JPH0243995B2 - KUKICHOWASOCHI - Google Patents

KUKICHOWASOCHI

Info

Publication number
JPH0243995B2
JPH0243995B2 JP10126384A JP10126384A JPH0243995B2 JP H0243995 B2 JPH0243995 B2 JP H0243995B2 JP 10126384 A JP10126384 A JP 10126384A JP 10126384 A JP10126384 A JP 10126384A JP H0243995 B2 JPH0243995 B2 JP H0243995B2
Authority
JP
Japan
Prior art keywords
compressor
bypass path
refrigerating machine
oil separator
machine oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10126384A
Other languages
Japanese (ja)
Other versions
JPS60245967A (en
Inventor
Setsu Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10126384A priority Critical patent/JPH0243995B2/en
Publication of JPS60245967A publication Critical patent/JPS60245967A/en
Publication of JPH0243995B2 publication Critical patent/JPH0243995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は分離型空気調和機の冷凍サイクル及
び制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a refrigeration cycle and a control device for a separate air conditioner.

〔従来技術〕[Prior art]

従来この種の装置として、第1図に示すものが
ある。
A conventional device of this type is shown in FIG.

冷房運転時、圧縮機1より吐出された高温、高
圧の冷媒と冷凍機油は4方弁2を経て室外側熱交
換器3に到り、熱交換して高温、高圧の液とな
り、デイストリピユーター4を経て、膨張弁5で
滅圧されて、接続配管6を経て室内熱交換器7で
蒸発し、接続配管8を経て四方弁2、アキユムレ
ータ9を経て再び圧縮機1に吸入される循環サイ
クルを形成している。従つて特に圧縮機1の起動
時に、冷凍機油中に寝込んでいた冷媒がフオーミ
ングを起こし、大量の冷凍機油が吐出され、又連
続運転時もたえず少量の冷凍機油は吐出され、吐
出された冷凍機油は上記冷凍サイクルを循環し
て、圧縮機1の吸入側に戻つて来るが、接続配管
6,8が特に長くなつた場合、吐出された冷凍油
が循環して戻つて来るまでに時間がかかり、圧縮
機1内の冷凍機油が少なくなり、圧縮機の潤滑不
良を起こし摺動部の焼付不良を起こすことにな
る。又、容量制御を行つたり低負荷運転時冷媒循
環量が低下し、配管内を流れる冷媒スピードが低
下する為、冷凍機油の戻りが悪くなり同様に圧縮
機1の不良を起こすという欠点を有していた。こ
れは暖房時も同様である。
During cooling operation, the high-temperature, high-pressure refrigerant and refrigerating machine oil discharged from the compressor 1 pass through the four-way valve 2 and reach the outdoor heat exchanger 3, where they exchange heat and become high-temperature, high-pressure liquid. It passes through the utility 4, is depressurized by the expansion valve 5, passes through the connecting pipe 6, evaporates in the indoor heat exchanger 7, passes through the connecting pipe 8, passes through the four-way valve 2, and the accumulator 9, and is sucked into the compressor 1 again. It forms a circular cycle. Therefore, especially when the compressor 1 is started, the refrigerant that has been trapped in the refrigerating machine oil forms and a large amount of refrigerating machine oil is discharged, and even during continuous operation, a small amount of refrigerating machine oil is continuously discharged, and the discharged refrigerating machine oil The refrigeration oil circulates through the refrigeration cycle and returns to the suction side of the compressor 1, but if the connecting pipes 6 and 8 are particularly long, it takes time for the discharged refrigeration oil to circulate and return. , the amount of refrigerating machine oil in the compressor 1 decreases, resulting in poor lubrication of the compressor and seizure of the sliding parts. In addition, when performing capacity control or operating at low load, the amount of refrigerant circulating decreases and the speed of refrigerant flowing through the pipes decreases, resulting in poor return of refrigerating machine oil, which also causes a defect in the compressor 1. Was. This also applies during heating.

またデフロスト時は、圧縮機1より吐出された
高温、高圧の冷媒は、4方弁2を経て室外側熱交
換器3に到り、デフロストを行い熱交換をして高
温、高圧の液となり、デイストリピユーター4を
経て再び膨張弁5で減圧され接続配管6を経て、
室内熱交換器7、接続配管8、4方弁2、アキユ
ムレータ9を経て、再び圧縮機1に吸入される循
環サイクルを形成して、室内側熱交換器7側フア
ン(図示せず)は、運転すると冷風が吹出すため
停止する様にしている。従つて、膨張弁5で減圧
された低温、低圧の二相流の冷媒は、室内側熱交
換器7で熱交換されないため低圧ガスの圧力が下
がり、かつ、そのままアキユムレーター9に入り
液冷媒が溜りこんでしまうために冷媒循環量が減
少し、圧縮機入力も小さくなるため、デフロスト
時間が長くなるという欠点を有していた。
Also, during defrosting, the high temperature, high pressure refrigerant discharged from the compressor 1 passes through the four-way valve 2 and reaches the outdoor heat exchanger 3, where it defrosts, exchanges heat, and becomes a high temperature, high pressure liquid. After passing through the distributor 4, it is depressurized again by the expansion valve 5, and passes through the connecting pipe 6.
A fan on the indoor heat exchanger 7 side (not shown) forms a circulation cycle in which the air is sucked into the compressor 1 again through the indoor heat exchanger 7, the connection pipe 8, the four-way valve 2, and the accumulator 9. When I run it, it blows out cold air, so I try to stop it. Therefore, the low-temperature, low-pressure two-phase flow refrigerant whose pressure is reduced by the expansion valve 5 is not heat exchanged with the indoor heat exchanger 7, so the pressure of the low-pressure gas decreases, and it enters the accumulator 9 as it is, where liquid refrigerant accumulates. Because of this, the refrigerant circulation amount is reduced and the compressor input is also reduced, which has the drawback of prolonging the defrost time.

また空調機の停止時、接続管8に溜つていた冷
媒が自重により圧縮機の吐出管に戻つてきて、圧
縮機の吐出弁口に充満し、圧縮機起動時に弁(図
示せず)破損を起こすという欠点を有していた。
Furthermore, when the air conditioner is stopped, the refrigerant that had accumulated in the connecting pipe 8 returns to the discharge pipe of the compressor due to its own weight, filling the discharge valve port of the compressor, and when the compressor is started, the refrigerant that has accumulated in the connecting pipe 8 returns to the discharge pipe of the compressor. It had the disadvantage of causing damage.

〔発明の概要〕[Summary of the invention]

この発明は、上記の如き従来の欠点を除去する
為になされたもので、圧縮機の吐出側と4方弁の
間に油分離器を設けてその油分離器より電磁弁を
介して、アキユムレーターに到る第1バイパス路
と、上記油分離器より、上記電磁弁に並列に毛細
管を介して、上記アキユムレーターに到る第2バ
イパス路とを備え冷凍機油をアキユムレーター
に、電磁弁を介しては比較的多量に、毛細管を介
しては、比較的少量を戻すことにより冷凍機油不
足による圧縮機不良を防げるようにした空気調和
装置を提供することを目的としている。
This invention was made in order to eliminate the above-mentioned conventional drawbacks, and an oil separator is provided between the discharge side of the compressor and the four-way valve, and the oil separator is connected to the accumulator via a solenoid valve. a first bypass path leading to the accumulator from the oil separator through a capillary tube in parallel with the solenoid valve; It is an object of the present invention to provide an air conditioner that can prevent compressor failure due to lack of refrigerating machine oil by returning a relatively large amount and a relatively small amount through a capillary tube.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を第2図を参照して説
明する。第2図において第1図と同一又は相当部
分は同一符号で示すものとする。第2図において
10は油分離器、11は第1バイパス路、12は
電磁弁13は逆止弁、14は第2バイパス路、1
5は毛細管である。即ち第2図に図示するよう
に、圧縮機1の吐出側と4方弁2の間に、逆止弁
13、油分離器10の順に各々配置し、該油分離
器10より電磁弁12を介してアキユムレーター
9に到る第1バイパス路11を又、該油分離器1
0より電磁弁12に並列に毛細管15を介して第
2バイパス路14を設けると共に、圧縮機1の吐
出側と上記油分離器10の途中に逆止弁13を設
け、前後の圧力が同じときは閉とするようにされ
ている。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same or corresponding parts as in FIG. 1 are indicated by the same reference numerals. In FIG. 2, 10 is an oil separator, 11 is a first bypass path, 12 is a solenoid valve 13 is a check valve, 14 is a second bypass path, 1
5 is a capillary tube. That is, as shown in FIG. 2, a check valve 13 and an oil separator 10 are arranged in this order between the discharge side of the compressor 1 and the four-way valve 2, and the solenoid valve 12 is connected to the oil separator 10. The oil separator 1
A second bypass path 14 is provided in parallel to the electromagnetic valve 12 from 0 through a capillary tube 15, and a check valve 13 is provided between the discharge side of the compressor 1 and the oil separator 10, so that when the pressures before and after are the same. is closed.

上記構成においてこの発明の動作を説明する。
第2図において実線の矢印は冷房、デフロスト運
転時の冷媒の流れであり、破線の矢印は暖房時に
おける冷媒の流れを示し、又一点鎖線はバイパス
路中の冷媒、冷凍機油の流れを表わすものであ
る。
The operation of the present invention will be explained in the above configuration.
In Figure 2, the solid arrows indicate the flow of refrigerant during cooling and defrosting operations, the dashed arrows indicate the flow of refrigerant during heating, and the dashed-dotted line indicates the flow of refrigerant and refrigerating machine oil in the bypass path. It is.

冷房時、圧縮機1より吐出された高温、高圧の
冷媒と冷凍機油は逆止弁13を経て、油分離器1
0の上部より入り冷凍機油は分離され、油分離器
10の底部に溜まつている。冷凍機油と分離した
ガス状冷媒は油分離器10の上部より出て4方弁
2、室外側熱交換器3に到り熱交換して高温、高
圧の液となり、デイストリピユーター4を経て膨
張弁5で減圧され接続配管6を経て、室内側熱交
換器7で蒸発し、接続配管8を経て4方弁2、ア
キユームレーター9を経て再び圧縮機1に帰る。
なおこの運転中第2バイパス路14の途中にある
毛細管15より絶えず圧縮機1の冷凍機油吐出量
に見合う冷凍機油が第2バイパス路14を経由し
て絶えずアキユムレーター9に返され、又第1バ
イパス路11の途中にある電磁弁12は閉じられ
ているが、第2バイパス路14を経由して流れる
冷凍機油よりも多量の冷凍機油が圧縮機1より吐
出されることにより多量の冷凍機油が油分離器に
溜まると信号により電磁弁12が開けられ、油分
離器0の下部に溜まつた冷凍機油は、バイパス路
11を経由して電磁弁12を介して、アキユムレ
ーター9に返され、室内側熱交換器7により帰つ
てきた低温、低圧のガスと共に、圧縮機1に帰る
ことになり冷凍機油の循環回路は大巾に短縮され
る。暖房時も同様である。
During cooling, high-temperature, high-pressure refrigerant and refrigerating machine oil discharged from the compressor 1 pass through the check valve 13 and enter the oil separator 1.
The refrigerating machine oil that enters from the top of the oil separator 10 is separated and collected at the bottom of the oil separator 10. The gaseous refrigerant separated from the refrigeration oil exits from the upper part of the oil separator 10, reaches the four-way valve 2, and the outdoor heat exchanger 3, where it exchanges heat and becomes a high-temperature, high-pressure liquid, which is then sent to the distributor 4. Thereafter, the pressure is reduced by the expansion valve 5, and the gas passes through the connecting pipe 6, is evaporated in the indoor heat exchanger 7, and returns to the compressor 1 via the connecting pipe 8, the four-way valve 2, and the accumulator 9.
During this operation, refrigerating machine oil corresponding to the amount of refrigerating machine oil discharged from the compressor 1 is constantly returned to the accumulator 9 via the second bypass passage 14 from the capillary tube 15 located in the middle of the second bypass passage 14, and Although the solenoid valve 12 located in the middle of the passage 11 is closed, a larger amount of refrigerating machine oil is discharged from the compressor 1 than the refrigerating machine oil flowing through the second bypass passage 14. When the oil accumulates in the separator, the solenoid valve 12 is opened by a signal, and the refrigerating machine oil accumulated in the lower part of the oil separator 0 is returned to the accumulator 9 via the bypass path 11 and the solenoid valve 12, and is returned to the indoor side. The low-temperature, low-pressure gas returned by the heat exchanger 7 returns to the compressor 1, and the refrigerating machine oil circulation circuit is greatly shortened. The same applies to heating.

従つて、室内側ユニツトと、室内側ユニツトの
距離が大巾に離れている時、すなわち接続配管
6,8が長い時でも冷凍機油の循環回路は短いバ
イパス回路のため、圧縮機1の冷凍機油不足を起
こすことがなく、運転状態により多量の冷凍機油
が吐出された場合においても電磁弁12を介した
短い第2バイパス路14によりすみやかに多量の
冷凍機油が戻される為、圧縮機1の冷凍機油不足
を起こすことがない。
Therefore, even when the distance between the indoor unit and the indoor unit is large, that is, when the connecting pipes 6 and 8 are long, the refrigerating machine oil circulation circuit is a short bypass circuit, so the refrigerating machine oil in the compressor 1 is Even if a large amount of refrigerating machine oil is discharged due to operating conditions, a large amount of refrigerating machine oil is quickly returned to the short second bypass path 14 via the solenoid valve 12, so that the compressor 1 can be refrigerated. There will be no oil shortage.

また、圧縮機1が容量制御型の時、圧縮機から
吐出される冷媒の循環量が大巾に減少し、小量と
なる時すなわち冷媒の配管内を動く冷媒速度が小
さくなつても、冷凍機油の循環する回路の距離は
変らず、短かい為に冷凍機油の戻り不足を起こす
ことがない。更に、圧縮機1の起動時には上記電
磁弁12を開としておき、起動後一定時間(例え
ば1分間)開としておくことにより停止時に冷凍
機油中に寝込んでいる冷媒が圧縮機の起動により
フオーミングを起こし通常の連続運転に比べ大量
の冷凍機油が、圧縮機1より吐出されるが、油分
離器により冷凍機油だけ分離され、上記冷媒回路
を循環することなく、流量の少ない第2バイパス
路14だけではなく、更に、流量の多い第1バイ
パス路11を経由して、開となつている電磁弁1
2をも介して、アキユムレーター9に返り低圧の
ガスと共に圧縮機1にもどり、冷凍機油不足を短
時間で補なうことが可能となる。
In addition, when the compressor 1 is of the capacity control type, the circulating amount of refrigerant discharged from the compressor is greatly reduced. The distance of the circuit through which machine oil circulates does not change, and because it is short, there is no possibility of insufficient return of refrigeration machine oil. Furthermore, by keeping the electromagnetic valve 12 open when the compressor 1 is started, and keeping it open for a certain period of time (for example, 1 minute) after the start, the refrigerant lying in the refrigerating machine oil when the compressor 1 is stopped is caused to form when the compressor is started. Although a large amount of refrigerating machine oil is discharged from the compressor 1 compared to normal continuous operation, only the refrigerating machine oil is separated by the oil separator, and it does not circulate through the refrigerant circuit, so that it can be used only in the second bypass passage 14 with a small flow rate. In addition, the solenoid valve 1 which is open via the first bypass path 11 with a large flow rate
2, it returns to the accumulator 9 and returns to the compressor 1 together with the low-pressure gas, making it possible to compensate for the shortage of refrigerating machine oil in a short time.

更に、暖房運転からデフロスト運転になると、
4方弁2が切り換わり圧縮機1で圧縮された高
温、高圧の冷媒ガスは逆止弁13、油分離器10
を経て、4方弁2により室外側熱交換器3でデフ
ロストを行ない、デイストリピユーター4を経て
膨張弁5で減圧され、接続配管6、室内側熱交換
器7を経て、接続管8を経て、再び4方弁2、ア
キユームレーター9に返される。同時に圧縮機1
を出た高温、高圧ガスは油分離器10の下部より
バイパス回路11を経由て電磁弁12を介して、
アキユームレーター9内に返される。アキユーム
レーター9では蒸発器7を通つてきた低温、低圧
の冷媒ガスに、バイパス路11を通つてきたた高
温、高圧の冷媒ガスとが混合される為に低圧ガス
の圧力が上昇され、圧縮機1に返える。その結
果、比容積の小さい循環量の多い状態を作り室外
側熱交換器3に着霜した霜は短時間でデフロスト
することが可能となる。
Furthermore, when switching from heating operation to defrost operation,
The four-way valve 2 is switched and the high temperature, high pressure refrigerant gas compressed by the compressor 1 is passed through the check valve 13 and the oil separator 10.
After that, defrost is carried out in the outdoor heat exchanger 3 by the four-way valve 2, the pressure is reduced by the expansion valve 5 through the distributor 4, the connection pipe 6, the indoor heat exchanger 7, and the connection pipe 8. After that, it is returned to the four-way valve 2 and the accumulator 9 again. Compressor 1 at the same time
The high-temperature, high-pressure gas exiting from the oil separator 10 is passed through the bypass circuit 11 and the solenoid valve 12.
It is returned into the accumulator 9. In the accumulator 9, the low-temperature, low-pressure refrigerant gas that has passed through the evaporator 7 is mixed with the high-temperature, high-pressure refrigerant gas that has passed through the bypass path 11, so the pressure of the low-pressure gas is increased and compressed. Return to aircraft 1. As a result, it becomes possible to create a state where the specific volume is small and the circulation amount is large, and the frost formed on the outdoor heat exchanger 3 can be defrosted in a short time.

又、暖房低温時、霜がすぐに付くおそれがある
為に再び電磁弁12を開としバイパス路11が開
き、吐出ガスの一部がアキユームレーター9にバ
イパス混入し、これにより低温時の暖房能力が増
加することが可能となる。
In addition, when heating is at low temperatures, there is a risk of frost forming quickly, so the solenoid valve 12 is opened again and the bypass passage 11 is opened, and a portion of the discharged gas bypasses the accumulator 9, thereby preventing heating at low temperatures. Capacity can be increased.

更に上記デフロスト、暖房低温時において、容
量可変圧縮機を使用していて、電磁弁12を開と
する時に圧縮機1の能力を最大な運転とすること
により、デフロスト能力、暖房能力は一層の効果
が得られる。
Furthermore, during the defrosting and heating at low temperatures mentioned above, by using a variable capacity compressor and operating the compressor 1 at its maximum capacity when the solenoid valve 12 is opened, the defrosting and heating capacities are even more effective. is obtained.

更に、冷房、暖房時において、圧縮機1の起動
後一定の連続運転時間後(例えば60分間)に電磁
弁12を開とすることにより、油分離器10より
絶えず毛細管15を介して、第2バイパス路14
よりアキユムレーター9内に戻している量よりも
多量の冷凍機油が圧縮機1より吐出され分離し溜
まつている油分離器10より、バイパス路11を
開き、電磁弁12を介してアキユームレーター9
内に返し、蒸発器より返つてきた低温、低圧ガス
と共に圧縮機1に帰り冷凍機油の補充が可能とな
る。
Furthermore, during cooling or heating, by opening the solenoid valve 12 after a certain continuous operating time (for example, 60 minutes) after starting the compressor 1, the second Bypass path 14
A bypass passage 11 is opened from the oil separator 10 in which a larger amount of refrigerating machine oil than the amount returned to the accumulator 9 is discharged from the compressor 1, separated and accumulated, and the oil is returned to the accumulator 9 via the solenoid valve 12.
It returns to the compressor 1 together with the low-temperature, low-pressure gas returned from the evaporator, making it possible to replenish the refrigerating machine oil.

またこの様に構成した為、空調機の停止時、接
続配8に溜つていた冷媒が自重により圧縮機の吐
出管に戻つて来ても、油分離器10に溜められて
さらに油分離器10と圧縮機吐出側の間にある逆
止弁13が閉じることにより冷媒及び冷凍機油が
圧縮機の吐出側内部に進入することを防ぐことが
でき、圧縮機起動時の弁破損を防ぐ効果も有して
いる。逆止弁13の取付は、逆止弁13前後の圧
力がバランスした時には逆止弁が閉となるように
取付けておけば効果はさらに向上する。
Also, because of this configuration, when the air conditioner is stopped, even if the refrigerant that had accumulated in the connection pipe 8 returns to the discharge pipe of the compressor due to its own weight, it will be accumulated in the oil separator 10 and then transferred to the oil separator 10. By closing the check valve 13 located between the check valve 10 and the discharge side of the compressor, it is possible to prevent refrigerant and refrigeration oil from entering the inside of the discharge side of the compressor, which also has the effect of preventing valve damage when starting the compressor. have. The effect will be further improved if the check valve 13 is installed in such a way that the check valve closes when the pressures before and after the check valve 13 are balanced.

なお上記実施例では圧縮機が室外側にあるスプ
リツト型によつて行なつたが、圧縮機が室内側に
あるリモート型においてもよく、また絞り装置と
して、膨張弁を用いたが、毛細管でも電気式膨張
弁でも、オリフイスでもよく、取り付位置も、室
内側熱交換器と室外側熱交換器のどの位置に取り
つけてもよい。
In the above embodiment, a split type compressor was used with the compressor located outside the room, but a remote type compressor with the compressor located inside the room may also be used.Although an expansion valve was used as the throttle device, a capillary tube or electric It may be a type expansion valve or an orifice, and it may be installed at any position between the indoor heat exchanger and the outdoor heat exchanger.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、圧縮機1の
吐出側と4方弁2の間に油分離器10を設け、そ
の油分離器より電磁弁12を介してアキユームレ
ーター9に到る第1バイパス路11を設け、更
に、油分離器10により電磁弁12に並列に毛細
管15を介してアキユームレーター9に至る第2
バイパス路14を設け、冷凍機油及びホツトガス
をアキユームレーター9に戻す様にしたので室内
側と室外側の設置距離(接続配管6,8)をきわ
めて長くすることが簡単に出来、また、容量可変
圧縮機などによる冷媒吐出量が大巾に低下して
も、容易に冷凍機油が圧縮機に戻ることができ、
また第1バイパス路11の流量を、第2バイパス
路14の流量よりも大としたことにより冷凍機の
吐出量が増大しても電磁弁12を開とし第1バイ
パス路11によりすみやかに圧縮機1に戻すこと
ができるので、毛細管15を介して常時開となつ
ている第2バイパス路の流量を少とすることがで
き通常運転時の能力の低下を防止でき、冷凍機油
も絶えず圧縮機に戻すこともできる。
As described above, according to the present invention, the oil separator 10 is provided between the discharge side of the compressor 1 and the four-way valve 2, and the oil separator reaches the accumulator 9 via the solenoid valve 12. A first bypass path 11 is provided, and a second bypass path 11 is provided which is connected to the solenoid valve 12 by the oil separator 10 and connected to the accumulator 9 via a capillary tube 15.
Since a bypass path 14 is provided to return the refrigerating machine oil and hot gas to the accumulator 9, the installation distance between the indoor side and the outdoor side (connecting pipes 6 and 8) can be easily made extremely long, and the capacity can be varied. Even if the amount of refrigerant discharged by the compressor etc. decreases significantly, the refrigerating machine oil can easily return to the compressor.
Furthermore, since the flow rate of the first bypass path 11 is made larger than the flow rate of the second bypass path 14, even if the discharge amount of the refrigerator increases, the solenoid valve 12 is opened and the compressor is quickly operated by the first bypass path 11. 1, it is possible to reduce the flow rate of the second bypass path, which is always open via the capillary tube 15, to prevent a decrease in capacity during normal operation, and the refrigerating machine oil is constantly supplied to the compressor. You can also return it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍サイクルを説明する図、第
2図は本発明の一実施例を示す冷凍サイクルを説
明する図。 1は圧縮機、2は4方弁、3は室外側熱交換
器、4はデイストリピユーター、5は膨張弁、6
は接続配管、7は室内側熱交換器、8は接続配
管、9はアキユームレーター、10は油分離器、
11は第1バイパス路、12は電磁弁、13は逆
止弁、14は第2バイパス路、15は毛細管、実
線の矢印は、冷房、デフロスト運転時の冷媒流れ
を表わし破線の矢印は、暖房運転時の冷媒の流れ
を表わし、一点鎖線はバイパス路中の冷媒、冷凍
機油の流れを表わすものとする。なお図中同一符
号は同一又は相当部分を示す。
FIG. 1 is a diagram illustrating a conventional refrigeration cycle, and FIG. 2 is a diagram illustrating a refrigeration cycle showing an embodiment of the present invention. 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is a distributor, 5 is an expansion valve, 6
is a connection pipe, 7 is an indoor heat exchanger, 8 is a connection pipe, 9 is an accumulator, 10 is an oil separator,
11 is the first bypass path, 12 is the electromagnetic valve, 13 is the check valve, 14 is the second bypass path, 15 is the capillary tube, solid arrows represent the refrigerant flow during cooling and defrost operation, and broken arrows represent the heating flow. It represents the flow of refrigerant during operation, and the dashed line represents the flow of refrigerant and refrigerating machine oil in the bypass path. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、4方弁、室外熱交換器、絞り装置、
室内側熱交換器及びアキユムレーターを環状に接
続して循環サイクルを形成してなる空気調和機に
おいて、圧縮機の吐出側と上記4方弁の間に設け
られた油分離器と、この油分離器により電磁弁を
介してアキユムレーターに至る第1バイパス路
と、上記油分離器より上記電磁弁に並列に毛細管
を介して上記アキユムレーターに至る第2バイパ
ス路とを備え、上記第2バイパス路の流量よりも
上記第1バイパス路の流量の方が大量となるよう
に設定したことを特徴とする分離型空気調和装
置。
1 Compressor, 4-way valve, outdoor heat exchanger, throttling device,
In an air conditioner formed by connecting an indoor heat exchanger and an accumulator in a ring to form a circulation cycle, the oil separator is provided between the discharge side of the compressor and the four-way valve, and the oil separator. a first bypass path leading from the oil separator to the accumulator via a solenoid valve, and a second bypass path running from the oil separator to the aggregator via a capillary tube in parallel with the solenoid valve, the flow rate being lower than the flow rate of the second bypass path. A separate air conditioner characterized in that the flow rate of the first bypass path is set to be larger than that of the first bypass path.
JP10126384A 1984-05-18 1984-05-18 KUKICHOWASOCHI Expired - Lifetime JPH0243995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10126384A JPH0243995B2 (en) 1984-05-18 1984-05-18 KUKICHOWASOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10126384A JPH0243995B2 (en) 1984-05-18 1984-05-18 KUKICHOWASOCHI

Publications (2)

Publication Number Publication Date
JPS60245967A JPS60245967A (en) 1985-12-05
JPH0243995B2 true JPH0243995B2 (en) 1990-10-02

Family

ID=14296014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10126384A Expired - Lifetime JPH0243995B2 (en) 1984-05-18 1984-05-18 KUKICHOWASOCHI

Country Status (1)

Country Link
JP (1) JPH0243995B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610562B2 (en) * 1987-08-31 1994-02-09 三菱電機株式会社 Heat pump type air conditioner
JPH0270166U (en) * 1988-11-18 1990-05-28
JP5333305B2 (en) * 2010-03-18 2013-11-06 パナソニック株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JPS60245967A (en) 1985-12-05

Similar Documents

Publication Publication Date Title
US6986259B2 (en) Refrigerator
CA2140179C (en) Two mop expansion valves, one pressure setting for heating mode and one for cooling mode
EP2211127A1 (en) Heat pump type air conditioner
JPS60245960A (en) Refrigeration cycle of air conditioner
US20090077985A1 (en) Refrigerating Apparatus
AU5997599A (en) Two-refrigerant refrigerating device
CN110425763A (en) A kind of heat pump system
CN113375376A (en) Integrated heat pump system and control method thereof
JP3788309B2 (en) Refrigeration equipment
JPH0243995B2 (en) KUKICHOWASOCHI
JP4023387B2 (en) Refrigeration equipment
JP2018173195A (en) Refrigerator
JPH0350958B2 (en)
JPS60245966A (en) Air conditioner
JPH11304265A (en) Air conditioner
JPH048704B2 (en)
JPH048702B2 (en)
JP3010908B2 (en) Refrigeration equipment
JPH048705B2 (en)
JPS5888563A (en) Cooling device
JPH01291065A (en) Air conditioner device
KR100510849B1 (en) Condensation Structure of Refrigeration System
CN113685916A (en) Air conditioning system and control method thereof
JPH01273958A (en) Air conditioner
CN117847707A (en) Defrosting control method for air conditioner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term