JP4031984B2 - Method and apparatus for storing electrolytically generated water - Google Patents

Method and apparatus for storing electrolytically generated water Download PDF

Info

Publication number
JP4031984B2
JP4031984B2 JP2002380182A JP2002380182A JP4031984B2 JP 4031984 B2 JP4031984 B2 JP 4031984B2 JP 2002380182 A JP2002380182 A JP 2002380182A JP 2002380182 A JP2002380182 A JP 2002380182A JP 4031984 B2 JP4031984 B2 JP 4031984B2
Authority
JP
Japan
Prior art keywords
water
electrolytically generated
electrolyzed
gas
storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380182A
Other languages
Japanese (ja)
Other versions
JP2004209341A (en
Inventor
喜則 紙谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2002380182A priority Critical patent/JP4031984B2/en
Publication of JP2004209341A publication Critical patent/JP2004209341A/en
Application granted granted Critical
Publication of JP4031984B2 publication Critical patent/JP4031984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解生成水の貯留方法および貯留装置に関する。
【0002】
【従来の技術】
食塩等無機塩の希薄水溶液や水道水を被電解水として電解生成される電解生成水は、機能性水として多くの分野で利用されている。例えば、有隔膜電解槽を使用する電解では、陽極室側電解室では酸性水(電解生成酸性水)が生成され、かつ、陰極室側電解室ではアルカリ性水(電解生成アルカリ性水)が生成される。電解生成酸性水は高い殺菌能を有し、殺菌剤または無菌水として利用される。また、電解生成アルカリ性水は高い洗浄能を有し、洗浄剤として利用される。
【0003】
電解生成水の利用態様においては、一時的に大量に使用する場合があるが、当該利用態様に対処するために、使用する電解生成水を予め、貯留槽に収容して貯留しておく方法が採られる。かかる貯留方法では、貯留槽内に収容されている電解生成水から溶解している各種成分のガスが経時的に発生することから、このガス処理対策が問題となる。
【0004】
電解生成水には、被電解水の電解時に発生する種々の成分(Cl2またはH2)等が溶解しているが、これらの成分がガス状(塩素ガスや水素ガス等)となって経時的に発生する。塩素ガスや水素ガス等は、電解水生成装置が設置されている作業空間に継続して放出させる場合には、作業空間の衛生上および装置の防錆上の問題を提起することになる。
【0005】
従来、電解生成水のこの種方式の貯留方法においては、一般には、電解生成水が収容されている貯留槽に屋外へ臨む排気管を連結して、貯留槽内で発生するガスを排気管を通して屋外へ排気する排気手段が採られている。また、一部では、当該排気管の途中、その前側または後側の位置に吸着剤を収容する吸着装置を設置して、貯留槽内で発生するガス中の化学物質を吸着して排気を屋外へ排出する排気手段も採られている。
【0006】
これらの排気手段においては、基本的には、貯留槽内で発生するガスの作業空間への放出を規制することによって、作業空間における衛生上および装置の防錆上の問題を解消するものであり、前者の排気手段では、ガス中の化学物質を大気中で希釈することによって大気の局部的な汚染を防止し、後者の排気手段では、ガスの外気への排出前にガス中の化学物質を吸着除去することによって大気の汚染を防止するものである。これらの排気手段は、いずれも貯留槽内で発生するガスを屋外へ排出するもであり、また、排気手段が故障した場合には、貯留槽内で発生するガスの作業空間への放出は避けられない。
【0007】
このような排気手段に替えて、貯留槽内で発生するガスを屋外へ排出することなく、作業空間への放出を規制する手段(ガス放出規制手段という)が開発されて提案されている(例えば特許文献1を参照)。
【0008】
当該ガス放出規制手段は、電解生成水である電解生成酸性水を収容する貯留槽および電解生成アルカリ性水を収容する貯留槽を気液分離タンクに構成して、これら両気液分離タンクを連結管路を介して被電解水の調製用タンクである被電解水タンクにそれぞれ連結して構成されている。
【0009】
当該ガス放出規制手段においては、各気液分離タンク内で発生するガスを、各連結管路を通し被電解水タンクに回収することによって、当該ガスの作業空間への放出および屋外への排出を規制するものである。換言すれば、当該ガス放出規制手段は、貯留槽内で発生するガスを密閉系で被電解水に吸収処理するものである。
【0010】
【特許文献1】
特開平9−308885号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記した特許文献1に開示されているガス放出規制手段においては、慣用されている上記した両排気手段に比較して装置的に大型化し、当該ガス放出規制手段を装備する電解水生成装置を設置するには、大きな設置空間を確保しなければならないという問題があり、また、上記した両排気手段と同様に、ガス放出規制手段が故障した場合には、貯留槽内で発生するガスの作業空間への放出は避けられない。
【0012】
従って、本発明の目的は、上記した排気手段およびガス放出規制手段とは異なり、貯留槽内に収容されている電解生成水からのガスの経時的な発生を大きく抑制し得るようにして、当該ガスの作業空間内への放出および屋外への排出を大きく抑制することにある。
【0013】
【課題を解決するための手段】
本発明は、電解生成水の貯留方法および貯留装置に関する。本発明に係る電解生成水の貯留方法は、被電解水を電解して生成される電解生成水を貯留するための貯留方法であり、貯留槽内に収容されている電解生成水を、同電解生成水の水面と同水面上の気体との接触を遮断した状態で貯留することを特徴とするものである。
【0014】
本発明に係る電解生成水の貯留方法においては、前記貯留槽内に収容されている電解生成水の水面に接触遮断層を形成することにより、前記電解生成水の水面と同水面上の気体との接触を遮断することができる。当該接触断層は、前記電解生成水の水面上に浮遊する接触遮断部材にて形成することができる。当該接触遮断層を形成する接触遮断部材としては、大きさの異なる複数種類の多数の浮き玉を採用することができ、また、当該浮き球として、大きさの異なる複数種類の多数の氷塊を採用することができる。
【0015】
また、本発明に係る電解生成水の貯留方法においては、当該接触遮断層は、前記電解生成水の水面上に浮遊する大きさの異なる複数種類の多数の氷塊と、同氷塊が溶融して形成される水層にて形成することができる。
【0016】
本発明に係る電解生成水の貯留装置は、被電解水を電解して生成される電解生成水を貯留するための貯留装置であり、被電解水を電解する電解槽に接続されて同電解槽で生成される電解生成水を収容する貯留槽と、同貯留槽内にて収容されている電解生成水の水面に浮遊する接触遮断部材とを備えていることを特徴とするものである。
【0017】
本発明に係る電解生成水の貯留装置において、前記貯留槽が電解生成水の収容量を制御する制御手段を備えるものである場合には、前記接触遮断部材として、大きさの異なる複数種類の多数の浮き玉を採用することができる。当該浮き球としては、大きさの異なる複数種類の多数の氷塊を採用することができる。
【0018】
【発明の作用・効果】
本発明に係る電解生成水の貯留方法および貯留装置においては、貯留槽内に収容されている電解生成水は貯留槽内に残存する空気等気体との接触を遮断されることから、電解生成水に溶解している成分のガスとしての発生が規制または大きく抑制される。
【0019】
このため、本発明に係る電解生成水の貯留方法および貯留装置によれば、電解生成水を収容している貯留槽内のガスの作業空間への放出および外気への排出は全くまたはほとんど不要となる。
【0020】
また、本発明に係る電解生成水の貯留方法および貯留装置によれば、電解生成水を収容する貯留槽内のガスを排気または還流させることがないため、上記した慣用の両排気手段や上記したガス放出規制手段が有する問題が発生することは全くない。
【0021】
本発明に係る電解生成水の貯留方法および貯留装置においては、前記接触遮断層の形成に、大きさの異なる複数種類の多数の浮き玉を採用すれば、槽内部がシンプルな形状でない貯留槽や、槽内に電解生成水の収容量を制御する制御部品等配設部品を有する貯留槽に十分に対処することができる。
【0022】
また、前記接触遮断層の形成に、大きさの異なる複数種類の多数の氷塊を採用すれば、氷塊が溶解して形成される水の層が接触遮断層としても機能し、当該水層が電解生成水から発生しようとするガスを吸収して接触遮断効果を高めるとともに、電解生成水を冷却状態で使用される用途に対して十分に対処することができる。
【0023】
【発明の実施の形態】
本発明は、電解生成水の貯留方法および貯留装置に関するものであり、図1には、本発明に係る貯留装置を備えた電解水生成装置を模式的に示しており、図2および図3には、当該貯留装置の縦断面および横断面を模式的に示している。また、図4および図5は、本発明に係る貯留方法および貯留装置を成立させるために行った実験結果を示すグラフである。
【0024】
当該電解水生成装置は、有隔膜電解槽10を有するもので、貯留装置として、電解生成酸性水を貯留する酸性水貯留装置20aと、電解生成アルカリ性水を貯留するアルカリ性水貯留装置20bを備えている。これら両貯留装置20a,20bは、同一構成のもので、両貯留装置20a,20bの以下での説明では、両貯留装置20a,20bを使い分けする場合以外は同一の貯留装置20として説明する。
【0025】
当該電解水生成装置を構成する有隔膜電解槽10は、食塩の希薄水溶液を被電解水とするもので、槽本体11内を区画する隔膜12と、隔膜12にて区画された各区画室に配設されて電解室R1,R2を形成する各電極板13a,13bを備えている。電解室R1,R2には、被電解水を供給するための供給管路14の分岐管路が接続されているとともに、電解室R1,R2で生成される電解生成水を流出させるための流出管路15a,15bが接続されている。
【0026】
両電解生成水のうち、例えば、電解室R1は陽極側電解室に形成されていて、流出管路15aからは電解室R1で生成される電解生成酸性水が流出される。また、電解室R2は陽極側電解室に形成されていて、流出管路15bからは電解室R2で生成される電解生成アルカリ性水が流出される。流出管路15aは、貯留装置20aを構成する貯留槽21に接続されている。また、流出管路15bは、貯留装置20bを構成する貯留槽21に接続されている。
【0027】
従って、一方の貯留装置20aは、電解生成酸性水を貯留する専用の貯留装置であり、かつ、他方の貯留装置20bは、電解生成アルカリ性水を貯留する専用の貯留装置である。貯留装置20aの貯留槽21に貯留された電解生成酸性水は、必要時には、貯留槽21から抽出されて利用される。貯留装置20bの貯留槽21に貯留された電解生成アルカリ性水も同様に、必要時には、貯留槽21から抽出されて利用される。
【0028】
本発明に係る電解生成水の貯留方法は、当該電解水生成装置の有隔膜電解槽10で生成される各電解生成水を貯留するために実施されるものであり、また、本発明に係る電解生成水の貯留装置は、貯留装置20(20a,20b)に実施されているものである。
【0029】
本発明者は、電解生成水の貯留槽内での貯留状態を想定して、各種の開口寸法の円筒状のガラス製のビーカに収容した電解生成酸性水の水面の空気接触面積と塩素ガスの揮発量との関係を確認する実験を試みている。本実験では、電解生成水として、pH2.62、有効塩素濃度38mg/L、酸化還元電位1155mV、水温20℃の電解生成酸性水を使用し、直径5cm、8.6cm、10.4cm、13cm、15cmの5種類のビーカに、当該電解生成酸性水500mLを収容して20℃の室温の室内(蛍光灯下)に放置し、当該電解生成酸性水中の有効塩素の経時的変化を測定した。
【0030】
この測定結果を図4のグラフに示す。また、当該実験結果から、電解生成酸性水中の有効塩素の消失分が全て塩素ガスとして揮発したと仮定して、電解生成酸性水の空気接触面積と1分間の塩素揮発量の関係を算出した。その結果を図5のグラフに示す。
【0031】
これらの結果から、収容されている電解生成酸性水は当該電解生成酸性水中の塩素成分を塩素ガスとして経時的に発生させること、その塩素ガスの発生量は電解生成酸性水の空気接触面積に大きく関係していて、空気接触面積を低減すれば塩素ガス発生量を抑制できることが確認でき、かつ、電解生成酸性水の空気接触面積を零にすれば、塩素ガスの発生量を実質的に零に抑えることができることが推定できる。
【0032】
これらの知見に基づいて、本発明に係る電解生成水の貯留方法の実施形態においては、貯留装置20aの貯留槽21内では、収容されている電解生成酸性水の水面と同水面上の空気等の気体との接触を遮断した状態で、電解生成酸性水を貯留するようにしている。また、貯留装置20bの貯留槽21内では、収容されている電解生成アルカリ性水の水面と同水面上の空気等の気体との接触を遮断した状態で、電解生成アルカリ性水を貯留するようにしている。
【0033】
当該貯留方法によれば、貯留装置20aの貯留槽21内では、電解生成酸性水中からの塩素ガスの発生を大きく抑制することができ、また、貯留装置20bの貯留槽21内では、電解生成アルカリ性水中からの水素ガスの発生を大きく抑制することができる。これにより、各貯留装置20a,20b内で発生する化学物質を主成分とするガスの屋外への排出は不要となり、または、屋外への排出を大きく抑制することができる。
【0034】
本発明に係る貯留装置は、当該貯留方法を実施するために使用されるもので、本発明に係る電解生成水の貯留装置の実施形態では、図2および図3に示すように、貯留装置20(20a,20b)を、電解生成水を収容する貯留槽21と、収容される電解生成水の水面に浮遊する接触遮断部材22とによって構成している。本発明に係る貯留装置においては、接触遮断部材としては、収容される電解生成水の水面に浮遊して電解生成水の水面とその上方の気体間に介在する、電解生成水と気体との接触を遮断する接触遮断層を形成するる部材であれば、適宜の形状および構造のものを採用することができる。
【0035】
本実施形態では、接触遮断部材22として、大きさの異なる2種類の多数の浮き玉22a,22bを採用している。浮き玉22a,22bは、その形状および浮力の相違に起因して適宜に並列して細密充填に近い状態となって、電解生成水の水面を的確に覆蓋する。これにより、貯留槽21内に収容されている電解生成水においては、その水面と気体との接触が実質的に遮断され、収容されている電解生成水中からのガスの発生を大きく抑制することができる。
【0036】
本実施形態で採用している大きさの異なる2種類の多数の浮き玉22a,22bは、貯留槽21の内部形状や、当該内部に配設されている種々の部品による接触遮断部材の浮遊規制に対応するものである。浮き玉22a,22bは、収容されている電解生成水の水面上での並列配置の自由度が大きく、貯留槽21の内部形状に対応して細密充填状態に並列し、また、貯留槽21内に配設されている部品類を回避して細密充填状態に並列して、電解生成水の水面と気体との接触を実質的に遮断する。
【0037】
本実施形態では、浮き玉22a,22bとして適宜の材質の浮き玉を使用することができ、例えば、適宜形状のプラスチック製の浮き玉を採用することができる。当該接触遮断部材は、電解生成水を室温等の常温で貯留する場合に適する。また、浮き玉22a,22bとして適宜形状の氷塊を採用することもできる。当該接触遮断部材(氷塊)は、電解生成水を室温以下の冷却状態で貯留する場合に適する。
【0038】
また、浮き玉22a,22bとして氷塊を採用した場合には、氷塊は融解して、電解生成水の水面上に図2にWで示す水層Wを形成する。水層Wは、各氷塊とともに接触遮断層を形成し、当該接触遮断層は、電解生成水から発生しようとするガスを吸収すべく機能して、電解生成水の遮断効果を高める。
【0039】
本実施形態では、直径15cmで容量500mLのガラス製の円筒状ビーカを貯留槽とし、接触遮断部材である浮き玉22a,22bとして氷塊を採用して、上記した実験で採用した電解生成酸性水からの塩素ガスの発生量を測定する実験を行った。
【0040】
本実験では、電解生成酸性水をビーカ内に400mL収容し、収容した電解生成酸性水の水面に大きさの異なる氷塊を多数浮遊させた状態で上端開口部を密閉したビーカと、氷塊を浮遊させない状態で上端開口部を密閉したビーカの2種類の実験装置を構成した。
【0041】
これらの実験装置では、ビーカ内に、収容されている電解生成酸性水の水面と蓋体間に高さ2cmの空間が形成されており、5分後および10分後の当該空間内の気体の全てを採取して、採取した気体中の塩素ガス濃度を測定した。得られた結果を表1に示す。
【0042】
【表1】

Figure 0004031984

【図面の簡単な説明】
【図1】本発明に係る貯留装置を備えた電解水生成装置の全体を模式的に示す概略構成図である。
【図2】同貯留装置の縦断面図である。
【図3】同貯留装置の横断面である。
【図4】電解生成酸性水中の有効塩素の経時的変化の測定結果を示すグラフである。
【図5】同測定結果から算出した電解生成酸性水の空気接触面積と1分間の塩素揮発量の関係を示すグラフである。
【符号の説明】
10…有隔膜電解槽、20a,20b…貯留装置、R1,R2…電解室、11…槽本体、12…隔膜、13a,13b…電極板、14…供給管路、15a,15b…流出管路、21…貯留槽、22…接触遮断部材、22a,22b…浮き玉。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a storage method and storage device for electrolytically generated water.
[0002]
[Prior art]
Electrolyzed water produced by electrolysis using a dilute aqueous solution of inorganic salt such as salt or tap water as electrolyzed water is used in many fields as functional water. For example, in electrolysis using a diaphragm membrane electrolytic cell, acidic water (electrolytically generated acidic water) is generated in the anode chamber side electrolytic chamber, and alkaline water (electrolytically generated alkaline water) is generated in the cathode chamber side electrolytic chamber. . Electrolyzed acidic water has a high bactericidal ability and is used as a bactericidal agent or aseptic water. Electrolytically generated alkaline water has a high detergency and is used as a cleaning agent.
[0003]
In a usage mode of electrolytically generated water, there is a case where it is temporarily used in a large amount. Taken. In such a storage method, gas of various components dissolved from the electrolytically generated water accommodated in the storage tank is generated over time, and this countermeasure for gas treatment becomes a problem.
[0004]
Various components (Cl 2 or H 2 ) and the like generated during electrolysis of the water to be electrolyzed are dissolved in the electrolyzed water, but these components become gaseous (chlorine gas, hydrogen gas, etc.) and change over time. Will occur. When chlorine gas, hydrogen gas, or the like is continuously released into the work space where the electrolyzed water generating device is installed, it raises the problem of sanitary work space and rust prevention of the device.
[0005]
Conventionally, in this type of storage method of electrolytically generated water, generally, an exhaust pipe that faces the outside is connected to a storage tank in which electrolytically generated water is accommodated, and gas generated in the storage tank is passed through the exhaust pipe. Exhaust means for exhausting outdoors is adopted. In some cases, an adsorption device that contains an adsorbent is installed in the middle of the exhaust pipe, at the front side or the rear side thereof, and adsorbs chemical substances in the gas generated in the storage tank to exhaust the exhaust outdoors. Exhaust means for exhausting is also taken.
[0006]
In these exhaust means, basically, by controlling the release of gas generated in the storage tank to the work space, the problem in terms of sanitation and rust prevention of the device in the work space is solved. In the former exhaust means, the chemical substances in the gas are diluted in the atmosphere to prevent local contamination of the atmosphere. In the latter exhaust means, the chemical substances in the gas are removed before the gas is discharged to the outside air. Air pollution is prevented by adsorption removal. Any of these exhaust means exhausts the gas generated in the storage tank to the outside, and if the exhaust means breaks down, avoid releasing the gas generated in the storage tank to the work space. I can't.
[0007]
Instead of such exhaust means, means for restricting release to the work space without discharging the gas generated in the storage tank to the outside (referred to as gas release restricting means) has been developed and proposed (for example, (See Patent Document 1).
[0008]
The gas release regulating means comprises a storage tank for storing electrolytically generated acidic water, which is electrolytically generated water, and a storage tank for storing electrolytically generated alkaline water, in a gas-liquid separation tank, and these two gas-liquid separation tanks are connected to a pipe. Each is connected to an electrolyzed water tank, which is a tank for preparing electrolyzed water, via a path.
[0009]
In the gas emission control means, the gas generated in each gas-liquid separation tank is collected in the electrolyzed water tank through each connection pipe, thereby releasing the gas into the work space and the outside. It is something to regulate. In other words, the gas release regulating means absorbs the gas generated in the storage tank into the electrolyzed water in a closed system.
[0010]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-308885
[Problems to be solved by the invention]
However, in the gas emission regulating means disclosed in the above-mentioned Patent Document 1, the electrolyzed water generating apparatus is larger in size than the conventional two exhaust means and equipped with the gas emission regulating means. There is a problem that a large installation space must be secured in order to install the gas generator, and, similar to the two exhaust means described above, if the gas release regulating means fails, the gas generated in the storage tank Release into the work space is inevitable.
[0012]
Therefore, the object of the present invention, unlike the above-described exhaust means and gas release regulating means, is to greatly suppress the generation of gas from the electrolytically generated water stored in the storage tank over time, and It is to largely suppress the release of gas into the work space and the discharge to the outdoors.
[0013]
[Means for Solving the Problems]
The present invention relates to a storage method and storage device for electrolytically generated water. The method for storing electrolyzed water according to the present invention is a storage method for storing electrolyzed water produced by electrolyzing water to be electrolyzed. The electrolyzed water stored in a storage tank is electrolyzed. It stores in the state which interrupted | blocked the contact with the water surface and the gas on the water surface of the produced water.
[0014]
In the electrolytically generated water storage method according to the present invention, by forming a contact blocking layer on the surface of the electrolytically generated water stored in the storage tank, the surface of the electrolytically generated water and the gas on the same surface Can be cut off. The contact fault can be formed by a contact blocking member that floats on the surface of the electrolytically generated water. As the contact blocking member for forming the contact blocking layer, a plurality of types of floating balls of different sizes can be used, and a plurality of types of ice blocks of different sizes are used as the floating balls. can do.
[0015]
Further, in the electrolytically generated water storage method according to the present invention, the contact blocking layer is formed by melting a plurality of types of ice blocks of different sizes floating on the surface of the electrolytically generated water and the ice blocks being melted. It can be formed in a water layer.
[0016]
The electrolyzed water storage device according to the present invention is a storage device for storing electrolyzed water generated by electrolyzing electrolyzed water, and is connected to an electrolyzer that electrolyzes electrolyzed water. And a contact blocking member that floats on the surface of the electrolyzed water stored in the storage tank.
[0017]
In the electrolyzed water storage device according to the present invention, when the storage tank is provided with a control unit that controls the amount of electrolyzed water accommodated, a plurality of types of different sizes can be used as the contact blocking member. Can be used. As the floating ball, a plurality of types of ice blocks having different sizes can be adopted.
[0018]
[Operation and effect of the invention]
In the method and apparatus for storing electrolyzed water according to the present invention, the electrolyzed water stored in the storage tank is blocked from contact with a gas such as air remaining in the storage tank. Generation of components dissolved in the gas as a gas is restricted or greatly suppressed.
[0019]
For this reason, according to the method and apparatus for storing electrolyzed water according to the present invention, it is not necessary or necessary to release the gas in the storage tank containing the electrolyzed water into the work space and discharge it to the outside air. Become.
[0020]
Further, according to the method and apparatus for storing electrolyzed water according to the present invention, the gas in the storage tank that stores electrolyzed water is not exhausted or recirculated. There is no problem with the gas emission control means.
[0021]
In the electrolyzed water storage method and storage device according to the present invention, if a plurality of types of floating balls having different sizes are used for forming the contact blocking layer, the inside of the tank is not a simple shape, In addition, it is possible to sufficiently cope with a storage tank having an arrangement part such as a control part for controlling the amount of electrolyzed water contained in the tank.
[0022]
If a plurality of types of ice blocks of different sizes are used for forming the contact blocking layer, the water layer formed by melting the ice blocks also functions as the contact blocking layer, and the water layer is electrolyzed. While absorbing the gas which is going to generate | occur | produce from produced | generated water and improving a contact interruption | blocking effect, it can fully cope with the use used by electrolysis produced | generated water in a cooling state.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method and a storage device for electrolyzed water, and FIG. 1 schematically shows an electrolyzed water generator provided with the storage device according to the present invention. Fig. 5 schematically shows a longitudinal section and a transverse section of the storage device. 4 and 5 are graphs showing the results of experiments conducted to establish the storage method and storage device according to the present invention.
[0024]
The electrolyzed water generating apparatus includes a diaphragm electrolyzer 10, and includes, as a storage device, an acidic water storage device 20a that stores electrolytically generated acidic water and an alkaline water storage device 20b that stores electrolytically generated alkaline water. Yes. Both the storage devices 20a and 20b have the same configuration. In the following description of the storage devices 20a and 20b, the storage devices 20a and 20b will be described as the same storage device 20 except when the storage devices 20a and 20b are used separately.
[0025]
The diaphragm electrolyzer 10 that constitutes the electrolyzed water generating apparatus uses a dilute aqueous solution of salt as electrolyzed water, and is arranged in a diaphragm 12 that partitions the inside of the tank body 11 and each compartment partitioned by the diaphragm 12. The electrode plates 13a and 13b are provided to form the electrolytic chambers R1 and R2. The electrolytic chambers R1 and R2 are connected to a branch line of a supply pipe 14 for supplying water to be electrolyzed, and an outflow pipe for flowing out the electrolytically generated water generated in the electrolytic chambers R1 and R2. The paths 15a and 15b are connected.
[0026]
Among the two electrolysis waters, for example, the electrolysis chamber R1 is formed in the anode side electrolysis chamber, and the electrolysis acid water generated in the electrolysis chamber R1 flows out from the outflow pipe 15a. The electrolysis chamber R2 is formed in the anode side electrolysis chamber, and the electrolytically generated alkaline water generated in the electrolysis chamber R2 flows out from the outflow pipe 15b. The outflow pipe line 15a is connected to a storage tank 21 constituting the storage device 20a. Moreover, the outflow pipe line 15b is connected to the storage tank 21 which comprises the storage apparatus 20b.
[0027]
Accordingly, one storage device 20a is a dedicated storage device that stores electrolytically generated acidic water, and the other storage device 20b is a dedicated storage device that stores electrolytically generated alkaline water. The electrolytically generated acidic water stored in the storage tank 21 of the storage device 20a is extracted from the storage tank 21 and used when necessary. Similarly, the electrolytically generated alkaline water stored in the storage tank 21 of the storage device 20b is extracted from the storage tank 21 and used when necessary.
[0028]
The method for storing electrolyzed water according to the present invention is carried out for storing each electrolyzed water generated in the diaphragm electrolyzer 10 of the electrolyzed water generating apparatus, and the electrolyzed water according to the present invention. The generated water storage device is implemented in the storage device 20 (20a, 20b).
[0029]
Assuming the storage state in the electrolytically generated water storage tank, the present inventor has the surface of the water surface of the electrolytically generated acidic water contained in a cylindrical glass beaker with various opening dimensions and the chlorine gas. We are experimenting to confirm the relationship with volatilization. In this experiment, as the electrolytically generated water, electrolytically generated acidic water having a pH of 2.62, an effective chlorine concentration of 38 mg / L, an oxidation-reduction potential of 1155 mV, and a water temperature of 20 ° C. was used, and the diameter was 5 cm, 8.6 cm, 10.4 cm, 13 cm, Five kinds of beakers of 15 cm were charged with 500 mL of the electrolytically generated acidic water and allowed to stand in a room temperature room (under a fluorescent lamp) at 20 ° C., and the change over time in the effective chlorine in the electrolytically generated acidic water was measured.
[0030]
The measurement results are shown in the graph of FIG. From the experimental results, the relationship between the air contact area of the electrolytically generated acidic water and the amount of chlorine volatilization for 1 minute was calculated on the assumption that all of the lost chlorine in the electrolytically generated acidic water was volatilized as chlorine gas. The results are shown in the graph of FIG.
[0031]
From these results, the contained electrolytically generated acidic water generates the chlorine component in the electrolytically generated acidic water as chlorine gas over time, and the amount of generated chlorine gas is large in the air contact area of the electrolytically generated acidic water. It can be confirmed that if the air contact area is reduced, the chlorine gas generation amount can be suppressed, and if the air contact area of the electrolytically generated acidic water is reduced to zero, the chlorine gas generation amount is substantially zero. It can be estimated that it can be suppressed.
[0032]
Based on these findings, in the embodiment of the method for storing electrolytically generated water according to the present invention, in the storage tank 21 of the storage device 20a, the water surface of the electrolytically generated acidic water accommodated, the air on the same surface, etc. Electrolytically generated acidic water is stored in a state where contact with the gas is blocked. Further, in the storage tank 21 of the storage device 20b, the electrolytically generated alkaline water is stored in a state where contact between the water surface of the electrolytically generated alkaline water accommodated and a gas such as air on the water surface is blocked. Yes.
[0033]
According to the storage method, generation of chlorine gas from the electrolytically generated acidic water can be largely suppressed in the storage tank 21 of the storage device 20a, and the electrolytically generated alkalinity is stored in the storage tank 21 of the storage device 20b. Generation of hydrogen gas from the water can be greatly suppressed. Thereby, the discharge | release to the outdoors of the gas which has the chemical substance generated in each storage device 20a, 20b as a main component becomes unnecessary, or the discharge | release to the outdoors can be suppressed significantly.
[0034]
The storage device according to the present invention is used for carrying out the storage method. In the embodiment of the electrolyzed water storage device according to the present invention, as shown in FIGS. 2 and 3, the storage device 20. (20a, 20b) is configured by a storage tank 21 that stores electrolytically generated water and a contact blocking member 22 that floats on the surface of the electrolytically generated water that is stored. In the storage device according to the present invention, as the contact blocking member, the contact between the electrolyzed water and the gas floating on the surface of the electrolyzed water accommodated and interposed between the water surface of the electrolyzed water and the gas above it. As long as it is a member that forms a contact blocking layer that blocks the above, a member having an appropriate shape and structure can be adopted.
[0035]
In this embodiment, two types of floating balls 22a and 22b having different sizes are employed as the contact blocking member 22. The floating balls 22a and 22b are appropriately in parallel with each other due to the difference in shape and buoyancy, and close to the fine filling, and accurately cover the water surface of the electrolyzed water. Thereby, in the electrolyzed water accommodated in the storage tank 21, the contact of the water surface and gas is substantially interrupted | blocked, and generation | occurrence | production of the gas from the electrolyzed water accommodated is largely suppressed. it can.
[0036]
Two types of floating balls 22a and 22b of different sizes adopted in the present embodiment are used for the internal shape of the storage tank 21 and the floating restriction of the contact blocking member by various parts arranged inside the storage tank 21. It corresponds to. The floating balls 22a and 22b have a high degree of freedom in parallel arrangement on the surface of the electrolyzed water contained therein, and are arranged in parallel in a closely packed state corresponding to the internal shape of the storage tank 21. In parallel with the finely packed state while avoiding the components arranged in the above, the contact between the water surface of the electrolyzed water and the gas is substantially cut off.
[0037]
In the present embodiment, floating balls made of an appropriate material can be used as the floating balls 22a and 22b. For example, appropriately shaped plastic floating balls can be used. The contact blocking member is suitable for storing electrolytically generated water at room temperature such as room temperature. In addition, ice blocks having an appropriate shape can be employed as the floating balls 22a and 22b. The contact blocking member (ice block) is suitable for storing electrolytically generated water in a cooled state at room temperature or lower.
[0038]
When ice blocks are used as the floating balls 22a and 22b, the ice blocks are melted to form a water layer W indicated by W in FIG. 2 on the surface of the electrolytically generated water. The water layer W forms a contact blocking layer together with each ice block, and the contact blocking layer functions to absorb the gas to be generated from the electrolytically generated water, thereby enhancing the blocking effect of the electrolytically generated water.
[0039]
In the present embodiment, a glass cylindrical beaker having a diameter of 15 cm and a capacity of 500 mL is used as a storage tank, and ice blocks are used as the floating balls 22a and 22b that are contact blocking members, and from the electrolytically generated acidic water used in the above-described experiment. An experiment was conducted to measure the amount of chlorine gas generated.
[0040]
In this experiment, 400 mL of electrolytically generated acidic water was accommodated in a beaker, and a beaker with the top opening sealed in a state where a large number of ice blocks of different sizes were suspended on the surface of the stored electrolytically generated acidic water, and the ice mass was not suspended. Two types of experimental apparatus of beakers with the upper end opening sealed in the state were configured.
[0041]
In these experimental devices, a space of 2 cm in height is formed between the water surface of the electrolytically generated acidic water contained in the beaker and the lid, and the gas in the space after 5 minutes and 10 minutes is formed. All were collected and the chlorine gas concentration in the collected gas was measured. The obtained results are shown in Table 1.
[0042]
[Table 1]
Figure 0004031984

[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram schematically showing an entire electrolyzed water generating device including a storage device according to the present invention.
FIG. 2 is a longitudinal sectional view of the storage device.
FIG. 3 is a cross-sectional view of the storage device.
FIG. 4 is a graph showing measurement results of changes over time in effective chlorine in electrolytically generated acidic water.
FIG. 5 is a graph showing the relationship between the air contact area of electrolyzed acidic water calculated from the measurement results and the chlorine volatilization amount for 1 minute.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Separator membrane electrolytic cell, 20a, 20b ... Storage apparatus, R1, R2 ... Electrolytic chamber, 11 ... Tank main body, 12 ... Diaphragm, 13a, 13b ... Electrode plate, 14 ... Supply line, 15a, 15b ... Outflow line , 21 ... storage tank, 22 ... contact blocking member, 22a, 22b ... floating ball.

Claims (9)

被電解水を電解して生成される電解生成水を貯留するための貯留方法であり、貯留槽内に収容されている電解生成水を、同電解生成水の水面と同水面上の気体との接触を遮断した状態で貯留することを特徴とする電解生成水の貯留方法。A storage method for storing electrolytically generated water generated by electrolyzing water to be electrolyzed. The electrolytically generated water contained in a storage tank is divided into a water surface and a gas on the same water surface. A method for storing electrolytically generated water, wherein the method stores water in a state where contact is cut off. 請求項1に記載の電解生成水の貯留方法において、前記貯留槽内に収容されている電解生成水の水面に接触遮断層を形成することにより、前記電解生成水の水面と同水面上の気体との接触を遮断することを特徴とする電解生成水の貯留方法。The method for storing electrolytically generated water according to claim 1, wherein a gas on the same surface as the surface of the electrolytically generated water is formed by forming a contact blocking layer on the surface of the electrolytically generated water accommodated in the storage tank. A method for storing electrolytically generated water, characterized in that contact with the water is cut off. 請求項2に記載の電解生成水の貯留方法において、前記接触遮断層は、前記電解生成水の水面上に浮遊する接触遮断部材にて形成することを特徴とする電解生成水の貯留方法。3. The electrolytically generated water storage method according to claim 2, wherein the contact blocking layer is formed by a contact blocking member that floats on the surface of the electrolytically generated water. 請求項3に記載の電解生成水の貯留方法において、前記接触遮断層を形成する接触遮断部材として、大きさの異なる複数種類の多数の浮き玉を採用することを特徴とする電解生成水の貯留方法。4. The electrolytically generated water storage method according to claim 3, wherein a plurality of types of floating balls having different sizes are employed as the contact blocking member that forms the contact blocking layer. Method. 請求項4に記載の電解生成水の貯留方法において、前記浮き球は、大きさの異なる複数種類の多数の氷塊であることを特徴とする電解生成水に貯留方法。5. The method for storing electrolytically generated water according to claim 4, wherein the floating ball is a plurality of types of ice blocks having different sizes. 請求項2に記載の電解生成水の貯留方法において、前記接触遮断層は、前記電解生成水の水面上に浮遊する大きさの異なる複数種類の多数の氷塊と、同氷塊が溶融して形成される水層にて形成することを特徴とする電解生成水に貯留方法。3. The method for storing electrolyzed water according to claim 2, wherein the contact blocking layer is formed by melting a plurality of types of ice blocks of different sizes floating on the surface of the electrolyzed water and the ice blocks being melted. A method for storing in electrolyzed water, characterized in that it is formed in a water layer. 被電解水を電解して生成される電解生成水を貯留するための貯留装置であり、被電解水を電解する電解槽に接続されて同電解槽で生成される電解生成水を収容する貯留槽と、同貯留槽内にて収容されている電解生成水の水面に浮遊する接触遮断部材とを備えていることを特徴とする電解生成水の貯留装置。A storage device for storing electrolyzed water generated by electrolyzing water to be electrolyzed, and storing electrolyzed water generated in the electrolyzer connected to an electrolyzer that electrolyzes water to be electrolyzed And a contact blocking member that floats on the surface of the electrolyzed water stored in the storage tank. 請求項7に記載の電解生成水の貯留装置において、前記貯留槽は電解生成水の収容量を制御する制御手段を備えるもので、前記接触遮断部材として、大きさの異なる複数種類の多数の浮き玉を採用することを特徴とする電解生成水の貯留装置。The electrolyzed water storage device according to claim 7, wherein the storage tank includes a control unit that controls the amount of electrolyzed water accommodated, and the contact blocking member includes a plurality of types of floats having different sizes. An electrolyzed water storage device characterized by employing a ball. 請求項8に記載の電解生成水の貯留装置において、前記浮き球は、大きさの異なる複数種類の多数の氷塊であることを特徴とする電解生成水の貯留装置。The electrolyzed water storage device according to claim 8, wherein the floating ball is a plurality of types of ice blocks having different sizes.
JP2002380182A 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water Expired - Fee Related JP4031984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380182A JP4031984B2 (en) 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380182A JP4031984B2 (en) 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water

Publications (2)

Publication Number Publication Date
JP2004209341A JP2004209341A (en) 2004-07-29
JP4031984B2 true JP4031984B2 (en) 2008-01-09

Family

ID=32816484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380182A Expired - Fee Related JP4031984B2 (en) 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water

Country Status (1)

Country Link
JP (1) JP4031984B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540446B2 (en) * 2004-10-26 2010-09-08 島崎電機株式会社 Water injection part structure of the water tank
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method
MX358286B (en) * 2014-06-20 2018-08-13 Ion Ag S De R L De C V Development of a water purifier for disinfecting water contained in storage and supply tanks for human use.

Also Published As

Publication number Publication date
JP2004209341A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
CN101472845B (en) Apparatus for the electrochemical regeneration of absorbents
KR101436138B1 (en) A seawater electrolysi and fuel cell complex system
CN101205089A (en) Water reuse method in cleaning device and washing machine
JP5191350B2 (en) Vehicle air purification device
JP4420667B2 (en) Electrolytic hydrogen water generator
US11584666B2 (en) Apparatus for manufacturing hydrogen-containing water
KR101704649B1 (en) Gas generation device
KR101287570B1 (en) Electrolytic cell apparatus for ship ballast water treatment
JP4031984B2 (en) Method and apparatus for storing electrolytically generated water
KR101427563B1 (en) Seawater electrolytic apparatus
KR101748789B1 (en) Apparatus for manufacturing hydrogen containing water
JP2004344777A (en) Reducing water making device
JPH06269776A (en) Device for removing ammoniacal nitrogen in water
JP2003170169A (en) Electrically operated deionized water producing system and method
JP2006305487A (en) Electrolytic nitrogen removal system
JPH08311676A (en) Method for removing dissolved hydrogen of electrolyzer and device therefor
CN109972167B (en) Preparation method and device of electronic grade citric acid
JP2018153781A (en) Method for producing electrolyzed water
JP2018069178A (en) Device for generating electrolyzed water
JP2009231155A (en) Water purification device for fuel cell system
JP4156964B2 (en) Electrolyzed water storage device
JP2021063244A (en) Water electrolysis apparatus and water electrolysis method
KR20050090701A (en) Electric-chemical processing apparatus for waste water
JP2007059196A (en) Power generating system
US20230051291A1 (en) Carbon dioxide fixation system and method by seawater electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees