JP4033248B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4033248B2
JP4033248B2 JP32531296A JP32531296A JP4033248B2 JP 4033248 B2 JP4033248 B2 JP 4033248B2 JP 32531296 A JP32531296 A JP 32531296A JP 32531296 A JP32531296 A JP 32531296A JP 4033248 B2 JP4033248 B2 JP 4033248B2
Authority
JP
Japan
Prior art keywords
oil
oil return
gas
refrigerant
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32531296A
Other languages
Japanese (ja)
Other versions
JPH1073330A (en
Inventor
敏明 山口
浩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32531296A priority Critical patent/JP4033248B2/en
Publication of JPH1073330A publication Critical patent/JPH1073330A/en
Application granted granted Critical
Publication of JP4033248B2 publication Critical patent/JP4033248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Description

【0001】
【発明の属する技術分野】
この発明はスーパーマーケットのショーケース、冷蔵庫、冷凍庫等に用いられる冷凍装置に関するものである。
【0002】
【従来の技術】
図9は冷媒圧縮機を2台並列搭載した従来の冷凍装置を示す冷媒配管系統図、図10は従来の冷凍装置の気液分離器を示す断面図である。
各図において、1,2は並列に配備された2台の冷媒圧縮機、3は凝縮器、4は減圧装置、5は蒸発器、6は気液分離器である。気液分離器6の内部には、入口管36、油戻し孔31,32を設けたU字状吸入管29,30等が配備されており、吸入配管7,8に連通している。
【0003】
次に動作について説明する。冷媒圧縮機1,2でそれぞれ圧縮された高温高圧の冷媒は凝縮器8で凝縮されて液化する。液冷媒は冷媒配管(符号付けせず)を通り、減圧装置4で減圧されて気液二相の状態となり、蒸発器5で外気と熱交換し冷蔵庫や冷凍庫、スーパーマーケット等のショーケース内の負荷を冷却する。外気と熱交換した例場はガス化し、入口管36を経て気液分離器6へ流入する。この際、冷媒圧縮機1,2から吐出された高温高圧ガスに含まれる若干量の油も回路内を通り、気液分離器6内に溜まる。冷媒は気液分離器6内のU字状吸入管29,30先端の開口部29a,30aから吸われて、それぞれ吸入配管7,8を通って冷媒圧縮機1,2へ戻り、上記のようなサイクルを繰り返す。
一方、気液分離器6内に溜まった油は、下部の油戻し孔31,32から吸い上げられて、それぞれ吸入配管7,8を通り各冷媒圧縮機1,2へ戻されて溜まる。気液分離器6底部の油面は入口管36が下方向に向いていることと、冷媒・油の吹出しとに起因して乱れていることが多い。従って、気液分離器6内の油面の乱れ具合によっては、一方が油戻し孔以上で、他方が油戻し孔以下の油面高さとなる場合があり、油が油戻し孔以上まで浸った方の冷媒圧縮機内の油量は増加し、油が油戻し孔まで達していない方の冷媒圧縮機内の油量は低下する。
【0004】
【発明が解決しようとする課題】
上記したように、従来の冷凍装置において、各U字状吸入管の油戻し孔から吸い上げられる油量は油戻し孔位置と器内の油面の乱れ具合によってそれぞれ均等でなくなる場合がある。従って、吸い上げられる油量が少ない方の冷媒圧縮機内の油面は低下し、このような状態が長時間続くと、油枯渇により圧縮機故障にいたるおそれがある。
【0005】
この発明は、上記のような問題点を解決するためになされたものであり、気液分離器内に溜まった油が油面の乱れに影響を受けることなくそれぞれの冷媒圧縮機に均一に戻され、かつ、圧縮機の油面低下による不具合を生じることのない冷凍装置の提供を目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、この発明に係る冷凍装置は、容量が異なり並列に設けられた複数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を順次回路状に配備するとともに、気液分離器の上部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の吸入配管と、気液分離器の下部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の油戻し配管とを備えた冷凍装置において、複数の油戻し配管毎に設けられた複数の電磁弁と、複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、各電磁弁を周期的に開閉させるとともに、各電磁弁が開放される周期的な時期と各電磁弁に関連する油面検知器が作動する時期のうち、早い時期に従って各電磁弁を開放する第七制御部とを具備して構成されているものである。
【0007】
また、複数の油戻し配管毎に設けられた複数の電磁弁と、各冷媒圧縮機の容量比に応じた開放時間となるように各電磁弁を開閉する第三制御部とを具備して構成されているものである
【0008】
更に、気液分離器の下部から複数の油戻し配管への分岐位置に設けられ気液分離器からの油流路を各油戻し配管に対し連通可能に切換える三方弁と、各冷媒圧縮機の容量比に応じた連通時間となるように三方弁の油流路を各油戻し配管に向けて切換える第四制御部とを具備して構成されているものである。
【0009】
そして、複数の油戻し配管毎に設けられた複数の電磁弁と、複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、油面検知器が作動したとき当該油面検知器に関連する電磁弁を開放する第五制御部とを具備して構成されているものである。
【0010】
更に、気液分離器の下部から複数の油戻し配管への分岐位置に設けられ気液分離器からの油流路を各油戻し配管に対し連通可能に切換える三方弁と、複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、油面検知器が作動したとき当該油面検知器に関連する油戻し配管に向けて三方弁の油流路を切換える第六制御部とを具備して構成されているものである。
【0011】
容量が同じで並列に設けられた複数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を順次回路状に配備するとともに、気液分離器の上部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の吸入配管と、気液分離器の下部と複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の油戻し配管とを備えた冷凍装置において、複数の油戻し配管毎に設けられた複数の電磁弁と、複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、各電磁弁を周期的に開閉させるとともに、各電磁弁が開放される周期的な時期と各電磁弁に関連する油面検知器が作動する時期のうち、早い時期に従って各電磁弁を開放する第七制御部とを具備して構成されているものである。
【0012】
また、複数の油戻し配管毎に設けられた複数の電磁弁と、各電磁弁の開放時間をそれぞれ等しくするように各電磁弁を周期的に開閉する第一制御部とを具備して構成されているものである。そして、気液分離器の下部から複数の油戻し配管への分岐位置に設けられ気液分離器からの油流路を各油戻し配管に対し連通可能に切換える三方弁と、各油戻し配管への連通時間をそれぞれ等しくするように三方弁の油流路を周期的に各油戻し配管に向けて切換える第二制御部とを具備して構成されているものである。
【0020】
【発明の実施の形態】
引続き、この発明の参考例と実施の形態を図面に基づいて説明する。
参考例1
図1はこの発明の参考例1による冷凍装置を示すもので、同じ容量の冷媒圧縮機を2台並列搭載した場合を示す。
図において、1は第一冷媒圧縮機、2は第一冷媒圧縮機1と容量が同じで並列に設けられた第二冷媒圧縮機、3は凝縮器、4は減圧装置、5は蒸発器、6は気液分離器、7は気液分離器6上部の出口部6cと第一冷媒圧縮機1の吸込側を接続する第一吸入配管、8は気液分離器6上部の出口部6bと第二冷媒圧縮機2の吸込側を接続する第二吸入配管、9は気液分離器6下部の油取り出し部6dから出て第一吸入配管7の接続部7aに接続する第一油戻し配管、10は気液分離器6下部の油取り出し部6dから出て第二吸入配管8の接続部8aに接続する第二油戻し配管である。
この場合、第一油戻し配管9と第二油戻し配管10は、それぞれの管内断面積および配管長が同一に設定されている。
【0021】
この参考例1による冷凍装置は上記のように構成されている。引続き、この冷凍装置の動作を説明する。
まず、第一冷媒圧縮機1、第二冷媒圧縮機2で圧縮された高温高圧の冷媒は凝縮器3で凝縮されて液化し、減圧装置4で減圧されて気液二相の状態となり、蒸発器5で外気と熱交換して冷蔵庫や冷凍庫、スーパーマーケット等のショーケース内の負荷を冷却する。ここでガス化した冷媒は入口部6aから気液分離器6に流入し、更に第一吸入配管7、第二吸入配管8を通って再び各冷媒圧縮機1,2へ戻り、上記のようなサイクルを繰り返す。
この際、第一冷媒圧縮機1、第二冷媒圧縮機2から吐出された高温高圧ガスに含まれる若干量の油は凝縮器3、減圧装置4、蒸発器5を通り、気液分離器6内に溜まる(図中の斜線部)。油は気液分離器6の油取り出し部6dより流出し、第一油戻し配管9、第二油戻し配管10を通って各冷媒圧縮機1,2に戻る。
ここで、各冷媒圧縮機1,2は容量が同一であり、また第一油戻し配管9と第二油戻し配管10の配管長を同一にすることにより、各油戻し配管9,10の圧力損失は同一となる。従って、気液分離器6から各冷媒圧縮機1,2に戻る油は均等に分配される。
以上のように、気液分離器6と各吸入配管7,8とを接続する各油戻し配管9,10を上記の構造にしたので、気液分離器6内部の油面の乱れ具合にかかわらず、油を確実かつ均等に各冷媒圧縮機1,2に戻すことができ、どちらかの冷媒圧縮機内の油面が低下して、油枯渇を生じるような不具合に至ることはない。
尚、第一油戻し配管9と第二油戻し配管10は、気液分離器6の下部と各冷媒圧縮機1,2の吸込側とをそれぞれ並列して直に接続する構成であっても構わない。
【0022】
参考例2
この参考例2では参考例1の構成に加え、油をより確実に各冷媒圧縮機に戻す場合に示す。
ここで、気液分離器6の油取り出し部6dから第一油戻し配管9と第一吸入配管7の接続部7aまでの配管内の圧力損失をΔP1 とする。また、気液分離器6の油取り出し部6dと第一冷媒圧縮機1までの圧力損失、すなわち第一吸入配管7内の圧力損失をΔP2 とする。第二油戻し配管10、第二吸入配管8内の圧力損失を同様にΔP3 ,ΔP4 とする。
そこで、ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる範囲内において、各油戻し配管9,10内の圧力損失をできるだけ大きくして油戻りを良くするため、それぞれの配管長をできるだけ大きく設定する。
流体力学の一般式より、圧力損失と配管長の関係は次式で表される。
ΔP=(1/2)・λ・(L/d)・v2
単位は、ΔP:Pa、λ:無名数、L:m、d:m、V:m/sであり、以下同様となる。
ここで、ΔPは圧力損失、λは管摩擦係数、Lは配管長、dは管内径、vは流速である。
上式からも明らかなように、圧力損失ΔPと配管長Lは比例する。従って、配管長Lが長くなればなるほど、油戻し配管内の圧力損失ΔPが大きくなり、油戻り量を増加させることができる。
【0023】
参考例3
この参考例3は、油戻し配管内の圧力損失をできるだけ大きくするように、各油戻し配管9,10をキャピラリチューブで構成した例である。
ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる条件を満たすためには、管内径dが0.8mm〜2mmとなるキャピラリチューブが好適である。上式にあてはめると、同一運転条件であれば、管内径dが小さくなればなるほど圧力損失ΔPは大きくなる。従って、このキャピラリチューブを用いた場合も油戻りが良くなる。
【0024】
参考例4
この参考例4は、油戻し配管での圧力損失を大きくするように、油戻し配管内にオリフィスを配設した例である。
図2に示すように、オリフィス11は円盤状の金属板にいくつかの丸穴をあけたものである。丸穴の開口径および開口数は、ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる条件を満たすように予め設定されている。
そこで、図3に示すように、各油戻し配管9,10内にオリフィス11を装着すると、流れに対して大きな抵抗となる。従って、オリフィス11前後における圧力損失ΔPが、オリフィス11が無い場合と比べて大きくなり、油戻りが良くなる。
【0025】
参考例5
この参考例5は容量の異なる2台の冷媒圧縮機を並列に搭載した例である。
図4に示すように、第三冷媒圧縮機12と第四冷媒圧縮機13のそれぞれの容量は、第三冷媒圧縮機12がX(kW)、第四冷媒圧縮機13がY(kW)とする。
先述したように、圧力損失は一般的に次式で表される。
ΔP=(1/2)・λ・(L/d)・v2 ・・・・ (1)
(1)式中、ΔPは圧力損失、λは管摩擦係数、Lは配管長、dは管内径、vは流速である。
また、管摩擦係数λは一般的に次の実験式で表される。
λ=0.3164・(v・d/ν)-0.25 ・・・・ (2)
単位は、ν:Pa・sであり、以下同様とする。
ここで、νは管内を流れる油の動粘度である。式(2)を式(1)に代入して変形すると、
ΔP=(1/2)・0.3164・
(v・d/ν)-0.25 ・(L/d)・v2
=(1/2)・0.3164・
(L/ν-0.25 )・(1/d1.25)・ν1.75 ・・(3)
になる。
また、管内を流れる油の流量をGとすれば、
G=(πd2 /4)・ν ・・・・(4)
となる。
単位は、G:Kg/sであり、以下同様とする。
【0026】
式(4)を式(3)に代入し、さらに変形すると、
ΔP=(1/2)・0.3164・(L/ν-0.25 )・
(1/d1.25)・v1.75
=(1/2)・0.3164・(L/ν-0.25 )・
(1/d1.25)・(G/(πd2 /4))1.75
=(1/2)・0.3164・(L/ν-0.25・d1.25
・(1/(π/4))1.75・(G1.75/d3.5 ) ・・・(5)となる。
式(5)より、油の流量Gは配管長Lや管内径dに対し、以下のような関係にあることがわかる。(注)∝は比例をあらわす。
G ∝ d4.75/1.75 ・(1/L)1/1.75 ・・・(6)
【0027】
以下のことより、各油戻し配管9,10の配管長Lはそれぞれ同一とし、ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる範囲内において、第三冷媒圧縮機12と第四冷媒圧縮機13の容量比、すなわちX:Yに応じて各油戻し配置9,10の管内径dをそれぞれ決定するものである。
つまり、第三冷媒圧縮機12への第一油戻し配管9の管内径をd1 、第四冷媒圧縮機13への第二油戻し配管10の管内径をd2 とすれば、
X : Y = d1 4.75/1.75 : d2 4.75/1.75
となるように、それぞれの油戻し配管9,10の管内径d1 ,d2 が決定される。
ここで単位は、d1 :m,d2 :mであり、以下同様とする。
このような構造にすることによって、複数の冷媒圧縮機12,13の容量が異なっていたとしても、気液分離器6から各冷媒圧縮機12,13へ均等に油を戻すことができる。
【0028】
参考例6
この参考例6は、容量の異なる2台の冷媒圧縮機を並列搭載する場合に、各油戻し配管の管内径を同一とし、それぞれの配管長を決定した例である。
つまり、各油戻し配管9,10の管内径dはそれぞれ同一とし、ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる範囲内において、第三冷媒圧縮機12と第四冷媒圧縮機13の容量比、すなわちX:Yに応じて各油戻し配管9,10の配管長Lをそれぞれ決定するものである。
第三冷媒圧縮機12への第一油戻り管9の配管長をL1 、第四冷媒圧縮機13への第二油戻り管10の配管長をL2 とすれば、式(6)の関係より、
X : Y = (1/L1 1/1.75 : (1/L2 1/1.75
となるように、それぞれの油戻し配管9,10の配管長L1 ,L2 が決定される。
ここで単位は、L1 :m,L2 :mであり、以下同様とする。
このような構造にすることによって、複数の冷媒圧縮機12,13の容量が異なっている場合でも、気液分離器6から各冷媒圧縮機12,13へ均等に油を戻すことができる。
【0029】
参考例7
この参考例7は、容量の異なる2台の冷媒圧縮機を並列搭載する場合に、各油戻し配管の管内径と配管長をそれぞれ決定した例である。
つまり、ΔP1 <ΔP2 、かつ、ΔP3 <ΔP4 となる範囲内において、第三冷媒圧縮機12と第四冷媒圧縮機13の容量比、すなわちX:Yに応じて各油戻し配管9,10の配管長Lと管内径dを決定するものである。
式(6)の関係より、
X : Y = d1 4.75/1.75・(1/L1 1/1.75
: d2 4.75/1.75 ・(1/L2 1/1.75
となるように、それぞれの油戻し配管9,10の配管長Lと管内径dが決定される。
このような構造にすることによって、複数の冷媒圧縮機12,13の容量が異なっている場合でも、気液分離器6から各冷媒圧縮機12,13へ均等に油を戻すことができる。
【0030】
発明の実施の形態
図5はこの発明の実施の形態による冷凍装置を示すもので、同じ容量の冷媒圧縮機を2台並列搭載した場合を示す。
図において、第一冷媒圧縮機1と第二冷媒圧縮機2は容量が同じで並列に設けられている。また、第一油戻し配管9、第二油戻し配管10の途中には、それぞれ第一電磁弁41、第二電磁弁42が設けられている。また、各電磁弁41,42を開閉制御する第一制御部43aが各電磁弁41,42に配線接続されている。第一制御部43aは例えば汎用の演算処理装置(MPU)、ならびに演算プログラムおよび制御データを記憶したメモリ(いずれも図示省略)などから構成されている。後述の実施の形態で例示する各制御部43b,43c,43d,43e,43f,43gも同様の構成である。
ここで、各冷媒圧縮機1,2は容量が同一であり、また第一制御部43aは、各電磁弁41,42の開放時間をそれぞれ等しくするように、各電磁弁41,42を周期的に開閉するようになっている。
従って、各電磁弁41,42が周期的に開放され、各電磁弁41,42の開放時間もそれぞれ同一にされるので、気液分離器6内部の油面の乱れ具合にかかわらず、油を確実かつ均等に各冷媒圧縮機1,2に戻すことができ、どちらかの冷媒圧縮機1または2内の油面が低下して、油枯渇を生じるような不具合に至ることはない。
尚、第一油戻し配管9と第二油戻し配管10は、気液分離器6の下部と各冷媒圧縮機1,2の吸込側とをそれぞれ並列して直に接続する構成であっても構わない。
【0031】
発明の実施の形態
図6はこの発明の実施の形態による冷凍装置を示すもので、同じ容量の冷媒圧縮機を2台並列搭載した場合を示す。
図において、発明の実施の形態と構成が異なる点は、各電磁弁41,42の代わりに三方弁44を用いたことと、三方弁44の流路を切換制御する第二制御部43bを用いたことである。すなわち、気液分離器6の下部から各油戻し配管9,10への分岐位置に、気液分離器6からの油流路を各油戻し配管9,10に対し連通可能に切換える三方弁44が設けられる。
ここで、各冷媒圧縮機1,2は容量が同一であり、また第二制御部43bは、各油戻し配管9,10への連通時間をそれぞれ等しくするように、三方弁44の油流路を周期的に各油戻し配管9,10に向けて切換えるようになっている。
従って、三方弁44の油流路が各油戻し配管9,10に向けて周期的に切換えられるとともに、各油戻し配管9,10への連通時間もそれぞれ等しくされるので、気液分離器6内部の油面の乱れ具合にかかわらず、油を確実かつ均等に各冷媒圧縮機1,2に戻すことができ、どちらかの冷媒圧縮機1または2内の油面が低下して、油枯渇を生じるような不具合に至ることはない。そのうえ、2台の電磁弁41,42を用いた場合(実施の形態)と比べて装置を簡略化できる。
【0032】
発明の実施の形態
図5はこの発明の実施の形態による冷凍装置を示すもので、異なる容量の冷媒圧縮機(括弧内符号)を2台並列搭載した場合を示す。
図において、発明の実施の形態は発明の実施の形態と比べて、第三冷媒圧縮機12と第四冷媒圧縮機13の容量が異なっている。また、各電磁弁41,42を開閉制御する第三制御部43c(括弧内符号)が各電磁弁41,42に配線接続されている。この第三制御部43cは各冷媒圧縮機の容量比に応じた開放時間となるように各電磁弁41,42を開閉するようになっている。
従って、各油戻し配管9,10の電磁弁41,42は各冷媒圧縮機12,13の容量比に応じた開放時間で開閉されるので、圧縮機容量が異なる場合であっても、気液分離器6内部の油面の乱れ具合にかかわらず、油を確実かつ均等に各冷媒圧縮機12,13に戻すことができ、どちらかの冷媒圧縮機12または13内の油面が低下して、油枯渇を生じるような不具合に至ることはない。
【0033】
発明の実施の形態
図6はこの発明の実施の形態による冷凍装置を示すもので、異なる容量の冷媒圧縮機(括弧内符号)を2台並列搭載した場合を示す。
図において、発明の実施の形態は発明の実施の形態と比べて、第三冷媒圧縮機12と第四冷媒圧縮機13の容量が異なっている。また、三方弁44の流路を切換制御する第四制御部43d(括弧内符号)が三方弁44に配線接続されている。この第四制御部43dは各冷媒圧縮機12,13の容量比に応じた連通時間となるように、三方弁44の油流路を各油戻し配管9,10に向けて切換えるようになっている。
従って、三方弁44の油流路は各冷媒圧縮機12,13の容量比に応じた連通時間となるように各油戻し配管9,10に向けて切換えられるので、圧縮機容量が異なる場合であっても、気液分離器6内部の油面の乱れ具合にかかわらず、圧縮機容量比に応じた量の油を確実に各冷媒圧縮機12,13に戻すことができ、どちらかの冷媒圧縮機12または13内の油面が低下して、油枯渇を生じるような不具合に至ることはない。そのうえ、2台の電磁弁41,42を用いた場合(実施の形態)と比べて装置を簡略化できる。
【0034】
発明の実施の形態
図7はこの発明の実施の形態による冷凍装置を示すもので、異なる容量の冷媒圧縮機を2台並列搭載した場合を示す。
図において、この発明の実施の形態が発明の実施の形態と異なるのは、第三冷媒圧縮機12、第四冷媒圧縮機13に圧縮機内油面が所定レベル(例えば、油枯渇直前のレベル)を下回ったときに作動する第一油面検知器45、第二油面検知器46がそれぞれ設けられていることである。また、各電磁弁41,42を開閉制御する第五制御部43eは、各電磁弁41,42および各油面検知器45,46に配線接続されている。この第五制御部43eは、各油面検知器45,46が作動したとき当該油面検知器45または46に関連する第一電磁弁41または第二電磁弁42を開放して油を流通させるようになっている。すなわち、第一油面検知器45が作動すると、第一電磁弁41を通電してON(開)し、逆に第二油面検知器46が作動すると、第一電磁弁41をOFF(閉)し、第二電磁弁42を通電してON(開)するようになっている。
従って、冷媒圧縮機12または13内の油面が所定レベルを下回ったときには冷媒圧縮機12または13に関連する電磁弁41または42が開放されて油を流通させるので、気液分離器6内部の油面の乱れ具合にかかわらず、油を確実に各冷媒圧縮機12,13に戻すことができ、どちらかの冷媒圧縮機12または13内の油面が低下して、油枯渇を生じるような不具合に至ることはない。
【0035】
発明の実施の形態
図8はこの発明の実施の形態による冷凍装置を示すもので、異なる容量の冷媒圧縮機を2台並列搭載した場合を示す。
図において、発明の実施の形態が発明の実施の形態と比べて、各電磁弁41,42の代わりに、前出の三方弁44を用いたことである。また、三方弁44の流路を切換制御する第六制御部43fは、三方弁44および各油面検知器45,46に配線接続されている。この第六制御部43fは、油面検知器45または46が作動したときその油面検知器45または46に関連する油戻し配管9または10に向けて三方弁44の油流路を切換えて油を流通させるようになっている。すなわち、第一油面検知器45が作動すると、三方弁44に通電して油流路を第一油戻し配管9側に切り換え、逆に第二油面検知器46が作動すると、油流路を第二油戻し配管10側に切換えるようになっている。
従って、冷媒圧縮機12または13内の油面が所定レベルを下回ったときには、その冷媒圧縮機12または13に関連する油戻し配管9または10に向けて三方弁44の油流路が切換えられて油を流通させるので、気液分離器6内部の油面の乱れ具合にかかわらず、油を確実に各冷媒圧縮機12,13に戻すことができ、どちらかの冷媒圧縮機12または13内の油面が低下して、油枯渇を生じるような不具合に至ることはない。そのうえ、2台の電磁弁41,42を用いた場合(実施の形態)と比べて装置を簡略化できる。
【0036】
発明の実施の形態
図7はこの発明の実施の形態による冷凍装置を示すもので、異なる容量の冷媒圧縮機を2台並列搭載した場合を示す。図において、この発明の実施の形態が発明の実施の形態と異なるのは、第五制御部43eに代えて、機能の異なる第七制御部43g(括弧内符号)を用いたことである。この第七制御部43gは、各電磁弁41,42を周期的に開閉させて各冷媒圧縮機12,13に油を流入させるようになっており、各油面検知器45,46の作動によっても各電磁弁41,42を開くようになっている。すなわち、第七制御部43gは、各電磁弁41,42が開放される周期的な時期と、各電磁弁41,42に関連する各油面検知器45,46が作動した時期のうち、早い時期に従って各電磁弁41,42を開放させる機能を有している。例えば、いずれかの電磁弁41または42が周期的に開放される次回の時期以前であっても、いずれかの油面検知器45または46が作動すれば、関連する冷媒圧縮機12または13の油枯渇を回避するために、第七制御部43gは対応する電磁弁41または42を強制的に開放する。これにより、気液分離器6内部の油面の乱れ具合にかかわらず、より一層確実に油を各冷媒圧縮機12,13に戻すことができ、どちらかの冷媒圧縮機1または2内の油面が低下して、油枯渇を生じるような不具合を回避できる。
【0037】
尚、上記した各実施の形態では、冷媒圧縮機、油戻し配管、吸入配管などを2系統設けた例を示したが、それに限定されるものではなく、例えば3系統以上設けた場合にも適用できるのはいうまでもない。
【0038】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。
容量が異なる複数台の冷媒圧縮機を並列に備えた構成において、第七制御部によって、各電磁弁を周期的に開閉させる構成を前提とし、各電磁弁が開放される周期的な時期と各電磁弁に関連する油面検知器が作動する時期のうち、早い時期に従って各電磁弁を開放するようにしたので、気液分離器内部の油面の乱れ具合にかかわらず、より一層確実に油を各冷媒圧縮機に戻すことができる。
【0039】
また、容量が異なる複数台の冷媒圧縮機を並列に備えた構成において、第三制御部によって、各冷媒圧縮機の容量比に応じた開放時間となるように、油戻し配管に設けられた各電磁弁を開閉するようにしたので、気液分離器内部の油面の乱れ具合にかかわらず、圧縮機容量比に応じた量の油を確実に各冷媒圧縮機に戻すことができる。
【0040】
更に、容量が異なる複数台の冷媒圧縮機を並列に備えた構成において、第四制御部によって、各冷媒圧縮機の容量比に応じた連通時間となるように、三方弁の油流路を各油戻し配管に向けて切換えるようにしたので、気液分離器内部の油面の乱れ具合にかかわらず、圧縮機容量比に応じた量の油を確実に各冷媒圧縮機に戻すことができるうえ、電磁弁を用いる場合と比べて装置を簡略化できる。
【0041】
そして、容量が異なる複数台の冷媒圧縮機を並列に備えた構成において、第五制御部によって、冷媒圧縮機内の油面が所定レベルを下回ったときその冷媒圧縮機に関連する電磁弁を開放して油を流通させるようにしたので、気液分離器内部の油面の乱れ具合にかかわらず、油を確実に各冷媒圧縮機に戻すことができ、油枯渇を防止できる。
【0042】
更に、容量が異なる複数台の冷媒圧縮機を並列に備えた構成において、第六制御部によって、冷媒圧縮機内の油面が所定レベルを下回ったときその冷媒圧縮機に関連する油戻し配管に向け三方弁の油流路を切換えて油を流通させるようにしたので、気液分離器内部の油面の乱れ具合にかかわらず、油を確実に各冷媒圧縮機に戻すことができ、油枯渇を防止できる。
【0043】
容量が同じ複数台の冷媒圧縮機を並列に備えた構成において、第七制御部によって、各電磁弁を周期的に開閉させる構成を前提とし、各電磁弁が開放される周期的な時期と各電磁弁に関連する油面検知器が作動する時期のうち、早い時期に従って各電磁弁を開放するようにしたので、気液分離器内部の油面の乱れ具合にかかわらず、より一層確実に油を各冷媒圧縮機に戻すことができる。
【0044】
また、容量が同じ複数台の冷媒圧縮機を並列に備えた構成において、第一制御部によって、複数の電磁弁を周期的に開放するとともに、各電磁弁の開放時間をそれぞれ同一とするようにしたので、ある冷媒圧縮機に油が多く戻り、別の冷媒圧縮機には油が戻らないといった問題を解消することができ、気液分離器内の油をそれぞれの冷媒圧縮機に均等に戻すことができる。
【0045】
そして、容量が同じ複数台の冷媒圧縮機を並列に備えた構成において、第二制御部によって、三方弁の油流路を各油戻し配管に向けて周期的に切換えて、各油戻し配管への連通時間をそれぞれ等しくするようにしたので、ある冷媒圧縮機に油が多く戻り、別の冷媒圧縮機には油が戻らないといった問題を解消することができ、気液分離器内の油をそれぞれの冷媒圧縮機に均等に戻すことができるうえ、電磁弁を用いる場合と比べて装置を簡略化できる。
【図面の簡単な説明】
【図1】 この発明の参考例1〜3に係る冷凍装置を示す冷媒配管系統図である。
【図2】 この発明の参考例4に係るオリフィスの平面図である。
【図3】 この発明の参考例4に係る油戻し配管内にオリフィスを装着した状態を示す構成図である。
【図4】 この発明の参考例5〜7に係る冷凍装置を示す冷媒配管系統図である。
【図5】 この発明の実施の形態または実施の形態に係る冷凍装置を示す冷媒配管系統図である。
【図6】 この発明の実施の形態または実施の形態に係る冷凍装置を示す冷媒配管系統図である。
【図7】 この発明の実施の形態または実施の形態に係る冷凍装置を示す冷媒配管系統図である。
【図8】 この発明の実施の形態に係る冷凍装置を示す冷媒配管系統図である。
【図9】 従来の冷凍装置を示す冷媒配管系統図である。
【図10】 従来の冷凍装置の気液分離器を示す断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus used in a supermarket showcase, refrigerator, freezer, and the like.
[0002]
[Prior art]
FIG. 9 is a refrigerant piping diagram showing a conventional refrigeration apparatus in which two refrigerant compressors are mounted in parallel, and FIG. 10 is a cross-sectional view showing a gas-liquid separator of the conventional refrigeration apparatus.
In each figure, 1 and 2 are two refrigerant compressors arranged in parallel, 3 is a condenser, 4 is a decompression device, 5 is an evaporator, and 6 is a gas-liquid separator. Inside the gas-liquid separator 6, U-shaped suction pipes 29, 30 provided with an inlet pipe 36 and oil return holes 31, 32 are arranged and communicated with the suction pipes 7, 8.
[0003]
Next, the operation will be described. The high-temperature and high-pressure refrigerant compressed by the refrigerant compressors 1 and 2 is condensed by the condenser 8 and liquefied. The liquid refrigerant passes through the refrigerant pipe (not labeled) and is decompressed by the decompression device 4 to be in a gas-liquid two-phase state. Cool down. The example place that exchanges heat with the outside air is gasified and flows into the gas-liquid separator 6 through the inlet pipe 36. At this time, a small amount of oil contained in the high-temperature and high-pressure gas discharged from the refrigerant compressors 1 and 2 passes through the circuit and accumulates in the gas-liquid separator 6. The refrigerant is sucked from the openings 29a and 30a at the tips of the U-shaped suction pipes 29 and 30 in the gas-liquid separator 6 and returns to the refrigerant compressors 1 and 2 through the suction pipes 7 and 8, respectively. Repeat the cycle.
On the other hand, the oil accumulated in the gas-liquid separator 6 is sucked up from the lower oil return holes 31 and 32 and returned to the refrigerant compressors 1 and 2 through the suction pipes 7 and 8, respectively. The oil level at the bottom of the gas-liquid separator 6 is often disturbed due to the inlet pipe 36 facing downward and the blowing of refrigerant / oil. Therefore, depending on how the oil level in the gas-liquid separator 6 is turbulent, one may be higher than the oil return hole and the other may be higher than the oil return hole. The amount of oil in one refrigerant compressor increases, and the amount of oil in the refrigerant compressor that does not reach the oil return hole decreases.
[0004]
[Problems to be solved by the invention]
As described above, in the conventional refrigeration apparatus, the amount of oil sucked up from the oil return hole of each U-shaped suction pipe may not be uniform depending on the position of the oil return hole and the oil level in the vessel. Therefore, the oil level in the refrigerant compressor having the smaller amount of oil sucked down decreases, and if such a state continues for a long time, there is a possibility that the compressor may be broken due to oil exhaustion.
[0005]
The present invention has been made to solve the above problems, and the oil accumulated in the gas-liquid separator is uniformly returned to each refrigerant compressor without being affected by the disturbance of the oil level. And it aims at provision of the freezing apparatus which does not produce the malfunction by the oil level fall of a compressor.
[0006]
[Means for Solving the Problems]
  In order to achieve the above object, a refrigeration apparatus according to the present invention comprises:A plurality of refrigerant compressors, condensers, pressure reducing devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities are sequentially arranged in a circuit, and the upper part of the gas-liquid separator and a plurality of refrigerant compressors A refrigeration apparatus comprising a plurality of suction pipes that connect the suction side in parallel, and a plurality of oil return pipes that connect the lower part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors in parallel, respectively. A plurality of solenoid valves provided for each of a plurality of oil return pipes, a plurality of oil level detectors each provided in a plurality of refrigerant compressors and operating when the oil level in the compressor falls below a predetermined level, The seventh is to open and close each solenoid valve according to the earliest timing among the periodic timing when each solenoid valve is opened and the timing when the oil level detector associated with each solenoid valve is activated. And a control unit. .
[0007]
  Also, comprising a plurality of solenoid valves provided for each of the plurality of oil return pipes, and a third control unit for opening and closing each solenoid valve so as to have an opening time according to the capacity ratio of each refrigerant compressor Is what.
[0008]
  Further, a three-way valve provided at a branch position from the lower part of the gas-liquid separator to the plurality of oil return pipes for switching the oil flow path from the gas-liquid separator to be communicable with each oil return pipe, and each refrigerant compressor And a fourth control unit that switches the oil flow path of the three-way valve toward each oil return pipe so as to have a communication time according to the capacity ratio.
[0009]
  And a plurality of solenoid valves provided for each of the plurality of oil return pipes, a plurality of oil level detectors respectively provided in the plurality of refrigerant compressors and operating when the oil level in the compressor falls below a predetermined level, And a fifth control unit that opens a solenoid valve related to the oil level detector when the surface detector is activated.
[0010]
  Further, a three-way valve provided at a branch position from the lower part of the gas-liquid separator to the plurality of oil return pipes and switching the oil flow path from the gas-liquid separator to each oil return pipe, and a plurality of refrigerant compressors A plurality of oil level detectors that operate when the oil level in the compressor falls below a predetermined level, and a three-way valve toward the oil return pipe associated with the oil level detector when the oil level detector operates. And a sixth control section for switching the oil flow path.
[0011]
  A plurality of refrigerant compressors, condensers, pressure reducing devices, evaporators, gas-liquid separators, etc., which have the same capacity and are arranged in parallel, are sequentially arranged in a circuit, and the upper part of the gas-liquid separator and a plurality of refrigerant compressors Refrigeration provided with a plurality of suction pipes connected in parallel with each other and a plurality of oil return pipes connected respectively in parallel with the lower part of the gas-liquid separator and the suction sides of the plurality of refrigerant compressors In the apparatus, a plurality of solenoid valves provided for each of a plurality of oil return pipes, a plurality of oil level detectors each provided in a plurality of refrigerant compressors and operating when the oil level in the compressor falls below a predetermined level, Each solenoid valve is opened and closed periodically, and each solenoid valve is opened according to the earlier timing among the periodic timing when each solenoid valve is opened and the timing when the oil level detector associated with each solenoid valve is activated. And a seventh control unit. .
[0012]
  In addition, it comprises a plurality of solenoid valves provided for each of a plurality of oil return pipes, and a first control unit that periodically opens and closes each solenoid valve so as to equalize the open time of each solenoid valve. It is what. A three-way valve provided at a branch position from the lower part of the gas-liquid separator to the plurality of oil return pipes to switch the oil flow path from the gas-liquid separator to communicate with each oil return pipe, and to each oil return pipe And a second control unit that periodically switches the oil flow path of the three-way valve toward each oil return pipe so as to equalize the communication time.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
  Continuing with this inventionReference examples andEmbodiments will be described with reference to the drawings.
Reference example 1.
  FIG. 1 illustrates the present invention.Reference example 1Shows a case where two refrigerant compressors having the same capacity are mounted in parallel.
  In the figure, 1 is a first refrigerant compressor, 2 is a second refrigerant compressor having the same capacity as the first refrigerant compressor 1 and provided in parallel, 3 is a condenser, 4 is a decompression device, 5 is an evaporator, 6 is a gas-liquid separator, 7 is a first suction pipe connecting the outlet portion 6c of the upper portion of the gas-liquid separator 6 and the suction side of the first refrigerant compressor 1, and 8 is an outlet portion 6b of the upper portion of the gas-liquid separator 6. A second suction pipe for connecting the suction side of the second refrigerant compressor 2, 9 is a first oil return pipe that is connected to the connection portion 7 a of the first suction pipe 7 through the oil take-out portion 6 d below the gas-liquid separator 6. Reference numeral 10 denotes a second oil return pipe that exits from the oil take-out part 6 d below the gas-liquid separator 6 and is connected to the connection part 8 a of the second suction pipe 8.
  In this case, the first oil return pipe 9 and the second oil return pipe 10 have the same in-pipe cross-sectional area and pipe length.
[0021]
  thisReference exampleThe refrigeration apparatus 1 is configured as described above. Next, the operation of this refrigeration apparatus will be described.
  First, the high-temperature and high-pressure refrigerant compressed by the first refrigerant compressor 1 and the second refrigerant compressor 2 is condensed and liquefied by the condenser 3, and is decompressed by the decompression device 4 to be in a gas-liquid two-phase state, evaporating. Heat is exchanged with outside air in the vessel 5 to cool the load in the showcase of a refrigerator, freezer, supermarket, or the like. The gasified refrigerant flows into the gas-liquid separator 6 from the inlet 6a, and then returns to the refrigerant compressors 1 and 2 again through the first suction pipe 7 and the second suction pipe 8, as described above. Repeat cycle.
  At this time, a small amount of oil contained in the high-temperature and high-pressure gas discharged from the first refrigerant compressor 1 and the second refrigerant compressor 2 passes through the condenser 3, the decompression device 4 and the evaporator 5, and passes through the gas-liquid separator 6. Accumulate inside (shaded area in the figure). The oil flows out from the oil take-out part 6d of the gas-liquid separator 6 and returns to the refrigerant compressors 1 and 2 through the first oil return pipe 9 and the second oil return pipe 10.
  Here, the refrigerant compressors 1 and 2 have the same capacity, and the pressures of the oil return pipes 9 and 10 are equalized by making the lengths of the first oil return pipe 9 and the second oil return pipe 10 the same. The loss is the same. Accordingly, the oil returning from the gas-liquid separator 6 to the refrigerant compressors 1 and 2 is evenly distributed.
  As described above, since the oil return pipes 9 and 10 that connect the gas-liquid separator 6 and the suction pipes 7 and 8 have the above structure, the oil level inside the gas-liquid separator 6 is affected by the turbulence. Therefore, the oil can be reliably and evenly returned to the refrigerant compressors 1 and 2, and the oil level in one of the refrigerant compressors is not lowered, and there is no problem that oil is exhausted.
  The first oil return pipe 9 and the second oil return pipe 10 may be configured to directly connect the lower part of the gas-liquid separator 6 and the suction side of each refrigerant compressor 1, 2 in parallel. I do not care.
[0022]
Reference example 2.
  thisReference example 2ThenReference example 1In addition to this configuration, the oil is more reliably returned to each refrigerant compressor.
  Here, the pressure loss in the pipe from the oil take-out part 6d of the gas-liquid separator 6 to the connection part 7a of the first oil return pipe 9 and the first suction pipe 7 is represented by ΔP1. Further, the pressure loss between the oil take-out part 6d of the gas-liquid separator 6 and the first refrigerant compressor 1, that is, the pressure loss in the first suction pipe 7 is denoted by ΔP2. Similarly, the pressure loss in the second oil return pipe 10 and the second suction pipe 8 is set to ΔP3 and ΔP4.
  Therefore, ΔP1<ΔP2And ΔPThree<ΔPFourIn order to improve the oil return by increasing the pressure loss in the oil return pipes 9 and 10 as much as possible, the length of each pipe is set as large as possible.
  From the general formula of hydrodynamics, the relationship between pressure loss and pipe length is expressed by the following formula.
  ΔP = (1/2) · λ · (L / d) · v2
  The units are ΔP: Pa, λ: anonymous number, L: m, d: m, V: m / s, and so on.
  Here, ΔP is a pressure loss, λ is a pipe friction coefficient, L is a pipe length, d is a pipe inner diameter, and v is a flow velocity.
  As is clear from the above equation, the pressure loss ΔP and the pipe length L are proportional. Therefore, the longer the pipe length L, the larger the pressure loss ΔP in the oil return pipe, and the oil return amount can be increased.
[0023]
Reference example 3.
  thisReference example 3Is an example in which each of the oil return pipes 9 and 10 is configured with a capillary tube so as to maximize the pressure loss in the oil return pipe.
  ΔP1<ΔP2And ΔPThree<ΔPFourIn order to satisfy the following condition, a capillary tube having a tube inner diameter d of 0.8 mm to 2 mm is preferable. Applying the above equation, under the same operating conditions, the pressure loss ΔP increases as the pipe inner diameter d decreases. Therefore, oil return is improved even when this capillary tube is used.
[0024]
Reference example 4.
  Reference Example 4 is an example in which an orifice is provided in the oil return pipe so as to increase the pressure loss in the oil return pipe.
  As shown in FIG. 2, the orifice 11 is a disc-shaped metal plate having a number of round holes. The opening diameter and numerical aperture of the round hole are ΔP1<ΔP2And ΔPThree<ΔPFourIs set in advance so as to satisfy the following condition.
  Therefore, as shown in FIG. 3, when the orifice 11 is mounted in each of the oil return pipes 9 and 10, a large resistance to the flow is obtained. Therefore, the pressure loss ΔP before and after the orifice 11 becomes larger than that without the orifice 11 and the oil return is improved.
[0025]
Reference Example 5.
  thisReference Example 5Is an example in which two refrigerant compressors with different capacities are mounted in parallel.
  As shown in FIG. 4, the third refrigerant compressor 12 and the fourth refrigerant compressor 13 have a capacity of X (kW) for the third refrigerant compressor 12 and Y (kW) for the fourth refrigerant compressor 13, respectively. To do.
  As described above, the pressure loss is generally expressed by the following equation.
  ΔP = (1/2) · λ · (L / d) · v2(1)
  In the equation (1), ΔP is a pressure loss, λ is a pipe friction coefficient, L is a pipe length, d is a pipe inner diameter, and v is a flow velocity.
  Further, the pipe friction coefficient λ is generally expressed by the following empirical formula.
  λ = 0.3164 · (v · d / ν)-0.25  (2)
  The unit is ν: Pa · s, and so on.
  Where ν is the kinematic viscosity of the oil flowing in the pipe. Substituting Equation (2) into Equation (1) for transformation,
    ΔP = (1/2) · 0.3164 ·
              (V · d / ν)-0.25・ (L / d) ・ v2
        = (1/2) .0.3164.
              (L / ν-0.25) ・ (1 / d1.25) ・ Ν1.75  (3)
become.
  If the flow rate of oil flowing through the pipe is G,
  G = (πd2/ 4) ・ ν ・ ・ ・ ・ (4)
It becomes.
  The unit is G: Kg / s, and so on.
[0026]
  Substituting equation (4) into equation (3) and further transforming,
  ΔP = (1/2) · 0.3164 · (L / ν-0.25) ・
          (1 / d1.25) ・ V1.75
      = (1/2) · 0.3164 · (L / ν-0.25) ・
            (1 / d1.25) ・ (G / (πd2/ 4))1.75
      = (1/2) · 0.3164 · (L / ν-0.25・ D1.25)
        ・ (1 / (π / 4))1.75・ (G1.75/ D3.5) (5)
  From equation (5), it can be seen that the oil flow rate G has the following relationship with respect to the pipe length L and the pipe inner diameter d. (Note) ∝ represents proportionality.
  G d d4.75 / 1.75・ (1 / L)1 / 1.75... (6)
[0027]
  From the following, the oil return pipes 9 and 10 have the same pipe length L, and ΔP1<ΔP2And ΔPThree<ΔPFourIn this range, the pipe inner diameter d of each of the oil return arrangements 9 and 10 is determined according to the capacity ratio of the third refrigerant compressor 12 and the fourth refrigerant compressor 13, that is, X: Y.
  That is, the pipe inner diameter of the first oil return pipe 9 to the third refrigerant compressor 12 is d1The inner diameter of the second oil return pipe 10 to the fourth refrigerant compressor 13 is d2given that,
  X: Y = d1 4.75 / 1.75: D2 4.75 / 1.75
The inner diameter d of each of the oil return pipes 9 and 10 is1, D2Is determined.
  Here, the unit is d1: M, d2: M, and so on.
  By adopting such a structure, even if the capacities of the plurality of refrigerant compressors 12 and 13 are different, oil can be evenly returned from the gas-liquid separator 6 to the refrigerant compressors 12 and 13.
[0028]
Reference Example 6.
  thisReference Example 6Is an example in which, when two refrigerant compressors having different capacities are mounted in parallel, the pipe inner diameters of the oil return pipes are the same, and the pipe lengths thereof are determined.
  That is, the oil return pipes 9 and 10 have the same pipe inner diameter d, and ΔP1<ΔP2And ΔPThree<ΔPFourIn this range, the pipe length L of each of the oil return pipes 9 and 10 is determined according to the capacity ratio of the third refrigerant compressor 12 and the fourth refrigerant compressor 13, that is, X: Y.
  The pipe length of the first oil return pipe 9 to the third refrigerant compressor 12 is L1, and the pipe length of the second oil return pipe 10 to the fourth refrigerant compressor 13 is L.2Then, from the relationship of equation (6),
  X: Y = (1 / L1)1 / 1.75: (1 / L2)1 / 1.75
The pipe length L of each of the oil return pipes 9 and 10 is1, L2Is determined.
  Here, the unit is L1: M, L2: M, and so on.
  By adopting such a structure, even when the capacities of the plurality of refrigerant compressors 12 and 13 are different, oil can be evenly returned from the gas-liquid separator 6 to the refrigerant compressors 12 and 13.
[0029]
Reference Example 7.
  thisReference Example 7Is an example in which the pipe inner diameter and the pipe length of each oil return pipe are respectively determined when two refrigerant compressors having different capacities are mounted in parallel.
  That is, ΔP1<ΔP2And ΔPThree<ΔPFourIn this range, the pipe length L and the pipe inner diameter d of each of the oil return pipes 9 and 10 are determined according to the capacity ratio of the third refrigerant compressor 12 and the fourth refrigerant compressor 13, that is, X: Y. is there.
  From the relationship of equation (6),
  X: Y = d1 4.75 / 1.75・ (1 / L1)1 / 1.75
                      : D2 4.75 / 1.75・ (1 / L2)1 / 1.75
Thus, the pipe length L and the pipe inner diameter d of each of the oil return pipes 9 and 10 are determined.
  By adopting such a structure, even when the capacities of the plurality of refrigerant compressors 12 and 13 are different, oil can be evenly returned from the gas-liquid separator 6 to the refrigerant compressors 12 and 13.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION1.
  FIG. 5 shows an embodiment of the present invention.1Shows a case where two refrigerant compressors having the same capacity are mounted in parallel.
  In the figure, the first refrigerant compressor 1 and the second refrigerant compressor 2 have the same capacity and are provided in parallel. A first solenoid valve 41 and a second solenoid valve 42 are provided in the middle of the first oil return pipe 9 and the second oil return pipe 10, respectively. A first control unit 43 a that controls opening and closing of the electromagnetic valves 41 and 42 is connected to the electromagnetic valves 41 and 42 by wiring. The first control unit 43a includes, for example, a general-purpose arithmetic processing unit (MPU), a memory (not shown) that stores arithmetic programs and control data, and the like. The control units 43b, 43c, 43d, 43e, 43f, and 43g exemplified in the embodiments described later have the same configuration.
  Here, the refrigerant compressors 1 and 2 have the same capacity, and the first controller 43a periodically sets the electromagnetic valves 41 and 42 so that the opening times of the electromagnetic valves 41 and 42 are equal. It is designed to open and close.
  Accordingly, the electromagnetic valves 41 and 42 are periodically opened, and the opening times of the electromagnetic valves 41 and 42 are also made the same, so that the oil is discharged regardless of the turbulence of the oil level inside the gas-liquid separator 6. The refrigerant compressors 1 and 2 can be surely and evenly returned to each other, so that the oil level in one of the refrigerant compressors 1 or 2 is not lowered, and there is no problem of causing oil exhaustion.
  The first oil return pipe 9 and the second oil return pipe 10 may be configured to directly connect the lower part of the gas-liquid separator 6 and the suction side of each refrigerant compressor 1, 2 in parallel. I do not care.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION2.
  FIG. 6 shows an embodiment of the present invention.2Shows a case where two refrigerant compressors having the same capacity are mounted in parallel.
  In the figure, the embodiment of the invention1The difference from the configuration is that a three-way valve 44 is used instead of the electromagnetic valves 41 and 42 and a second control unit 43b that switches and controls the flow path of the three-way valve 44 is used. That is, the three-way valve 44 that switches the oil flow path from the gas-liquid separator 6 to the oil return pipes 9 and 10 so as to communicate with the oil return pipes 9 and 10 at the branch position from the lower part of the gas-liquid separator 6 to the oil return pipes 9 and 10. Is provided.
  Here, the refrigerant compressors 1 and 2 have the same capacity, and the second control unit 43b has an oil flow path of the three-way valve 44 so that the communication times to the oil return pipes 9 and 10 are equal. Are periodically switched toward the oil return pipes 9 and 10.
  Accordingly, the oil flow path of the three-way valve 44 is periodically switched toward the oil return pipes 9 and 10, and the communication time to the oil return pipes 9 and 10 is also equalized. Regardless of the turbulence of the internal oil level, the oil can be reliably and evenly returned to the refrigerant compressors 1 and 2, and the oil level in either of the refrigerant compressors 1 or 2 is lowered, resulting in oil depletion. This will not lead to a problem that causes In addition, when two solenoid valves 41 and 42 are used (the embodiment)1Compared with), the apparatus can be simplified.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION3.
  FIG. 5 shows an embodiment of the present invention.3Shows a case where two refrigerant compressors (in parentheses) having different capacities are mounted in parallel.
  In the figure, the embodiment of the invention3Is an embodiment of the invention1Compared with the third refrigerant compressor 12, the capacity of the fourth refrigerant compressor 13 is different from that of the fourth refrigerant compressor 13. In addition, a third control unit 43c (indicated in parentheses) that controls the opening and closing of the electromagnetic valves 41 and 42 is connected to the electromagnetic valves 41 and 42 by wiring. The third control unit 43c opens and closes the electromagnetic valves 41 and 42 so as to have an opening time according to the capacity ratio of the refrigerant compressors.
  Accordingly, the solenoid valves 41 and 42 of the oil return pipes 9 and 10 are opened and closed in an open time corresponding to the capacity ratio of the refrigerant compressors 12 and 13, so that even if the compressor capacity is different, the gas-liquid Regardless of the turbulence of the oil level inside the separator 6, the oil can be reliably and evenly returned to the refrigerant compressors 12 and 13, and the oil level in one of the refrigerant compressors 12 or 13 decreases. It does not lead to problems such as oil exhaustion.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION4.
  FIG. 6 shows an embodiment of the present invention.4Shows a case where two refrigerant compressors (in parentheses) having different capacities are mounted in parallel.
  In the figure, the embodiment of the invention4Is an embodiment of the invention2Compared with the third refrigerant compressor 12, the capacity of the fourth refrigerant compressor 13 is different from that of the fourth refrigerant compressor 13. In addition, a fourth control unit 43 d (indicated in parentheses) that switches and controls the flow path of the three-way valve 44 is wired to the three-way valve 44. The fourth control unit 43d switches the oil flow path of the three-way valve 44 toward the oil return pipes 9 and 10 so that the communication time according to the capacity ratio of the refrigerant compressors 12 and 13 is reached. Yes.
  Accordingly, the oil flow path of the three-way valve 44 is switched toward the oil return pipes 9 and 10 so that the communication time according to the capacity ratio of the refrigerant compressors 12 and 13 is reached. Even if it exists, the amount of oil according to the compressor capacity ratio can be surely returned to the refrigerant compressors 12 and 13 regardless of the turbulence of the oil level inside the gas-liquid separator 6, and either refrigerant There is no possibility that the oil level in the compressor 12 or 13 is lowered and the oil is exhausted. In addition, when two solenoid valves 41 and 42 are used (the embodiment)3Compared with), the apparatus can be simplified.
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION5.
  FIG. 7 shows an embodiment of the present invention.5Shows a case where two refrigerant compressors with different capacities are mounted in parallel.
  In the figure, an embodiment of the present invention5Is an embodiment of the invention3Is different from the first oil level detector 45 that operates when the oil level in the compressor falls below a predetermined level (for example, the level just before oil exhaustion) in the third refrigerant compressor 12 and the fourth refrigerant compressor 13, The second oil level detector 46 is provided. The fifth control unit 43e that controls opening and closing of the electromagnetic valves 41 and 42 is connected to the electromagnetic valves 41 and 42 and the oil level detectors 45 and 46 by wiring. When the oil level detectors 45 and 46 are activated, the fifth control unit 43e opens the first electromagnetic valve 41 or the second electromagnetic valve 42 related to the oil level detector 45 or 46 and distributes the oil. It is like that. That is, when the first oil level detector 45 is activated, the first electromagnetic valve 41 is energized and turned on (opened). Conversely, when the second oil level detector 46 is activated, the first electromagnetic valve 41 is turned off (closed). The second solenoid valve 42 is energized and turned on (opened).
  Therefore, when the oil level in the refrigerant compressor 12 or 13 falls below a predetermined level, the electromagnetic valve 41 or 42 associated with the refrigerant compressor 12 or 13 is opened to circulate the oil. Regardless of the turbulence of the oil level, the oil can be reliably returned to the refrigerant compressors 12 and 13, and the oil level in one of the refrigerant compressors 12 or 13 is lowered, resulting in oil depletion. There is no failure.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION6.
  FIG. 8 shows an embodiment of the present invention.6Shows a case where two refrigerant compressors with different capacities are mounted in parallel.
  In the figure, the embodiment of the invention6Is an embodiment of the invention5As compared with the above, the above-described three-way valve 44 is used instead of the electromagnetic valves 41 and 42. The sixth control unit 43 f that controls switching of the flow path of the three-way valve 44 is wired to the three-way valve 44 and the oil level detectors 45 and 46. The sixth control unit 43f switches the oil flow path of the three-way valve 44 toward the oil return pipe 9 or 10 associated with the oil level detector 45 or 46 when the oil level detector 45 or 46 is operated. Is now in circulation. That is, when the first oil level detector 45 is operated, the three-way valve 44 is energized to switch the oil flow path to the first oil return pipe 9 side. Is switched to the second oil return pipe 10 side.
  Therefore, when the oil level in the refrigerant compressor 12 or 13 falls below a predetermined level, the oil flow path of the three-way valve 44 is switched toward the oil return pipe 9 or 10 related to the refrigerant compressor 12 or 13. Since the oil is circulated, the oil can be reliably returned to the refrigerant compressors 12 and 13 regardless of the turbulence of the oil level in the gas-liquid separator 6. The oil level is not lowered, and there is no problem that causes oil depletion. In addition, when two solenoid valves 41 and 42 are used (the embodiment)5Compared with), the apparatus can be simplified.
[0036]
BEST MODE FOR CARRYING OUT THE INVENTION7.
  FIG. 7 shows an embodiment of the present invention.7Shows a case where two refrigerant compressors with different capacities are mounted in parallel. In the figure, an embodiment of the present invention7Is an embodiment of the invention5Is different from the fifth control unit 43e in that a seventh control unit 43g (in parentheses) having a different function is used. The seventh control unit 43g periodically opens and closes the solenoid valves 41 and 42 so that oil flows into the refrigerant compressors 12 and 13, and the oil level detectors 45 and 46 are operated. Also, the solenoid valves 41 and 42 are opened. That is, the seventh control unit 43g is earlier among the periodic timing when the electromagnetic valves 41 and 42 are opened and the timing when the oil level detectors 45 and 46 related to the electromagnetic valves 41 and 42 are operated. It has the function of opening each solenoid valve 41, 42 according to the time. For example, even before any next solenoid valve 41 or 42 is periodically opened, if any oil level detector 45 or 46 operates, the associated refrigerant compressor 12 or 13 In order to avoid oil depletion, the seventh control unit 43g forcibly opens the corresponding electromagnetic valve 41 or 42. Thereby, the oil can be more reliably returned to the refrigerant compressors 12 and 13 regardless of the turbulence of the oil level in the gas-liquid separator 6, and the oil in either of the refrigerant compressors 1 or 2 can be returned. It is possible to avoid a problem that the surface is lowered and oil is exhausted.
[0037]
In each of the above-described embodiments, an example in which two systems such as a refrigerant compressor, an oil return pipe, and an intake pipe are provided has been described. However, the present invention is not limited to this, and the present invention is also applicable when, for example, three or more systems are provided. Needless to say, you can.
[0038]
【The invention's effect】
  Since the present invention is configured as described above, the following effects can be obtained.
  In a configuration including a plurality of refrigerant compressors having different capacities in parallel, assuming that the seventh control unit periodically opens and closes each solenoid valve, the periodic timing when each solenoid valve is opened and each Since each solenoid valve is opened according to the earlier of the timing when the oil level detector related to the solenoid valve operates, the oil level can be more reliably ensured regardless of the oil level disturbance inside the gas-liquid separator. Can be returned to each refrigerant compressor.
[0039]
  Further, in a configuration including a plurality of refrigerant compressors having different capacities in parallel, the third control unit provides each oil return pipe with an open time corresponding to the capacity ratio of each refrigerant compressor. Since the solenoid valve is opened and closed, the amount of oil corresponding to the compressor capacity ratio can be reliably returned to each refrigerant compressor regardless of the turbulence of the oil level inside the gas-liquid separator.
[0040]
  Further, in a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, the oil flow path of the three-way valve is set by the fourth control unit so that the communication time according to the capacity ratio of each refrigerant compressor is obtained. Since switching to the oil return pipe is performed, the amount of oil corresponding to the compressor capacity ratio can be reliably returned to each refrigerant compressor regardless of the turbulence of the oil level inside the gas-liquid separator. The apparatus can be simplified as compared with the case of using a solenoid valve.
[0041]
  In a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, the fifth control unit opens an electromagnetic valve related to the refrigerant compressor when the oil level in the refrigerant compressor falls below a predetermined level. Therefore, the oil can be reliably returned to each refrigerant compressor regardless of the turbulence of the oil level inside the gas-liquid separator, and oil depletion can be prevented.
[0042]
  Further, in a configuration in which a plurality of refrigerant compressors having different capacities are provided in parallel, when the oil level in the refrigerant compressor falls below a predetermined level by the sixth control unit, the oil return pipe related to the refrigerant compressor is directed to Since the oil flow is switched by switching the oil flow path of the three-way valve, the oil can be reliably returned to each refrigerant compressor regardless of the turbulence of the oil level inside the gas-liquid separator, and oil depletion can be prevented. Can be prevented.
[0043]
  In a configuration in which a plurality of refrigerant compressors having the same capacity are provided in parallel, assuming that the seventh control unit periodically opens and closes each solenoid valve, the periodic timing when each solenoid valve is opened and each Since each solenoid valve is opened according to the earlier of the timing when the oil level detector related to the solenoid valve operates, the oil level can be more reliably ensured regardless of the oil level disturbance inside the gas-liquid separator. Can be returned to each refrigerant compressor.
[0044]
Further, in a configuration in which a plurality of refrigerant compressors having the same capacity are provided in parallel, the first control unit periodically opens the plurality of solenoid valves and sets the opening times of the respective solenoid valves to be the same. Therefore, it is possible to solve the problem that a large amount of oil returns to one refrigerant compressor and oil does not return to another refrigerant compressor, and the oil in the gas-liquid separator is returned to each refrigerant compressor evenly. be able to.
[0045]
  And in the structure equipped with the several refrigerant | coolant compressor with the same capacity | capacitance in parallel, the oil flow path of a three-way valve is periodically switched toward each oil return pipe | tube by the 2nd control part, and to each oil return pipe | tube. The communication time of each is equalized, so that the problem that a lot of oil returns to one refrigerant compressor and the oil does not return to another refrigerant compressor can be solved, and the oil in the gas-liquid separator is removed. In addition to being able to return to the respective refrigerant compressors evenly, the apparatus can be simplified as compared with the case of using a solenoid valve.
[Brief description of the drawings]
FIG. 1 of the present inventionReference exampleIt is a refrigerant | coolant piping system diagram which shows the freezing apparatus concerning 1-3.
FIG. 2 of the present inventionReference example4 is a plan view of an orifice according to FIG.
FIG. 3 of the present inventionReference example4 is a configuration diagram showing a state where an orifice is mounted in the oil return pipe according to FIG.
FIG. 4 of the present inventionReference exampleIt is a refrigerant | coolant piping system diagram which shows the freezing apparatus concerning 5-7.
FIG. 5 shows an embodiment of the present invention.1Or embodiment3It is a refrigerant | coolant piping system diagram which shows the freezing apparatus which concerns on.
FIG. 6 shows an embodiment of the present invention.2Or embodiment4It is a refrigerant | coolant piping system diagram which shows the freezing apparatus which concerns on.
FIG. 7 shows an embodiment of the present invention.5Or embodiment7It is a refrigerant | coolant piping system diagram which shows the freezing apparatus which concerns on.
FIG. 8 is an embodiment of the present invention.6It is a refrigerant | coolant piping system diagram which shows the freezing apparatus which concerns on.
FIG. 9 is a refrigerant piping system diagram showing a conventional refrigeration apparatus.
FIG. 10 is a cross-sectional view showing a gas-liquid separator of a conventional refrigeration apparatus.

Claims (8)

容量が異なり並列に設けられた複数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を順次回路状に配備するとともに、上記気液分離器の上部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の吸入配管と、上記気液分離器の下部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の油戻し配管とを備えた冷凍装置において、上記複数の油戻し配管毎に設けられた複数の電磁弁と、上記複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、各電磁弁を周期的に開閉させるとともに、上記各電磁弁が開放される周期的な時期と上記各電磁弁に関連する油面検知器が作動する時期のうち、早い時期に従って上記各電磁弁を開放する第七制御部とを具備してなることを特徴とする冷凍装置。  A plurality of refrigerant compressors, condensers, pressure reducing devices, evaporators, gas-liquid separators, etc., which are provided in parallel with different capacities are sequentially arranged in a circuit, and the upper part of the gas-liquid separator and the plurality of refrigerant compressions are arranged. A plurality of suction pipes connecting the suction side of the compressor in parallel, and a plurality of oil return pipes connecting the lower part of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel, respectively. In the refrigeration apparatus provided, the plurality of solenoid valves provided for each of the plurality of oil return pipes and the plurality of oils respectively provided in the plurality of refrigerant compressors and operating when an oil level in the compressor falls below a predetermined level. The surface detector and each solenoid valve are opened and closed periodically, and according to the earlier timing among the periodic timing when each solenoid valve is opened and the timing when the oil level detector related to each solenoid valve is operated. Seventh control to open each solenoid valve Refrigerating apparatus characterized by comprising comprises a and. 上記複数の油戻し配管毎に設けられた複数の電磁弁と、各冷媒圧縮機の容量比に応じた開放時間となるように各電磁弁を開閉する第三制御部とを具備してなることを特徴とする請求項1に記載の冷凍装置。  A plurality of solenoid valves provided for each of the plurality of oil return pipes, and a third control unit for opening and closing each solenoid valve so as to have an open time according to the capacity ratio of each refrigerant compressor. The refrigeration apparatus according to claim 1. 上記気液分離器の下部から上記複数の油戻し配管への分岐位置に設けられ上記気液分離器からの油流路を各油戻し配管に対し連通可能に切換える三方弁と、各冷媒圧縮機の容量比に応じた連通時間となるように上記三方弁の油流路を上記各油戻し配管に向けて切換える第四制御部とを具備してなることを特徴とする請求項1に記載の冷凍装置。  A three-way valve provided at a branching position from the lower part of the gas-liquid separator to the plurality of oil return pipes to switch the oil flow path from the gas-liquid separator to be communicable with each oil return pipe; and each refrigerant compressor And a fourth control unit that switches the oil flow path of the three-way valve toward each of the oil return pipes so as to have a communication time corresponding to the capacity ratio. Refrigeration equipment. 上記複数の油戻し配管毎に設けられた複数の電磁弁と、上記複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、上記油面検知器が作動したとき当該油面検知器に関連する電磁弁を開放する第五制御部とを具備してなることを特徴とする請求項1に記載の冷凍装置。  A plurality of solenoid valves provided for each of the plurality of oil return pipes, a plurality of oil level detectors each provided in the plurality of refrigerant compressors and operating when the oil level in the compressor falls below a predetermined level; The refrigeration apparatus according to claim 1, further comprising: a fifth control unit that opens a solenoid valve related to the oil level detector when the oil level detector is activated. 上記気液分離器の下部から上記複数の油戻し配管への分岐位置に設けられ上記気液分離器からの油流路を各油戻し配管に対し連通可能に切換える三方弁と、上記複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、上記油面検知器が作動したとき当該油面検知器に関連する油戻し配管に向けて上記三方弁の油流路を切換える第六制御部とを具備してなることを特徴とする請求項1に記載の冷凍装置。  A three-way valve provided at a branch position from the lower part of the gas-liquid separator to the plurality of oil return pipes to switch the oil flow path from the gas-liquid separator to each oil return pipe; and the plurality of refrigerants A plurality of oil level detectors that are respectively provided in the compressor and operate when the oil level in the compressor falls below a predetermined level, and toward the oil return pipe related to the oil level detector when the oil level detector operates. The refrigeration apparatus according to claim 1, further comprising a sixth control unit that switches an oil flow path of the three-way valve. 容量が同じで並列に設けられた複数の冷媒圧縮機、凝縮器、減圧装置、蒸発器、気液分離器等を順次回路状に配備するとともに、上記気液分離器の上部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の吸入配管と、上記気液分離器の下部と上記複数の冷媒圧縮機の吸込側とをそれぞれ並列して接続する複数の油戻し配管とを備えた冷凍装置において、上記複数の油戻し配管毎に設けられた複数の電磁弁と、上記複数の冷媒圧縮機にそれぞれ設けられ圧縮機内油面が所定レベルを下回ったときに作動する複数の油面検知器と、各電磁弁を周期的に開閉させるとともに、上記各電磁弁が開放される周期的な時期と上記各電磁弁に関連する油面検知器が作動する時期のうち、早い時期に従って上記各電磁弁を開放する第七制御部とを具備してなることを特徴とする冷凍装置。  A plurality of refrigerant compressors, condensers, decompressors, evaporators, gas-liquid separators, etc., which are provided in parallel with the same capacity, are sequentially arranged in a circuit, and the upper part of the gas-liquid separator and the plurality of refrigerants A plurality of suction pipes for connecting the suction side of the compressor in parallel with each other; a plurality of oil return pipes for connecting the lower part of the gas-liquid separator and the suction side of the plurality of refrigerant compressors in parallel with each other; A plurality of solenoid valves provided for each of the plurality of oil return pipes, and a plurality of solenoid valves provided in the plurality of refrigerant compressors and operating when an oil level in the compressor falls below a predetermined level. The oil level detector and each solenoid valve are periodically opened and closed, and the earlier timing among the periodic timing at which each solenoid valve is opened and the timing at which the oil level detector associated with each solenoid valve operates. 7th control to open each solenoid valve according to Refrigerating apparatus characterized by comprising comprises a and. 上記複数の油戻し配管毎に設けられた複数の電磁弁と、各電磁弁の開放時間をそれぞれ等しくするように上記各電磁弁を周期的に開閉する第一制御部とを具備してなることを特徴とする請求項6に記載の冷凍装置。  A plurality of solenoid valves provided for each of the plurality of oil return pipes, and a first control unit that periodically opens and closes the solenoid valves so that the open times of the solenoid valves are equal to each other. The refrigeration apparatus according to claim 6. 上記気液分離器の下部から上記複数の油戻し配管への分岐位置に設けられ上記気液分離器からの油流路を各油戻し配管に対し連通可能に切換える三方弁と、上記各油戻し配管への連通時間をそれぞれ等しくするように上記三方弁の油流路を周期的に上記各油戻し配管に向けて切換える第二制御部とを具備してなることを特徴とする請求項6に記載の冷凍装置。  A three-way valve provided at a branch position from the lower part of the gas-liquid separator to the plurality of oil return pipes to switch the oil flow path from the gas-liquid separator to be communicable with each oil return pipe; 7. A second control unit that periodically switches the oil flow path of the three-way valve toward each of the oil return pipes so that the communication times to the pipes are equal to each other. The refrigeration apparatus described.
JP32531296A 1996-06-24 1996-12-05 Refrigeration equipment Expired - Lifetime JP4033248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32531296A JP4033248B2 (en) 1996-06-24 1996-12-05 Refrigeration equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16300196 1996-06-24
JP8-163001 1996-06-24
JP32531296A JP4033248B2 (en) 1996-06-24 1996-12-05 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH1073330A JPH1073330A (en) 1998-03-17
JP4033248B2 true JP4033248B2 (en) 2008-01-16

Family

ID=26488598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32531296A Expired - Lifetime JP4033248B2 (en) 1996-06-24 1996-12-05 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4033248B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655899B2 (en) 2015-12-25 2020-05-19 Samsung Electronics Co., Ltd. Oil separator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710347B1 (en) 2000-05-12 2007-04-23 엘지전자 주식회사 Apparatus and method for displaying three-dimensional image
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device
JP5478927B2 (en) * 2009-03-31 2014-04-23 三菱重工業株式会社 Refrigeration equipment
CN109654636B (en) * 2018-12-29 2020-09-01 广东志高暖通设备股份有限公司 Air conditioning system for improving small-load operation refrigerating capacity and control method
CN114893932B (en) * 2022-05-24 2023-04-18 珠海格力电器股份有限公司 Compressor oil return system, control method and device thereof, storage medium and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655899B2 (en) 2015-12-25 2020-05-19 Samsung Electronics Co., Ltd. Oil separator

Also Published As

Publication number Publication date
JPH1073330A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
KR100807498B1 (en) Refrigerator
EP1788325B1 (en) Freezing apparatus
CN102365508B (en) Refrigeration device
US5685168A (en) Refrigerating apparatus
AU749518B2 (en) Refrigerating device
CN102947652A (en) Cooling system of a refrigerator and suction system for a compressor fluid
US5157943A (en) Refrigeration system including capillary tube/suction line heat transfer
JP4033248B2 (en) Refrigeration equipment
US20050103045A1 (en) Air conditioner
JPH09126598A (en) Refrigerating cycle and refrigerating cycle component for air conditioner
JPH04288454A (en) Refrigerating device using heat transfer of capillary tube and suction line
CN110195939B (en) Assembled refrigerating system capable of achieving temperature control in partitioned mode and fresh-keeping cabinet applied to assembled refrigerating system
JP2002147876A (en) Air conditioner
CN110131952A (en) Combine refrigerating appliance
JPH0480555A (en) Refrigerating plant
CN215571353U (en) Double-machine double-frequency-conversion medical refrigeration equipment
CN113063235B (en) Multi-stage compression type refrigerating device
JPS60245966A (en) Air conditioner
KR100510851B1 (en) Condenser Structure Of Outdoor Unit For Air Conditioner
JP2002340424A (en) Freezing apparatus
JP2001280719A (en) Refrigerating system
KR100510849B1 (en) Condensation Structure of Refrigeration System
JP2002340425A (en) Freezing apparatus
JPH0243995B2 (en) KUKICHOWASOCHI
JPH0593548A (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term