JP4033417B2 - Bonding structure of dissimilar metal materials - Google Patents

Bonding structure of dissimilar metal materials Download PDF

Info

Publication number
JP4033417B2
JP4033417B2 JP11084798A JP11084798A JP4033417B2 JP 4033417 B2 JP4033417 B2 JP 4033417B2 JP 11084798 A JP11084798 A JP 11084798A JP 11084798 A JP11084798 A JP 11084798A JP 4033417 B2 JP4033417 B2 JP 4033417B2
Authority
JP
Japan
Prior art keywords
copper
aluminum
joining
joint
free edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11084798A
Other languages
Japanese (ja)
Other versions
JPH11300483A (en
Inventor
藤 尊 彦 新
藤 義 康 伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP11084798A priority Critical patent/JP4033417B2/en
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to CA002254349A priority patent/CA2254349C/en
Priority to US09/193,845 priority patent/US6492037B2/en
Priority to KR1019980049402A priority patent/KR100315590B1/en
Priority to CA002432944A priority patent/CA2432944C/en
Priority to EP08010598A priority patent/EP1962353A3/en
Priority to CNB981249485A priority patent/CN1187160C/en
Priority to EP98121581A priority patent/EP0923145A3/en
Publication of JPH11300483A publication Critical patent/JPH11300483A/en
Priority to US10/270,156 priority patent/US6692841B2/en
Application granted granted Critical
Publication of JP4033417B2 publication Critical patent/JP4033417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、異なる特性を有する異種金属材料の接合構造に関し、さらに詳しくは電力用遮断器に使用される通電接触子、あるいはアーク接触子のアルミニウムもしくはアルミニウム合金と、銅もしくは銅合金の摩擦圧接による接合構造に関する。
【0002】
【従来の技術】
従来、棒状または管状の異材継手の接合には、摩擦圧接や拡散接合などが行われる。摩擦圧接の例を、図1を用いて説明する。図1(1)に示すように、材料特性の異なる同径の金属材料1(アルミニウムもしくはアルミニウム合金)および2(銅もしくは銅合金)を、圧接装置のチャックで掴み、一方を回転させて接合すべき部分を摩擦エネルギーで加熱し、軸方向の加圧力Pによりアプセット加圧して行う。接合後の軸方向断面は、図1(2)に示すように、同径の金属材料1と2が接合され、それぞれの材料強度に応じてバリ5の量と形状が異なった状況を呈する。
【0003】
従来の継手の接合においては、接合部材の衝撃強度が小さいため、接合部の信頼性が低いことが問題である。この傾向は、摩擦圧接に限らず、冷間圧接、熱間圧接、拡散接合、爆発圧接、鍛接、超音波接合、ろう付け、はんだ付け、抵抗溶接、接着剤を用いる接合のいずれの方法の異種材料間の接合構造においても同様である。
【0004】
そこで、従来、異種材料の摩擦圧接においては、熱膨張係数の大きな材料の直径を他の材料のそれよりも大きくして接合することにより、接合界面に発生する残留応力を緩和して接合強度を向上させている(特開平6−47570号公報)。また、アルミニウム材と銅材の熱間圧接においては、アルミニウム材に開先角15度〜45度の凸状にした銅材を突き合わせて通電加熱により接合し、引張り強度を向上させている(特開平4−143085号公報)。また、セラミックスと金属との接合においては、熱応力緩和のためにセラミックス部材の接合界面の周縁部における一部と接合体表面とのなすセラミックス構成角度を80度以下又は、100度以上に設定する(特開平1−282166号公報)。さらに,熱膨張率の異なる部材同士の接合においては、熱応力緩和のために、熱膨張率の小さい部材の接合界面縁部を接合界面方向に見て所定値以上の半径を有する曲面状に形成している(特開平1−282167号公報)。
【0005】
上述した従来の方法は、いずれも残留応力緩和、熱応力緩和、引張り強度向上を目的にした方法であって、接合部材の衝撃強度を高め、接合部の信頼性を高める方法ではない。
【0006】
【発明が解決しようとする課題】
以上述べたように、材料特性の異なる異種材料の接合においては、接合条件の最適化により、静的な継手強度については、問題は無い。すなわち、異種金属接合部材の引張り強度は、中心部と接合端部では変化がない。しかし、衝撃強度については、接合端部で著しく低下し、継手全体として低いことが明らかであり、接合部材の低い衝撃強度が問題であった。
【0007】
そこで、本発明は、材料特性の異なる異種金属材料の接合において、接合部材の衝撃強度を高め、信頼性の高い接合構造を得ることを目的としている。
【0008】
【課題を解決するための手段】
本発明は、下記の事項をその特徴としている。
(1)摩擦圧接により接合した棒状のアルミニウムもしくはアルミニウム合金と、棒状の銅もしくは銅合金の接合構造において、
アルミニウムもしくはアルミニウム合金側の接合面であってこの接合面の外縁部を形成する面と、前記アルミニウムもしくはアルミニウム合金側の自由縁と、がなす角度、および、
銅もしくは銅合金側の接合面であってこの接合面の外縁部を形成する面と、前記銅もしくは銅合金側の自由縁と、がなす角度、
が共に90度未満となるように設定したことを特徴とする異種金属材料の接合構造。(2)摩擦圧接により接合したパイプ状のアルミニウムもしくはアルミニウム合金と、パイプ状の銅もしくは銅合金の接合構造において、
アルミニウムもしくはアルミニウム合金側の接合面であってこの接合面の外縁部を形成する面と、前記アルミニウムもしくはアルミニウム合金側のパイプ外側の自由縁と、がなす角度、
アルミニウムもしくはアルミニウム合金側の接合面であってこの接合面の内縁部を形成する面と、前記アルミニウムもしくはアルミニウム合金側のパイプ内側の自由縁と、がなす角度、
銅もしくは銅合金側の接合面であってこの接合面の外縁部を形成する面と、前記銅もしくは銅合金側のパイプ外側の自由縁と、がなす角度、
および
銅もしくは銅合金側の接合面であってこの接合面の内縁部を形成する面と、前記銅もしくは銅合金側のパイプ内側の自由縁と、がなす角度、
が共に90度未満となるように設定したことを特徴とする異種金属材料の接合構造。
【0011】
本発明を用いると、摩擦圧接により接合したアルミニウム材(アルミニウムもしくはアルミニウム合金)と銅材(銅もしくは銅合金)から成る接合構造において、衝撃強度を高め、信頼性の高い接合構造を得ることができる。
【0012】
このような傾向は、摩擦圧接のみならず、冷間圧接、熱間圧接、拡散接合、爆発圧接、超音波接合、ろう付け、はんだ付け、抵抗溶接、溶融金属注入、鋳継ぎ、接着剤を用いた接合のいずれの方法においても、従来の90度の値よりも高い値を示し、これにより銅−アルミニウム部材の信頼性は大幅に向上した。
【0013】
【発明の実施の形態】
以下に、本発明を実施例および参考例によりさらに説明する。
参考例1
異種金属材料の摩擦圧接による接合の例として、銅材とアルミニウム材の接合について説明する。図2は棒状の異種金属材料の継手の接合構造、また図3はパイプ状の異種金属材料の継手の接合構造を示した図である。図2(1)および図3(1)は、それぞれ、棒状およびパイプ状の接合構造の従来例であって、アルミニウム材1と銅材2の接合面のなす角度が90度である。
【0014】
図2および図3に示すように、アルミニウム材1と銅材2の接合面端部で自由となす角度を変えた接合部材を作製し、両部材を摩擦圧接により接合して接合構造を作成する。すなわち、図2(2)および(4)、および図3(2)に示すように、アルミニウム材1と銅材2の接合面端部で自由縁Xなす角度θ1を120度以上になるように設定する。また、図2(3)および(5)、および図3(3)に示すように、アルミニウム材1と銅材2の接合面端部で自由縁Xなす角度θ2を55度から85度の範囲内になるように設定する。
【0015】
また、銅材とアルミニウム材の接合面端部で自由縁となす角度を40度から140度の範囲に変化させた接合部材を作製し、引張り試験と衝撃試験を行った。引張り試験の結果を、図4に、また衝撃試験の結果を、図5に示す。なお、引張り強度比および衝撃強度比は、いずれも90度における強度を1とした場合の割合を示した。
【0016】
図4から分るように、引張り強度は、接合面端部で自由縁なす角度に関係なく一定の値を示した。しかし、衝撃強度については、図5から分るように、銅材の接合面端部で自由縁となす角度が50度から85度の間、または120度以上のとき、従来の90度の値よりも高い値を示している。
【0017】
実施例1
図6は棒状の異種金属材料の継手の接合構造、また図7はパイプ状の異種金属材料の継手の接合構造を示した図である。図6(1)および図7(1)は接合構造の従来例であって、アルミニウム材1と銅材2の接合面のなす角度が90度である。
【0018】
参考例2
アルミニウム材(アルミニウムまたはアルミニウム合金)と銅材(銅または銅合金)を摩擦圧接により接合すると、摩擦熱で高温になり両元素が拡散して、Al2Cu、AlCu、AlCu2などの金属間化合物からなる反応層が形成される。このような反応層を有する接合構造について、反応層の厚さと、引張強度あるいは衝撃強度との関係を調べるため引張試験と衝撃試験を行った。
【0019】
アルミニウム材と銅材の接合面端部で自由縁なす角度40度から140度の範囲に変化させた接合材を作製し、これを供試材として引張試験と衝撃試験を行った。引張試験の結果を図8および図9に、また衝撃試験の結果を図10および図11に示す。なお、引張強度比および衝撃強度比は、いずれも90度における強度を1としたときの割合を示した。
【0020】
図8および図9から分るように、引張強度については、両材料の接合面端部で自由縁となす角度に関係なく一定の値を示した。しかし、衝撃強度については、図10および図11から分るように、アルミニウム材と銅材の接合面端部で自由とな角度がともに90度未満、またはどちらか一方が90度の場合は、残りの材料の接合面端部が自由縁となす角度が90度未満であると、従来例よりも高い値を示している。
【0021】
実施例3
アルミニウム材(アルミニウムまたはアルミニウム合金)と銅材(銅または銅合金)を摩擦圧接により接合すると、摩擦熱で高温になり両元素が拡散して、AlCu、AlCu、AlCuなどの金属間化合物からなる反応層が形成される。このような反応層を有する接合構造について、反応層の厚さと、引張強度あるいは衝撃強度との関係を調べるため引張試験と衝撃試験を行った。
【0022】
図12に引張試験の結果を示す。引張強度比はアルミニウムの合金の引張強度を100としたときの割合で示した。
また、図13に衝撃試験の結果を示す。衝撃強度比は反応層の厚さが15μmの衝撃強度を1としたときの割合で示した。
【0023】
図12および図13から分るように、反応層の厚さが20μm以下では、引張強度も衝撃強度も高い値を示している。しかし、反応層の厚さが20μm以上になると引張強度は変化しないが、衝撃強度は低下の傾向を示す。
【0024】
参考例3
異種金属材料の接合構造を電力用遮断器の通電接触子材料とに使用した例について述べる。通電接触子は閉時の場合、固定側と可動側は接触しているが、開時の場合、可動側の通電接触子が操作機構部に連結して固定側から離れる。一般的に可動側の通電接触子は、軽量で導電率の高いアルミニウム材から構成されており、可動側と固定側の接触子が離れるときに生じる微小のアークによって接点部付近が溶損する。この溶損部分は開閉操作回数の増加とともに大きくなり、開時のときの電流手段特性が低下する。通電接触子の形状が小さくなると、さらにこの傾向は大きくなる。
【0025】
可動側の通電接触子の接点部分をアルミニウム材よりも融点および導電率が高い銅材、それ以外の部分をアルミニウム材とし、接合界面を異種金属材料の接合構造とした。すなわち、図14に示すように、銅材とアルミニウム材を摩擦圧接して接合界面を、銅材において接合面端部で自由縁Xとなす角度θが50度から85度の間、または120度以上に設定する。または、図15および図16に示すように、銅材とアルミニウム材を摩擦圧接して接合界面を、接合面端部で自由縁Xとなす角度θを銅材とアルミニウム材共に90度未満、または、どちらか一方が90度の場合は、残りの材料の接合面端部で自由縁となす角度θが90度未満となるように設定する。
【0026】
従来の銅材とアルミニウム材の摩擦圧接部材は、衝撃強度が低く、接合構造の信頼性が低かったため、高導電率の銅−アルミニウム通電接触子は適用できなかった。しかし、本発明の接合構造とすることで、アルミニウム材の通電接触子に変えて使用できるようになった。可動側の通電接触子の接点部分を銅材に置き換えそれ以外の部分を従来の軽量のアルミニウム材とすることで導電性が高く、溶損が小さく、軽量で、また形状が従来径の半分に小さくなっても良好に大電流の開閉が行える通電接触子とできた。この効果は、接触子接点部が銅、銅合金で、接点部以外が、アルミニウム材またはアルミニウム合金から構成された場合、同様の傾向を示す。
【0027】
また接合面が、接点部に近いと開閉時におけるアークの熱により、接合面がダメージを受け、衝撃強度の低下となるため、接合面は接点部から離すことが望ましい。また、接合部での電気抵抗が高いと通電時に接合部が加熱し、拡散接合層が成長して強度が低下するため、接合部の電気抵抗は、母材の電気抵抗と同等である事が望ましい。
【0028】
【発明の効果】
本発明によれば、摩擦圧接により接合したアルミニウムもしくはアルミニウム合金と、銅もしくは銅合金の接合構造において、銅もしくは銅合金の接合面端部で自由縁となす角度を接合部での応力集中を小さくするように設定することで、衝撃強度が高く、信頼性の高い異種材料間の接合構造が達成できる。
【図面の簡単な説明】
【図1】 従来の摩擦圧接による異種金属材料の接合の説明図である。
【図2】 棒状の異種金属材料の継手の接合構造の参考例を示す図である。
【図3】 パイプ状の異種金属材料の継手の接合構造の参考例を示す図である。
【図4】 異種金属材料の接合構造における接合面端部で自由縁となす角度と引張強度との関係を示すグラフである。
【図5】 異種金属材料の接合構造における接合面端部で自由縁となす角度と衝撃強度との関係を示すグラフである。
【図6】 棒状の異種金属材料の継手の接合構造の実施例を示す図である。
【図7】 パイプ状の異種金属材料の継手の接合構造の他の実施例を示す図である。
【図8】 図6、図7に係る異種金属材料の接合構造における接合面端部で自由縁となす角度と、引張強度との関係を示すグラフである。
【図9】 図6、図7に係る異種金属材料の接合構造における接合面端部で自由縁となす角度の一方が90度で、残りの材料の接合面端部で自由縁となす角度と、引張強度との関係を示すグラフである。
【図10】 図6、図7に係る異種金属材料の接合構造における接合面端部で自由縁となす角度と、衝撃強度との関係を示すグラフである。
【図11】 図6、図7に係る異種金属材料の接合構造における接合面端部で自由縁となす角度の一方が90度で、残りの材料の接合面端部で自由縁となす角度と、衝撃強度との関係を示すグラフである。
【図12】 異種金属材料の接合面における金属間化合物の反応層の厚さと、引張強度との関係を示すグラフである。
【図13】 異種金属材料の接合面における金属間化合物の反応層の厚さと、衝撃強度との関係を示すグラフである。
【図14】 本発明の異種金属材料の接合構造(接合面端部で自由縁となす角度が55度から85度)を採用した電力用遮断器の通電接触子の概略構造を示す図である。
【図15】 本発明の異種金属材料の接合構造(接合面端部で自由縁となす角度の一方が90度で、残りの材料の接合面端部で自由縁となす角度が90度未満)を採用した電力用遮断器の通電接触子の概略構造を示す図である。
【図16】 本発明の異種金属材料の接合構造の参考例を採用した電力用遮断器の通電接触子の概略構造を示す図である。
【符号の説明】
1 アルミニウム材(アルミニウムまたはアルミニウム合金)
2 銅材(銅または銅合金)
3 摩擦圧接装置のチャックの固定軸
4 回転軸
5 バリ
P 加圧力
X 自由縁
θ1 接合面端部で自由縁となす角度が120度以上
θ2 接合面端部で自由縁となす角度が55度から85度
θ3 接合面端部で自由縁となす角度が90度未満
θ4 接合面端部で自由縁となす角度の一方が90度で、他の金属材料の自由縁となす角度が90度未満
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joining structure of dissimilar metal materials having different characteristics. More specifically, the present invention is based on friction contact between aluminum or aluminum alloy as an electric contactor or arc contactor used in a power circuit breaker and copper or copper alloy. It relates to the joint structure.
[0002]
[Prior art]
Conventionally, friction welding, diffusion bonding, or the like is performed for joining rod-like or tubular dissimilar joints. An example of friction welding will be described with reference to FIG. As shown in FIG. 1 (1), metal materials 1 (aluminum or aluminum alloy) and 2 (copper or copper alloy) having the same diameter and different material characteristics are gripped by a chuck of a pressure welding apparatus, and one of them is rotated and joined. The power portion is heated with friction energy, and upset pressurization is performed with an axial pressure P. As shown in FIG. 1 (2), the cross-section in the axial direction after joining presents a situation in which the metal materials 1 and 2 having the same diameter are joined and the amount and shape of the burr 5 are different depending on the strength of each material.
[0003]
In joining conventional joints, since the impact strength of the joining member is small, the reliability of the joint is low. This tendency is not limited to friction welding, but different from cold welding, hot welding, diffusion bonding, explosion welding, forging welding, ultrasonic welding, brazing, soldering, resistance welding, and bonding using adhesives. The same applies to the joint structure between materials.
[0004]
Therefore, conventionally, in friction welding of dissimilar materials, by joining with a material having a large thermal expansion coefficient larger than that of other materials, the residual stress generated at the joint interface is alleviated and the joint strength is increased. (Japanese Unexamined Patent Publication No. 6-47570). Also, in hot welding of aluminum material and copper material, a copper material made into a convex shape with a groove angle of 15 to 45 degrees is abutted against the aluminum material and joined by current heating to improve the tensile strength (special (Kaihei 1438305). Further, in the bonding of ceramics and metal, in order to reduce thermal stress, the ceramic constituting angle formed by a part of the peripheral portion of the bonding interface of the ceramic member and the surface of the bonded body is set to 80 degrees or less or 100 degrees or more. (JP-A-1-282166). Furthermore, when joining members with different coefficients of thermal expansion, in order to mitigate thermal stress, the joint interface edge of a member with a low coefficient of thermal expansion is formed in a curved shape having a radius greater than a predetermined value when viewed in the direction of the bond interface. (Japanese Patent Laid-Open No. 1-282167).
[0005]
The conventional methods described above are methods aimed at alleviating residual stress, thermal stress, and tensile strength, and are not methods that increase the impact strength of the joining member and increase the reliability of the joint.
[0006]
[Problems to be solved by the invention]
As described above, in joining different kinds of materials having different material characteristics, there is no problem with respect to static joint strength due to optimization of joining conditions. That is, the tensile strength of the dissimilar metal joining member does not change between the center portion and the joining end portion. However, the impact strength is remarkably lowered at the joint end, and it is clear that the joint as a whole is low, and the low impact strength of the joining member has been a problem.
[0007]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to increase the impact strength of a joining member and obtain a highly reliable joining structure when joining dissimilar metal materials having different material characteristics.
[0008]
[Means for Solving the Problems]
The present invention has the following features.
(1) In a joining structure of rod-shaped aluminum or aluminum alloy joined by friction welding and rod-like copper or copper alloy,
An angle formed by a joining surface on the aluminum or aluminum alloy side and forming the outer edge of the joining surface, and a free edge on the aluminum or aluminum alloy side, and
An angle formed by a bonding surface on the copper or copper alloy side and forming the outer edge of the bonding surface, and the free edge on the copper or copper alloy side,
Both are set so that it may become less than 90 degree | times, The joining structure of the dissimilar metal material characterized by the above-mentioned. (2) In the joint structure of pipe-like aluminum or aluminum alloy joined by friction welding and pipe-like copper or copper alloy,
An angle formed by a joint surface on the aluminum or aluminum alloy side and a surface forming the outer edge of the joint surface, and a free edge on the outer side of the pipe on the aluminum or aluminum alloy side,
An angle formed by a joint surface on the aluminum or aluminum alloy side and a surface forming the inner edge of the joint surface, and a free edge inside the pipe on the aluminum or aluminum alloy side,
An angle formed between a copper or copper alloy side joining surface and a surface forming the outer edge of the joining surface, and a free edge outside the pipe on the copper or copper alloy side,
and
An angle formed by a surface that forms the inner edge of the joint surface on the copper or copper alloy side and a free edge inside the pipe on the copper or copper alloy side,
Both are set so that it may become less than 90 degree | times, The joining structure of the dissimilar metal material characterized by the above-mentioned.
[0011]
According to the present invention, in a joint structure composed of an aluminum material (aluminum or aluminum alloy) and a copper material (copper or copper alloy) joined by friction welding, impact strength can be increased and a highly reliable joint structure can be obtained. .
[0012]
Such a tendency is not limited to friction welding, cold welding, hot welding, diffusion welding, explosive welding, ultrasonic welding, brazing, soldering, resistance welding, molten metal injection, casting, and adhesives are used. In any of the joining methods, a value higher than the conventional 90 ° value was exhibited, thereby greatly improving the reliability of the copper-aluminum member.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be further described with reference to Examples and Reference Examples .
Reference example 1
As an example of joining by friction welding of dissimilar metal materials, joining of a copper material and an aluminum material will be described. FIG. 2 is a view showing a joint structure of joints made of rod-like dissimilar metal materials, and FIG. 3 is a view showing a joint structure of joints made of pipe-like dissimilar metal materials. FIGS. 2 (1) and 3 (1) are conventional examples of rod-like and pipe-like joining structures, respectively, and the angle formed by the joining surfaces of the aluminum material 1 and the copper material 2 is 90 degrees.
[0014]
As shown in FIG. 2 and FIG. 3, a joining member is produced by changing the angle formed by the free edge at the joining surface end of the aluminum material 1 and the copper material 2, and both members are joined by friction welding. To do. That is, FIG. 2 (2) and (4), and as shown in FIG. 3 (2), so that the aluminum material 1 and the angle θ1 formed between the free edge X at the bonding surface end of the copper material 2 over 120 degrees Set to. Also, FIG. 2 (3) and (5), and as shown in FIG. 3 (3), of 85 degrees aluminum material 1 and the angle θ2 formed by the free edge X at the bonding surface end of the copper material 2 from 55 degrees Set to be within range.
[0015]
Moreover, the joining member which produced the angle which makes a free edge in the joint surface edge part of a copper material and an aluminum material from 40 degree to 140 degree range was produced, and the tension test and the impact test were done. The result of the tensile test is shown in FIG. 4, and the result of the impact test is shown in FIG. Note that the tensile strength ratio and the impact strength ratio are ratios when the strength at 90 degrees is 1.
[0016]
As can be seen from FIG. 4, the tensile strength showed a constant value irrespective of the angle between the free edge at the joint surface end. However, as can be seen from FIG. 5, the impact strength is 90 degrees when the angle formed with the free edge at the end of the copper joint surface is between 50 degrees and 85 degrees, or 120 degrees or more. Higher value.
[0017]
Example 1
FIG. 6 is a view showing a joint structure of a joint of rod-like dissimilar metal materials, and FIG. 7 is a view showing a joint structure of a joint of pipe-like dissimilar metal materials. FIGS. 6 (1) and 7 (1) are conventional examples of the joining structure, and the angle formed by the joining surfaces of the aluminum material 1 and the copper material 2 is 90 degrees.
[0018]
Reference example 2
When an aluminum material (aluminum or aluminum alloy) and a copper material (copper or copper alloy) are joined by friction welding, both elements are diffused by frictional heat and the reaction is made of an intermetallic compound such as Al2Cu, AlCu, AlCu2. A layer is formed. For the bonded structure having such a reaction layer, a tensile test and an impact test were conducted in order to investigate the relationship between the thickness of the reaction layer and the tensile strength or impact strength.
[0019]
To produce aluminum material and copper material bonding material was varied in a range from an angle 40 degrees 140 degrees formed by the free edge at the joint surface end of, a tensile test was carried out and impact test this as a test material. The results of the tensile test are shown in FIGS. 8 and 9, and the results of the impact test are shown in FIGS. The tensile strength ratio and the impact strength ratio are ratios when the strength at 90 degrees is 1.
[0020]
As can be seen from FIGS. 8 and 9, the tensile strength showed a constant value regardless of the angle formed with the free edge at the end of the joint surface of both materials. However, for the impact strength, 10 and as can be seen from FIG. 11, when the aluminum material and copper material free edge and such an angle formed are both less than 90 degrees at the joining surfaces the end of, or either of 90 degrees Shows a higher value than the conventional example when the angle formed by the edge of the joining surface of the remaining material with the free edge is less than 90 degrees.
[0021]
Example 3
When an aluminum material (aluminum or aluminum alloy) and a copper material (copper or copper alloy) are joined by friction welding, the frictional heat causes a high temperature and both elements diffuse, intermetallic compounds such as Al 2 Cu, AlCu, AlCu 2 A reaction layer is formed. For the bonded structure having such a reaction layer, a tensile test and an impact test were conducted in order to investigate the relationship between the thickness of the reaction layer and the tensile strength or impact strength.
[0022]
FIG. 12 shows the result of the tensile test. The tensile strength ratio is shown as a ratio when the tensile strength of the aluminum alloy is 100.
FIG. 13 shows the result of the impact test. The impact strength ratio is shown as a ratio when the impact strength when the thickness of the reaction layer is 15 μm is 1.
[0023]
As can be seen from FIGS. 12 and 13, when the thickness of the reaction layer is 20 μm or less, both the tensile strength and the impact strength are high. However, when the thickness of the reaction layer is 20 μm or more, the tensile strength does not change, but the impact strength tends to decrease.
[0024]
Reference example 3
An example in which a joining structure of dissimilar metal materials is used as a current-carrying contact material for a power circuit breaker will be described. When the energizing contact is closed, the fixed side and the movable side are in contact with each other. However, when the energizing contact is open, the movable energizing contact is connected to the operation mechanism unit and moves away from the fixed side. Generally, the movable-side energizing contact is made of an aluminum material that is lightweight and has high conductivity, and the vicinity of the contact portion is melted by a minute arc generated when the movable-side and fixed-side contacts are separated. The melted portion becomes larger as the number of opening / closing operations increases, and the current means characteristics at the time of opening deteriorate. This tendency is further increased when the shape of the energizing contact is reduced.
[0025]
The contact portion of the movable-side energizing contact was made of a copper material having a melting point and conductivity higher than that of an aluminum material, the other portion was made of an aluminum material, and the joining interface was a joining structure of dissimilar metal materials. That is, as shown in FIG. 14, the angle θ 2 between the copper material and the aluminum material by friction welding to form a joining interface between the copper material and the free edge X at the joining surface end is between 50 degrees and 85 degrees, or 120 Set at more than degree. Alternatively, as shown in FIG. 15 and FIG. 16, an angle θ 4 between the copper material and the aluminum material is friction-welded to form a joining interface and a free edge X at the end of the joining surface is less than 90 degrees for both the copper material and the aluminum material. or, one or the other in the case of 90 degrees, the angle theta 4 formed by the free edge at the joint surface end of the remaining material is set to be less than 90 degrees.
[0026]
Conventional friction-welded members made of copper and aluminum have low impact strength and the reliability of the joint structure, so that a high-conductivity copper-aluminum conducting contact cannot be applied. However, by using the joining structure of the present invention, it can be used instead of an aluminum-made conductive contact. Replacing the contact part of the current-carrying contact on the movable side with copper material, and replacing the other parts with conventional lightweight aluminum material, it has high conductivity, low erosion, light weight, and the shape is half the conventional diameter. Even if it became smaller, it was possible to make a current-carrying contactor that could switch large currents well. This effect shows the same tendency when the contact portion of the contact is made of copper or a copper alloy and the portion other than the contact portion is made of an aluminum material or an aluminum alloy.
[0027]
Further, if the joint surface is close to the contact portion, the joint surface is damaged by the heat of the arc at the time of opening and closing and the impact strength is lowered. Therefore, it is desirable to separate the joint surface from the contact portion. Also, if the electrical resistance at the joint is high, the joint will be heated when energized, and the diffusion junction layer will grow and the strength will decrease, so the electrical resistance at the joint may be equivalent to the electrical resistance of the base material. desirable.
[0028]
【The invention's effect】
According to the present invention, in the joint structure of aluminum or aluminum alloy joined by friction welding and copper or copper alloy, the angle formed by the free edge at the joint surface end of copper or copper alloy is reduced to reduce the stress concentration at the joint. By setting so, it is possible to achieve a joint structure between different materials with high impact strength and high reliability.
[Brief description of the drawings]
FIG. 1 is an explanatory view of joining of different kinds of metal materials by conventional friction welding.
FIG. 2 is a view showing a reference example of a joint structure of a joint of rod-shaped dissimilar metal materials.
FIG. 3 is a view showing a reference example of a joint structure of a joint of pipe-like dissimilar metal materials.
FIG. 4 is a graph showing a relationship between an angle formed by a free edge at a joining surface end portion and a tensile strength in a joining structure of dissimilar metal materials.
FIG. 5 is a graph showing a relationship between an impact strength and an angle formed by a free edge at a joint surface end portion in a joint structure of dissimilar metal materials.
FIG. 6 is a view showing an embodiment of a joint structure for joints of rod-shaped dissimilar metal materials.
FIG. 7 is a view showing another embodiment of a joint structure for joints of pipe-like dissimilar metal materials.
8 is a graph showing a relationship between an angle formed by a free edge at a joint surface end portion and a tensile strength in the joint structure of different metal materials according to FIGS. 6 and 7. FIG.
9 is a diagram showing an example in which one of the angles formed with the free edge at the end portion of the joint surface in the joint structure of dissimilar metal materials according to FIGS. It is a graph which shows the relationship with tensile strength.
10 is a graph showing the relationship between the impact strength and the angle formed by the free edge at the joint surface end in the joint structure of dissimilar metal materials according to FIGS. 6 and 7. FIG.
11 is a diagram illustrating an example in which one of the angles formed with the free edge at the end of the joint surface in the joint structure of dissimilar metal materials according to FIGS. 6 and 7 is 90 degrees and the angle formed with the free edge at the end of the remaining joint surface of the material It is a graph which shows the relationship with impact strength.
FIG. 12 is a graph showing the relationship between the thickness of the reaction layer of the intermetallic compound at the joint surface of different metal materials and the tensile strength.
FIG. 13 is a graph showing the relationship between the thickness of the reaction layer of the intermetallic compound at the joint surface of different metal materials and the impact strength.
FIG. 14 is a diagram showing a schematic structure of a current-carrying contactor for a power circuit breaker adopting a joining structure of dissimilar metal materials according to the present invention (an angle between a free edge at an end of a joining surface is 55 to 85 degrees). .
FIG. 15 shows a joining structure of dissimilar metal materials according to the present invention (one of the angles forming the free edge at the end of the joining surface is 90 degrees, and the angle forming the free edge at the joining edge of the remaining material is less than 90 degrees). It is a figure which shows schematic structure of the electricity supply contactor of the circuit breaker for electric power which employ | adopted.
FIG. 16 is a view showing a schematic structure of a current-carrying contactor of a power circuit breaker adopting a reference example of a joining structure of dissimilar metal materials according to the present invention.
[Explanation of symbols]
1 Aluminum material (aluminum or aluminum alloy)
2 Copper material (copper or copper alloy)
3 Fixed shaft 4 of the chuck of the friction welding apparatus 4 Rotating shaft 5 Burr P Pressure X Free edge θ1 The angle formed with the free edge at the joining surface end is 120 degrees or more θ2 The angle formed with the free edge at the joining surface end is 55 degrees 85 degrees θ3 The angle formed with the free edge at the joining surface end is less than 90 degrees θ4 The angle formed with the free edge at the joining surface end is 90 degrees, and the angle formed with the free edge of the other metal material is less than 90 degrees

Claims (2)

摩擦圧接により接合した棒状のアルミニウムもしくはアルミニウム合金と、棒状の銅もしくは銅合金の接合構造において、In the joint structure of rod-like aluminum or aluminum alloy joined by friction welding and rod-like copper or copper alloy,
アルミニウムもしくはアルミニウム合金側の接合面であってこの接合面の外縁部を形成する面と、前記アルミニウムもしくはアルミニウム合金側の自由縁と、がなす角度、An angle formed by a surface which is a joining surface on the aluminum or aluminum alloy side and which forms the outer edge of the joining surface, and a free edge on the aluminum or aluminum alloy side,
および、and,
銅もしくは銅合金側の接合面であってこの接合面の外縁部を形成する面と、前記銅もしくは銅合金側の自由縁と、がなす角度、An angle formed by a bonding surface on the copper or copper alloy side and forming the outer edge of the bonding surface, and the free edge on the copper or copper alloy side,
が共に90度未満となるように設定したことを特徴とする異種金属材料の接合構造。Both are set so that it may become less than 90 degree | times, The joining structure of the dissimilar metal material characterized by the above-mentioned.
摩擦圧接により接合したパイプ状のアルミニウムもしくはアルミニウム合金と、パイプ状の銅もしくは銅合金の接合構造において、In the joining structure of pipe-like aluminum or aluminum alloy joined by friction welding and pipe-like copper or copper alloy,
アルミニウムもしくはアルミニウム合金側の接合面であってこの接合面の外縁部を形成する面と、前記アルミニウムもしくはアルミニウム合金側のパイプ外側の自由縁と、がなす角度、An angle formed by a joint surface on the aluminum or aluminum alloy side and a surface forming the outer edge of the joint surface, and a free edge on the outer side of the pipe on the aluminum or aluminum alloy side,
アルミニウムもしくはアルミニウム合金側の接合面であってこの接合面の内縁部を形成する面と、前記アルミニウムもしくはアルミニウム合金側のパイプ内側の自由縁と、がなす角度、An angle formed by a joint surface on the aluminum or aluminum alloy side and a surface forming the inner edge of the joint surface, and a free edge inside the pipe on the aluminum or aluminum alloy side,
銅もしくは銅合金側の接合面であってこの接合面の外縁部を形成する面と、前記銅もしくは銅合金側のパイプ外側の自由縁と、がなす角度、An angle formed between a copper or copper alloy side joining surface and a surface forming the outer edge of the joining surface, and a free edge outside the pipe on the copper or copper alloy side,
およびand
銅もしくは銅合金側の接合面であってこの接合面の内縁部を形成する面と、前記銅もしくは銅合金側のパイプ内側の自由縁と、がなす角度、An angle formed by a surface that forms the inner edge of the joint surface on the copper or copper alloy side and a free edge inside the pipe on the copper or copper alloy side,
が共に90度未満となるように設定したことを特徴とする異種金属材料の接合構造。Both are set so that it may become less than 90 degree | times, The joining structure of the dissimilar metal material characterized by the above-mentioned.
JP11084798A 1997-07-11 1998-04-21 Bonding structure of dissimilar metal materials Expired - Fee Related JP4033417B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP11084798A JP4033417B2 (en) 1998-04-21 1998-04-21 Bonding structure of dissimilar metal materials
US09/193,845 US6492037B2 (en) 1997-07-11 1998-11-18 Joined structure of dissimilar metallic materials
KR1019980049402A KR100315590B1 (en) 1997-11-19 1998-11-18 Joint structure of dissimilar metal materials
CA002432944A CA2432944C (en) 1997-11-19 1998-11-18 Joined structure of dissimilar metallic materials
CA002254349A CA2254349C (en) 1997-11-19 1998-11-18 Joined structure of dissimilar metallic materials
EP08010598A EP1962353A3 (en) 1997-11-19 1998-11-19 Joined structure of dissimilar metallic materials
CNB981249485A CN1187160C (en) 1997-11-19 1998-11-19 Binding structure for different kinds of metal
EP98121581A EP0923145A3 (en) 1997-11-19 1998-11-19 Joined structure of dissimilar metallic materials
US10/270,156 US6692841B2 (en) 1997-11-19 2002-10-15 Joined structure of dissimilar metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11084798A JP4033417B2 (en) 1998-04-21 1998-04-21 Bonding structure of dissimilar metal materials

Publications (2)

Publication Number Publication Date
JPH11300483A JPH11300483A (en) 1999-11-02
JP4033417B2 true JP4033417B2 (en) 2008-01-16

Family

ID=14546180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11084798A Expired - Fee Related JP4033417B2 (en) 1997-07-11 1998-04-21 Bonding structure of dissimilar metal materials

Country Status (1)

Country Link
JP (1) JP4033417B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010049872A1 (en) * 2010-11-01 2012-05-03 Otto Bock Healthcare Gmbh friction weld
JP6120476B2 (en) * 2011-03-24 2017-04-26 旭化成株式会社 Welding joint material
CN108025389B (en) * 2015-10-29 2020-06-23 株式会社小松制作所 Machine component and method for manufacturing same
KR102055908B1 (en) * 2018-05-16 2019-12-13 동해금속(주) Manufacturing method of package tray module

Also Published As

Publication number Publication date
JPH11300483A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
KR100315590B1 (en) Joint structure of dissimilar metal materials
JP4413491B2 (en) How to connect wires and connection terminals
JP4720168B2 (en) Shielded wire
JP4033417B2 (en) Bonding structure of dissimilar metal materials
US7355142B2 (en) Resistance welding electrode, welded copper flex lead, and method for making same
JPH08264256A (en) Connecting method for terminal and electric wire, and connecting electrode
JP2009129983A (en) Junction structure and method of manufacturing the same, and power semiconductor module and method of manufacturing the same
JPH11176268A (en) Joining structure of metal members of different kinds
JP5461570B2 (en) Manufacturing method of electronic component terminal and electronic component terminal obtained by the manufacturing method
JP2023013804A (en) Joining device and joining method for friction stir joining and resistance welding
JPH11154435A (en) Joining structure of dissimilar metallic material
US20210379686A1 (en) Welding Method For Connecting A First Connector To A Second Connector, The Use Of The Welding Method, And A Welded Connection
JP2000246481A (en) Joining structure of different kinds of metals
KR930001725B1 (en) Oil dashpot and making method thereof
JP3602582B2 (en) Manufacturing method of electrode for resistance welding
JP2002346757A (en) Projection-welding method
JPH044984A (en) Electrode for resistance welding and its manufacture
US6049046A (en) Electric circuit protection device having electrical parts ultrasonically joined using a brazing alloy
JP4228962B2 (en) Connection terminal connection method and connection part
JP3864202B2 (en) Joining electrodes and materials for high energy density resistant equipment
JP2000246549A (en) Joining structure and method for dissimilar metal material
JP2006164701A (en) Shield wire, box connected to the same, method of connecting the shield wire and the box, and shield wire unit
US3471677A (en) Interconnected aluminum and silver members and method of connecting the same or the like
EP1019930B1 (en) Method of ultrasonically joining two electrically conductive parts
JP7118765B2 (en) Vacuum valve and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees