JP4036425B2 - Direct foundation structure such as steel structure building - Google Patents

Direct foundation structure such as steel structure building Download PDF

Info

Publication number
JP4036425B2
JP4036425B2 JP2001221227A JP2001221227A JP4036425B2 JP 4036425 B2 JP4036425 B2 JP 4036425B2 JP 2001221227 A JP2001221227 A JP 2001221227A JP 2001221227 A JP2001221227 A JP 2001221227A JP 4036425 B2 JP4036425 B2 JP 4036425B2
Authority
JP
Japan
Prior art keywords
foundation
mat
slab
building
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001221227A
Other languages
Japanese (ja)
Other versions
JP2003027496A (en
Inventor
豊 玉田
香二 与田
勇 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Civil Engineering and Construction Corp
Original Assignee
JFE Civil Engineering and Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Civil Engineering and Construction Corp filed Critical JFE Civil Engineering and Construction Corp
Priority to JP2001221227A priority Critical patent/JP4036425B2/en
Publication of JP2003027496A publication Critical patent/JP2003027496A/en
Application granted granted Critical
Publication of JP4036425B2 publication Critical patent/JP4036425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は鉄骨造建物などの直接基礎構造に係り、詳しくは、低層鉄骨造建物のための基礎であって、柱間隔が少々大きくなっても基礎を薄くしておくことができると共に、基礎スラブと床スラブとを一枚のマットで一体的に形成できるようにした基礎構造に関するものである。
【0002】
【従来の技術】
建物の基礎として、べた基礎形式のものがしばしば採用される。べた基礎10は、図6のごとく格子状となるように梁12を多数配置し、それぞれの梁で囲まれた部分に基礎スラブ11を形成させたものである。これは、一枚のマットを敷いておき、その上に補強用の梁を配したかのような恰好となっている。
【0003】
この種の基礎形式は例えばRC造(鉄筋コンクリート造)の5階建てといった重い建物の基礎として好適であり、柱3から受ける荷重を格子状梁12で支え、地盤6からの反力は基礎スラブ11で受けるという力のバランス構造となっている。そのため、梁12は図6に示したように柱3,3間に細かくかつ均等に配置される。
【0004】
もう少し詳しく述べると、格子状梁12上には図7に示す例えば150ミリメートル程度の厚みをした床スラブ13が載せられる。これは1階の床面13fを形成するものであるが、格子12で囲まれる領域12Aを空間のままとしておいた場合は床の重量を受けた格子状梁12が基礎スラブ11に力を伝達し、埋め戻した場合は床の重量が直接基礎スラブ11に伝達される。いずれにしても、基礎スラブが広い面積で鉛直方向荷重を地盤に伝達するが、床スラブ13は柱から入る荷重を地盤に伝達する機能を有していない。
【0005】
このようなべた基礎は、RC造やSRC造に適用されることが多い。従って、全面に何百トンもの荷重が掛かることを想定して、基礎スラブをかなり厚くしている。しかし、建物の周囲にはみ出すようなことはないので、外溝を設けなければならない場合でも、図7のごとく基礎10が外溝14と干渉する虞れはなく、その存在を無視して設計できる利点がある。これは、隣地境界がある場合も同様である。
【0006】
ところで、鉄骨造(S造)建物の場合、2階建てなら例えば20トン程度の荷重が一つの柱に作用し、1階建てなら5トン程度となる。この程度の荷重しか作用しない建物の基礎に上記した構造のべた基礎を用いる場合、床スラブ,基礎スラブおよび基礎梁のそれぞれをかなり小さくしたとしても、品質の過剰感は免れ得ない。
【0007】
かと言って、建物の梁スパンやピッチが大きい場合に、公知の独立フーチング基礎や連続フーチング基礎を採用すれば、強固で剛性の高い基礎が要求されることになる。例えば独立フーチング基礎の場合、フーチングを厚くしたり延伸せざるを得なくなり、また隣りあうフーチング間に基礎梁(地中梁)を配する必要も生じる。そのうえ、連続フーチング基礎(布基礎)の場合も含めて言えることであるが、フーチングが建物から張り出し、外溝が存在する場合や隣地境界を考慮しなければならない場合には適合性が著しく低下するということである。
【0008】
【発明が解決しようとする課題】
そのような事情の下に、特開平9−279741号公報には、図8に示した基礎構造が提案されている。これは前述した図7と同趣旨である図10の基礎構造を前提に改良したものとなっている。
【0009】
まず、図10に示すべた基礎は、柱3が並ぶ部分に基礎梁15を配置し、この基礎梁によって囲まれた空間に基礎スラブ11が設けられ、その上方に床スラブ13が形成されたものである。この場合の工事は、まず基礎梁の鉄筋枠体15aおよび基礎スラブの鉄筋11aを組み立て、基礎スラブとなる部分にコンクリート11bを打設する。その硬化後に基礎梁となる部分にコンクリート15bを打設し、その硬化後に床スラブの鉄筋13aを組み立て、これにコンクリート13bを打設するという手順がとられる。
【0010】
このような作業においては捨てコンクリート7を除いたとしても、三回はコンクリートを打設しなければならない。打設にあたっては、型枠設置作業,コンクリート打設作業,コンクリートの硬化や養生の工程が必要であることは言うまでもなく、一連の工程を終えてから次の箇所の打設へと進む。各々に一ケ月近くを要するのが通常であることを考えると、三回繰り返すことになれば工期が長びくのは避けられない。もちろん、打設に先立って行われる鉄筋の組立て作業も決して負担の軽いものではない。これを改良すべく提案されたものが、図8に示す構造である。
【0011】
これは、図10における基礎梁15の幅が400ミリメートルであって、基礎スラブ11の厚みが250ミリメートル、床スラブ13が150ミリメートルの場合、基礎梁15を図8の(a)のように横倒しにした基礎梁16としても、基礎スラブ11と床スラブ13との間の空間17(図10を参照)を無くせば、床スラブ13と基礎スラブ11の厚みはそのまま確保しておくことができる。同時に、床スラブ13の上面13uを基礎梁16の上面16uに一致させることもできるとの発想に基づいている。
【0012】
このようにしておけば、基礎スラブ11と床スラブ13とは一体となって一つの重畳スラブ18となる。これが床または土間を形成するのは勿論のこと、柱および床から入る荷重を地盤に伝達する能力も持ち合わせたものとなる。
【0013】
この重畳スラブは基礎梁との境界を敢えて顕在化させる必要もないから、基礎の周囲を規定する型枠(図示せず)を設置するだけで、基礎梁と重畳スラブとを一連のコンクリート打設で構築することができる利点がある。また、基礎梁を横倒しにした結果、基礎の薄層化も進み、総掘りせざるを得ないにもかかわらず、根切りは図10の場合に比べて浅くすることができる。
【0014】
この構造を立体的に表すと、図9のように、柱列1cの下に基礎梁16が存在する。この場合、柱3からの荷重は基礎梁16を経て重畳スラブ18から地盤6に伝達され、重畳スラブに作用する地盤反力による曲げは基礎梁16で対抗させるという構図をとる。しかし、計算上は基礎梁を一次元的に伸びる部材とみなし、重畳スラブへの力の伝播を無視するという簡略化を図るならば、複雑な構造解析や高度な演算手法の導入を回避できるという利点がある。
【0015】
ところが、重畳スラブ18には図8の(a)からも分かるように面格子18aによる補強が施され、図8の(b)に示したように、交差するそれぞれの基礎梁161 ,162 にもフープ筋16a1 によって取り巻かれた鉄筋枠体16aが必要となる。すなわち、この種のべた基礎においては複雑な鉄筋の組立て構造が依然として残り、多大な手間を要する鉄筋組立てや配筋作業の解消や軽減はほど遠いものとなっている。
【0016】
ついでながら、このようなべた基礎を軽量なS造建物に適用したとすると、建物の梁スパンやピッチが大きい場合に、荷重の集中する基礎梁に耐久性のある強度や剛性が必要とされる結果、それに応じた基礎梁の高さ(上記の例では400ミリメートル)が確保されねばならない。この場合、重畳スラブの厚みが過大になると分かっていても、基礎梁の高さまでコンクリートで埋めざるを得なくなるという難点もある。
【0017】
本発明は上記した問題に鑑みなされたもので、その目的は、重量の比較的軽い建物であるS造において、柱間隔が比較的大きい場合であっても、基礎の薄層化による掘削量の低減、コンクリート型枠組立て作業の軽減や鉄筋組立て構造の簡素化、コンクリート打設量の節減、度重なる養生の回避による工期の短縮等を実現した鉄骨造建物などの直接基礎構造を提供することである。
【0018】
【課題を解決するための手段】
本発明は、2・3階建て程度までの低層鉄骨造建物であって、建物の底面部の全体に広がって設置されるマット式の基礎構造に適用される。その特徴とするところは、図1および図2の(a)を参照して、基礎構造には上方に突出する補強梁や周縁部分等を形成する基礎梁が設けられることなく、基礎スラブのみならず床スラブの機能をも発揮するように上面1aが地上GLより上方に位置し、平面をなして格子状に組み立てられた鉄筋4によって補強されている一枚のマット1で形成される。そのマット1には鉄骨柱3が直接取りつけられ、その鉄骨柱周り1b(図2の(a)を参照)または柱列部分1c(図5を参照)が下方へ突出し、それ以外は全体的に薄くなっており、平面格子状の鉄筋4は柱周り1bまたは柱列部分1cでは上層部および下層部に計二段(配筋4U,4L)が施され、それ以外の箇所では該上層部の平面格子よりは下方となる中層部に前記上層部および下層部の各平面格子から独立した別体一段(配筋4M)が施される。そして、基礎に生じる応力には面として広がる一枚のマット1で対抗させる一方、上下方向荷重はマット面を介して地盤6へ伝達できるようにしたことである。
【0019】
【発明の効果】
本発明によれば、基礎スラブと床スラブに相当するものが上下に一体となった一つのマットで形成されるので、床スラブに相当するマット上部にも柱からの荷重が伝達され、基礎スラブに相当するマット下部での負担は軽減される。
【0020】
建物に採用された梁のスパンやピッチが大きいゆえに柱脚周囲の基礎に生じる応力が大きくなっても、四方八方に張りめぐらされた鉄筋で補強されている面として広がるマットに伝播させることにより負担の分散化が図られる。力学的バランスを図るべき箇所での過度な集中が解消され、マットに与える強度や剛性も低減させることが可能となる。
【0021】
言い換えれば、従来技術の項で述べた高強度・高剛性の基礎梁といったものが存在しないので、それに合わせたような厚層マットも不要となり、基礎構造の薄層化を一段と推し進めることができる。鉄筋による補強は面格子的なもので済ませることができ、鉄筋組立て作業の大幅な簡素化が促される。また、場合によっては、少し軟弱な地盤であっても適用可能となり、地盤補強工事の軽減が図られたりもする。
【0022】
マットの薄層化により根切り時の掘削量が著しく低減することは言うまでもなく、掘削や埋め戻し作業も小規模に抑えることができる。一枚のマットからなる基礎は、型枠工事や配筋作業の簡素化、最小のコンクリート打設回数、養生期間の短縮等、工期・工費の低減に大きく寄与する。
【0023】
柱周りまたは柱列部分を下方へ突出させてマット厚さを局部的に大きくしておくので、その部分での耐力増強が図られるだけでなく、それ以外の部分でのコンクリート打設量を大いに節減することができる。
【0024】
柱周りや柱列部分ではマットの上層部および下層部に計二段配筋し、柱周りや柱列部分以外の箇所では上層部の平面格子よりは下方となる中層部に上層部および下層部の各平面格子から独立した別体一段だけ配筋するから、部分的な過剰補強を避けて配筋資材の節減を図りながら、薄いマットの補強として十分なものを得ることができる。
【0025】
【発明の実施の形態】
以下に、本発明に係る鉄骨造建物などの直接基礎構造を、その実施の形態を表した図面に基づいて詳細に説明する。図1は、従来技術の項で述べた基礎スラブと床スラブとに相当するものが上下に一体となった一つのマット1で形成されている基礎構造の斜視図である。
【0026】
これは、図4に示したような2・3階建て程度までの、加えて梁2のスパンLS やピッチLP が比較的大きい低層鉄骨造建物に好適であって、建物の底面部の全体に広がるように設けられるものである。
【0027】
この基礎構造1は、図2の(a)に示すように、上面1aが地上GLより上方に位置する一枚のマット状をなし、基礎スラブのみならず床スラブとしての機能をも発揮するように形成されている。
【0028】
このようなマット1には、マット上方へ突出する図6に示したような補強梁12や図9に示した基礎梁16(図9を参照)といったものは設けられず、図3に示すように、平面をなして格子状に組まれた多数本の鉄筋棒鋼4a,4aによって補強された一枚のマットとなっている。
【0029】
そして、図2の(a)に示したごとく鉄骨柱3はマット1にアンカーボルト5などで直接取りつけられ、基礎に生じる応力には面として広がる一枚のマットで対抗させる一方、上下方向荷重はマット面を介して地盤6へ伝達するようにしている。図1から分かるように、基礎構造1は柱周り1bが下方へ突出され、その部分でマット厚さは局部的に大きいが、それ以外の部分は全体的に薄く、概ね一枚の盤を形成している。
【0030】
このようなマットを補強するために、その全面の上層部および下層部に各一段の、すなわち上下層合わせて二段の配筋4U,4Lが施される(図2の(a)を参照)。マットは梁を含まないのでフープ筋を使った鉄筋枠体を組み込む必要がなく、例えば13ミリメートル径の鉄筋棒鋼4a,4aを順次結束線でつなぎ合わせて縦横に配置し、多数の格子を形成させれば十分である。ちなみに、各段の端部は下または上へ折り曲げられ、それを縛りつけるなどして配筋の上下一体化が図られるが、他の部分は単に面として広がる多数の格子となっているにすぎない。
【0031】
S造(鉄骨造)建物にあってとりわけ工場や倉庫の建屋さらには簡易事務社屋のような場合、大きい空間を確保するために一般居住用家屋とは異なり概して梁のスパンが大きくとられる。もちろん梁のピッチも大きくされる場合が多いが、通常ピッチはスパンよりも短く選定される(図4を参照)。
【0032】
従来技術の項でも述べたが、S造はRC造やSRC造より軽量であるために、基礎に掛かる負担が小さい。しかし、梁のスパンやピッチが大きい場合、従来の基礎構造では軽量とはいえ柱から入った荷重により基礎は大きな曲げを受けることになる。しかし、本発明においては、基礎スラブと床スラブとを一体化させることによって基礎に生じる応力(主として曲げ応力や剪断応力等)を床スラブに相当する部分にも受け持たせることにより、マット全体の嵩厚化を抑えるようにしている。
【0033】
一方、工事の面から見ると、床スラブと基礎スラブとは一枚のマットとして同時に形成されるので、基礎スラブと床スラブとが別々に工事される場合に比べるとコンクリートの打設や養生に必要となる時間が半減し、工期の大幅な短縮を実現する。梁は存在しないから鉄筋4(図2を参照)の組立て作業も簡易なものとなり、工事全体の簡便化が急速に進む。
【0034】
基礎の構造に計算上線材とみなされる基礎梁等が含まれないから、構造力学的には平坦なマットの三次元的変形や応力の二次元的伝播を追求した設計が不可欠となるが、マットに作用する負荷は前述のように分散される結果、地盤の応力度(接地圧)も小さくなる。従って、独立フーチング基礎や連続フーチング基礎の設置が容易でない軟弱な地盤に適用することができたり、さしたる地盤改良を施すことなく着工できる場合もあり、本発明に係る基礎構造の適用範囲は極めて広くなる。
【0035】
以上の説明から分かるように、本基礎構造は基礎梁を備えず、基礎スラブと床スラブを一体化させたマットであるため、基礎梁に要求される寸法に左右されることなく厚みを決定することができる。マットにおける負荷の分散を図っていることから、基礎梁で要求される厚みよりも薄いマットが実現される。一例を述べれば、柱周り1b(図2の(a)を参照)の厚みを250ミリメートル、それ以外のところは150ミリメートルといったように設計することができる。
【0036】
マットを薄くするだけでなく、床スラブとしても機能させるべく上面を地上より例えば50ミリメートル高くすることにしているので、砕石7の敷設代や捨てコン8の打設代を含めたとしても、根切り時の掘削量は著しく少なくなる。従って、埋め戻し作業は大いに軽減され、残土処理に要する労力や費用の低減も可能となる。図8のごとくの床面のレベル合わせのモルタル消費が不要になることはもとより、総じてコンクリート打設量が少なくなり、工事資材の大いなる節減が図られる。
【0037】
ちなみに、図1では柱周りだけを他より厚くしているが、幾つもの柱が直線的に並ぶ部分があれば、図示しないが柱列部分を柱周りと同様に厚して、基礎に生じる応力に対してより一層対抗させやすい構造のマットとしておくとよい。
【0038】
図3の(a)にはマット1の全面の上層部および下層部に各一段の配筋4U,4Lを施した例を示したが、いずれの段においても柱周り1bでは例えば四倍の密度とされ、その部分の強化が図られる。また、柱列となる箇所1cでは、図中の左側のように、その縁部に沿って中間の二倍の密度の配筋を施しておくこともできる。ちなみに、捨てコン8は全面に施してもよいが、図2の(a)のように柱周りだけとしてもよい場合もあれば、全く必要とされないこともある。
【0039】
図4は、マット全体が同じ厚みとした場合の基礎構造1Aの例である。この場合も、図2の(b)に示すように上下層合わせて二段の配筋4U,4Lが施される。このように、マット全体が同じ厚みであれば地盤の掘削や配筋は著しく単純なものとなり、作業性が向上する。なお、図3の(b)のように、柱周り1bのみ配筋の目を細かくしておくこともできる。
【0040】
ちなみに、基礎に生じる各種応力の分布状態にもよるが、柱から遠ざかっている箇所では中層部に一段だけの配筋4M(図5中の一点鎖線を参照)も可能で、全面に二段配筋するよりも鉄筋の消費量が抑えられ、また補強が過大になるのを避けることもできる。いずれにしても、マット内に面格子が張りめぐらされているので、基礎内の応力がマット全体に伝播しやすくなる。
【0041】
なお、コンクリートの打設は捨てコン8を除けば一回でよく、その際に組み立てられる型枠は、マットの周囲だけでよい。打設に要する準備作業は簡素化される。打設後の養生も一回でよく、型枠ばらしの作業を含めて作業者に掛かる負担は大いに軽減される。工期の短縮が図られることも言うまでもない。
【0042】
先行技術として挙げた図8(a),(b)の基礎構造は、基礎に発生する応力のほとんどを鉄筋枠体が組み込まれた基礎梁で対抗させようとするものであり、基礎スラブや床スラブを構成する重畳スラブ18に曲げ応力までも負担させようという思想はない。また、柱からの力が直接及ぶ基礎梁が集中的に補強されているので、力の分散も妨げられる。
【0043】
一方、本発明は、総じて言えば、マットに発生する応力をマット全面で吸収することにして集中を回避しており、この点で図8とは極めて対照的な構造となっている。本発明は応力の分散化を推し進め、基礎のより一層の薄層化を図ろうとするものである。なお、軽量鉄骨造の基礎においては、図2に示したように、柱脚が支持プレートを介してアンカーボルト5で固定するピン支持形式を採るのが一般的であるが、埋め込み式の固定支持を適用することも差し支えなく、設計上の他の要因を考慮して適宜選択すればよい。
【図面の簡単な説明】
【図1】 本発明に係る基礎構造の一例を表した斜視図。
【図2】 基礎構造の断面であって、(a)および(b)は共に柱周りにおける拡大図。
【図3】 基礎構造の配筋形態を示し、(a)および(b)は共に上下合わせて全面二段とした場合の斜視図。
【図4】 厚みが略一定となっているマットとその上に建てられた鉄骨造建物の一例の斜視図。
【図5】 柱周りおよび柱列部分以外の箇所では一段となっている配筋の斜視図。
【図6】 公知のべた基礎の斜視図。
【図7】 図6における VII−VII 線矢視断面図。
【図8】 基礎梁と重畳スラブとを一体化させた先行技術におけるスラブであって、(a)は図9におけるVIII−VIII線矢視断面図、(b)はIX−IX線矢視断面図。
【図9】 基礎梁と重畳スラブとを一体化させた先行技術におけるスラブの骨組みを表わした斜視図。
【図10】 図8の基礎構造を案出するもとになったそれ以前の基礎構造の断面図。
【符号の説明】
1…マット(基礎構造)、1a…上面、1b…柱周り、1c…柱列部分、2…梁、3…鉄骨柱、4U,4L,4M…配筋、LS …梁のスパン、LP …梁のピッチ、GL…地上。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct foundation structure such as a steel structure building, and more particularly to a foundation for a low-rise steel structure building. And a floor slab that can be integrally formed with a single mat.
[0002]
[Prior art]
A solid foundation type is often used as the foundation of a building. The solid foundation 10 has a large number of beams 12 arranged in a lattice pattern as shown in FIG. 6, and a foundation slab 11 is formed in a portion surrounded by each beam. It looks like a single mat is laid and a reinforcing beam is placed on it.
[0003]
This type of foundation is suitable as the foundation of a heavy building such as RC (reinforced concrete) five-story building. The load received from the pillar 3 is supported by the lattice beam 12, and the reaction force from the ground 6 is the foundation slab 11. It has a balance structure of receiving power. Therefore, the beam 12 is finely and evenly arranged between the columns 3 and 3 as shown in FIG.
[0004]
More specifically, a floor slab 13 having a thickness of about 150 millimeters as shown in FIG. This forms the floor surface 13f of the first floor, but if the area 12A surrounded by the lattice 12 is left as a space, the lattice beam 12 receiving the weight of the floor transmits the force to the foundation slab 11. In the case of backfilling, the weight of the floor is directly transmitted to the foundation slab 11. In any case, the foundation slab transmits a vertical load to the ground over a wide area, but the floor slab 13 does not have a function of transmitting the load entering from the column to the ground.
[0005]
Such a solid foundation is often applied to RC construction and SRC construction. Therefore, assuming that hundreds of tons of load is applied to the entire surface, the foundation slab is considerably thickened. However, since it does not protrude around the building, there is no possibility that the foundation 10 interferes with the outer groove 14 as shown in FIG. There are advantages. This is the same when there is an adjacent land boundary.
[0006]
By the way, in the case of a steel structure (S structure) building, for example, a load of about 20 tons acts on one pillar in the case of two stories, and about five tons in the case of one story. When a solid foundation having the above-described structure is used for a foundation of a building that only applies such a load, even if each of the floor slab, the foundation slab, and the foundation beam is considerably reduced, an excessive sense of quality cannot be avoided.
[0007]
However, if a known independent footing foundation or continuous footing foundation is employed when the beam span or pitch of the building is large, a strong and rigid foundation is required. For example, in the case of an independent footing foundation, the footing must be thickened or extended, and a foundation beam (underground beam) needs to be arranged between adjacent footings. In addition, the same applies to the case of continuous footing foundations (fabric foundations), but if the footing extends from the building and there is an outer groove or the boundary of the adjacent land must be taken into account, the compatibility will be significantly reduced. That's what it means.
[0008]
[Problems to be solved by the invention]
Under such circumstances, the basic structure shown in FIG. 8 is proposed in Japanese Patent Laid-Open No. 9-279741. This is an improvement on the premise of the basic structure of FIG.
[0009]
First, in the solid foundation shown in FIG. 10, a foundation beam 15 is arranged in a portion where the columns 3 are arranged, a foundation slab 11 is provided in a space surrounded by the foundation beam, and a floor slab 13 is formed thereon. It is. In the construction in this case, first, the reinforcing bar frame 15a of the foundation beam and the reinforcing bar 11a of the foundation slab are assembled, and the concrete 11b is placed in the portion that becomes the foundation slab. After the hardening, the concrete 15b is placed on the portion to be the foundation beam, and after the hardening, the reinforcing bars 13a of the floor slab are assembled and the concrete 13b is placed thereon.
[0010]
In such work, even if the discarded concrete 7 is removed, the concrete must be cast three times. In placing, it goes without saying that a form installation work, a concrete placement work, a concrete hardening and curing process are necessary, and the process proceeds to the next place after finishing a series of processes. Considering that it usually takes nearly a month for each, it is inevitable that the construction period will be prolonged if it is repeated three times. Of course, the rebar assembling work prior to placing is not lightly burdened. The structure shown in FIG. 8 has been proposed to improve this.
[0011]
When the width of the foundation beam 15 in FIG. 10 is 400 mm, the thickness of the foundation slab 11 is 250 mm, and the floor slab 13 is 150 mm, the foundation beam 15 is laid sideways as shown in FIG. If the space 17 (refer FIG. 10) between the foundation slab 11 and the floor slab 13 is eliminated also as the foundation beam 16 made, the thickness of the floor slab 13 and the foundation slab 11 can be ensured as it is. At the same time, it is based on the idea that the upper surface 13u of the floor slab 13 can also coincide with the upper surface 16u of the foundation beam 16.
[0012]
If it does in this way, the foundation slab 11 and the floor slab 13 will become one, and will become one superposition slab 18. This not only forms the floor or soil, but also has the ability to transmit the load entering from the pillars and floor to the ground.
[0013]
Since this overlap slab does not need to reveal the boundary with the foundation beam, simply installing a formwork (not shown) that defines the perimeter of the foundation, a series of concrete placement of the foundation beam and the overlap slab There are advantages that can be built with. Further, as a result of laying the foundation beam on its side, the foundation becomes thinner and the total excavation has to be carried out, but the root cutting can be made shallower than in the case of FIG.
[0014]
If this structure is represented three-dimensionally, the foundation beam 16 exists under the column 1c as shown in FIG. In this case, the load from the column 3 is transmitted from the superposed slab 18 to the ground 6 through the foundation beam 16, and bending due to the ground reaction force acting on the superposed slab is countered by the foundation beam 16. However, for the sake of calculation, if the basic beam is regarded as a one-dimensionally extending member and the propagation of force to the superimposed slab is ignored, the introduction of complicated structural analysis and advanced calculation methods can be avoided. There are advantages.
[0015]
However, the superposed slab 18 is reinforced by the surface lattice 18a as can be seen from FIG. 8A, and as shown in FIG. 8B, the respective foundation beams 16 1 and 16 2 intersecting each other. In addition, the reinforcing bar frame 16a surrounded by the hoop bars 16a 1 is required. In other words, this type of solid foundation still has a complicated structure for assembling reinforcing bars, and it is far from eliminating or reducing the rebar assembling and arranging work that require a lot of labor.
[0016]
In addition, if such a solid foundation is applied to a lightweight S building, when the beam span and pitch of the building are large, the foundation beam where the load is concentrated needs to have durable strength and rigidity. As a result, the height of the foundation beam corresponding to it (400 mm in the above example) must be ensured. In this case, even if it is known that the thickness of the superimposed slab becomes excessive, there is also a problem that it is necessary to fill with concrete up to the height of the foundation beam.
[0017]
The present invention has been made in view of the above-described problems. The purpose of the present invention is to reduce the amount of excavation by thinning the foundation even when the column spacing is relatively large in an S structure which is a relatively light building. By providing a direct foundation structure such as a steel building that achieves reduction, reduction of concrete formwork assembly work, simplification of rebar assembly structure, reduction of concrete placement, shortening of construction period by avoiding repeated curing, etc. is there.
[0018]
[Means for Solving the Problems]
The present invention is applied to a mat-type foundation structure which is a low-rise steel structure building of up to about 2 or 3 stories and is installed to spread over the entire bottom surface of the building. 1 (a) and 2 (a), the foundation structure is not provided with a reinforcing beam protruding upward or a foundation beam forming a peripheral portion, but only a foundation slab. The upper surface 1a is positioned above the ground GL so as to exhibit the function of a floor slab, and is formed of a single mat 1 reinforced by reinforcing bars 4 assembled in a grid pattern on a plane. The steel column 3 is directly attached to the mat 1, and the periphery 1b of the steel column (see FIG. 2A) or the column row portion 1c (see FIG. 5) protrudes downward. The flat grid-like reinforcing bars 4 are provided with two stages (reinforcement 4U, 4L) in the upper layer portion and the lower layer portion in the column periphery 1b or the column array portion 1c, and in other portions, the upper layer portion A separate one-stage (reinforcement 4M) independent of each of the upper and lower plane grids is applied to the middle layer below the plane grid. The stress generated on the foundation is countered by the single mat 1 spreading as a surface, while the vertical load can be transmitted to the ground 6 via the mat surface.
[0019]
【The invention's effect】
According to the present invention, the foundation slab and the floor slab are formed by a single mat that is integrated vertically, so that the load from the column is also transmitted to the upper part of the mat corresponding to the floor slab. The burden on the lower part of the mat corresponding to is reduced.
[0020]
Even if the stress generated in the foundation around the column base increases due to the large span and pitch of the beams used in the building, it is burdened by propagating to the mat that spreads as a surface reinforced by reinforcing bars stretched in all directions. Is distributed. Excessive concentration at locations where mechanical balance should be achieved is eliminated, and the strength and rigidity imparted to the mat can be reduced.
[0021]
In other words, there is no high-strength and high-rigidity foundation beam as described in the section of the prior art, so a thick mat corresponding to that is not required, and the foundation structure can be further thinned. Reinforcement with reinforcing bars can be done in the form of a plane lattice, which greatly simplifies the rebar assembly work. In some cases, even a slightly soft ground can be applied, and ground reinforcement work can be reduced.
[0022]
Needless to say, the amount of excavation at the time of root cutting is significantly reduced by thinning the mat, and excavation and backfilling operations can be suppressed to a small scale. The foundation consisting of a single mat greatly contributes to the reduction of construction period and cost, such as simplification of formwork and bar arrangement work, minimum number of concrete placements, and shortening of the curing period.
[0023]
Since the mat thickness is locally increased by projecting the column periphery or column row part downward, not only can the proof strength be increased at that part, but also the concrete placement amount at other parts can be greatly increased. You can save.
[0024]
The upper and lower layers of the mat are arranged in two layers in the upper and lower layers of the mat around the columns and column rows, and the upper and lower layers are located in the middle layer that is below the plane lattice of the upper layer at locations other than the columns and column columns. Since a separate one-stage bar arrangement independent of each of the plane grids of the above is provided, it is possible to obtain a sufficient thin mat reinforcement while avoiding partial excessive reinforcement and saving the bar arrangement material.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Below, direct foundation structures, such as a steel frame building concerning the present invention, are explained in detail based on a drawing showing the embodiment. FIG. 1 is a perspective view of a foundation structure formed of a single mat 1 in which parts corresponding to the foundation slab and floor slab described in the section of the prior art are integrated vertically.
[0026]
This is suitable for low-rise steel buildings with a relatively large span L S and pitch L P of the beam 2 up to about 2 or 3 stories as shown in FIG. It is provided to spread throughout.
[0027]
As shown in FIG. 2 (a), the foundation structure 1 has a single mat shape in which the upper surface 1a is located above the ground GL so that it can function not only as a foundation slab but also as a floor slab. Is formed.
[0028]
Such a mat 1 is not provided with a reinforcing beam 12 as shown in FIG. 6 or a foundation beam 16 (see FIG. 9) as shown in FIG. Moreover, it is a single mat reinforced by a large number of reinforcing bars 4a, 4a which are flat and assembled in a lattice pattern.
[0029]
As shown in FIG. 2 (a), the steel column 3 is directly attached to the mat 1 with an anchor bolt 5 or the like, and the stress generated in the foundation is countered by a single mat spreading as a surface, while the vertical load is It is transmitted to the ground 6 through the mat surface. As can be seen from FIG. 1, the base structure 1 has a column 1b protruding downward, and the mat thickness is locally large at that portion, but the other portions are thin overall, generally forming a single board. is doing.
[0030]
In order to reinforce such a mat, the upper layer portion and the lower layer portion of the entire surface are each provided with a single step, that is, two steps of reinforcing bars 4U and 4L in total (see FIG. 2A). . Since the mat does not include beams, it is not necessary to incorporate a rebar frame using hoop bars. For example, 13 mm diameter rebar bars 4a and 4a are connected sequentially by binding wires to form a large number of lattices. Is sufficient. By the way, the end of each step is folded down or up, and the bar arrangement is integrated by tying it down, etc., but the other part is simply a large number of lattices spreading as a plane .
[0031]
In the case of an S structure (steel structure) building, especially in the case of a factory or warehouse building, or a simple office building, the span of the beam is generally increased in order to secure a large space, unlike a general residential house. Of course, the beam pitch is often increased, but the normal pitch is selected to be shorter than the span (see FIG. 4).
[0032]
As described in the section of the prior art, since the S structure is lighter than the RC structure or the SRC structure, the load on the foundation is small. However, when the span and pitch of the beam are large, the foundation is subjected to a large bending due to the load entered from the column although it is lightweight in the conventional foundation structure. However, in the present invention, the stress (mainly bending stress, shear stress, etc.) generated in the foundation by integrating the foundation slab and the floor slab is also applied to the portion corresponding to the floor slab, so that I try to suppress the thickening.
[0033]
On the other hand, from the viewpoint of construction, the floor slab and the foundation slab are formed as a single mat at the same time. Therefore, compared to the case where the foundation slab and the floor slab are separately constructed, it is more effective for placing concrete and curing. The required time is halved and the construction period is greatly shortened. Since there are no beams, the assembly work of the reinforcing bars 4 (see FIG. 2) becomes simple, and the simplification of the entire construction progresses rapidly.
[0034]
Since the foundation structure does not include foundation beams that are regarded as wires for calculation, it is indispensable to design a flat mat that pursues three-dimensional deformation and two-dimensional propagation of stress. As a result of the dispersion of the load acting on the ground as described above, the stress level (ground pressure) of the ground is also reduced. Therefore, it can be applied to soft ground where it is not easy to install independent footing foundations or continuous footing foundations, or it can be started without any significant ground improvement, and the scope of application of the foundation structure according to the present invention is extremely wide. Become.
[0035]
As can be seen from the above description, this foundation structure does not have a foundation beam, but is a mat that integrates a foundation slab and a floor slab, so the thickness is determined regardless of the dimensions required for the foundation beam. be able to. Since the load is distributed in the mat, a mat thinner than the thickness required for the foundation beam is realized. For example, the thickness around the pillar 1b (see FIG. 2A) can be designed to be 250 millimeters, and the rest is 150 millimeters.
[0036]
In order to function as a floor slab as well as making the mat thinner, the upper surface is made 50 mm higher than the ground, so even if it includes the laying cost of crushed stone 7 and the placing cost of throwing away kon 8 The amount of excavation when cutting is significantly reduced. Therefore, the backfilling work is greatly reduced, and the labor and cost required for the residual soil treatment can be reduced. As shown in FIG. 8, the consumption of mortar for level adjustment of the floor surface is not necessary, and the amount of placing concrete is reduced as a whole, and the construction material is greatly reduced.
[0037]
Incidentally, in FIG. 1, only the periphery of the column is thicker than the others, but if there are parts where several columns are arranged in a straight line, the stress generated on the foundation by increasing the thickness of the column array as in the case of the columns, although not shown. It is better to use a mat with a structure that is easier to counter.
[0038]
FIG. 3A shows an example in which the upper layer portion and the lower layer portion of the entire surface of the mat 1 are provided with one step of reinforcing bars 4U and 4L. In each step, the density around the column 1b is, for example, a quadruple density. And that part will be strengthened. Further, at the location 1c that becomes the column, it is also possible to arrange reinforcement with double the density along the edge as shown on the left side in the drawing. Incidentally, the throwing-out container 8 may be provided on the entire surface, but there may be a case where only the periphery of the pillar may be provided as shown in FIG. 2A, or it may not be required at all.
[0039]
FIG. 4 is an example of the basic structure 1A when the entire mat has the same thickness. Also in this case, as shown in FIG. 2 (b), two stages of reinforcing bars 4U and 4L are applied in the upper and lower layers. Thus, if the entire mat has the same thickness, ground excavation and bar arrangement become extremely simple, and workability is improved. As shown in FIG. 3 (b), it is also possible to keep the arrangement of the reinforcing bars only in the column periphery 1b.
[0040]
By the way, depending on the distribution of various stresses generated in the foundation, it is possible to arrange 4M bars (see the one-dot chain line in FIG. 5) with only one step in the middle layer at locations far from the column, and two steps on the entire surface. Reinforcing bars are consumed less than reinforcing, and excessive reinforcement can be avoided. In any case, since the surface lattice is stretched in the mat, the stress in the foundation easily propagates to the entire mat.
[0041]
The concrete can be placed once except for the throwing away container 8, and the formwork assembled at that time is only around the mat. Preparatory work required for placing is simplified. Curing after placement is only required once, and the burden on the worker, including the work to disassemble the formwork, is greatly reduced. Needless to say, the construction period can be shortened.
[0042]
8 (a) and 8 (b) listed as the prior art is designed to counter most of the stress generated in the foundation with the foundation beam incorporating the reinforcing bar frame. There is no idea of causing the superimposed slab 18 constituting the slab to bear even bending stress. In addition, since the foundation beams that are directly subjected to the force from the columns are reinforced intensively, the dispersion of the force is also hindered.
[0043]
On the other hand, generally speaking, the present invention avoids concentration by absorbing the stress generated in the mat over the entire surface of the mat, and in this respect, the structure is very contrasting with FIG. The present invention promotes the dispersion of stress and intends to further reduce the thickness of the foundation. As shown in FIG. 2, the light steel structure foundation generally adopts a pin support type in which a column base is fixed by an anchor bolt 5 via a support plate. May be applied, and may be selected as appropriate in consideration of other design factors.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a basic structure according to the present invention.
FIGS. 2A and 2B are cross-sectional views of a basic structure, and FIGS. 2A and 2B are enlarged views around a column.
FIG. 3 is a perspective view showing a bar arrangement form of a basic structure, in which (a) and (b) are both vertically aligned to form two steps on the entire surface.
FIG. 4 is a perspective view of an example of a mat having a substantially constant thickness and a steel building built on the mat.
FIG. 5 is a perspective view of a bar arrangement that is one-tiered around the pillars and at places other than the pillar row portions.
FIG. 6 is a perspective view of a known solid foundation.
7 is a cross-sectional view taken along line VII-VII in FIG.
8 is a slab according to the prior art in which a foundation beam and a superposed slab are integrated, in which (a) is a cross-sectional view taken along line VIII-VIII in FIG. 9, and (b) is a cross-sectional view taken along line IX-IX. Figure.
FIG. 9 is a perspective view showing a framework of a slab in the prior art in which a foundation beam and a superimposed slab are integrated.
FIG. 10 is a cross-sectional view of the foundation structure before that, which is the basis for devising the foundation structure of FIG. 8;
[Explanation of symbols]
1 ... mat (substructure), 1a ... top, 1b ... pillar around, 1c ... Hashiraretsu portion, 2 ... beams, 3 ... steel column, 4U, 4L, 4M ... reinforcement, L S ... beam span, L P ... Pitch of beams, GL ... Ground.

Claims (1)

2・3階建て程度までの低層鉄骨造建物であって、建物の底面部の全体に広がって設置されるマット式の基礎構造において、
上記基礎構造は、上方に突出する補強梁や周縁部分等を形成する基礎梁が設けられることなく、基礎スラブのみならず床スラブの機能も発揮するように上面が地上より上方に位置し、平面をなして格子状に組み立てられた鉄筋によって補強されている一枚のマットで形成され、
該マットには鉄骨柱が直接取りつけられ、その鉄骨柱周りまたは柱列部分が下方へ突出し、それ以外は全体的に薄くなっており、
前記平面格子状の鉄筋は、柱周りまたは柱列部分では上層部および下層部に計二段が施され、それ以外の箇所では該上層部の平面格子よりは下方となる中層部に前記上層部および下層部の各平面格子から独立した別体一段が施され、
基礎に生じる応力には面として広がる一枚のマットで対抗させる一方、上下方向荷重はマット面を介して地盤へ伝達できるようにしたことを特徴とする鉄骨造建物などの直接基礎構造。
It is a low-rise steel structure building of up to about 2 or 3 stories, and it is spread over the entire bottom of the building.
The above-mentioned foundation structure is not provided with a reinforcing beam protruding upward or a foundation beam forming a peripheral portion, etc., and the upper surface is located above the ground so that it functions not only as a foundation slab but also as a floor slab. Formed with a single mat that is reinforced by reinforcing bars assembled in a grid pattern
Steel mats are directly attached to the mat, and the periphery of the steel column or the column row part protrudes downward, and the rest is thin overall.
The planar grid-like reinforcing bars are provided with a total of two steps on the upper layer portion and the lower layer portion around the column or in the column row portion, and the upper layer portion on the middle layer portion that is lower than the planar lattice of the upper layer portion in other portions. And one separate step independent from each plane lattice of the lower layer,
A direct foundation structure such as a steel-frame building, in which the stress generated in the foundation is countered by a single mat that spreads as a surface, while the vertical load can be transmitted to the ground via the mat surface.
JP2001221227A 2001-07-23 2001-07-23 Direct foundation structure such as steel structure building Expired - Lifetime JP4036425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221227A JP4036425B2 (en) 2001-07-23 2001-07-23 Direct foundation structure such as steel structure building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221227A JP4036425B2 (en) 2001-07-23 2001-07-23 Direct foundation structure such as steel structure building

Publications (2)

Publication Number Publication Date
JP2003027496A JP2003027496A (en) 2003-01-29
JP4036425B2 true JP4036425B2 (en) 2008-01-23

Family

ID=19054925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221227A Expired - Lifetime JP4036425B2 (en) 2001-07-23 2001-07-23 Direct foundation structure such as steel structure building

Country Status (1)

Country Link
JP (1) JP4036425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223525B1 (en) 2011-12-14 2013-01-21 현대중공업 주식회사 The foundation a method of construction of sea the infrastructure
CN109881702A (en) * 2019-03-22 2019-06-14 中国十九冶集团有限公司 Tower crane and its construction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6058470B2 (en) * 2013-05-29 2017-01-11 株式会社住金システム建築 Column base fixing structure for steel columns

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101223525B1 (en) 2011-12-14 2013-01-21 현대중공업 주식회사 The foundation a method of construction of sea the infrastructure
CN109881702A (en) * 2019-03-22 2019-06-14 中国十九冶集团有限公司 Tower crane and its construction method

Also Published As

Publication number Publication date
JP2003027496A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
JP6543084B2 (en) Structure
JP4762406B2 (en) High-rise building
JP2000054409A (en) Work execution method of top-down construction stanchion in underground excavated space peripheral part
JP3608568B1 (en) The structure of the foundation of the building consisting of the ground improvement body and the solid foundation, and the foundation construction method for the ground improvement
JP4036425B2 (en) Direct foundation structure such as steel structure building
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
JP2004100157A (en) Retaining wall structure and its construction method
CN216616975U (en) Reinforced structure with existing reinforced concrete column of space steel framework restraint
CN109944324A (en) Steel concrete combo box trestle and the combination assembled structural system of reinforced concrete frame column
JP3731394B2 (en) Building basic structure
JP6886811B2 (en) Foundation structure and method of constructing foundation structure
RU87181U1 (en) REINFORCED CONCRETE FRAME OF MULTI-STOREY BUILDING OF ARKOS SYSTEM
KR20050021611A (en) Apparatus for enhancing shear strength of column slab connection part and structure thereof using the same
CN112922379B (en) Building reinforcing method
KR102585526B1 (en) Composite frame with end-buried girder joint
JP2002285562A (en) Foundation construction for building
JPH01255507A (en) Manufacture of prestress introduction semi-precast concrete component for long span slab
CA2119296C (en) Modular concrete floor slab
JPH03290529A (en) Retaining wall and building method therefor
JPS6062335A (en) Wooden column base-buried foundation
JP2023144836A (en) building foundation structure
JP2003184318A (en) Method for temporarily supporting building and structure
JPH0960492A (en) Structure and execution method for timbering wall
JPH0427923Y2 (en)
JPH1018304A (en) Mat foundation structure and its construction method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051006

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4036425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term