight of 2.8 is a speed of 290 ° C. and a single hole discharge rate of 0.5 g / min from a spinneret comprising φ0.8 mm and 30H. Extruded with The extruded fiber passed through a 10 cm heat insulation section, and then cooled at 20 ° C. with a quench of 0.5 m / s and wound at a speed of 500 m / min. The undrawn yarn was drawn by a plurality of Nelson rolls capable of temperature control. The one-stage drawing was 2.0 times at 25 ° C., and then heated to 100 ° C. and drawn 6.0 times to prepare a drawn yarn having a total draw ratio of 4494 times. Table 1 shows the physical properties of the obtained fiber. At this time, the birefringence of the undrawn yarn was 0.021.
[0030]
(Example 2)
The fiber obtained by extruding and cooling the high-density polyethylene of Example 1 under the same conditions was wound up at a speed of 300 m / min. The undrawn yarn was stretched 2.0 times at 25 ° C. and then heated to 100 ° C. and drawn 6.75 times to produce a drawn yarn having a total draw ratio of 3033 times. Table 1 shows the physical properties of the obtained fiber. At this time, the birefringence of the undrawn yarn was 0.009.
[0031]
(Example 3)
The fiber obtained by extruding and cooling the high-density polyethylene of Example 1 under the same conditions was wound up at a speed of 400 m / min. The undrawn yarn was stretched 2.0 times at 25 ° C. and then heated to 100 ° C. and drawn 6.5 times to produce a drawn yarn having a total draw ratio of 3895 times. Table 1 shows the physical properties of the obtained fiber. At this time, the birefringence of the undrawn yarn was 0.015.
[0032]
Example 4
A drawn yarn having a total draw ratio of 4494 times was prepared under the same conditions as in Example 1 except that the one-stage drawing temperature was 10 ° C. Table 1 shows the physical properties of the obtained fiber.
[0033]
(Example 5)
The total draw ratio was the same as in Example 1 except that the one-stage stretching was 2.0 times at 25 ° C, the two-stage stretching was 3.0 times at 100 ° C, and the three-stage stretching was 2.5 times at 130 ° C. A drawn yarn of 5618 times was produced. Table 1 shows the physical properties of the obtained fiber.
[0034]
(Example 6)
A high-density polyethylene having a weight-average molecular weight of 152,000 and a ratio of the weight-average molecular weight to the number-average molecular weight of 2.4 is a speed at a single hole discharge rate of 0.5 g / min at 300 ° C. from a spinneret of φ1.2 mm and 30H. The fiber cooled under the same conditions as in Example 1 was wound up at a speed of 200 m / min. The undrawn yarn was stretched 2.0 times at 25 ° C. and then heated to 100 ° C. and drawn 6.0 times to prepare a drawn yarn having a total draw ratio of 4044 times. Table 1 shows the physical properties of the obtained fiber. At this time, the birefringence of the undrawn yarn was 0.018.
[0035]
(Comparative Example 1)
The fiber obtained by extruding and cooling the high-density polyethylene of Example 1 under the same conditions was wound up at 100 m / min. The unstretched yarn was stretched 2.0 times at 25 ° C. and then heated to 100 ° C. and then stretched 7.0 times to prepare a stretched yarn having a total draw ratio of 1049 times. The physical properties of the obtained fiber are shown in Table 2. At this time, the birefringence of the undrawn yarn was 0.002.
[0036]
(Comparative Example 2)
A drawn yarn having a total draw ratio of 4494 times was produced under the same conditions as in Example 1 except that the one-stage drawing was 2.0 times at 90 ° C. The physical properties of the obtained fiber are shown in Table 2.
[0037]
(Comparative Example 3)
A high-density polyethylene having a weight average molecular weight of 121,500 and a ratio of the weight average molecular weight to the number average molecular weight of 5.1 is a speed of 270 ° C. and a single hole discharge rate of 0.5 g / min from a spinneret comprising φ0.8 mm and 30H. After that, when an attempt was made to produce a cooled fiber under the same conditions as in Example 1, yarn breakage occurred frequently, and only 300 m / min undrawn yarn could be produced. The obtained undrawn yarn was stretched 2.0 times at 25 ° C. and further heated to 100 ° C. and then stretched 4.5 times to obtain a drawn yarn having a total draw ratio of 2022. The physical properties of the obtained fiber are shown in Table 2. At this time, the birefringence of the undrawn yarn was 0.030.
[0038]
(Comparative Example 4)
A high-density polyethylene having a weight average molecular weight of 55,000 and a ratio of the weight average molecular weight to the number average molecular weight of 2.3 is from a spinneret consisting of φ0.8 mm and 30H at 255 ° C. with a single hole discharge rate of 0.5 g / min. The fiber extruded at a speed and cooled under the same conditions as in Example 1 was wound up at 300 m / min. The undrawn yarn was stretched 2.0 times at 25 ° C. and then heated to 100 ° C. and drawn 7.0 times to obtain a drawn yarn having a total draw ratio of 3146 times. The physical properties of the obtained fiber are shown in Table 2. At this time, the unstretched birefringence was 0.008.
[0039]
(Comparative Example 5)
Spinning was attempted using a high-density polyethylene having a weight average molecular weight of 820,000 and a ratio of the weight average molecular weight to the number average molecular weight of 2.5, but the melt viscosity was too high to be uniformly extruded.
[0040]
[Table 1]
Figure 0004042039
[0041]
[Table 2]
Figure 0004042039
[0042]
【The invention's effect】
According to the present invention, it is possible to provide a method for efficiently producing a novel high-strength polyolefin fiber.

Claims (3)

重量平均分子量が60,000〜600,000、重量平均分子量と数平均分子量の比(Mw/Mn)が4.5以下で複屈折率(Δn)が0.008以上のポリオレフィン未延伸糸を、当該未延伸糸の結晶分散温度以下の温度で延伸更に90℃以上の温度で延伸する製造方法であり、且つ紡糸から延伸までの総延伸倍率が1500倍以上であることを特徴とする高強度ポリオレフィン繊維の製造方法。A polyolefin undrawn yarn having a weight average molecular weight of 60,000 to 600,000, a ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) of 4.5 or less, and a birefringence (Δn) of 0.008 or more, It is a production method in which the undrawn yarn is drawn at a temperature not higher than the crystal dispersion temperature and further drawn at a temperature of 90 ° C. or higher, and the total draw ratio from spinning to drawing is 1500 times or more. A method for producing high-strength polyolefin fibers. ポリオレフィンが、実質エチレンからなるポリエチレンであることを特徴とする請求項1記載の高強度ポリオレフィン繊維の製造方法。The method for producing a high-strength polyolefin fiber according to claim 1, wherein the polyolefin is polyethylene substantially consisting of ethylene. 未延伸糸の結晶分散温度以下の温度で延伸した後、更に一段以上延伸することを特徴とする請求項1又は2記載の高強度ポリオレフィン繊維の製造方法。The method for producing a high-strength polyolefin fiber according to claim 1 or 2, further comprising drawing one or more steps after drawing at a temperature not higher than a crystal dispersion temperature of the undrawn yarn.
JP2002176129A 2002-04-09 2002-06-17 High-strength polyolefin fiber and method for producing the same Expired - Fee Related JP4042039B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002176129A JP4042039B2 (en) 2002-06-17 2002-06-17 High-strength polyolefin fiber and method for producing the same
AT03745910T ATE540146T1 (en) 2002-04-09 2003-04-04 POLYETHYLENE FIBER AND THE PRODUCTION PROCESS THEREOF
PCT/JP2003/004310 WO2003085176A1 (en) 2002-04-09 2003-04-04 Polyethylene fiber and process for producing the same
US10/510,565 US7247372B2 (en) 2002-04-09 2003-04-04 Polyethylene filament and a process for producing the same
CNB03807737XA CN100376730C (en) 2002-04-09 2003-04-04 Polyethylene fiber and process for producing the same
KR1020097026505A KR100985938B1 (en) 2002-04-09 2003-04-04 Polyethylene Fiber and Process for Producing the Same
EP03745910A EP1493851B1 (en) 2002-04-09 2003-04-04 Polyethylene fiber and process for producing the same
KR1020047015949A KR100943592B1 (en) 2002-04-09 2003-04-04 Polyethylene Fiber and Process for Producing the Same
TW92116329A TWI318251B (en) 2002-06-17 2003-06-17 Method for preparing hige intensity polyolefin fibre
US11/723,548 US7736564B2 (en) 2002-04-09 2007-03-20 Process of making a high strength polyolefin filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176129A JP4042039B2 (en) 2002-06-17 2002-06-17 High-strength polyolefin fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004019049A JP2004019049A (en) 2004-01-22
JP4042039B2 true JP4042039B2 (en) 2008-02-06

Family

ID=31174576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176129A Expired - Fee Related JP4042039B2 (en) 2002-04-09 2002-06-17 High-strength polyolefin fiber and method for producing the same

Country Status (2)

Country Link
JP (1) JP4042039B2 (en)
TW (1) TWI318251B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115029810B (en) * 2022-06-17 2023-08-01 上海化工研究院有限公司 High-performance polyethylene heavy denier monofilament for wind wave resistant fishery rope net and preparation method thereof

Also Published As

Publication number Publication date
TW200403363A (en) 2004-03-01
TWI318251B (en) 2009-12-11
JP2004019049A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
EP2054541B1 (en) Process for the preparation of uhmw multi-filament poly(alpha-olefin) yarns
JP4389142B2 (en) Method for producing high-strength polyethylene fiber
KR102054035B1 (en) Braid
JP4816798B2 (en) High-performance polyethylene fiber with excellent moldability
WO2007119480A1 (en) Polyethylene fiber and method for production thereof
TW200909621A (en) High strength polyethylene fiber, its precursor and method of manufacturing the same with high productivity
JP4066226B2 (en) High-strength polyolefin fiber and method for producing the same
JP3734077B2 (en) High strength polyethylene fiber
JP3832631B2 (en) High strength polyethylene fiber
JPH01272814A (en) Polyvinyl alcohol-based yarn having excellent hot water resistance and production thereof
JP4042039B2 (en) High-strength polyolefin fiber and method for producing the same
JP4337233B2 (en) High-strength polyethylene fiber and method for producing the same
JP4389143B2 (en) Method for producing high-strength polyolefin fiber
JP3832614B2 (en) High-strength polyethylene fiber and method for producing the same
US20050161854A1 (en) Dimensionally stable yarns
JP4042040B2 (en) Polyethylene fiber, woven and knitted fabric excellent in cut resistance and use thereof
JP4478853B2 (en) High strength polyethylene fiber
JP3849861B2 (en) rope
BR112021008849A2 (en) polyethylene multifilament braided yarn and method of making the same
JP2003328257A (en) Net

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R151 Written notification of patent or utility model registration

Ref document number: 4042039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees