JP4032912B2 - Method of recovering thermoplastic resin from waste optical disc, thermoplastic resin composition including recovered thermoplastic resin, and thermoplastic resin molded article - Google Patents

Method of recovering thermoplastic resin from waste optical disc, thermoplastic resin composition including recovered thermoplastic resin, and thermoplastic resin molded article Download PDF

Info

Publication number
JP4032912B2
JP4032912B2 JP2002290160A JP2002290160A JP4032912B2 JP 4032912 B2 JP4032912 B2 JP 4032912B2 JP 2002290160 A JP2002290160 A JP 2002290160A JP 2002290160 A JP2002290160 A JP 2002290160A JP 4032912 B2 JP4032912 B2 JP 4032912B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
weight
acid
resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002290160A
Other languages
Japanese (ja)
Other versions
JP2003200133A (en
Inventor
修 水津
誠 木島
雅司 神近
恭之 広本
勉 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno UMG Co Ltd
Original Assignee
UMG ABS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMG ABS Ltd filed Critical UMG ABS Ltd
Priority to JP2002290160A priority Critical patent/JP4032912B2/en
Publication of JP2003200133A publication Critical patent/JP2003200133A/en
Application granted granted Critical
Publication of JP4032912B2 publication Critical patent/JP4032912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • B29L2017/001Carriers of records containing fine grooves or impressions, e.g. disc records for needle playback, cylinder records
    • B29L2017/003Records or discs
    • B29L2017/005CD''s, DVD''s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学式ディスク、特にポリカーボネート樹脂等の熱可塑性樹脂基板にアルミニウム反射膜等を形成してなるコンパクトディスク(以下、単に「CD」ということがある。)の廃棄物を処理して高品質の熱可塑性樹脂を回収する方法と、この方法で回収された熱可塑性樹脂を利用した、表面外観及び耐衝撃性に優れた熱可塑性樹脂組成物及び熱可塑性樹脂成形品に関する。
【0002】
【従来の技術】
光学式情報記録媒体としてのCD、レーザーディスク等の光学式ディスクには、レーザー光によってディスク基板上に設けた微細な凹凸を検出して音声や画像を再生するもの、基板面に設けた情報記録層により情報を記録・再生するもの、或いは記録された情報を消去したり重ね書きできるもの等の種々の方式のものが提供されている。
【0003】
CD等の光学式ディスクは、一般的に熱可塑性樹脂の基板上に、必要に応じて光磁気層や誘電体層を介してアルミニウム等の金属反射膜を設け、更にその上に保護塗料の塗布及び必要な印刷等を施して製造されている。基板を構成する熱可塑性樹脂としては、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂、非晶性環状ポリオレフィン樹脂等の透明樹脂が採用されており、なかでもポリカーボネート樹脂は殆どのCDに使用され、大規模な生産が行われている。
【0004】
CDは工業的に大量生産が行われている反面、極めて高密度の記憶容量及び極めて高度な品質が要求されるため、微少な欠陥を有するものであっても不良品とならざるを得ず、また高品質を維持する目的で生産工程の各所より抜き取られる検査用サンプルも多量にならざるを得ない。更には、市場等から戻される古品や使用済品、回収品等も多いことから、これら大量に発生する廃品の処理が問題となっている。
【0005】
従来、光学式ディスクの廃品は、CD製造業者又はポリカーボネート樹脂製造業者が引き取り、破砕して埋め立てるか、或いは焼却することにより処分されているが、焼却には特殊な構造の焼却炉が必要であり、また埋め立てには環境汚染の問題がある。
【0006】
そこで、光学式ディスク上に形成された反射層や保護コート層等の被膜を樹脂基板から除去し、樹脂を回収して再利用しようとする提案がなされている。
【0007】
例えば、CD廃棄物からポリカーボネート樹脂を回収する方法として、ワイヤブラシ法やサンドブラスト法などによって表面の被膜を機械的に削り取る方法があるが、この方法はワイヤの屑やショット粉などが回収樹脂中に混入するだけでなく、ポリカーボネートも一部削り取られるため、回収率が悪い。また、記録容量を増加する目的で薄い樹脂基板を記録層を内側にして貼り合わせたCDが提供されているが、このような貼り合せ型のCDでは、記録層が内側であるため被膜の研削ができないという問題もある。
【0008】
特開平9−316316号公報には光学式ディスクをそのまま粉砕して使用する方法が記載されているが、この方法ではアルミニウム粉や塗膜が混入するために、回収された樹脂を用いて得られる熱可塑性樹脂成形品は耐衝撃性が著しく低下し、用途が限られてしまうという欠点があった。
【0009】
また、特開平5−200379号公報、特開平6−223416号公報及び特開平4−360035号公報は、廃CDを特定の大きさまで粉砕又は破砕し、その後アルカリ水溶液で化学的に処理する方法が提案されている。これらの方法は、CDを細かくして、情報記録層や反射層の金属部をアルカリの水溶液に溶解し易くすることによって樹脂基板から被膜を除去している。しかしながら、これらの方法では、先ず、廃CDを特定の大きさまで粉砕又は破砕する必要があり、粉砕、破砕のための設備が必要であり、経済的でないだけでなく、効率的にも悪い。また、粉砕、破砕時の粉塵の発生による従来環境の悪化が問題となる場合もある。特に、特開平4−360035号公報に記載される方法は、CDを特定の大きさまで粉砕又は破砕した後、75〜100℃という高温に加熱した苛性アルカリを含む強アルカリ性水溶液に接触させてポリカーボネートを回収する方法であるが、ポリカーボネートはアルカリに弱いことから、表面の被膜を剥離して得られたポリカーボネート樹脂は高温のアルカリにより分子量が低下し、物性も低下しているために、回収した樹脂を再び成形して得られる成形品は、品質に劣るものになるという欠点もある。
【0010】
また、特開平5−345321号公報には、CDを長時間熱水中に浸漬することにより被膜を除去する方法が提案されているが、この方法では、熱水中に長時間浸漬することによりポリカーボネート樹脂基板の場合、分子量低下や白化が起き易い欠点があり、回収された樹脂の再利用のためには好ましい方法ではない。
【0011】
【特許文献1】
特開平9−316316号公報
【特許文献2】
特開平5−200379号公報
【特許文献3】
特開平6−223416号公報
【特許文献4】
特開平4−360035号公報
【特許文献5】
特開平5−345321号公報
【0012】
【発明が解決しようとする課題】
このように、従来においては、光学式ディスクの廃棄物から、熱可塑性樹脂基板上の金属反射膜等の被膜のみを容易かつ効率的に除去して、基板の構成材料である熱可塑性樹脂を、その物性を低下させることなく、そのまま再利用可能な物性を維持して高い回収率で回収する方法は提案されておらず、いずれの方法においても、回収率、処理効率、経済性、作業性、或いは回収された熱可塑性樹脂の物性等の面のいずれかにおいて欠点を有していた。
【0013】
本発明は上記従来の問題点を解決し、光学式ディスクの廃棄物から、熱可塑性樹脂基板上の金属反射膜等の被膜のみを容易かつ効率的に除去して、基板の構成材料である熱可塑性樹脂を、その物性を低下させることなく、そのまま再利用可能な物性を維持して高い回収率で回収することができる廃光学式ディスクからの熱可塑性樹脂の回収方法を提供することを目的とする。
【0014】
本発明はまた、回収された熱可塑性樹脂を用いて、表面外観及び耐衝撃性に優れた熱可塑性樹脂成形品を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の廃光学式ディスクからの熱可塑性樹脂の回収方法は、熱可塑性樹脂基板に金属反射膜を含む被膜が形成された光学式ディスクの廃棄物から熱可塑性樹脂を回収する方法において、該光学式ディスクを酸溶液に接触させ、前記被膜を溶解ないし剥離除去した後、水洗し、乾燥する方法であって、該酸溶液が無機酸、有機酸、ハロゲン化合物、及び浸透剤を含む水性溶液であることを特徴とする。
【0016】
本発明では、酸溶液を用いるため、ポリカーボネート樹脂等の熱可塑性樹脂の物性に悪影響を及ぼすことなく、初期の物性を維持したまま回収することができ、容易に再成形して再利用することが可能である。
【0017】
本発明は、特に熱可塑性樹脂としてポリカーボネート樹脂の回収に有効であり、酸溶液としては、pH3以下の酸溶液、特に無機酸、有機酸、ハロゲン化合物及び浸透剤を含む水性溶液が好ましい。この場合、無機酸としては塩酸、硝酸、硫酸及びリン酸よりなる群から選ばれる1種又は2種以上が挙げられ、有機酸としてはクエン酸、スルファミン酸、シュウ酸、グリコール酸、酢酸及びギ酸よりなる群から選ばれる1種又は2種以上が挙げられ、ハロゲン化合物としてはハロゲン化ナトリウム、ハロゲン化カリウム、ハロゲン化アンモニウム及びハロゲン化水素酸よりなる群から選ばれる1種又は2種以上が挙げられ、浸透剤としてはポリオキシアルキレンアルキルエーテル、アルキルベンゼンスルフォネート及びナフタレンスルフォネートよりなる群から選ばれる1種又は2種以上が挙げられる。
【0018】
この酸溶液の無機酸の濃度は10〜80重量%であることが好ましく、有機酸の濃度は1〜20重量%であることが好ましく、ハロゲン化合物の濃度は1〜30重量%であることが好ましく、浸透剤の濃度は0.1〜5重量%であることが好ましい。
【0019】
本発明においては、光学式ディスクを破砕することなく直接酸溶液に接触させて処理することが好ましく、この場合には、破砕、粉砕のための設備が不要となり、経済性、作業性、処理効率が向上する。また、破砕を行った場合、基板上の反射膜、保護膜、印刷膜等の破砕膜、特に印刷膜が酸溶液中で粘性の高い異物となって存在するようになり、処理時の作業性が損なわれる場合があるが、破砕を行わないことにより、これらの膜が取り扱い性に優れた状態で溶解ないし剥離除去されるようになり、その後の熱可塑性樹脂の回収が容易となる。
【0020】
このような本発明の廃光学式ディスクからの熱可塑性樹脂の回収方法によれば、基板を構成する熱可塑性樹脂の物性を損なうことなくこれを容易に回収することができ、例えば、処理前の廃CDの基板の成形材料としての熱可塑性樹脂の分子量Mに対して、回収された熱可塑性樹脂の分子量MはM×1〜M×0.95と、分子量の低下が殆どなく、ほぼ同等の物性を有するものを得ることができる。
【0021】
本発明の熱可塑性樹脂組成物は、このような本発明の廃光学式ディスクからの熱可塑性樹脂の回収方法により回収された熱可塑性樹脂(以下「回収熱可塑性樹脂」と称す場合がある。)を含むものであり、特に、ゴム強化スチレン系樹脂と、回収熱可塑性樹脂としての回収ポリカーボネート樹脂とを含むことが好ましく、とりわけ、次のような組成の熱可塑性樹脂組成物であることが好ましい。
【0022】
(A)ゴム状重合体の存在下に、芳香族ビニル系単量体及びシアン化ビニル系単量体から選ばれた1種以上のビニル系単量体をグラフト重合してなるゴム含有グラフト(共)重合体(a−1)5〜100重量%と、芳香族ビニル系単量体及びシアン化ビニル系単量体から選ばれた1種以上の単量体を重合してなる硬質(共)重合体(a−2)95〜0重量%とを含むゴム強化スチレン系樹脂10〜70重量部と、
(B)溶液粘度法による数平均分子量が18,000〜40,000のポリカーボネート樹脂(b−1)0〜99重量%と前記回収ポリカーボネート樹脂(b−2)100〜1重量%とを含むポリカーボネート樹脂90〜30重量部と
を含む(ただし、(A)ゴム強化スチレン系樹脂と(B)ポリカーボネート樹脂との合計で100重量部)熱可塑性樹脂組成物(なお、「(共)重合体」とは「重合物及び/又は共重合体」を示す。)。
【0023】
この熱可塑性樹脂組成物は、更に、(A)ゴム強化スチレン系樹脂と(B)ポリカーボネート樹脂との合計100重量部に対して、(C)難燃剤0〜30重量部以下と(D)ドリップ防止剤1重量部以下、及び/又は、(E)無機充填剤5〜60重量部を含んでいても良い。
【0024】
このような熱可塑性樹脂組成物であれば、表面外観及び耐衝撃性に優れた高性能かつ高品質の熱可塑性樹脂成形品を提供することができ、廃光学式ディスクからの回収熱可塑性樹脂を幅広い用途に再利用することが可能となる。
【0025】
本発明の熱可塑性樹脂成形品は、このような本発明の熱可塑性樹脂組成物を成形してなるものであり、表面外観や耐衝撃性に優れ、更には高度な難燃性や電磁波遮蔽効果といった優れた機能性をも付与することもでき、車両用部品や一般機材の用途をはじめ、OA機器、電気電子機器及び電子機器部品等のハウジング等に好適に使用することができる。
【0026】
【発明の実施の形態】
以下に本発明の実施の形態を詳細に説明する。
【0027】
まず、本発明の廃光学式ディスクからの熱可塑性樹脂の回収方法について説明する。
【0028】
本発明の回収方法により処理される光学式ディスク等の廃棄物(以下、「廃光学式ディスク」又は「廃CD」ということがある。)には特に制限はなく、熱可塑性樹脂からなる基板上の少なくとも片面に、アルミニウム等の蒸着膜等からなる金属反射膜、又はこれらを積層させた層、保護塗料膜、印刷膜、場合により誘電体層や光磁気層等の被膜が形成され、これにより情報記録膜層や反射膜層等が形成されたものであり、市販の音楽用CD、ゲーム用CD、MD、MO、DVD等が挙げられる。この廃CDは、2枚の基板をこのような被膜を内側にして貼り合わせたものであっても良い。基板を構成する熱可塑性樹脂としては特に制限はなく、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂、非晶性環状ポリオレフィン樹脂等の透明樹脂が挙げられるが、本発明は特にCD等の基板として最も汎用されているポリカーボネート樹脂基板を用いた廃CDに対して極めて効果的に適用される。
【0029】
本発明においては、このような廃CDを好ましくは破砕することなくそのまま酸溶液で処理して反射膜や保護塗料膜を除去するが、既に粉砕されたものであっても構わず、また、破砕しても良い。しかし、前述の理由から、本発明においては、廃CDを破砕することなくそのまま酸溶液で処理することが好ましい。
【0030】
用いられる酸溶液のpHが高いと被膜の除去に要する処理時間が長くなるため、pH3.5以下、特に3以下であることが好ましく、とりわけpH1以下であることが好ましい。処理時間は、酸溶液の配合組成によっても異なるが、pH1以下の酸溶液であれば5分程度の処理時間で良く、またpH3以下の酸溶液であれば20〜30分程度の処理時間となる。pH3を超える酸溶液の場合には更に長い処理時間が必要となる。
【0031】
この酸溶液は、無機酸、有機酸、ハロゲン化化合物及び浸透剤を含む水性溶液であり、酸溶液に用いられる無機酸としては、塩酸、硝酸、硫酸、リン酸等が挙げられ、有機酸としてはクエン酸、スルファミン酸、シュウ酸、グリコール酸、酢酸、ギ酸等が挙げられ、ハロゲン化合物としては、塩素、ヨウ素、フッ素等のハロゲンのハロゲン化ナトリウム、ハロゲン化カリウム、ハロゲン化アンモニウム、ハロゲン化水素酸等が挙げられ、浸透剤としてはポリオキシアルキレンアルキルエーテル、アルキルベンゼンスルフォネート、ナフタレンスルフォネート等が挙げられる。上記無機酸、有機酸、ハロゲン化化合物、浸透剤は、それぞれ1種を単独で或いは2種以上を混合して用いることができる。
【0032】
酸溶液は、無機酸、有機酸、ハロゲン化合物及び浸透剤を全て含むことにより、極めて容易かつ短時間で被膜を除去することができ、好ましい。
【0033】
なお、ハロゲン化合物として、ハロゲン化水素酸を用いる場合は、無機酸と兼用することができる。
【0034】
即ち、無機酸はアルミニウム等の金属反射膜の除去及び印刷膜の除去の作用があり、有機酸はアルミニウム等の金属反射膜の除去の促進作用がある。このため、無機酸と有機酸とを併用することでアルミニウム等の金属反射膜の除去及び印刷膜の除去を効率的に行うことができる。また、ハロゲン化合物の配合により無機酸、有機酸等をアルミニウム等の金属反射膜層に浸透しやすくすることができ、アルミニウム等の金属反射膜の除去及び印刷膜の除去を促進するという効果が奏される。更に、浸透剤によっても無機酸、有機酸等がアルミニウム反射膜層へ浸透するのを促進するという効果が奏され、これらの相乗効果で著しく良好な処理効率を得ることができる。
【0035】
この場合、酸溶液中の各成分の好ましい含有量は次の通りである。
無機酸 :10〜80重量%
有機酸 : 1〜20重量%
ハロゲン化合物: 1〜30重量%
浸透剤 :0.1〜5重量%
【0036】
上記無機酸、有機酸、ハロゲン化合物、及び浸透剤の含有量が上記範囲内にないと、反射膜や保護塗料の除去を容易かつ効率的に行えない場合がある。特に好ましい組成範囲は、無機酸20〜60重量%、有機酸1〜10重量%、ハロゲン化合物5〜20重量%、浸透剤0.1〜2重量%である。
【0037】
なお、水性溶液としての取り扱い性及び処理効率の面から酸溶液中の無機酸、有機酸、ハロゲン化化合物及び浸透剤の合計の含有量は15〜80重量%、特に20〜60重量%であることが好ましい。
【0038】
この酸溶液による処理温度は10〜50℃であることが好ましく、特に25〜35℃であることが好ましい。処理温度が低過ぎるときは処理時間を長く要し、効率的でなく、また高過ぎると取り扱いが難しくなる上に加熱を要し、経済的でない。
【0039】
酸溶液による処理時間は、酸溶液の組成や温度によっても異なるが、5〜60分が好ましい。処理時間が5分未満であると表面の被膜の剥離が不十分となり、これを再利用して得られる熱可塑性樹脂成形品の表面外観や耐衝撃性の低下を生じ、また、60分を超える長時間を要した際には、回収熱可塑性樹脂の分子量が低下することがあり、得られる熱可塑性樹脂成形品の耐衝撃性の低下を生じる場合がある。
【0040】
本発明では、廃CDを単にこのような酸溶液に所定の時間浸漬するのみでアルミニウム反射膜、保護膜及び印刷膜等の被膜を容易に溶解ないし剥離して除去することができる。従って、酸溶液に浸漬した後の廃CDを水洗し、乾燥するのみで、基板状の熱可塑性樹脂を回収することができる。この水洗温度は常圧において、水が液体を保つ温度であれば良く、1〜99℃である。また、乾燥は30〜120℃の風乾で行うのが好ましい。なお、浸漬時に廃CDに振動を加えたり、超音波等による物理的な作用を加えても良い。
【0041】
しかして、回収された熱可塑性樹脂は、回収前の廃CDの基板を構成する熱可塑性樹脂に対して物性の低下の問題は殆どなく、例えば、廃CDの基板の成形材料の熱可塑性樹脂の分子量Mに対して、回収された熱可塑性樹脂の分子量MはM×1〜M×0.95と、分子量の低下が殆どなく、ほぼ同等の物性を有するものを得ることができる。
【0042】
次に、このようにして回収された回収熱可塑性樹脂を含む本発明の熱可塑性樹脂組成物及び熱可塑性樹脂成形品について説明する。
【0043】
本発明の熱可塑性樹脂組成物は、好ましくは、
(A)ゴム状重合体の存在下に、芳香族ビニル系単量体及びシアン化ビニル系単量体から選ばれた1種以上のビニル系単量体をグラフト重合してなるゴム含有グラフト(共)重合体(a−1)5〜100重量%と、芳香族ビニル系単量体及びシアン化ビニル系単量体から選ばれた1種以上の単量体を重合してなる硬質(共)重合体(a−2)95〜0重量%とを含むゴム強化スチレン系樹脂10〜70重量部と、
(B)溶液粘度法による数平均分子量が18,000〜40,000のポリカーボネート樹脂(b−1)0〜99重量%と前記回収ポリカーボネート樹脂(b−2)100〜1重量%とを含むポリカーボネート樹脂90〜30重量部と
を含む(ただし、(A)ゴム強化スチレン系樹脂と(B)ポリカーボネート樹脂との合計で100重量部)ものである。
【0044】
ゴム強化スチレン系樹脂(A)成分のうち、ゴム含有グラフト(共)重合体(a−1)中のゴム質重合体としては、ボリブタジエン、ブタジエンと共重合可能なビニル系単量体との共重合体のような共役ジエン系重合体、アクリル酸エステル重合体、アクリル酸エステルと共重合可能なビニル系単量体との共重合体のようなアクリルエステル系重合体、エチレン−プロピレン又はブテン、好ましくはプロピレン−非共役ジエン共重合体、ポリオルガノシロキサン系重合体等が挙げられる。ここで、アクリル酸エステル重合体のアクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、イソブチルアクリレート、ペンチルアクリレート、イソアミルアクリレート、n−ヘキシルアクリレート、2−メチルペンチルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレートなどが挙げられ、また、エチレン−プロピレン−非共役ジエン共重合体に含有されるジエンとしては、ジシクロペンタジエン、1,4−ヘキサジエン、1,4−ヘプタジエン、1,5−シクロオクタジエン、6−メチル−1,5−ヘプタジエン、11−エチル−1,11−トリデカジエン、5−メチレン−2−ノルボルネンなどが挙げられる。ゴム質重合体としては、これらのうちの1種を単独で、或いは2種以上の複合ゴムとして用いることができる。
【0045】
このようなゴム質重合体にグラフト重合するビニル系単量体としては、芳香族ビニル系単量体と、シアン化ビニル系単量体と、更に必要に応じて用いられる(メタ)アクリル酸エステル、マレイミド化合物、不飽和カルボン酸等のグラフト重合可能な他の単量体が挙げられる。芳香族ビニル系単量体としては、スチレン、α−メチルスチレン、p−メチルスチレン、ブロムスチレン等が挙げられ、特にスチレン、α−メチルスチレンが好ましい。また、シアン化ビニル系単量体としては、アクリロニトリル、メタクリルニトリル等が挙げられ、特にアクリロニトリルが好ましい。他の単量体としては、(メタ)アクリル酸エステルとしては、メタクリル酸メチル、アクリル酸メチル等のメタクリル酸エステル又はアクリル酸エステルが挙げられ、マレイミド化合物としては、N−フェニルマレイミド、N−シクロヘキシルマレイミド等が挙げられ、不飽和カルボン酸としては、アクリル酸、メタクリル酸、イタコン酸、フマル酸等が挙げられる。これらは、それぞれ1種を単独で、又は2種以上を混合して用いることができる。
【0046】
グラフト(共)重合体において、これらの単量体成分の割合は、重量比で、芳香族ビニル系単量体:シアン化ビニル系単量体:他の単量体=95〜60:5〜40:0〜50とするのが好ましい。
【0047】
このようなゴム含有グラフト(共)重合体(a−1)中の好ましいゴム質重合体の含有量は40〜70重量%である。この含有量が40重量%未満では得られる成形品の耐衝撃性が劣るものとなり、70重量%を超えてもグラフト率が低下することから耐衝撃性に劣るものとなる。
【0048】
本発明で使用されるゴム強化スチレン系樹脂(A)成分のうち、硬質(共)重合体(a−2)は、芳香族ビニル系単量体とシアン化ビニル系単量体と、更に必要に応じて用いられる共重合可能な他の不飽和単量体の1種以上を重合又は共重合してなる重合体又は共重合体からなり、芳香族ビニル系単量体とシアン化ビニル系単量体と、更に必要に応じて用いられる共重合可能な他の不飽和単量体は、ゴム含有グラフト(共)重合体(a−1)にグラフトさせる単量体として例示したものと同様な単量体が使用される。
【0049】
硬質(共)重合体(a−2)において、これらの単量体成分の割合は、重量比で芳香族ビニル単量体:シアン化ビニル単量体:他の単量体=80〜60:20〜40:0〜60とするのが好ましい。
【0050】
また、硬質(共)重合体(a−2)の重量平均分子量は、80,000〜200,000が好ましく、この分子量が80,000未満では耐衝撃性に劣り、200,000を超えると成形加工性が悪化する。
【0051】
本発明に係るゴム強化スチレン系樹脂(A)は、ゴム含有グラフト(共)重合体(a−1)と硬質(共)重合体(a−2)とで構成される。これらの割合はゴム含有グラフト(共)重合体(a−1)5〜100重量%と硬質(共)重合体(a−2)95〜0重量%とで合計で100重量%とする。この範囲から外れ硬質(共)重合体(a−2)が多く、ゴム含有グラフト(共)重合体(a−1)が少ないと、得られる成形品の耐衝撃性が劣るものとなる。
【0052】
本発明で使用されるポリカーボネート樹脂(B)成分のうち、溶液粘度法による数平均分子量(以下「粘度平均分子量」と称す場合がある。)が18,000〜40,000のポリカーボネート樹脂(b−1)は、1種以上のビスフェノール類とホスゲン又は炭酸ジエステルとの反応によって製造することができる。ビスフェノール類の具体例としては、ハイドロキノン、4,4−ジヒドロキシフェニル、ビス−(4−ヒドロキシフェニル)−アルカン、ビス−(4−ヒドロキシフェニル)−シクロアルカン、ビス−(4−ヒドロキシフェニル)−スルフィド、ビス−(4−ヒドロキシフェニル)−エーテル、ビス−(4−ヒドロキシフェニル)−ケトン、ビス−(4−ヒドロキシフェニル)−スルホン、或いはこれらのアルキル置換体、アリール置換体、ハロゲン置換体などが挙げられ、これらは1種を単独で、又は2種以上を組み合わせて用いることができる。
【0053】
ポリカーボネート樹脂(b−1)としては、2,2−ビス−(4−ヒドロキシフェニル)プロパン、いわゆるビスフェノールAを原料としたビスフェノールA系ポリカーボネート樹脂が、市場で容易に入手できるという点から好ましい。
【0054】
本発明で使用されるポリカーボネート樹脂(B)成分のうち、ポリカーボネート樹脂(b−2)は、前述の本発明の廃光学式ディスクからの熱可塑性樹脂の回収方法により回収された回収ポリカーボネート樹脂である。
【0055】
この回収ポリカーボネート樹脂(b−2)を回収するための廃光学式ディスクには特に制限はなく、市販の音楽用CD、ゲーム用CD、MD、MO、DVD等のいずれでも良く、基本的にポリカーボネートを基材に用いているものが全て対象となる。この回収ポリカーボネート樹脂(b−2)は、後述の実施例の如く、酸溶液による被膜の剥離処理後に粉砕して用いても良く、また、剥離処理前に粉砕して用いても良い。
【0056】
本発明で用いるポリカーボネート樹脂(B)成分は、粘度平均分子量が18,000〜40,000のポリカーボネート樹脂(b−1)0〜99重量%と、回収ポリカーボネート樹脂(b−2)100〜1重量%とを含み、回収ポリカーボネート樹脂(b−2)に必要に応じてポリカーボネート樹脂(b−1)を混合して得られるポリカーボネート樹脂(B)の粘度平均分子量の範囲は、12,000〜30,000であることが望ましい。この粘度平均分子量が12,000未満では得られる熱可塑性樹脂成形品の衝撃強度が低く、30,000を超えると熱可塑性樹脂組成物の流動性が悪化する傾向にあるため、この粘度平均分子量範囲となるように、回収ポリカーボネート樹脂(b−2)に粘度平均分子量の大きいポリカーボネート樹脂(b−1)を配合する。
【0057】
本発明の熱可塑性樹脂組成物において、樹脂成分としてゴム強化スチレン系樹脂(A)10〜70重量部とポリカーボネート樹脂(B)90〜30重量部とが合計で100重量部となるように配合されるが、特に、この樹脂成分中の全ゴム含有量が3〜20重量%となるようにこれらを配合することが好ましい。この全ゴム含有量が3重量%未満では得られる熱可塑性樹脂成形品の耐衝撃性に劣るものとなり、また、全ゴム含有量が20重量%を超えると熱可塑性樹脂組成物の流動性が悪くなる。
【0058】
更に、本発明の熱可塑性樹脂組成物は、この樹脂成分100重量部に対して30重量部以下の難燃剤(C)と、1重量部以下のドリップ防止剤(D)とを含んでいても良い。
【0059】
難燃剤(C)としては、リン系難燃剤、臭素系難燃剤の中から選ばれる難燃剤を単独で、又は2種以上を混合して用いることができる。
【0060】
本発明で使用されるリン系難燃剤としては、赤燐、リン化合物が挙げられ、リン化合物としては、ホスフィン、ホスフィンオキシド、ビスホスフィン、ホスホニウム塩、ホスフィン酸塩、リン酸エステル、亜リン酸エステル等を挙げることができる。これらの中で、成形時における金型汚染や腐食ガス発生の問題がない点で、リン酸エステル系難燃剤が好ましい。リン酸エステル系難燃剤としては、下記一般式(I)で表されるリン酸エステル化合物や、下記一般式(II)で表される縮合リン酸エステル化合物が挙げられる。
【0061】
【化1】

Figure 0004032912
((I)式中、R1、R2及びR3は、それぞれ相互に独立して選ばれる炭素数1〜8のアルキル基、又はアルキル置換されていても良い炭素数6〜20のアリール基を表し、nは0又は1である。)
【0062】
【化2】
Figure 0004032912
((II)式中、R4、R5、R6及びR7は、それぞれ相互に独立して選ばれるアリール基又はアルカリール基を表し、Xはアリーレン基を表し、j、k、l、及びmは、それぞれ相互に独立して0又は1である。Nは1〜5の整数であるが、リン酸エステル化合物の混合物の場合は、Nは平均値(1≦N≦5)を表す。)
【0063】
前記一般式(I)で表されるリン酸エステル化合物の具体例としては、ビス−(フェニル)−メチルホスフェート、ビス−(エチル)−フェニルホスフェート、ビス−(エチル)−2,6−ジメチルフェニルホスフェート、ビス−(フェニル)−エチルホスフェート、ビス−(フェニル)−ブチルホスフェート、ビス−(ネオペンチル)−フェニルホスフェート、ビス−(4−メチルフェニル)−2−エチルヘキシルホスフェート、ビス−(2−エチルヘキシル)−フェニルホスフェート、ビス−(フェニル)−2−エチルヘキシルホスフェート、ビス−(フェニル)−オクチルホスフェート、ビス−(オクチル)フェニルホスフェート、ビス−(3,5,5−トリメチルヘキシル)フェニルホスフェート、ビス−(2,5,5−トリメチルヘキシル)−4−メチルフェニルホスフェート、ビス−(フェニル)−イソデシルホスフェート、ビス−(ドデシル)−4−メチルフェニルホスフェート、ビス−(ドデシル)フェニルホスフェート、トリス−(フェニル)ホスフェート、トリス−(2−メチルフェニル)ホスフェート、トリス−(4−メチルフェニル)ホスフェート、ビス−(2−メチルフェニル)フェニルホスフェート、ビス−(4−メチルフェニルフェニル)フェニルホスフェート、ビス−(フェニル)−2−メチルフェニルホスフェート、ビス−(フェニル)−4−メチルフェニルホスフェート、トリス−(イソプロピルフェニル)ホスフェート、ビス−(イソプロピルフェニル)フェニルホスフェート、ビス−(フェニル)−イソプロピルフェニルホスフェート、トリス−(ノニルフェニル)ホスフェート、トリス−(2,6−ジメチルフェニル)ホスフェート、ビス−(2,6−ジメチルフェニル)フェニルホスフェート、ビス−(2,6−ジメチルフェニル)−2,6−ジメチルフェニルホスフェート、ビス−(2,6−ジメチルフェニル)−4−t−ブチルフェニルホスフェート、ビス−(2,6−ジメチルフェニル)−4−メチルフェニルホスフェート、ビス−(2,6−ジメチルフェニル)−3−メチルフェニルホスフェート、ビス−(2,6−ジメチルフェニル)−4−イソプロピルフェニルホスフェート、ビス−(2,6−ジメチルフェニル)−2−イソプロピルフェニルホスフェートが挙げられ、これらは1種を単独で用いても良く、2種以上を併用しても良い。
【0064】
また、前記一般式(II)で表される縮合リン酸エステル化合物も1種を単独で用いても良く、2種以上を混合して用いても良い。従って、前記一般式(II)において、Nの値は、必ずしも整数である必要はなく、混合物の場合は、縮合リン酸エステル化合物の混合物中の平均値を表す。前記一般式(II)において、R4、R5、R6及びR7は好ましくはクレジル基、フェニル基、キシレニル基、プロピルフェニル基、ブチルフェニル基であり、Xのアリーレン基は、例えばレゾルシノール、ハイドロキノン、ビスフェノールA及びこれらの塩素化物及び臭素化物などのジヒドロキシ化合物から誘導される基であっても良いし、フェニレン基等であっても良い。
【0065】
リン系難燃剤としては、上記リン酸エステル化合物と縮合リン酸エステルとを併用しても良い。
【0066】
本発明で使用される臭素系難燃剤としては、臭素化エポキシ重合体から選ばれる少なくとも1種の難燃剤が挙げられる。臭素化エポキシ重合体とは、臭素化ビスフェノール化合物とエピクロロヒドリン、又は臭素化ビスフェノール化合物ジグリシジルエーテルの付加重合体をいう。ここで、臭素化ビスフェノール化合物としてはテトラブロモビスフェノールA、ジブロモビスフェノールA、テトラブロモビスフェノールF、テトラブロモビスフェノールS等が挙げられる。臭素化エポキシ重合体の分子量は、重合度(臭素化ビスフェノール化合物・2−ヒドロキシプロパン単位の繰返数)に応じて数百から数万までのものがある。臭素化エポキシ重合体の分子末端は、エポキシ基のままであってもアリール基やアルキル基で変性されていても良く、更に、これらのアリール基やアルキル基は臭素で置換されていても良い。アリール基としてはフェニル基、キシリル基、トリブロモフェニル基等が挙げられ、アルキル基としては、メチル基、エチル基、トリブロモネオペンチル基等が挙げられる。
【0067】
臭素化エポキシ重合体の具体的な例としては、テトラブロモビスフェノールA・エポキシ重合体及びトリブロモフェノール変性テトラブロモビスフェノールA・エポキシ重合体等が挙げられる。
【0068】
このような難燃剤(C)の配合量が前述の樹脂成分100重量部に対して30重量部を超えると得られる成形品の耐熱性や機械特性が低下するので、難燃剤(C)は、前記樹脂成分100重量部に対して30重量部以下、特に5〜25重量部とするのが好ましい。
【0069】
本発明で添加するドリップ防止剤(D)としては、樹脂中にフッ素原子を有する樹脂が挙げられ、具体的にはポリモノフルオロエチレン、ポリジフルオロエチレン、ポリトリフルオロエチレン、ポリテトラフルオロエチレン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体などを挙げることができ、これらは1種を単独で、或いは2種以上を組み合わせて用いることができるが、これらの中で特にポリテトラフルオロエチレンが好ましい。このようなフッ素系樹脂の製造方法には特に制限はなく、乳化重合、懸濁重合、塊状重合、溶液重合などの通常公知の方法を採用することができるが、燃焼時の耐ドリッピング性の観点から乳化重合で製造されたフッ素系樹脂が好ましい。
【0070】
フッ素系樹脂は、燃焼時の溶融滴下性の改善のための成分であり、前記難燃剤(C)の配合によりフッ素系樹脂を配合しない場合であっても十分な難燃性を得ることができるが、フッ素系樹脂を配合することにより、UL94燃焼ランクにおいてV−0をも達成することが可能となる。ただし、フッ素系樹脂の配合量が多過ぎると樹脂の機械的強度及び加工流動性が低下することから、フッ素系樹脂を配合する場合、その配合量は前記樹脂成分100重量部に対して1重量部以下、特に0.01〜1重量部とするのが好ましい。フッ素系樹脂の配合量が前記樹脂成分100重量部に対して、0重量部の場合はUL94燃焼ランクにおいてV−2を目的とした場合であり、0.01重量部以上の添加の場合によりドリップ防止効果が発揮できV−0を達成できる。
【0071】
本発明の熱可塑性樹脂組成物は、更に、前記樹脂成分100重量部に対して、カーボン繊維、金属繊維等の無機充填剤(E)の1種又は2種以上を5〜60重量部含有していても良い。
【0072】
このカーボン繊維としては、繊維径が4〜20μmで繊維長が3〜20mmであるものが好ましい。カーボン繊維の繊維径が4μm未満では、カーボン繊維の製造が困難で高価となり、また、20μmを超えると少量配合で十分な導電性、電磁波遮蔽効果を得ることができない。カーボン繊維の繊維長が3mm未満では少量配合で十分な導電性、電磁波遮蔽効果を得ることができず、20mmを超えると樹脂溶融時の流動性が低下し、混練押出が難しくなる傾向になる。なお、カーボン繊維の形態としては特に制限はなく、PAN系、ピッチ系のいずれでも良い。カーボン繊維の好ましい配合量は、前記樹脂成分100重量部に対して5〜40重量部である。この配合量が5重量部未満であると、十分な導電性、電磁波遮蔽効果が得られず、40重量部を超えると外観が悪くなるのみならず、生産時に混練押出機等を用いた場合、混練機内で過剰な剪断発熱を起こし、ポリマーが分解して生産不可能となる。
【0073】
金属繊維としてはステンレス繊維が好ましく、繊維径が5〜60μm、繊維長が2〜10mmであるものが好ましい。ステンレス繊維の繊維径が5μm未満であるとステンレス繊維の製造が難しくなり、60μmを超えると少量での高い導電性、電磁波遮蔽効果が得にくい傾向にある。また、繊維長が2mm未満であると少量での高い導電性、電磁波遮蔽効果が得にくく、10mmを超えると樹脂溶融時の流動性が低下し、混練押出が難しくなる傾向にある。ステンレス繊維の好ましい配合量は、前記樹脂成分100重量部に対して5〜40重量部である。この配合量が5重量部未満であると十分な導電性、電磁波遮蔽効果が得られず、40重量部を超えると外観が悪くなるのみならず、生産時に混練押出機等を用いた場合、混練機内で過剰な剪断発熱を起こし、ポリマーが分解して生産不可能となる。
【0074】
なお、カーボン繊維とステンレス繊維とを併用配合する場合、その配合割合は、重量比でカーボン繊維:ステンレス繊維=1:0.5〜3とするのが導電性及び電磁波遮蔽効果の面で好ましく、また、カーボン繊維とステンレス繊維の合計の配合量は樹脂成分100重量部に対して5〜60重量部、特に5〜40重量部であることが好ましい。
【0075】
また、本発明の熱可塑性樹脂組成物には、本発明の趣旨を妨げない範囲で、公知の酸化防止剤、紫外線吸収剤、滑剤、可塑剤、離型剤、帯電防止剤、着色剤(顔料、染料など)、フィラー、アンチモン化合物などの難燃助剤、抗菌剤、防カビ剤、シリコーンオイル、カップリング剤などの各種の添加剤を含んでいても良い。また、リン系難燃剤や臭素系以外の難燃剤やカーボン繊維やステンレス繊維以外の導電性物質を含有していても良い。
【0076】
これらの配合成分を混合して本発明の熱可塑性樹脂組成物を製造する方法としては特に制限はないが、例えば、押出機、バンバリーミキサー等を用いた溶融混練法が好ましい。
【0077】
このようにして得られる本発明の熱可塑性樹脂組成物は、射出成形、シート押出、真空成形、圧空成形、異形押出成形、発泡成形、ブロー成形などによって、各種成形品に成形することができる。
【0078】
本発明の熱可塑性樹脂組成物を成形して得られる本発明の熱可塑性樹脂成形品は、熱可塑性樹脂組成物の配合組成を調整することにより、車両用部品や一般機材の用途をはじめ、例えば、難燃剤(C)及びドリップ防止剤(D)を配合することによる高度な難燃性によりOA機器への用途が可能であり、更に、前記無機充填剤(E)を配合して導電性を付与することにより電磁波障害(EMI)が問題となる可能性のある電気電子機器及び電子機器部品のハウジング等、特に、コンピュータ、プリンタ、コピー機等のOA機器、更にモバイルコンピュータをはじめとする携帯情報機器のハウジング等に好適に使用することができる。
【0079】
【実施例】
以下に、合成例、実施例、比較例及び参考例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に何ら制限されるものではない。
【0080】
なお、以下において、粘度平均分子量(Mv)は下記の方法で測定した。
[粘度平均分子量(Mv)の測定方法]
試料を塩化メチレンを溶媒とする溶液として、ウェベローデ粘度計を用いて測定し、下記schnellの粘度式を用いて求めた。
〔η〕=1.23×10−4×Mv0.83
(式中、ηは固有粘度を示す。)
【0081】
[廃CDからのポリカーボネート樹脂の回収]
実施例1〜3、比較例12〜15
市場から回収された廃CDを円盤の状態で100枚、互いに数mmの間隔をあけて、表1に示す組成及びpHの酸溶液30Lに30℃で表1に示す時間浸漬した。その後、廃CDを酸溶液から取り出し水洗した後80℃で風乾した。
【0082】
その結果、実施例1〜3及び比較例12,13ではアルミニウム反射膜、保護膜、印刷膜等の被膜をすべて溶解ないし剥離除去することができ、不純物を含まないポリカーボネート樹脂を回収することができた。ただし、実施例1〜3では10分の浸漬処理で完全に被膜を剥離除去できたが、比較例12,13では、処理に45分を要した。また、比較例14,15では60分の処理でも十分に被膜を除去し得なかった。
【0083】
【表1】
Figure 0004032912
【0084】
なお、回収されたポリカーボネート樹脂が回収前のポリカーボネート樹脂と物性面で差異がないことを調べるために、回収前の廃CDの基板の成形材料であるポリカーボネート樹脂と、回収されたポリカーボネート樹脂の粘度平均分子量を調べたところ、成形前のポリカーボネート樹脂の粘度平均分子量は1.45×10であった。
【0085】
一方、各例で回収されたポリカーボネート樹脂の粘度平均分子量測定結果は、表2に示す通りであり、成形前のポリカーボネート樹脂に対して分子量低下は起こっておらず、使用前と同等の物性のポリカーボネート樹脂を回収することができたことがわかる。
【0086】
比較例1
処理液として水酸化ナトリウム8重量%、グルコン酸ソーダ1.8重量%、アルキルアミンオキサイド0.2重量%を含むアルカリ溶液(pH14)を用いたこと以外は、実施例1と同様にして剥離処理を行った。60分間浸漬後、廃CDを処理液から取り出し水洗したところ、アルミニウム反射膜、保護膜、印刷膜等の被膜は十分に剥離、除去されておらず、不純物を含まないポリカーボネート樹脂を回収することはできなかった。
【0087】
比較例2
処理温度を90℃としたこと以外は、比較例1と同様にして剥離処理を行った。60分間浸漬後、廃CDを処理液から取り出し水洗したところ、アルミニウム反射膜、保護膜、印刷膜等の被膜はすべて溶解、ないし剥離して除去されており、不純物を含まないポリカーボネート樹脂を回収することができた。
【0088】
しかし、回収されたポリカーボネート樹脂の粘度平均分子量を測定したところ、表2に示すように、分子量の低下が認められた。
【0089】
比較例3
廃CD100枚を約2〜10mmに破砕してからアルカリ溶液で処理したこと以外は、比較例1と同様にして剥離処理を行った。60分間浸漬後、廃CDの破片を処理液から取り出し水洗したところ、アルミニウム反射膜、保護膜、印刷膜等の被膜は剥離、除去されておらず、不純物を含まないポリカーボネート樹脂を回収することはできなかった。
【0090】
【表2】
Figure 0004032912
【0091】
[熱可塑性樹脂組成物及び熱可塑性樹脂成形品の製造]
以下において、「部」は「重量部」を示す。
【0092】
合成例1:ゴム含有グラフト共重合体(a−1−1)の製造
以下の配合にて、乳化重合法によりABS共重合体を合成した。
〔配合〕
スチレン(ST) 35部
クリロニトリル(AN) 15部
ポリブタジエン・ラテックス 50部(固形分として)
不均化ロジン酸カリウム 1部
水酸化カリウム 0.03部
ターシャリードデシルメルカプタン(t−DM) 0.1部
クメンハイドロパーオキサイド 0.3部
硫酸第一鉄 0.007部
ピロリン酸ナトリウム 0.1部
結晶ブドウ糖 0.3部
蒸留水 190部
【0093】
オートクレーブに蒸留水、不均化ロジン酸カリウム、水酸化カリウム及びポリブタジエン・ラテックスを仕込み、60℃に加熱後、硫酸第一鉄、ピロリン酸ナトリウム、結晶ブドウ糖を添加し、60℃に保持したままST、AN、t−DM及びクメンハイドロパーオキサイドを2時間かけて連続添加し、その後70℃に昇温して1時間保って反応を完結した。かかる反応によって得たABSラテックスに酸化防止剤を添加し、その後硫酸により凝固させ、十分水洗後、乾燥してABSグラフト共重合体(a−1−1)を得た。
【0094】
合成例2:ゴム含有グラフト共重合体(a−1−2)の製造
エチレン−プロピレン−非共役ジエン共重合体ゴムラテックス(エチレン:プロピレン:非共役ジエン(5−エチレン−2−ノルボルネン) 50部(固形分として)の存在下、AN15部、ST35部を反応させたこと以外は、合成例1と同様にしてAESグラフト共重合体(a−1−2)を得た。
【0095】
合成例3:ゴム含有グラフト共重合体(a−1−3)の製造
ポリブチルアクリレート 50部(固形分として)の存在下、AN15部、ST35部を反応させたこと以外は、合成例1と同様にしてASAグラフト共重合体(a−1−3)を得た。
【0096】
合成例4:硬質共重合体(a−2−1)の製造
窒素置換した反応器に水120部、アルキルベンゼンスルホン酸ソーダ0.002部、ポリビニルアルコール0.5部、アゾイソブチルニトリル0.3部、t−DM0.5部と、AN35部、ST65部からなるモノマー混合物を使用し、STの一部を逐次添加しながら開始温度60℃から5時間昇温加熱後、120℃に到達させた。更に、120℃で4時間反応した後、重合物を取り出し、硬質共重合体(a−2−1)を得た。
【0097】
合成例5:硬質共重合体(a−2−2)の製造
AN25部、ST20部、α−メチルスチレン35部、N−フェニルマレイミド20部からなるモノマー混合物を使用し、スチレン、α−メチルスチレン、N−フェニルマレイミドの一部を逐次添加したこと以外は合成例4と同様にして重合を行って、硬質共重合体(a−2−2)を得た。
【0098】
ポリカーボネート樹脂(b−1)としては、以下のものを用いた。
ポリカーボネート樹脂(b−1−1):三菱エンジニアリングプラスチック(株)製ポリカーボネート樹脂「H−4000」(粘度平均分子量(Mv):15,000)
ポリカーボネート樹脂(b−1−2):三菱エンジニアリングプラスチック(株)製ポリカーボネート樹脂「S−3000」(粘度平均分子量(Mv):21,000)
ポリカーボネート樹脂(b−1−3):三菱エンジニアリングプラスチック(株)製ポリカーボネート樹脂「E−2000」(粘度平均分子量(Mv):31,000)
【0099】
回収ポリカーボネート樹脂(b−2)としては、以下のものを用いた。
【0100】
回収ポリカーボネート樹脂(b−2−1):廃CDを実施例1で用いた酸溶液に5分間浸漬して被膜を除去したものを水洗、乾燥して破砕したもの。この廃CDに使用されている原料ポリカーボネート樹脂の粘度平均分子量(Mv)は15,000であり、回収ポリカーボネート樹脂の粘度平均分子量(Mv)も15,000であった。
【0101】
ポリカーボネート樹脂(b−2−2):廃MDを実施例2で用いた酸溶液に5分間浸漬して被膜を除去したものを水洗、乾燥して破砕したもの。この廃MDに使用されている原料ポリカーボネート樹脂の粘度平均分子量(Mv)は15,000であり、回収ポリカーボネート樹脂の粘度平均分子量(Mv)も14,900であった。
【0102】
ポリカーボネート樹脂(b−2−3):廃CDを比較例14で用いた酸溶液に90分間浸漬したもので金属被膜や塗料を十分に剥離することはできなかったものを、水洗、乾燥して破砕したもの。この廃CDに使用されている原料ポリカーボネート樹脂の粘度平均分子量(Mv)は15,000であり、回収ポリカーボネート樹脂の粘度平均分子量(Mv)は13,500であった。
【0103】
ポリカーボネート樹脂(b−2−4):廃CDの金属被膜や塗装を除去せずにそのまま破砕したもの。
【0104】
ポリカーボネート樹脂(b−2−5):廃MDの金属被膜や塗装を除去せずにそのまま破砕したもの。
【0105】
難燃剤(C)としては、以下のものを用いた。
難燃剤(c−1):旭電化工業製リン酸エステル系難燃剤「FP−500」
難燃剤(c−2):大日本インキ社製臭素系難燃剤「EC−20」
【0106】
ドリップ防止剤(D)としては、以下のものを用いた。
ドリップ防止剤(d):デュポン社製ポリテトラフルオロエチレン「テフロン(登録商標)6−J」
【0107】
無機充填剤(E)としては、以下のものを用いた。
無機充填剤(e−1):東邦レーヨン社製カーボン繊維「ベスファイト」(平均繊維径=7μm、平均繊維長=6mm)
無機充填剤(e−2):ベカルト社製ステンレス繊維「ベキシールド」(平均繊維径=8μm、平均繊維長=6mm)
【0108】
実施例8〜15、比較例4〜11、参考例1〜4
表3,4に示す配合割合で、更に、滑剤、酸化防止剤等の添加剤と共に混合した後、220〜240℃で2軸押出機(日本製鋼所製「TEX−44」)にて溶融混合し、ペレット化した。この樹脂ペレットを2オンス射出成形機(東芝(株)製)にて220〜260℃にて成形し、必要なテストピースを作成し、各種物性を下記の方法で測定し、結果を表3,4に示した。
【0109】
なお、参考例1〜4は、回収ポリカーボネート樹脂を用いず、新品のポリカーボネート樹脂のみを使用した例である。
〔メルトフローレート(g/10min)〕 JIS K7210(表3では230℃,表4では220℃/98N)
〔アイゾット衝撃強度(J/m)〕 ASTM D256(常温)
〔曲げ弾性率(MPa)〕 6.4mm厚み(ASTM D790)
〔熱変形温度(℃)〕 ASTM D648
〔燃焼性〕 2mm厚みの試験片に対してUL94に準じた燃焼試験を行い、燃焼性を調べた。
〔表面外観〕 目視により成形品表面を観察し、異物が無く、外観が良好なものは○、異物があり外観が悪いものは×と判定した。
【0110】
【表3】
Figure 0004032912
【0111】
【表4】
Figure 0004032912
【0112】
表3、表4より、次のことが明らかである。
【0113】
本発明の実施例8〜11では、比較例4〜7に比べて表面外観、アイゾット衝撃強度が優れていることが分かる。また、実施例8は、参考例1と比較可能であり、また、実施例10は、参考例2と比較可能であり、実施例8及び10は参考例1,2と同等の特性を示しており、実用に十分耐えることが予想される。
【0114】
難燃剤やドリップ防止剤を添加した実施例12,13と比較例8,9について、燃焼性への効果は認められるが、表面外観、アイゾット衝撃強度については、実施例12,13の方がはるかに優れていることが分かる。また、実施例12は、参考例3と同等の特性を示しており、十分実用に耐えることが予想される。
【0115】
さらに実施例14,15と比較例10,11は、無機充填剤であるカーボン繊維やステンレス繊維を配合した樹脂組成物であり、電磁波遮蔽効果について、一辺150mm、厚み3mmの正方形の試験片を作成して、(株)アドバンテスト製のTR−17301AとR3361Aを併用して磁界波(周波数300MHz)を測定したところ、実施例14,15と比較例10,11及び参考例4の電磁波遮蔽効果は、50〜55(dB)の範囲にあり、いずれも電磁波遮蔽効果が認められた。また、燃焼性への効果も認められた。しかし、表面外観、アイゾット衝撃強度の特性は、比較例10,11よりも実施例14,15の方がはるかに優れている。また、実施例14は参考例4と同等の特性を示しており、十分実用に耐えることが予想される。
【0116】
以上のように、実施例では、比較例の粉砕品を使用したものに比べて、耐衝撃強度及び外観が優れている。また、参考例に示したように実施例の特性は、回収ポリカーボネート樹脂を再利用していないものと匹敵する特性を有していることが明らかである。
【0117】
【発明の効果】
以上詳述した通り、本発明の廃光学式ディスクからの熱可塑性樹脂の回収方法によれば、光学式ディスクの廃棄物から、熱可塑性樹脂基板上の金属反射膜等の被膜のみを容易かつ効率的に除去して、基板の構成材料である熱可塑性樹脂を、その物性を低下させることなく、そのまま再利用可能な物性を維持して高い回収率で回収することができる。
【0118】
また、本発明の熱可塑性樹脂組成物及び熱可塑性樹脂成形品によれば、このようにして回収した熱可塑性樹脂を用いて表面外観及び耐衝撃性等に優れた熱可塑性樹脂成形品を提供することができる。
【0119】
本発明によれば、近年益々その需要が増加し、不良品、検査用サンプル、回収品等の発生量も益々増加することが見込まれる光学式ディスクの廃棄物から熱可塑性樹脂を容易かつ効率的に、しかも安価に回収してこれを再利用することが可能となり、廃棄物の減量及び環境の維持、資源の有効利用等の面において、本発明の工業的有用性は極めて高い。[0001]
BACKGROUND OF THE INVENTION
  The present invention treats the waste of an optical disk, particularly a compact disk (hereinafter sometimes simply referred to as “CD”) formed by forming an aluminum reflective film on a thermoplastic resin substrate such as polycarbonate resin. The present invention relates to a method for recovering a quality thermoplastic resin, a thermoplastic resin composition excellent in surface appearance and impact resistance, and a thermoplastic resin molded article using the thermoplastic resin recovered by this method.
[0002]
[Prior art]
  Optical discs such as CDs and laser discs that serve as optical information recording media can reproduce sound and images by detecting minute irregularities provided on the disc substrate with laser light, and information recording provided on the substrate surface Various systems are provided, such as those for recording / reproducing information by layer, and those for erasing or overwriting the recorded information.
[0003]
  Optical discs such as CDs are generally provided with a metallic reflective film such as aluminum on a thermoplastic resin substrate via a magneto-optical layer or a dielectric layer as required, and then a protective coating is applied thereon. In addition, it is manufactured with necessary printing. Transparent resins such as polycarbonate resin, polymethyl methacrylate resin, and amorphous cyclic polyolefin resin are used as the thermoplastic resin that constitutes the substrate. Among them, polycarbonate resin is used in most CDs, and it is produced on a large scale. Has been done.
[0004]
  While CD is industrially mass-produced, it requires extremely high storage capacity and extremely high quality, so it must be a defective product even if it has minute defects. In addition, in order to maintain high quality, a large amount of inspection samples are extracted from various parts of the production process. Furthermore, since there are many used items, used items, collected items, etc. returned from the market etc., the disposal of these large quantities of waste products is a problem.
[0005]
  Conventionally, waste optical discs are collected by CD manufacturers or polycarbonate resin manufacturers, and are either crushed and landfilled or disposed of by incineration. However, incineration requires a special structure for incineration. Also, landfilling has a problem of environmental pollution.
[0006]
  Therefore, proposals have been made to remove coatings such as a reflective layer and a protective coating layer formed on the optical disc from the resin substrate, and to recover and reuse the resin.
[0007]
  For example, as a method of recovering polycarbonate resin from CD waste, there is a method of mechanically scraping the coating on the surface by a wire brush method or a sand blast method. Not only is it mixed, but part of the polycarbonate is also scraped off, so the recovery rate is poor. For the purpose of increasing the recording capacity, a CD in which a thin resin substrate is bonded with the recording layer inside is provided. In such a bonded CD, since the recording layer is on the inside, the coating is ground. There is also a problem that cannot be done.
[0008]
  Japanese Patent Application Laid-Open No. 9-316316 describes a method of pulverizing and using an optical disc as it is, but in this method, aluminum powder and a coating film are mixed, so that it can be obtained using recovered resin. The thermoplastic resin molded article has a drawback that the impact resistance is remarkably lowered and its use is limited.
[0009]
  Japanese Patent Laid-Open Nos. 5-200379, 6-223416, and 4-360035 disclose a method in which waste CD is pulverized or crushed to a specific size and then chemically treated with an alkaline aqueous solution. Proposed. In these methods, the coating is removed from the resin substrate by making the CD fine so that the metal portions of the information recording layer and the reflective layer are easily dissolved in an alkaline aqueous solution. However, in these methods, first, it is necessary to pulverize or crush the waste CD to a specific size, which requires equipment for pulverization and crushing, which is not only economical but also poor in efficiency. In addition, deterioration of the conventional environment due to generation of dust during pulverization and crushing may be a problem. In particular, the method described in Japanese Patent Application Laid-Open No. 4-360035 discloses that after pulverizing or crushing a CD to a specific size, it is brought into contact with a strongly alkaline aqueous solution containing caustic alkali heated to a high temperature of 75 to 100 ° C. Although the polycarbonate is weak against alkali, the polycarbonate resin obtained by peeling off the coating on the surface is reduced in molecular weight and physical properties due to high-temperature alkali. The molded product obtained by molding again has a disadvantage that it is inferior in quality.
[0010]
  Japanese Patent Application Laid-Open No. 5-345321 proposes a method for removing a film by immersing a CD in hot water for a long time. In the case of a polycarbonate resin substrate, there is a drawback that molecular weight is decreased and whitening is likely to occur, which is not a preferable method for reusing the recovered resin.
[0011]
[Patent Document 1]
          JP-A-9-316316
[Patent Document 2]
          Japanese Patent Laid-Open No. 5-200379
[Patent Document 3]
          JP-A-6-223416
[Patent Document 4]
          JP-A-4-360035
[Patent Document 5]
          JP-A-5-345321
[0012]
[Problems to be solved by the invention]
  As described above, conventionally, from the waste of the optical disk, only the coating such as the metal reflective film on the thermoplastic resin substrate is easily and efficiently removed, and the thermoplastic resin which is the constituent material of the substrate is removed. No method has been proposed for recovering at a high recovery rate while maintaining the physical properties that can be reused as they are without deteriorating their physical properties, and in any method, the recovery rate, processing efficiency, economic efficiency, workability, Or, it has a defect in any of the physical properties of the recovered thermoplastic resin.
[0013]
  The present invention solves the above-described conventional problems, and easily and efficiently removes only a coating film such as a metal reflective film on a thermoplastic resin substrate from the waste of an optical disk, thereby providing a thermal material that is a constituent material of the substrate. It is an object of the present invention to provide a method for recovering a thermoplastic resin from a waste optical disc that can recover the plastic resin at a high recovery rate while maintaining the physical properties that can be reused as it is without deteriorating its physical properties. To do.
[0014]
  Another object of the present invention is to provide a thermoplastic resin molded article excellent in surface appearance and impact resistance using the recovered thermoplastic resin.
[0015]
[Means for Solving the Problems]
  The method for recovering a thermoplastic resin from a waste optical disc according to the present invention includes a method for recovering a thermoplastic resin from a waste of an optical disc in which a coating including a metal reflection film is formed on a thermoplastic resin substrate. The disc is brought into contact with an acid solution to dissolve or peel off the coating, and then washed with water and dried.A method, wherein the acid solution is an aqueous solution comprising an inorganic acid, an organic acid, a halogen compound, and a penetrantIt is characterized by that.
[0016]
  In the present invention, since an acid solution is used, it can be recovered while maintaining the initial physical properties without adversely affecting the physical properties of a thermoplastic resin such as a polycarbonate resin, and can be easily remolded and reused. Is possible.
[0017]
  The present invention is particularly effective for recovering a polycarbonate resin as a thermoplastic resin, and the acid solution is preferably an acid solution having a pH of 3 or less, particularly an aqueous solution containing an inorganic acid, an organic acid, a halogen compound and a penetrant. In this case, the inorganic acid includes one or more selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, and the organic acid includes citric acid, sulfamic acid, oxalic acid, glycolic acid, acetic acid and formic acid. 1 type or 2 or more types selected from the group which consists of are mentioned, As a halogen compound, 1 type or 2 or more types chosen from the group which consists of sodium halide, potassium halide, ammonium halide, and hydrohalic acid are mentioned. Examples of the penetrant include one or more selected from the group consisting of polyoxyalkylene alkyl ethers, alkylbenzene sulfonates and naphthalene sulfonates.
[0018]
  The concentration of the inorganic acid in the acid solution is preferably 10 to 80% by weight, the concentration of the organic acid is preferably 1 to 20% by weight, and the concentration of the halogen compound is 1 to 30% by weight. Preferably, the concentration of the penetrant is 0.1 to 5% by weight.
[0019]
  In the present invention, it is preferable that the optical disc is directly contacted with the acid solution without crushing, and in this case, facilities for crushing and crushing are not required, and economical efficiency, workability, and processing efficiency are eliminated. Will improve. In addition, when crushing is performed, crushing films such as reflective films, protective films, and printed films on the substrate, especially the printed films, are present as highly viscous foreign substances in the acid solution, and workability during processing is increased. However, if the film is not crushed, these films can be dissolved or peeled and removed with excellent handleability, and the subsequent recovery of the thermoplastic resin is facilitated.
[0020]
  According to the method for recovering a thermoplastic resin from the waste optical disc of the present invention, it can be easily recovered without impairing the physical properties of the thermoplastic resin constituting the substrate. Molecular weight M of thermoplastic resin as molding material for waste CD substrate0In contrast, the molecular weight M of the recovered thermoplastic resinXIs M0× 1 to M0× 0.95, almost no decrease in molecular weight, and having substantially the same physical properties can be obtained.
[0021]
  The thermoplastic resin composition of the present invention is a thermoplastic resin recovered by such a method of recovering a thermoplastic resin from the waste optical disc of the present invention (hereinafter sometimes referred to as “recovered thermoplastic resin”). In particular, it preferably contains a rubber-reinforced styrene-based resin and a recovered polycarbonate resin as a recovered thermoplastic resin, and particularly preferably a thermoplastic resin composition having the following composition.
[0022]
  (A) A rubber-containing graft obtained by graft polymerization of one or more vinyl monomers selected from an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of a rubber-like polymer ( (Co) polymer (a-1) 5 to 100% by weight and one or more monomers selected from aromatic vinyl monomers and vinyl cyanide monomers. ) 10 to 70 parts by weight of a rubber-reinforced styrene resin containing 95 to 0% by weight of the polymer (a-2);
  (B) Polycarbonate containing 0 to 99% by weight of polycarbonate resin (b-1) having a number average molecular weight of 18,000 to 40,000 by solution viscosity method and 100 to 1% by weight of the recovered polycarbonate resin (b-2) 90 to 30 parts by weight of resin
(However, the total of (A) rubber-reinforced styrene resin and (B) polycarbonate resin is 100 parts by weight) thermoplastic resin composition (in addition, “(co) polymer” means “polymer and / or Copolymer ").
[0023]
  The thermoplastic resin composition further comprises (C) a flame retardant of 0 to 30 parts by weight or less and (D) a drip with respect to a total of 100 parts by weight of (A) a rubber-reinforced styrene resin and (B) a polycarbonate resin. 1 part by weight or less of the inhibitor and / or (E) 5 to 60 parts by weight of an inorganic filler may be included.
[0024]
  With such a thermoplastic resin composition, it is possible to provide a high-performance and high-quality thermoplastic resin molded article having excellent surface appearance and impact resistance, and recovering the thermoplastic resin from the waste optical disc. It can be reused for a wide range of purposes.
[0025]
  The thermoplastic resin molded article of the present invention is formed by molding the thermoplastic resin composition of the present invention, and has excellent surface appearance and impact resistance, and further has high flame retardancy and electromagnetic wave shielding effect. Such excellent functionality can also be imparted, and it can be suitably used for housings for OA equipment, electrical and electronic equipment, electronic equipment parts, etc., as well as applications for vehicle parts and general equipment.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, embodiments of the present invention will be described in detail.
[0027]
  First, a method for recovering the thermoplastic resin from the waste optical disc of the present invention will be described.
[0028]
  There is no particular limitation on the waste such as an optical disc (hereinafter, sometimes referred to as “waste optical disc” or “waste CD”) to be processed by the recovery method of the present invention, and on a substrate made of a thermoplastic resin. At least one surface of the film is formed with a metal reflective film made of a vapor deposition film such as aluminum, or a layer in which these are laminated, a protective coating film, a printed film, and in some cases, a film such as a dielectric layer or a magneto-optical layer. An information recording film layer, a reflective film layer, and the like are formed, and examples include commercially available music CDs, game CDs, MDs, MOs, and DVDs. This waste CD may be a laminate of two substrates with such a coating inside. The thermoplastic resin constituting the substrate is not particularly limited, and examples thereof include transparent resins such as polycarbonate resin, polymethyl methacrylate resin, and amorphous cyclic polyolefin resin, but the present invention is most widely used particularly as a substrate for CD and the like. The present invention is very effectively applied to waste CD using a polycarbonate resin substrate.
[0029]
  In the present invention, such a waste CD is preferably treated with an acid solution as it is without being crushed to remove the reflective film and the protective coating film, but may be already crushed or crushed. You may do it. However, for the reasons described above, in the present invention, it is preferable to treat the waste CD as it is without crushing the waste CD.
[0030]
  When the pH of the acid solution to be used is high, the treatment time required for removing the coating becomes long. Therefore, the pH is preferably 3.5 or less, particularly 3 or less, and particularly preferably 1 or less. Although the treatment time varies depending on the composition of the acid solution, the treatment time may be about 5 minutes if the acid solution is pH 1 or less, and the treatment time is about 20 to 30 minutes if the acid solution is pH 3 or less. . In the case of an acid solution exceeding pH 3, a longer treatment time is required.
[0031]
  This acid solution,NothingAqueous solutions containing organic acids, organic acids, halogenated compounds and penetrantsAndExamples of the inorganic acid used in the acid solution include hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, and examples of the organic acid include citric acid, sulfamic acid, oxalic acid, glycolic acid, acetic acid, formic acid, and halogen compounds. Examples thereof include sodium halides such as chlorine, iodine and fluorine, potassium halides, ammonium halides, hydrohalic acids, etc., and penetrants include polyoxyalkylene alkyl ethers, alkylbenzene sulfonates, naphthalene sulfates. Examples include phonates. One of these inorganic acids, organic acids, halogenated compounds, and penetrants can be used alone or in admixture of two or more.
[0032]
  Acid solutions include inorganic acids, organic acids, halogen compounds and permeationAgentBy including all, the film can be removed very easily and in a short time, which is preferable.
[0033]
  In addition, when using a hydrohalic acid as a halogen compound, it can combine with an inorganic acid.
[0034]
  That is, the inorganic acid has an action of removing a metallic reflective film such as aluminum and a printed film, and the organic acid has an action of promoting the removal of a metallic reflective film such as aluminum. For this reason, the metal reflective film such as aluminum and the printed film can be efficiently removed by using the inorganic acid and the organic acid in combination. In addition, the incorporation of a halogen compound makes it possible to easily penetrate an inorganic acid, an organic acid or the like into a metal reflective film layer such as aluminum, and has the effect of promoting the removal of the metal reflective film such as aluminum and the removal of the printed film. Is done. Further, the penetrating agent also has the effect of promoting the penetration of inorganic acid, organic acid, etc. into the aluminum reflective film layer, and a remarkably good processing efficiency can be obtained by these synergistic effects.
[0035]
  In this case, the preferable content of each component in the acid solution is as follows.
    Inorganic acid: 10 to 80% by weight
    Organic acid: 1 to 20% by weight
    Halogen compound: 1 to 30% by weight
    Penetration agent: 0.1 to 5% by weight
[0036]
  If the content of the inorganic acid, organic acid, halogen compound, and penetrant is not within the above range, the reflective film and the protective coating may not be easily and efficiently removed. A particularly preferable composition range is 20 to 60% by weight of an inorganic acid, 1 to 10% by weight of an organic acid, 5 to 20% by weight of a halogen compound, and 0.1 to 2% by weight of a penetrant.
[0037]
  In addition, the total content of inorganic acid, organic acid, halogenated compound and penetrant in the acid solution is 15 to 80% by weight, particularly 20 to 60% by weight, from the viewpoint of handleability and treatment efficiency as an aqueous solution. It is preferable.
[0038]
  The treatment temperature with this acid solution is preferably 10 to 50 ° C, particularly preferably 25 to 35 ° C. When the processing temperature is too low, the processing time is long and not efficient, and when the processing temperature is too high, handling becomes difficult and heating is required, which is not economical.
[0039]
  The treatment time with the acid solution varies depending on the composition and temperature of the acid solution, but is preferably 5 to 60 minutes. If the treatment time is less than 5 minutes, peeling of the coating film on the surface becomes insufficient, resulting in deterioration of the surface appearance and impact resistance of the thermoplastic resin molded product obtained by reusing it, and exceeding 60 minutes. When a long time is required, the molecular weight of the recovered thermoplastic resin may be lowered, and the impact resistance of the obtained thermoplastic resin molded product may be lowered.
[0040]
  In the present invention, the waste CD can be easily dissolved or peeled and removed by simply immersing the waste CD in such an acid solution for a predetermined time. Therefore, the substrate-like thermoplastic resin can be recovered simply by washing and drying the waste CD after being immersed in the acid solution. The washing temperature may be 1 to 99 ° C. as long as the water maintains a liquid at normal pressure. Moreover, it is preferable to perform drying by 30-120 degreeC air drying. In addition, a vibration may be added to waste CD at the time of immersion, or a physical effect | action by an ultrasonic wave etc. may be added.
[0041]
  Thus, the recovered thermoplastic resin has almost no problem of deterioration in physical properties with respect to the thermoplastic resin constituting the waste CD substrate before recovery. For example, the thermoplastic resin of the molding material of the waste CD substrate Molecular weight M0In contrast, the molecular weight M of the recovered thermoplastic resinXIs M0× 1 to M0× 0.95, almost no decrease in molecular weight, and having substantially the same physical properties can be obtained.
[0042]
  Next, the thermoplastic resin composition and thermoplastic resin molded article of the present invention containing the recovered thermoplastic resin recovered in this way will be described.
[0043]
  The thermoplastic resin composition of the present invention is preferably
  (A) A rubber-containing graft obtained by graft polymerization of one or more vinyl monomers selected from an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of a rubber-like polymer ( (Co) polymer (a-1) 5 to 100% by weight and one or more monomers selected from aromatic vinyl monomers and vinyl cyanide monomers. ) 10 to 70 parts by weight of a rubber-reinforced styrene resin containing 95 to 0% by weight of the polymer (a-2);
  (B) Polycarbonate containing 0 to 99% by weight of polycarbonate resin (b-1) having a number average molecular weight of 18,000 to 40,000 by solution viscosity method and 100 to 1% by weight of the recovered polycarbonate resin (b-2) 90 to 30 parts by weight of resin
(However, the total of (A) rubber-reinforced styrene resin and (B) polycarbonate resin is 100 parts by weight).
[0044]
  Of the rubber-reinforced styrene-based resin (A) component, the rubber-like polymer in the rubber-containing graft (co) polymer (a-1) includes a vinyl monomer copolymerizable with polybutadiene and butadiene. Conjugated diene polymers such as copolymers, acrylic ester polymers, acrylic ester polymers such as copolymers of vinyl monomers copolymerizable with acrylic esters, ethylene-propylene or butene Preferably, a propylene-nonconjugated diene copolymer, a polyorganosiloxane polymer, and the like are used. Here, as the acrylic ester of the acrylic ester polymer, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, pentyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-methylpentyl acrylate, 2-ethylhexyl Examples of the diene contained in the ethylene-propylene-nonconjugated diene copolymer include dicyclopentadiene, 1,4-hexadiene, 1,4-heptadiene, 1,5, and the like. -Cyclooctadiene, 6-methyl-1,5-heptadiene, 11-ethyl-1,11-tridecadiene, 5-methylene-2-norbornene and the like. As the rubbery polymer, one of these can be used alone or as a composite rubber of two or more.
[0045]
  Examples of the vinyl monomer to be graft-polymerized to such a rubbery polymer include an aromatic vinyl monomer, a vinyl cyanide monomer, and a (meth) acrylic ester used as necessary. , Other monomers capable of graft polymerization, such as maleimide compounds and unsaturated carboxylic acids. Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, p-methylstyrene, bromostyrene, and the like, and styrene and α-methylstyrene are particularly preferable. Examples of the vinyl cyanide monomer include acrylonitrile and methacrylonitrile, and acrylonitrile is particularly preferable. Examples of other monomers include (meth) acrylic acid esters such as methacrylic acid esters or acrylic acid esters such as methyl methacrylate and methyl acrylate, and maleimide compounds include N-phenylmaleimide and N-cyclohexyl. Maleimide and the like can be mentioned, and examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid and fumaric acid. These can be used individually by 1 type or in mixture of 2 or more types, respectively.
[0046]
  In the graft (co) polymer, the ratio of these monomer components is, by weight, aromatic vinyl monomer: vinyl cyanide monomer: other monomer = 95-60: 5 40: 0 to 50 is preferable.
[0047]
  A preferable content of the rubbery polymer in the rubber-containing graft (co) polymer (a-1) is 40 to 70% by weight. If this content is less than 40% by weight, the impact resistance of the resulting molded product will be inferior, and if it exceeds 70% by weight, the graft ratio will be lowered, so that the impact resistance will be inferior.
[0048]
  Of the rubber-reinforced styrene resin (A) component used in the present invention, the hard (co) polymer (a-2) is further required to have an aromatic vinyl monomer and a vinyl cyanide monomer. A polymer or a copolymer obtained by polymerizing or copolymerizing one or more of other copolymerizable unsaturated monomers used depending on the condition, and comprising an aromatic vinyl monomer and a vinyl cyanide monomer. The monomer and other copolymerizable unsaturated monomers used as necessary are the same as those exemplified as the monomer to be grafted to the rubber-containing graft (co) polymer (a-1). Monomers are used.
[0049]
  In the hard (co) polymer (a-2), the ratio of these monomer components is as follows: aromatic vinyl monomer: vinyl cyanide monomer: other monomer = 80-60: It is preferable to set it as 20-40: 0-60.
[0050]
  Further, the weight average molecular weight of the hard (co) polymer (a-2) is preferably 80,000 to 200,000. When the molecular weight is less than 80,000, the impact resistance is inferior, and when it exceeds 200,000, the molding is performed. Workability deteriorates.
[0051]
  The rubber-reinforced styrene resin (A) according to the present invention is composed of a rubber-containing graft (co) polymer (a-1) and a hard (co) polymer (a-2). These ratios are set to 100% by weight in total of 5 to 100% by weight of the rubber-containing graft (co) polymer (a-1) and 95 to 0% by weight of the hard (co) polymer (a-2). If the amount of the hard (co) polymer (a-2) is large and the amount of the rubber-containing graft (co) polymer (a-1) is small, the resulting molded article has poor impact resistance.
[0052]
  Among the polycarbonate resin (B) components used in the present invention, a polycarbonate resin (b-) having a number average molecular weight (hereinafter sometimes referred to as “viscosity average molecular weight”) by a solution viscosity method of 18,000 to 40,000. 1) can be produced by reaction of one or more bisphenols with phosgene or a carbonic acid diester. Specific examples of bisphenols include hydroquinone, 4,4-dihydroxyphenyl, bis- (4-hydroxyphenyl) -alkane, bis- (4-hydroxyphenyl) -cycloalkane, bis- (4-hydroxyphenyl) -sulfide Bis- (4-hydroxyphenyl) -ether, bis- (4-hydroxyphenyl) -ketone, bis- (4-hydroxyphenyl) -sulfone, or their alkyl-substituted, aryl-substituted, halogen-substituted, etc. These may be used alone or in combination of two or more.
[0053]
  As the polycarbonate resin (b-1), 2,2-bis- (4-hydroxyphenyl) propane, a bisphenol A-based polycarbonate resin using bisphenol A as a raw material is preferable because it can be easily obtained on the market.
[0054]
  Among the polycarbonate resin (B) components used in the present invention, the polycarbonate resin (b-2) is a recovered polycarbonate resin recovered by the method for recovering a thermoplastic resin from the waste optical disc of the present invention described above. .
[0055]
  The waste optical disc for recovering the recovered polycarbonate resin (b-2) is not particularly limited, and may be any of commercially available music CDs, game CDs, MD, MO, DVD, etc. All that uses is used as a base material. The recovered polycarbonate resin (b-2) may be used after being pulverized after the film is peeled off with an acid solution as in the examples described later, or may be used after being pulverized before the peeling process.
[0056]
  The polycarbonate resin (B) component used in the present invention is composed of 0 to 99% by weight of a polycarbonate resin (b-1) having a viscosity average molecular weight of 18,000 to 40,000 and 100 to 1% by weight of the recovered polycarbonate resin (b-2). %, And the range of the viscosity average molecular weight of the polycarbonate resin (B) obtained by mixing the recovered polycarbonate resin (b-2) with the polycarbonate resin (b-1) as necessary is 12,000-30, 000 is desirable. If the viscosity average molecular weight is less than 12,000, the impact strength of the obtained thermoplastic resin molded article is low, and if it exceeds 30,000, the fluidity of the thermoplastic resin composition tends to deteriorate, so this viscosity average molecular weight range. The recovered polycarbonate resin (b-2) is blended with a polycarbonate resin (b-1) having a large viscosity average molecular weight.
[0057]
  In the thermoplastic resin composition of the present invention, 10 to 70 parts by weight of the rubber-reinforced styrenic resin (A) and 90 to 30 parts by weight of the polycarbonate resin (B) are blended as the resin component in a total of 100 parts by weight. However, it is particularly preferable to blend them so that the total rubber content in the resin component is 3 to 20% by weight. If the total rubber content is less than 3% by weight, the resulting molded thermoplastic resin product is inferior in impact resistance. If the total rubber content exceeds 20% by weight, the thermoplastic resin composition has poor fluidity. Become.
[0058]
  Furthermore, the thermoplastic resin composition of the present invention may contain 30 parts by weight or less of the flame retardant (C) and 1 part by weight or less of the anti-drip agent (D) with respect to 100 parts by weight of the resin component. good.
[0059]
  As the flame retardant (C), a flame retardant selected from a phosphorus-based flame retardant and a bromine-based flame retardant can be used alone or in admixture of two or more.
[0060]
  Examples of the phosphorus-based flame retardant used in the present invention include red phosphorus and phosphorus compounds. Examples of the phosphorus compound include phosphine, phosphine oxide, bisphosphine, phosphonium salt, phosphinate, phosphate ester, and phosphite ester. Etc. Of these, phosphate ester-based flame retardants are preferred in that there is no problem of mold contamination or generation of corrosive gas during molding. Examples of the phosphate ester flame retardant include a phosphate ester compound represented by the following general formula (I) and a condensed phosphate ester compound represented by the following general formula (II).
[0061]
[Chemical 1]
Figure 0004032912
((I) where R1, R2And RThreeRepresents an alkyl group having 1 to 8 carbon atoms which is independently selected from each other, or an aryl group having 6 to 20 carbon atoms which may be alkyl-substituted, and n is 0 or 1. )
[0062]
[Chemical formula 2]
Figure 0004032912
((II) where RFour, RFive, R6And R7Represents an aryl group or an alkaryl group independently selected from each other, X represents an arylene group, and j, k, l, and m are each independently 0 or 1. N is an integer of 1 to 5, but in the case of a mixture of phosphate ester compounds, N represents an average value (1 ≦ N ≦ 5). )
[0063]
  Specific examples of the phosphoric acid ester compound represented by the general formula (I) include bis- (phenyl) -methyl phosphate, bis- (ethyl) -phenyl phosphate, bis- (ethyl) -2,6-dimethylphenyl. Phosphate, bis- (phenyl) -ethyl phosphate, bis- (phenyl) -butyl phosphate, bis- (neopentyl) -phenyl phosphate, bis- (4-methylphenyl) -2-ethylhexyl phosphate, bis- (2-ethylhexyl) -Phenyl phosphate, bis- (phenyl) -2-ethylhexyl phosphate, bis- (phenyl) -octyl phosphate, bis- (octyl) phenyl phosphate, bis- (3,5,5-trimethylhexyl) phenyl phosphate, bis- ( 2,5,5-trimethyl Xyl) -4-methylphenyl phosphate, bis- (phenyl) -isodecyl phosphate, bis- (dodecyl) -4-methylphenyl phosphate, bis- (dodecyl) phenyl phosphate, tris- (phenyl) phosphate, tris- (2 -Methylphenyl) phosphate, tris- (4-methylphenyl) phosphate, bis- (2-methylphenyl) phenyl phosphate, bis- (4-methylphenylphenyl) phenyl phosphate, bis- (phenyl) -2-methylphenyl phosphate Bis- (phenyl) -4-methylphenyl phosphate, tris- (isopropylphenyl) phosphate, bis- (isopropylphenyl) phenyl phosphate, bis- (phenyl) -isopropylphenyl phosphate, Lis- (nonylphenyl) phosphate, tris- (2,6-dimethylphenyl) phosphate, bis- (2,6-dimethylphenyl) phenyl phosphate, bis- (2,6-dimethylphenyl) -2,6-dimethylphenyl Phosphate, bis- (2,6-dimethylphenyl) -4-t-butylphenyl phosphate, bis- (2,6-dimethylphenyl) -4-methylphenyl phosphate, bis- (2,6-dimethylphenyl) -3 -Methylphenyl phosphate, bis- (2,6-dimethylphenyl) -4-isopropylphenyl phosphate, bis- (2,6-dimethylphenyl) -2-isopropylphenyl phosphate, and these are used alone. Or two or more of them may be used in combination.
[0064]
  Moreover, the condensed phosphate ester compound represented by the general formula (II) may be used alone or in combination of two or more. Therefore, in the said general formula (II), the value of N does not necessarily need to be an integer, and in the case of a mixture, it represents the average value in the mixture of a condensed phosphate ester compound. In the general formula (II), RFour, RFive, R6And R7Is preferably cresyl group, phenyl group, xylenyl group, propylphenyl group, butylphenyl group, and the arylene group of X is derived from dihydroxy compounds such as resorcinol, hydroquinone, bisphenol A and their chlorinated and brominated compounds. Or a phenylene group or the like.
[0065]
  As the phosphoric flame retardant, the above phosphoric acid ester compound and the condensed phosphoric acid ester may be used in combination.
[0066]
  The brominated flame retardant used in the present invention includes at least one flame retardant selected from brominated epoxy polymers. The brominated epoxy polymer refers to an addition polymer of a brominated bisphenol compound and epichlorohydrin or a brominated bisphenol compound diglycidyl ether. Here, examples of the brominated bisphenol compound include tetrabromobisphenol A, dibromobisphenol A, tetrabromobisphenol F, and tetrabromobisphenol S. The molecular weight of the brominated epoxy polymer ranges from several hundred to several tens of thousands depending on the degree of polymerization (the number of repetitions of brominated bisphenol compound and 2-hydroxypropane unit). The molecular end of the brominated epoxy polymer may be an epoxy group or may be modified with an aryl group or an alkyl group, and these aryl group or alkyl group may be substituted with bromine. Examples of the aryl group include a phenyl group, a xylyl group, and a tribromophenyl group. Examples of the alkyl group include a methyl group, an ethyl group, and a tribromoneopentyl group.
[0067]
  Specific examples of the brominated epoxy polymer include tetrabromobisphenol A / epoxy polymer and tribromophenol-modified tetrabromobisphenol A / epoxy polymer.
[0068]
  When the blending amount of such a flame retardant (C) exceeds 30 parts by weight with respect to 100 parts by weight of the resin component described above, the heat resistance and mechanical properties of the obtained molded product are deteriorated. It is preferably 30 parts by weight or less, particularly 5 to 25 parts by weight based on 100 parts by weight of the resin component.
[0069]
  Examples of the anti-drip agent (D) added in the present invention include resins having a fluorine atom in the resin. Specifically, polymonofluoroethylene, polydifluoroethylene, polytrifluoroethylene, polytetrafluoroethylene, tetra Fluoroethylene / hexafluoropropylene copolymers can be mentioned, and these can be used alone or in combination of two or more. Among these, polytetrafluoroethylene is particularly preferred. There are no particular restrictions on the method for producing such a fluororesin, and generally known methods such as emulsion polymerization, suspension polymerization, bulk polymerization, and solution polymerization can be employed. From the viewpoint, a fluororesin produced by emulsion polymerization is preferred.
[0070]
  The fluororesin is a component for improving the melt dripping property at the time of combustion, and sufficient flame retardancy can be obtained even when the fluororesin is not blended by blending the flame retardant (C). However, it becomes possible to achieve V-0 in the UL94 combustion rank by blending the fluororesin. However, since the mechanical strength and processing fluidity of the resin decrease when the amount of the fluorine resin is too large, when the fluorine resin is compounded, the compounding amount is 1 weight with respect to 100 parts by weight of the resin component. Part or less, particularly 0.01 to 1 part by weight. When the blending amount of the fluororesin is 0 part by weight with respect to 100 parts by weight of the resin component, it is a case where V-2 is aimed at the UL94 combustion rank. The prevention effect can be exhibited and V-0 can be achieved.
[0071]
  The thermoplastic resin composition of the present invention further contains 5 to 60 parts by weight of one or more inorganic fillers (E) such as carbon fiber and metal fiber with respect to 100 parts by weight of the resin component. May be.
[0072]
  As this carbon fiber, what has a fiber diameter of 4-20 micrometers and a fiber length of 3-20 mm is preferable. If the fiber diameter of the carbon fiber is less than 4 μm, it is difficult and expensive to produce the carbon fiber, and if it exceeds 20 μm, sufficient conductivity and electromagnetic wave shielding effect cannot be obtained with a small amount. If the fiber length of the carbon fiber is less than 3 mm, sufficient conductivity and electromagnetic wave shielding effect cannot be obtained with a small amount, and if it exceeds 20 mm, the fluidity at the time of melting the resin is lowered, and kneading extrusion tends to be difficult. In addition, there is no restriction | limiting in particular as a form of carbon fiber, Any of a PAN system and a pitch system may be sufficient. A preferable blending amount of the carbon fiber is 5 to 40 parts by weight with respect to 100 parts by weight of the resin component. When the blending amount is less than 5 parts by weight, sufficient conductivity and electromagnetic wave shielding effect cannot be obtained, and when it exceeds 40 parts by weight, not only the appearance is deteriorated, but also when a kneading extruder or the like is used during production, Excessive shearing heat is generated in the kneader, so that the polymer is decomposed and cannot be produced.
[0073]
  The metal fiber is preferably a stainless fiber, and preferably has a fiber diameter of 5 to 60 μm and a fiber length of 2 to 10 mm. When the fiber diameter of the stainless steel fiber is less than 5 μm, it is difficult to produce the stainless steel fiber. When the fiber diameter exceeds 60 μm, high conductivity and electromagnetic wave shielding effect in a small amount tend to be difficult to obtain. Further, if the fiber length is less than 2 mm, high conductivity and electromagnetic wave shielding effect in a small amount are difficult to obtain, and if it exceeds 10 mm, the fluidity at the time of melting the resin tends to be lowered and kneading extrusion tends to be difficult. A preferable blending amount of the stainless fiber is 5 to 40 parts by weight with respect to 100 parts by weight of the resin component. When the blending amount is less than 5 parts by weight, sufficient conductivity and electromagnetic wave shielding effect cannot be obtained, and when it exceeds 40 parts by weight, not only the appearance is deteriorated, but also when a kneading extruder or the like is used during production, Excessive shearing heat is generated in the machine, and the polymer decomposes and cannot be produced.
[0074]
  In addition, when the carbon fiber and the stainless fiber are used in combination, the mixing ratio is preferably carbon fiber: stainless fiber = 1: 0.5 to 3 in terms of weight ratio in terms of conductivity and electromagnetic shielding effect, Moreover, it is preferable that the total compounding quantity of a carbon fiber and a stainless fiber is 5-60 weight part with respect to 100 weight part of resin components, especially 5-40 weight part.
[0075]
  In addition, the thermoplastic resin composition of the present invention includes known antioxidants, ultraviolet absorbers, lubricants, plasticizers, mold release agents, antistatic agents, colorants (pigments) as long as they do not interfere with the spirit of the present invention. And other additives such as flame retardant aids such as fillers and antimony compounds, antibacterial agents, antifungal agents, silicone oils, and coupling agents. Further, it may contain a phosphorus-based flame retardant, a flame retardant other than bromine, or a conductive material other than carbon fiber or stainless fiber.
[0076]
  Although there is no restriction | limiting in particular as a method of mixing these compounding components and manufacturing the thermoplastic resin composition of this invention, For example, the melt-kneading method using an extruder, a Banbury mixer, etc. is preferable.
[0077]
  The thermoplastic resin composition of the present invention thus obtained can be molded into various molded products by injection molding, sheet extrusion, vacuum molding, pressure molding, profile extrusion molding, foam molding, blow molding and the like.
[0078]
  The thermoplastic resin molded article of the present invention obtained by molding the thermoplastic resin composition of the present invention can be used for vehicle parts and general equipment by adjusting the composition of the thermoplastic resin composition, for example, The flame retardant (C) and the anti-drip agent (D) can be used for OA equipment due to the high flame retardancy, and further, the inorganic filler (E) can be blended to provide conductivity. This may cause problems with electromagnetic interference (EMI), such as electrical and electronic equipment and housing of electronic equipment parts, especially OA equipment such as computers, printers, copiers, and mobile information including mobile computers. It can be suitably used for a housing of an apparatus.
[0079]
【Example】
  EXAMPLES Hereinafter, the present invention will be described more specifically with reference to synthesis examples, examples, comparative examples, and reference examples. However, the present invention is not limited to the following examples unless it exceeds the gist. Absent.
[0080]
  In the following, the viscosity average molecular weight (Mv) was measured by the following method.
[Measurement Method of Viscosity Average Molecular Weight (Mv)]
  The sample was measured as a solution using methylene chloride as a solvent, using a Webellode viscometer, and determined using the following Schnell viscosity equation.
      [Η] = 1.23 × 10-4× Mv0.83
      (In the formula, η indicates the intrinsic viscosity.)
[0081]
[Recovery of polycarbonate resin from waste CD]
  Example 13, Comparative Examples 12-15
  100 waste CDs collected from the market were immersed in 30 L of an acid solution having the composition and pH shown in Table 1 at 30 ° C. for 30 hours at a distance of several mm from each other in a disk shape. Thereafter, the waste CD was taken out from the acid solution, washed with water, and then air-dried at 80 ° C.
[0082]
  As a result, Examples 1 to3 and Comparative Examples 12 and 13Then, all the coatings such as the aluminum reflecting film, the protective film and the printing film could be dissolved or peeled off, and the polycarbonate resin containing no impurities could be recovered. However, in Examples 1 to 3, the film could be completely peeled and removed by the immersion treatment for 10 minutes.Comparative Examples 12 and 13Then, it took 45 minutes to process. Also,Comparative Examples 14 and 15Then, the film could not be removed sufficiently even after the treatment for 60 minutes.
[0083]
[Table 1]
Figure 0004032912
[0084]
  In order to check that the recovered polycarbonate resin has no difference in physical properties from the polycarbonate resin before recovery, the viscosity average of the polycarbonate resin that is the molding material of the waste CD substrate before recovery and the recovered polycarbonate resin When the molecular weight was examined, the viscosity average molecular weight of the polycarbonate resin before molding was 1.45 × 10.4Met.
[0085]
  On the other hand, the viscosity average molecular weight measurement results of the polycarbonate resin recovered in each example are as shown in Table 2, and the molecular weight does not decrease with respect to the polycarbonate resin before molding, and the polycarbonate has the same physical properties as before use. It can be seen that the resin could be recovered.
[0086]
  Comparative Example 1
  Exfoliation treatment was carried out in the same manner as in Example 1 except that an alkaline solution (pH 14) containing 8% by weight of sodium hydroxide, 1.8% by weight of sodium gluconate and 0.2% by weight of alkylamine oxide was used as the treatment liquid. Went. After soaking for 60 minutes, the waste CD is taken out of the processing solution and washed with water. The aluminum reflective film, protective film, printed film, etc. are not sufficiently peeled off and removed, and it is possible to collect polycarbonate resin that does not contain impurities. could not.
[0087]
  Comparative Example 2
  Exfoliation treatment was performed in the same manner as Comparative Example 1 except that the treatment temperature was 90 ° C. After soaking for 60 minutes, the waste CD is taken out of the processing solution and washed with water. As a result, all the coatings such as the aluminum reflective film, protective film, and printed film are dissolved or removed, and the polycarbonate resin containing no impurities is recovered. I was able to.
[0088]
  However, when the viscosity average molecular weight of the recovered polycarbonate resin was measured, as shown in Table 2, a decrease in molecular weight was observed.
[0089]
  Comparative Example 3
  Exfoliation treatment was performed in the same manner as in Comparative Example 1 except that 100 waste CDs were crushed to about 2 to 10 mm and then treated with an alkaline solution. After soaking for 60 minutes, the waste CD fragments are removed from the treatment liquid and washed with water. The aluminum reflective film, protective film, printed film, etc. are not peeled off and removed, and it is possible to collect polycarbonate resin that does not contain impurities. could not.
[0090]
[Table 2]
Figure 0004032912
[0091]
[Production of thermoplastic resin composition and thermoplastic resin molded article]
  In the following, “part” means “part by weight”.
[0092]
  Synthesis Example 1: Production of rubber-containing graft copolymer (a-1-1)
  An ABS copolymer was synthesized by the emulsion polymerization method with the following composition.
[Combination]
    Styrene (ST) 35 parts
    15 parts of acrylonitrile (AN)
    50 parts of polybutadiene latex (as solids)
    Disproportionated potassium rosinate 1 part
    Potassium hydroxide 0.03 parts
    Terrierid decyl mercaptan (t-DM) 0.1 part
    Cumene hydroperoxide 0.3 parts
    Ferrous sulfate 0.007 parts
    Sodium pyrophosphate 0.1 part
    0.3 parts of crystalline glucose
    190 parts distilled water
[0093]
  Charge the autoclave with distilled water, disproportionated potassium rosinate, potassium hydroxide and polybutadiene latex, heat to 60 ° C, add ferrous sulfate, sodium pyrophosphate, and crystalline glucose, and keep it at 60 ° C. AN, t-DM and cumene hydroperoxide were continuously added over 2 hours, and then the temperature was raised to 70 ° C. and maintained for 1 hour to complete the reaction. An antioxidant was added to the ABS latex obtained by this reaction, then coagulated with sulfuric acid, sufficiently washed with water, and dried to obtain an ABS graft copolymer (a-1-1).
[0094]
  Synthesis Example 2: Production of rubber-containing graft copolymer (a-1-2)
  Reaction of 15 parts of AN and 35 parts of ST in the presence of 50 parts (as solids) of ethylene-propylene-nonconjugated diene copolymer rubber latex (ethylene: propylene: nonconjugated diene (5-ethylene-2-norbornene)) Except for this, an AES graft copolymer (a-1-2) was obtained in the same manner as in Synthesis Example 1.
[0095]
  Synthesis Example 3: Production of rubber-containing graft copolymer (a-1-3)
  An ASA graft copolymer (a-1-3) was obtained in the same manner as in Synthesis Example 1, except that 15 parts of AN and 35 parts of ST were reacted in the presence of 50 parts of polybutyl acrylate (as a solid content).
[0096]
  Synthesis Example 4: Production of hard copolymer (a-2-1)
  Monomer consisting of 120 parts water, 0.002 part sodium alkylbenzene sulfonate, 0.5 part polyvinyl alcohol, 0.3 part azoisobutylnitrile, 0.5 part t-DM, 35 parts AN, and 65 parts ST in a nitrogen-substituted reactor. Using the mixture, heating was started at a starting temperature of 60 ° C. for 5 hours and then reached 120 ° C. while adding a portion of ST sequentially. Furthermore, after reacting at 120 ° C. for 4 hours, the polymer was taken out to obtain a hard copolymer (a-2-1).
[0097]
  Synthesis Example 5: Production of hard copolymer (a-2-2)
  Example of synthesis except that a monomer mixture consisting of 25 parts of AN, 20 parts of ST, 35 parts of α-methylstyrene and 20 parts of N-phenylmaleimide was used, and a part of styrene, α-methylstyrene and N-phenylmaleimide was sequentially added. Polymerization was conducted in the same manner as in Example 4 to obtain a hard copolymer (a-2-2).
[0098]
  The following were used as the polycarbonate resin (b-1).
  Polycarbonate resin (b-1-1): Polycarbonate resin “H-4000” manufactured by Mitsubishi Engineering Plastics Co., Ltd. (viscosity average molecular weight (Mv): 15,000)
  Polycarbonate resin (b-1-2): Polycarbonate resin “S-3000” manufactured by Mitsubishi Engineering Plastics Co., Ltd. (viscosity average molecular weight (Mv): 21,000)
  Polycarbonate resin (b-1-3): Polycarbonate resin “E-2000” manufactured by Mitsubishi Engineering Plastics Co., Ltd. (viscosity average molecular weight (Mv): 31,000)
[0099]
  As the recovered polycarbonate resin (b-2), the following was used.
[0100]
  Recovered polycarbonate resin (b-2-1): Waste CD was immersed in the acid solution used in Example 1 for 5 minutes to remove the coating, washed with water, dried and crushed. The viscosity average molecular weight (Mv) of the raw material polycarbonate resin used for this waste CD was 15,000, and the viscosity average molecular weight (Mv) of the recovered polycarbonate resin was also 15,000.
[0101]
  Polycarbonate resin (b-2-2): Waste MD was immersed in the acid solution used in Example 5 for 5 minutes to remove the coating, washed with water, dried and crushed. The raw material polycarbonate resin used for the waste MD had a viscosity average molecular weight (Mv) of 15,000, and the recovered polycarbonate resin also had a viscosity average molecular weight (Mv) of 14,900.
[0102]
  Polycarbonate resin (b-2-3): Waste CDComparative Example 14What was dipped in the acid solution used in 90 minutes and was not able to sufficiently peel off the metal film or paint, washed with water, dried and crushed. The viscosity average molecular weight (Mv) of the raw material polycarbonate resin used for the waste CD was 15,000, and the viscosity average molecular weight (Mv) of the recovered polycarbonate resin was 13,500.
[0103]
  Polycarbonate resin (b-2-4): A product obtained by crushing a waste CD without removing the metal coating or coating.
[0104]
  Polycarbonate resin (b-2-5): A crushed as it is without removing the metal coating or coating of waste MD.
[0105]
  The following were used as the flame retardant (C).
  Flame retardant (c-1): Phosphoric ester flame retardant “FP-500” manufactured by Asahi Denka Kogyo
  Flame retardant (c-2): Bromine flame retardant “EC-20” manufactured by Dainippon Ink
[0106]
  As the anti-drip agent (D), the following were used.
  Anti-drip agent (d): Polytetrafluoroethylene “Teflon (registered trademark) 6-J” manufactured by DuPont
[0107]
  The following were used as the inorganic filler (E).
  Inorganic filler (e-1): Carbon fiber “Besphite” manufactured by Toho Rayon Co., Ltd. (average fiber diameter = 7 μm, average fiber length = 6 mm)
  Inorganic filler (e-2): stainless steel fiber “Bekishield” manufactured by Bekaert (average fiber diameter = 8 μm, average fiber length = 6 mm)
[0108]
  Examples 8-15, Comparative Examples 4-11, Reference Examples 1-4
  After mixing with additives such as lubricants and antioxidants at the blending ratios shown in Tables 3 and 4, melt mixing at 220 to 240 ° C. with a twin screw extruder (“TEX-44” manufactured by Nippon Steel) And pelletized. This resin pellet was molded at 220 to 260 ° C. with a 2 ounce injection molding machine (manufactured by Toshiba Corporation), necessary test pieces were prepared, and various physical properties were measured by the following methods. This is shown in FIG.
[0109]
  Reference Examples 1 to 4 are examples in which only the new polycarbonate resin is used without using the recovered polycarbonate resin.
[Melt flow rate (g / 10 min)] JIS K7210 (230 ° C in Table 3, 220 ° C / 98N in Table 4)
[Izod impact strength (J / m)] ASTM D256 (room temperature)
[Flexural modulus (MPa)] 6.4 mm thickness (ASTM D790)
[Heat deformation temperature (° C)] ASTM D648
[Flammability] A 2 mm-thickness test piece was subjected to a combustion test according to UL94 to examine the flammability.
[Surface Appearance] The surface of the molded product was visually observed, and it was determined that there was no foreign matter and the appearance was good, and that the appearance was bad and the appearance was bad was ×.
[0110]
[Table 3]
Figure 0004032912
[0111]
[Table 4]
Figure 0004032912
[0112]
  From Tables 3 and 4, the following is clear.
[0113]
  In Examples 8-11 of this invention, it turns out that surface appearance and Izod impact strength are excellent compared with Comparative Examples 4-7. In addition, Example 8 can be compared with Reference Example 1, Example 10 can be compared with Reference Example 2, and Examples 8 and 10 show the same characteristics as Reference Examples 1 and 2. Therefore, it is expected to withstand practical use.
[0114]
  Although Examples 12 and 13 and Comparative Examples 8 and 9 to which flame retardants and anti-drip agents were added had an effect on combustibility, Examples 12 and 13 were far more excellent in terms of surface appearance and Izod impact strength. It turns out that it is excellent in. In addition, Example 12 shows the same characteristics as Reference Example 3, and is expected to be sufficiently practical.
[0115]
  Further, Examples 14 and 15 and Comparative Examples 10 and 11 are resin compositions in which carbon fibers or stainless fibers as inorganic fillers are blended, and a square test piece having a side of 150 mm and a thickness of 3 mm is created for the electromagnetic wave shielding effect. Then, when the magnetic wave (frequency 300 MHz) was measured in combination with TR-17301A and R3361A manufactured by Advantest Co., Ltd., the electromagnetic wave shielding effects of Examples 14 and 15, Comparative Examples 10 and 11 and Reference Example 4 were It was in the range of 50 to 55 (dB), and the electromagnetic wave shielding effect was recognized in all. Moreover, the effect on combustibility was recognized. However, Examples 14 and 15 are far superior to Comparative Examples 10 and 11 in terms of surface appearance and Izod impact strength characteristics. In addition, Example 14 shows the same characteristics as Reference Example 4, and is expected to be sufficiently practical.
[0116]
  As mentioned above, in an Example, compared with what uses the ground product of a comparative example, impact strength strength and appearance are excellent. Further, as shown in the reference example, it is apparent that the characteristics of the examples have characteristics comparable to those in which the recovered polycarbonate resin is not reused.
[0117]
【The invention's effect】
  As described above in detail, according to the method for recovering a thermoplastic resin from a waste optical disc of the present invention, only a coating such as a metal reflective film on a thermoplastic resin substrate can be easily and efficiently removed from the waste of the optical disc. The thermoplastic resin, which is a constituent material of the substrate, can be recovered at a high recovery rate while maintaining the reusable physical properties without reducing the physical properties.
[0118]
  Moreover, according to the thermoplastic resin composition and the thermoplastic resin molded article of the present invention, a thermoplastic resin molded article having excellent surface appearance and impact resistance is provided using the recovered thermoplastic resin. be able to.
[0119]
  According to the present invention, the demand for thermoplastic resin is easily and efficiently increased from the waste of optical disks, which are expected to increase in demand in recent years, and the amount of defective products, test samples, recovered products, etc. is expected to increase. Moreover, it can be recovered at low cost and reused, and the industrial utility of the present invention is extremely high in terms of waste reduction, environmental maintenance, effective use of resources, and the like.

Claims (14)

熱可塑性樹脂基板に金属反射膜を含む被膜が形成された光学式ディスクの廃棄物から熱可塑性樹脂を回収する方法において、
該光学式ディスクを酸溶液に接触させ、前記被膜を溶解ないし剥離除去した後、水洗し、乾燥する方法であって、
該酸溶液が無機酸、有機酸、ハロゲン化合物、及び浸透剤を含む水性溶液であることを特徴とする廃光学式ディスクからの熱可塑性樹脂の回収方法。
In a method for recovering thermoplastic resin from waste optical discs in which a coating including a metal reflective film is formed on a thermoplastic resin substrate,
The optical disc is brought into contact with an acid solution, the film is dissolved or peeled off, washed with water, and dried .
A method for recovering a thermoplastic resin from a waste optical disc , wherein the acid solution is an aqueous solution containing an inorganic acid, an organic acid, a halogen compound, and a penetrant .
該熱可塑性樹脂がポリカーボネート樹脂であることを特徴とする請求項1に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法。  2. The method for recovering a thermoplastic resin from a waste optical disc according to claim 1, wherein the thermoplastic resin is a polycarbonate resin. 該酸溶液のpHが3以下であることを特徴とする請求項1又は2に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法。  The method for recovering a thermoplastic resin from a waste optical disc according to claim 1 or 2, wherein the acid solution has a pH of 3 or less. 該酸溶液の無機酸が塩酸、硝酸、硫酸及びリン酸よりなる群から選ばれる1種又は2種以上であり、有機酸がクエン酸、スルファミン酸、シュウ酸、グリコール酸、酢酸及びギ酸よりなる群から選ばれる1種又は2種以上であり、ハロゲン化合物がハロゲン化ナトリウム、ハロゲン化カリウム、ハロゲン化アンモニウム及びハロゲン化水素酸よりなる群から選ばれる1種又は2種以上であり、浸透剤がポリオキシアルキレンアルキルエーテル、アルキルベンゼンスルフォネート及びナフタレンスルフォネートよりなる群から選ばれる1種又は2種以上であることを特徴とする請求項1ないし3のいずれか1項に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法。The inorganic acid of the acid solution is one or more selected from the group consisting of hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, and the organic acid consists of citric acid, sulfamic acid, oxalic acid, glycolic acid, acetic acid and formic acid. One or more selected from the group, the halogen compound is one or more selected from the group consisting of sodium halide, potassium halide, ammonium halide and hydrohalic acid, and the penetrant is The waste optical system according to any one of claims 1 to 3, wherein the optical system is one or more selected from the group consisting of polyoxyalkylene alkyl ethers, alkylbenzene sulfonates and naphthalene sulfonates. Recovery method of thermoplastic resin from disk. 該酸溶液の無機酸の濃度が10〜80重量%であり、有機酸の濃度が1〜20重量%であり、ハロゲン化合物の濃度が1〜30重量%であり、浸透剤の濃度が0.1〜5重量%であることを特徴とする請求項1ないし4のいずれか1項に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法。The acid solution has an inorganic acid concentration of 10 to 80% by weight, an organic acid concentration of 1 to 20% by weight, a halogen compound concentration of 1 to 30% by weight, and a penetrant concentration of 0. The method for recovering a thermoplastic resin from a waste optical disc according to any one of claims 1 to 4, wherein the content is 1 to 5% by weight. 該光学式ディスクを破砕することなく前記酸溶液に接触させることを特徴とする請求項1ないしのいずれか1項に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法。The method for recovering a thermoplastic resin from a waste optical disk according to any one of claims 1 to 5 , wherein the optical disk is brought into contact with the acid solution without being crushed. 該光学式ディスクの基板の成形材料の熱可塑性樹脂の分子量Mに対して、回収された熱可塑性樹脂の分子量MがM×1〜M×0.95であることを特徴とする請求項1ないし6のいずれか1項に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法。The molecular weight M X of the recovered thermoplastic resin is M 0 × 1 to M 0 × 0.95 with respect to the molecular weight M 0 of the thermoplastic resin of the molding material of the substrate of the optical disk. A method for recovering a thermoplastic resin from a waste optical disc according to any one of claims 1 to 6 . 請求項1ないしのいずれか1項に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法により回収された熱可塑性樹脂を含むことを特徴とする熱可塑性樹脂組成物。A thermoplastic resin composition comprising a thermoplastic resin recovered by the method for recovering a thermoplastic resin from a waste optical disc according to any one of claims 1 to 7 . 請求項において、該熱可塑性樹脂組成物は、ゴム強化スチレン系樹脂と、請求項ないしのいずれか1項に記載の廃光学式ディスクからの熱可塑性樹脂の回収方法により回収された回収ポリカーボネート樹脂とを含むことを特徴とする熱可塑性樹脂組成物。9. The thermoplastic resin composition according to claim 8, wherein the thermoplastic resin composition is recovered by a method for recovering a thermoplastic resin from a rubber-reinforced styrene resin and a waste optical disk according to any one of claims 1 to 7. A thermoplastic resin composition comprising a polycarbonate resin. 請求項において、
(A)ゴム状重合体の存在下に、芳香族ビニル系単量体及びシアン化ビニル系単量体から選ばれた1種以上のビニル系単量体をグラフト重合してなるゴム含有グラフト(共)重合体(a−1)を含むゴム強化スチレン系樹脂10〜70重量部と、
(B)前記回収ポリカーボネート樹脂(b−2)を含むポリカーボネート樹脂90〜30重量部と
を含む(ただし、(A)ゴム強化スチレン系樹脂と(B)ポリカーボネート樹脂との合計で100重量部)ことを特徴とする熱可塑性樹脂組成物。
In claim 9 ,
(A) A rubber-containing graft obtained by graft polymerization of one or more vinyl monomers selected from an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of a rubber-like polymer ( 10) to 70 parts by weight of a rubber-reinforced styrene resin containing a (co) polymer (a-1);
(B) 90 to 30 parts by weight of polycarbonate resin containing the recovered polycarbonate resin (b-2) (however, (A) 100 parts by weight in total of rubber-reinforced styrene resin and (B) polycarbonate resin) A thermoplastic resin composition characterized by the above.
請求項10において、
(A)ゴム状重合体の存在下に、芳香族ビニル系単量体及びシアン化ビニル系単量体から選ばれた1種以上のビニル系単量体をグラフト重合してなるゴム含有グラフト(共)重合体(a−1)5重量%以上と、芳香族ビニル系単量体及びシアン化ビニル系単量体から選ばれた1種以上の単量体を重合してなる硬質(共)重合体(a−2)95重量%以下とを含むゴム強化スチレン系樹脂10〜70重量部と、
(B)溶液粘度法による数平均分子量が18,000〜40,000のポリカーボネート樹脂(b−1)99重量%以下と前記回収ポリカーボネート樹脂(b−2)1重量%以上とを含むポリカーボネート樹脂90〜30重量部と
を含む(ただし、(A)ゴム強化スチレン系樹脂と(B)ポリカーボネート樹脂との合計で100重量部)ことを特徴とする熱可塑性樹脂組成物。
In claim 10 ,
(A) A rubber-containing graft obtained by graft polymerization of one or more vinyl monomers selected from an aromatic vinyl monomer and a vinyl cyanide monomer in the presence of a rubber-like polymer ( Co) polymer (a-1) 5% by weight or more and a hard (co) polymerized from one or more monomers selected from aromatic vinyl monomers and vinyl cyanide monomers 10 to 70 parts by weight of a rubber-reinforced styrene resin containing 95% by weight or less of the polymer (a-2);
(B) Polycarbonate resin 90 containing 99% by weight or less of polycarbonate resin (b-1) having a number average molecular weight of 18,000 to 40,000 by solution viscosity method and 1% by weight or more of the recovered polycarbonate resin (b-2) -30 parts by weight (however, the total of (A) rubber-reinforced styrene resin and (B) polycarbonate resin is 100 parts by weight).
請求項10又は11において、(A)ゴム強化スチレン系樹脂と(B)ポリカーボネート樹脂との合計100重量部に対して、(C)難燃剤30重量部以下と(D)ドリップ防止剤1重量部以下とを含むことを特徴とする熱可塑性樹脂組成物。In Claim 10 or 11 , (C) 30 parts by weight or less of flame retardant and (D) 1 part by weight of anti-drip agent for 100 parts by weight of the total of (A) rubber-reinforced styrene resin and (B) polycarbonate resin The thermoplastic resin composition characterized by including the following. 請求項10ないし12のいずれか1項において、(A)ゴム強化スチレン系樹脂と(B)ポリカーボネート樹脂との合計100重量部に対して、(E)無機充填剤5〜60重量部を含むことを特徴とする熱可塑性樹脂組成物。In any one of claims 10 to 12, (A) 100 parts by weight of the total of the rubber-reinforced styrene resin and (B) a polycarbonate resin, comprising (E) an inorganic filler 5 to 60 parts by weight A thermoplastic resin composition characterized by the above. 請求項ないし13のいずれか1項に記載の熱可塑性樹脂組成物を成形してなることを特徴とする熱可塑性樹脂成形品。A thermoplastic resin molded article obtained by molding the thermoplastic resin composition according to any one of claims 8 to 13 .
JP2002290160A 2001-11-01 2002-10-02 Method of recovering thermoplastic resin from waste optical disc, thermoplastic resin composition including recovered thermoplastic resin, and thermoplastic resin molded article Expired - Fee Related JP4032912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290160A JP4032912B2 (en) 2001-11-01 2002-10-02 Method of recovering thermoplastic resin from waste optical disc, thermoplastic resin composition including recovered thermoplastic resin, and thermoplastic resin molded article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001336638 2001-11-01
JP2001-336638 2001-11-01
JP2002290160A JP4032912B2 (en) 2001-11-01 2002-10-02 Method of recovering thermoplastic resin from waste optical disc, thermoplastic resin composition including recovered thermoplastic resin, and thermoplastic resin molded article

Publications (2)

Publication Number Publication Date
JP2003200133A JP2003200133A (en) 2003-07-15
JP4032912B2 true JP4032912B2 (en) 2008-01-16

Family

ID=27666806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290160A Expired - Fee Related JP4032912B2 (en) 2001-11-01 2002-10-02 Method of recovering thermoplastic resin from waste optical disc, thermoplastic resin composition including recovered thermoplastic resin, and thermoplastic resin molded article

Country Status (1)

Country Link
JP (1) JP4032912B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315583B2 (en) 2004-06-24 2013-10-16 ソニー株式会社 Recycling method of recovered disc, flame retardant resin composition, and flame retardant resin molded product
JP4832843B2 (en) * 2005-09-30 2011-12-07 日本テトラパック株式会社 Separation method and stripping solution for laminated packaging material containing aluminum layer
US7365149B2 (en) 2005-12-12 2008-04-29 Hans-Peter Brack Equipment cleaning in the manufacture of polycarbonates
JP6332912B2 (en) * 2013-04-24 2018-05-30 シャープ株式会社 Recycling method of waste thermoplastic resin composition
JP6797007B2 (en) * 2016-11-29 2020-12-09 ダイセルポリマー株式会社 Polycarbonate resin composition
WO2024117159A1 (en) * 2022-11-29 2024-06-06 三菱ケミカル株式会社 Resin composition, pellet, molded article, and method for producing resin composition

Also Published As

Publication number Publication date
JP2003200133A (en) 2003-07-15

Similar Documents

Publication Publication Date Title
JP3295429B2 (en) High precision mechanical parts made of flame-retardant resin for OA equipment
EP1452564B1 (en) Flame-retardant resin composition
KR101349443B1 (en) Polycarbonate resin composition, molded article thereof, film, and sheet
WO2003064536A1 (en) Thermoplastic resin composition, polycarbonate resin composition, and molded article thereof
KR20100089884A (en) Reinforced resin composition for plating base, molded article, and electroplated component
JP2006008810A (en) Method for recycling recovered material of disk, flame-retardant resin composition and flame-retardant resin molded product
KR20110089398A (en) Method for recycling optical disk, resin composition for forming film, and resin molded article
EP2315809A1 (en) Ignition resistant carbonate polymer composition
JP4815822B2 (en) Method for producing composite thermoplastic resin plated molded article
JP4032912B2 (en) Method of recovering thermoplastic resin from waste optical disc, thermoplastic resin composition including recovered thermoplastic resin, and thermoplastic resin molded article
JP5209536B2 (en) Flame retardant resin composition
JPH10310694A (en) Thermoplastic resin composition
JP2004351887A (en) Method for recycling optical disk as resources,fire retardant resin composition and fire retardant resin molded product
JP2002371178A (en) Flame-retardant resin composition and molded product having electroconductivity
JP4080851B2 (en) Flame retardant resin composition
WO2004067669A1 (en) Antistatic agent and coating or molding synthetic resins
JP2005162819A (en) Polycarbonate-based resin composition and molded body
JP3611228B2 (en) Polycarbonate resin composition
JP3384902B2 (en) Flame retardant thermoplastic resin composition
JP2004262045A (en) Recycled material resin composition, molded product and method for recovering waste optical disk
JP4082225B2 (en) Flame retardant resin composition having antistatic property suitable for reuse and molded article using the same
JP2002105303A (en) Polycarbonate resin composition
JP3948459B2 (en) Molded product of thermoplastic resin composition
JP2000198915A (en) Flame retardant resin composition having good metal plating characteristics
JP2004352762A (en) Recycled aromatic polycarbonate resin composition and method for producing the same and injection-molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees