JP2004209341A - Method and apparatus for storing electrolytically generated water - Google Patents

Method and apparatus for storing electrolytically generated water Download PDF

Info

Publication number
JP2004209341A
JP2004209341A JP2002380182A JP2002380182A JP2004209341A JP 2004209341 A JP2004209341 A JP 2004209341A JP 2002380182 A JP2002380182 A JP 2002380182A JP 2002380182 A JP2002380182 A JP 2002380182A JP 2004209341 A JP2004209341 A JP 2004209341A
Authority
JP
Japan
Prior art keywords
water
electrolyzed water
gas
storing
electrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002380182A
Other languages
Japanese (ja)
Other versions
JP4031984B2 (en
Inventor
Yoshinori Kamiya
喜則 紙谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2002380182A priority Critical patent/JP4031984B2/en
Publication of JP2004209341A publication Critical patent/JP2004209341A/en
Application granted granted Critical
Publication of JP4031984B2 publication Critical patent/JP4031984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a problem caused by the discharge or exhaust of gas by suppressing the generation of chlorine gas, hydrogen gas or the like from the electrolytically generated water stored in a storage tank to abolish or largely suppress the discharge of those gases to a work space or the exhaust of them to the open air. <P>SOLUTION: In this storage method for storing electrolytically generated water made by electrolyzing water to be electrolyzed and the storage apparatus therefor, the electrolytically generated water stored in the storage tank 21 is stored in such a state that the contact of the electrolytically generated water with the surface of the water or the gas above the surface of the water is cut off by a contact cutting-off layer 22 to largely suppress the generation of chlorine gas, hydrogen gas or the like from the stored electrolytically generated water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電解生成水の貯留方法および貯留装置に関する。
【0002】
【従来の技術】
食塩等無機塩の希薄水溶液や水道水を被電解水として電解生成される電解生成水は、機能性水として多くの分野で利用されている。例えば、有隔膜電解槽を使用する電解では、陽極室側電解室では酸性水(電解生成酸性水)が生成され、かつ、陰極室側電解室ではアルカリ性水(電解生成アルカリ性水)が生成される。電解生成酸性水は高い殺菌能を有し、殺菌剤または無菌水として利用される。また、電解生成アルカリ性水は高い洗浄能を有し、洗浄剤として利用される。
【0003】
電解生成水の利用態様においては、一時的に大量に使用する場合があるが、当該利用態様に対処するために、使用する電解生成水を予め、貯留槽に収容して貯留しておく方法が採られる。かかる貯留方法では、貯留槽内に収容されている電解生成水から溶解している各種成分のガスが経時的に発生することから、このガス処理対策が問題となる。
【0004】
電解生成水には、被電解水の電解時に発生する種々の成分(ClまたはH)等が溶解しているが、これらの成分がガス状(塩素ガスや水素ガス等)となって経時的に発生する。塩素ガスや水素ガス等は、電解水生成装置が設置されている作業空間に継続して放出させる場合には、作業空間の衛生上および装置の防錆上の問題を提起することになる。
【0005】
従来、電解生成水のこの種方式の貯留方法においては、一般には、電解生成水が収容されている貯留槽に屋外へ臨む排気管を連結して、貯留槽内で発生するガスを排気管を通して屋外へ排気する排気手段が採られている。また、一部では、当該排気管の途中、その前側または後側の位置に吸着剤を収容する吸着装置を設置して、貯留槽内で発生するガス中の化学物質を吸着して排気を屋外へ排出する排気手段も採られている。
【0006】
これらの排気手段においては、基本的には、貯留槽内で発生するガスの作業空間への放出を規制することによって、作業空間における衛生上および装置の防錆上の問題を解消するものであり、前者の排気手段では、ガス中の化学物質を大気中で希釈することによって大気の局部的な汚染を防止し、後者の排気手段では、ガスの外気への排出前にガス中の化学物質を吸着除去することによって大気の汚染を防止するものである。これらの排気手段は、いずれも貯留槽内で発生するガスを屋外へ排出するもであり、また、排気手段が故障した場合には、貯留槽内で発生するガスの作業空間への放出は避けられない。
【0007】
このような排気手段に替えて、貯留槽内で発生するガスを屋外へ排出することなく、作業空間への放出を規制する手段(ガス放出規制手段という)が開発されて提案されている(例えば特許文献1を参照)。
【0008】
当該ガス放出規制手段は、電解生成水である電解生成酸性水を収容する貯留槽および電解生成アルカリ性水を収容する貯留槽を気液分離タンクに構成して、これら両気液分離タンクを連結管路を介して被電解水の調製用タンクである被電解水タンクにそれぞれ連結して構成されている。
【0009】
当該ガス放出規制手段においては、各気液分離タンク内で発生するガスを、各連結管路を通し被電解水タンクに回収することによって、当該ガスの作業空間への放出および屋外への排出を規制するものである。換言すれば、当該ガス放出規制手段は、貯留槽内で発生するガスを密閉系で被電解水に吸収処理するものである。
【0010】
【特許文献1】
特開平9−308885号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記した特許文献1に開示されているガス放出規制手段においては、慣用されている上記した両排気手段に比較して装置的に大型化し、当該ガス放出規制手段を装備する電解水生成装置を設置するには、大きな設置空間を確保しなければならないという問題があり、また、上記した両排気手段と同様に、ガス放出規制手段が故障した場合には、貯留槽内で発生するガスの作業空間への放出は避けられない。
【0012】
従って、本発明の目的は、上記した排気手段およびガス放出規制手段とは異なり、貯留槽内に収容されている電解生成水からのガスの経時的な発生を大きく抑制し得るようにして、当該ガスの作業空間内への放出および屋外への排出を大きく抑制することにある。
【0013】
【課題を解決するための手段】
本発明は、電解生成水の貯留方法および貯留装置に関する。本発明に係る電解生成水の貯留方法は、被電解水を電解して生成される電解生成水を貯留するための貯留方法であり、貯留槽内に収容されている電解生成水を、同電解生成水の水面と同水面上の気体との接触を遮断した状態で貯留することを特徴とするものである。
【0014】
本発明に係る電解生成水の貯留方法においては、前記貯留槽内に収容されている電解生成水の水面に接触遮断層を形成することにより、前記電解生成水の水面と同水面上の気体との接触を遮断することができる。当該接触断層は、前記電解生成水の水面上に浮遊する接触遮断部材にて形成することができる。当該接触遮断層を形成する接触遮断部材としては、大きさの異なる複数種類の多数の浮き玉を採用することができ、また、当該浮き球として、大きさの異なる複数種類の多数の氷塊を採用することができる。
【0015】
また、本発明に係る電解生成水の貯留方法においては、当該接触遮断層は、前記電解生成水の水面上に浮遊する大きさの異なる複数種類の多数の氷塊と、同氷塊が溶融して形成される水層にて形成することができる。
【0016】
本発明に係る電解生成水の貯留装置は、被電解水を電解して生成される電解生成水を貯留するための貯留装置であり、被電解水を電解する電解槽に接続されて同電解槽で生成される電解生成水を収容する貯留槽と、同貯留槽内にて収容されている電解生成水の水面に浮遊する接触遮断部材とを備えていることを特徴とするものである。
【0017】
本発明に係る電解生成水の貯留装置において、前記貯留槽が電解生成水の収容量を制御する制御手段を備えるものである場合には、前記接触遮断部材として、大きさの異なる複数種類の多数の浮き玉を採用することができる。当該浮き球としては、大きさの異なる複数種類の多数の氷塊を採用することができる。
【0018】
【発明の作用・効果】
本発明に係る電解生成水の貯留方法および貯留装置においては、貯留槽内に収容されている電解生成水は貯留槽内に残存する空気等気体との接触を遮断されることから、電解生成水に溶解している成分のガスとしての発生が規制または大きく抑制される。
【0019】
このため、本発明に係る電解生成水の貯留方法および貯留装置によれば、電解生成水を収容している貯留槽内のガスの作業空間への放出および外気への排出は全くまたはほとんど不要となる。
【0020】
また、本発明に係る電解生成水の貯留方法および貯留装置によれば、電解生成水を収容する貯留槽内のガスを排気または還流させることがないため、上記した慣用の両排気手段や上記したガス放出規制手段が有する問題が発生することは全くない。
【0021】
本発明に係る電解生成水の貯留方法および貯留装置においては、前記接触遮断層の形成に、大きさの異なる複数種類の多数の浮き玉を採用すれば、槽内部がシンプルな形状でない貯留槽や、槽内に電解生成水の収容量を制御する制御部品等配設部品を有する貯留槽に十分に対処することができる。
【0022】
また、前記接触遮断層の形成に、大きさの異なる複数種類の多数の氷塊を採用すれば、氷塊が溶解して形成される水の層が接触遮断層としても機能し、当該水層が電解生成水から発生しようとするガスを吸収して接触遮断効果を高めるとともに、電解生成水を冷却状態で使用される用途に対して十分に対処することができる。
【0023】
【発明の実施の形態】
本発明は、電解生成水の貯留方法および貯留装置に関するものであり、図1には、本発明に係る貯留装置を備えた電解水生成装置を模式的に示しており、図2および図3には、当該貯留装置の縦断面および横断面を模式的に示している。また、図4および図5は、本発明に係る貯留方法および貯留装置を成立させるために行った実験結果を示すグラフである。
【0024】
当該電解水生成装置は、有隔膜電解槽10を有するもので、貯留装置として、電解生成酸性水を貯留する酸性水貯留装置20aと、電解生成アルカリ性水を貯留するアルカリ性水貯留装置20bを備えている。これら両貯留装置20a,20bは、同一構成のもので、両貯留装置20a,20bの以下での説明では、両貯留装置20a,20bを使い分けする場合以外は同一の貯留装置20として説明する。
【0025】
当該電解水生成装置を構成する有隔膜電解槽10は、食塩の希薄水溶液を被電解水とするもので、槽本体11内を区画する隔膜12と、隔膜12にて区画された各区画室に配設されて電解室R1,R2を形成する各電極板13a,13bを備えている。電解室R1,R2には、被電解水を供給するための供給管路14の分岐管路が接続されているとともに、電解室R1,R2で生成される電解生成水を流出させるための流出管路15a,15bが接続されている。
【0026】
両電解生成水のうち、例えば、電解室R1は陽極側電解室に形成されていて、流出管路15aからは電解室R1で生成される電解生成酸性水が流出される。また、電解室R2は陽極側電解室に形成されていて、流出管路15bからは電解室R2で生成される電解生成アルカリ性水が流出される。流出管路15aは、貯留装置20aを構成する貯留槽21に接続されている。また、流出管路15bは、貯留装置20bを構成する貯留槽21に接続されている。
【0027】
従って、一方の貯留装置20aは、電解生成酸性水を貯留する専用の貯留装置であり、かつ、他方の貯留装置20bは、電解生成アルカリ性水を貯留する専用の貯留装置である。貯留装置20aの貯留槽21に貯留された電解生成酸性水は、必要時には、貯留槽21から抽出されて利用される。貯留装置20bの貯留槽21に貯留された電解生成アルカリ性水も同様に、必要時には、貯留槽21から抽出されて利用される。
【0028】
本発明に係る電解生成水の貯留方法は、当該電解水生成装置の有隔膜電解槽10で生成される各電解生成水を貯留するために実施されるものであり、また、本発明に係る電解生成水の貯留装置は、貯留装置20(20a,20b)に実施されているものである。
【0029】
本発明者は、電解生成水の貯留槽内での貯留状態を想定して、各種の開口寸法の円筒状のガラス製のビーカに収容した電解生成酸性水の水面の空気接触面積と塩素ガスの揮発量との関係を確認する実験を試みている。本実験では、電解生成水として、pH2.62、有効塩素濃度38mg/L、酸化還元電位1155mV、水温20℃の電解生成酸性水を使用し、直径5cm、8.6cm、10.4cm、13cm、15cmの5種類のビーカに、当該電解生成酸性水500mLを収容して20℃の室温の室内(蛍光灯下)に放置し、当該電解生成酸性水中の有効塩素の経時的変化を測定した。
【0030】
この測定結果を図4のグラフに示す。また、当該実験結果から、電解生成酸性水中の有効塩素の消失分が全て塩素ガスとして揮発したと仮定して、電解生成酸性水の空気接触面積と1分間の塩素揮発量の関係を算出した。その結果を図5のグラフに示す。
【0031】
これらの結果から、収容されている電解生成酸性水は当該電解生成酸性水中の塩素成分を塩素ガスとして経時的に発生させること、その塩素ガスの発生量は電解生成酸性水の空気接触面積に大きく関係していて、空気接触面積を低減すれば塩素ガス発生量を抑制できることが確認でき、かつ、電解生成酸性水の空気接触面積を零にすれば、塩素ガスの発生量を実質的に零に抑えることができることが推定できる。
【0032】
これらの知見に基づいて、本発明に係る電解生成水の貯留方法の実施形態においては、貯留装置20aの貯留槽21内では、収容されている電解生成酸性水の水面と同水面上の空気等の気体との接触を遮断した状態で、電解生成酸性水を貯留するようにしている。また、貯留装置20bの貯留槽21内では、収容されている電解生成アルカリ性水の水面と同水面上の空気等の気体との接触を遮断した状態で、電解生成アルカリ性水を貯留するようにしている。
【0033】
当該貯留方法によれば、貯留装置20aの貯留槽21内では、電解生成酸性水中からの塩素ガスの発生を大きく抑制することができ、また、貯留装置20bの貯留槽21内では、電解生成アルカリ性水中からの水素ガスの発生を大きく抑制することができる。これにより、各貯留装置20a,20b内で発生する化学物質を主成分とするガスの屋外への排出は不要となり、または、屋外への排出を大きく抑制することができる。
【0034】
本発明に係る貯留装置は、当該貯留方法を実施するために使用されるもので、本発明に係る電解生成水の貯留装置の実施形態では、図2および図3に示すように、貯留装置20(20a,20b)を、電解生成水を収容する貯留槽21と、収容される電解生成水の水面に浮遊する接触遮断部材22とによって構成している。本発明に係る貯留装置においては、接触遮断部材としては、収容される電解生成水の水面に浮遊して電解生成水の水面とその上方の気体間に介在する、電解生成水と気体との接触を遮断する接触遮断層を形成するる部材であれば、適宜の形状および構造のものを採用することができる。
【0035】
本実施形態では、接触遮断部材22として、大きさの異なる2種類の多数の浮き玉22a,22bを採用している。浮き玉22a,22bは、その形状および浮力の相違に起因して適宜に並列して細密充填に近い状態となって、電解生成水の水面を的確に覆蓋する。これにより、貯留槽21内に収容されている電解生成水においては、その水面と気体との接触が実質的に遮断され、収容されている電解生成水中からのガスの発生を大きく抑制することができる。
【0036】
本実施形態で採用している大きさの異なる2種類の多数の浮き玉22a,22bは、貯留槽21の内部形状や、当該内部に配設されている種々の部品による接触遮断部材の浮遊規制に対応するものである。浮き玉22a,22bは、収容されている電解生成水の水面上での並列配置の自由度が大きく、貯留槽21の内部形状に対応して細密充填状態に並列し、また、貯留槽21内に配設されている部品類を回避して細密充填状態に並列して、電解生成水の水面と気体との接触を実質的に遮断する。
【0037】
本実施形態では、浮き玉22a,22bとして適宜の材質の浮き玉を使用することができ、例えば、適宜形状のプラスチック製の浮き玉を採用することができる。当該接触遮断部材は、電解生成水を室温等の常温で貯留する場合に適する。また、浮き玉22a,22bとして適宜形状の氷塊を採用することもできる。当該接触遮断部材(氷塊)は、電解生成水を室温以下の冷却状態で貯留する場合に適する。
【0038】
また、浮き玉22a,22bとして氷塊を採用した場合には、氷塊は融解して、電解生成水の水面上に図2にWで示す水層Wを形成する。水層Wは、各氷塊とともに接触遮断層を形成し、当該接触遮断層は、電解生成水から発生しようとするガスを吸収すべく機能して、電解生成水の遮断効果を高める。
【0039】
本実施形態では、直径15cmで容量500mLのガラス製の円筒状ビーカを貯留槽とし、接触遮断部材である浮き玉22a,22bとして氷塊を採用して、上記した実験で採用した電解生成酸性水からの塩素ガスの発生量を測定する実験を行った。
【0040】
本実験では、電解生成酸性水をビーカ内に400mL収容し、収容した電解生成酸性水の水面に大きさの異なる氷塊を多数浮遊させた状態で上端開口部を密閉したビーカと、氷塊を浮遊させない状態で上端開口部を密閉したビーカの2種類の実験装置を構成した。
【0041】
これらの実験装置では、ビーカ内に、収容されている電解生成酸性水の水面と蓋体間に高さ2cmの空間が形成されており、5分後および10分後の当該空間内の気体の全てを採取して、採取した気体中の塩素ガス濃度を測定した。得られた結果を表1に示す。
【0042】
【表1】

Figure 2004209341

【図面の簡単な説明】
【図1】本発明に係る貯留装置を備えた電解水生成装置の全体を模式的に示す概略構成図である。
【図2】同貯留装置の縦断面図である。
【図3】同貯留装置の横断面である。
【図4】電解生成酸性水中の有効塩素の経時的変化の測定結果を示すグラフである。
【図5】同測定結果から算出した電解生成酸性水の空気接触面積と1分間の塩素揮発量の関係を示すグラフである。
【符号の説明】
10…有隔膜電解槽、20a,20b…貯留装置、R1,R2…電解室、11…槽本体、12…隔膜、13a,13b…電極板、14…供給管路、15a,15b…流出管路、21…貯留槽、22…接触遮断部材、22a,22b…浮き玉。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and a device for storing electrolyzed water.
[0002]
[Prior art]
Electrolyzed water, which is electrolyzed using a dilute aqueous solution of an inorganic salt such as salt or tap water as electrolyzed water, is used in many fields as functional water. For example, in electrolysis using a diaphragm electrolytic cell, acidic water (electrolytically generated acidic water) is generated in the anode chamber-side electrolytic chamber, and alkaline water (electrolytically generated alkaline water) is generated in the cathode chamber-side electrolytic chamber. . Electrolytically generated acidic water has a high sterilizing ability and is used as a germicide or sterile water. Further, the electrolytically generated alkaline water has a high cleaning ability and is used as a cleaning agent.
[0003]
In the utilization mode of the electrolyzed water, there is a case where a large amount is used temporarily. In order to cope with the usage mode, there is a method in which the electrolyzed water to be used is stored in a storage tank in advance. Taken. In such a storage method, gas of various components dissolved from the electrolyzed water contained in the storage tank is generated with time, so that this gas treatment countermeasure is problematic.
[0004]
Various components (Cl 2 or H 2 ) and the like generated during electrolysis of the water to be electrolyzed are dissolved in the electrolyzed water, and these components become gaseous (chlorine gas, hydrogen gas, etc.) and become aging. Occurs. If chlorine gas, hydrogen gas, and the like are continuously released into the work space in which the electrolyzed water generation device is installed, this poses problems in terms of sanitation of the work space and rust prevention of the device.
[0005]
Conventionally, in this type of storage method of electrolytically generated water, generally, an exhaust pipe facing the outside is connected to a storage tank containing the electrolytically generated water, and gas generated in the storage tank is passed through the exhaust pipe. Exhaust means for exhausting outdoors are adopted. In addition, in some parts, an adsorber for accommodating an adsorbent is installed at a position in front of or behind the exhaust pipe to adsorb chemical substances in gas generated in the storage tank and exhaust air to the outside. Exhaust means to exhaust to the air are also adopted.
[0006]
These exhaust means basically eliminate the problems of hygiene in the work space and rust prevention of the device by restricting the release of gas generated in the storage tank to the work space. The former exhaust means prevents local pollution of the atmosphere by diluting the chemical substances in the gas into the atmosphere, and the latter exhaust means removes the chemical substances in the gas before discharging the gas to the outside air. It is intended to prevent air pollution by adsorption and removal. Each of these exhaust means discharges the gas generated in the storage tank to the outside, and if the exhaust means fails, avoid releasing the gas generated in the storage tank to the working space. I can't.
[0007]
In place of such an exhaust means, a means for controlling the release of gas generated in the storage tank to the working space without discharging the gas to the outside (referred to as a gas release control means) has been developed and proposed (for example, gas release control means). See Patent Document 1).
[0008]
The gas release regulating means comprises a gas-liquid separation tank comprising a storage tank for storing the electrolytically generated acidic water as the electrolytically generated water and a storage tank for storing the electrolytically generated alkaline water. They are connected to an electrolyzed water tank, which is a tank for preparation of electrolyzed water, through passages.
[0009]
In the gas release regulating means, the gas generated in each gas-liquid separation tank is collected in the electrolyzed water tank through each connection pipe, so that the gas is released into the working space and discharged outside. To regulate. In other words, the gas release control means absorbs gas generated in the storage tank into the water to be electrolyzed in a closed system.
[0010]
[Patent Document 1]
JP-A-9-308885
[Problems to be solved by the invention]
However, in the gas release regulating means disclosed in Patent Document 1, the size of the apparatus is larger than that of the above-mentioned conventional two exhaust means, and the electrolyzed water generating apparatus equipped with the gas release regulating means is used. There is a problem that a large installation space must be secured in order to install the gas, and when the gas emission control means breaks down, as in the case of the two exhaust means described above, the gas generated in the storage tank is Release to the working space is inevitable.
[0012]
Therefore, the object of the present invention is to make it possible to greatly suppress the generation of gas over time from the electrolytically generated water contained in the storage tank, unlike the above-described exhaust means and gas release regulating means, An object of the present invention is to significantly suppress the emission of gas into a work space and the emission to the outside.
[0013]
[Means for Solving the Problems]
The present invention relates to a method and a device for storing electrolyzed water. The method for storing electrolyzed water according to the present invention is a storage method for storing electrolyzed water generated by electrolyzing water to be electrolyzed, wherein the electrolyzed water contained in a storage tank is subjected to the electrolysis. It is characterized in that the generated water is stored in a state where the water surface is not in contact with the gas on the water surface.
[0014]
In the method for storing electrolyzed water according to the present invention, by forming a contact blocking layer on the surface of the electrolyzed water contained in the storage tank, the surface of the electrolyzed water and the gas on the same water surface Contact can be cut off. The contact fault can be formed by a contact blocking member floating on the surface of the electrolytically generated water. As the contact-blocking member forming the contact-blocking layer, a plurality of types of a large number of floating balls having different sizes can be employed, and as the floating ball, a plurality of types of a large number of ice blocks having different sizes are employed. can do.
[0015]
In the method for storing electrolyzed water according to the present invention, the contact blocking layer is formed by melting a plurality of ice blocks of a plurality of types having different sizes floating on the surface of the electrolyzed water and melting the ice blocks. It can be formed in the formed aqueous layer.
[0016]
The storage device for electrolyzed water according to the present invention is a storage device for storing electrolyzed water generated by electrolyzing water to be electrolyzed, and is connected to an electrolyzer for electrolyzing the electrolyzed water. And a contact blocking member that floats on the surface of the electrolyzed water stored in the storage tank.
[0017]
In the storage device for electrolyzed water according to the present invention, when the storage tank includes a control unit for controlling a storage amount of the electrolyzed water, a plurality of types of a plurality of different sizes may be used as the contact blocking member. Floating ball can be adopted. As the floating ball, a plurality of types of ice blocks having different sizes can be adopted.
[0018]
[Action and Effect of the Invention]
In the method and apparatus for storing electrolyzed water according to the present invention, the electrolyzed water contained in the storage tank is cut off from contact with gas such as air remaining in the storage tank. The generation of the component dissolved in the gas as a gas is regulated or largely suppressed.
[0019]
Therefore, according to the method and apparatus for storing electrolyzed water according to the present invention, the gas in the storage tank containing the electrolyzed water is discharged to the working space and discharged to the outside air at all or almost unnecessary. Become.
[0020]
In addition, according to the method and apparatus for storing electrolyzed water according to the present invention, since the gas in the storage tank containing the electrolyzed water is not exhausted or recirculated, the above-described conventional two-way exhaust means and the above-described method are used. The problem of the gas emission control means does not occur at all.
[0021]
In the method and apparatus for storing electrolyzed water according to the present invention, if a plurality of floating balls of different sizes are used to form the contact blocking layer, a storage tank having a tank shape that is not a simple shape, In addition, it is possible to sufficiently cope with a storage tank having components such as control components for controlling the amount of electrolyzed water stored in the tank.
[0022]
Further, if a large number of ice blocks of different sizes are employed for forming the contact blocking layer, a layer of water formed by melting the ice blocks also functions as a contact blocking layer, and the water layer is formed by electrolysis. It is possible to enhance the contact blocking effect by absorbing the gas to be generated from the generated water, and to sufficiently cope with applications in which the electrolytically generated water is used in a cooled state.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a method and a storage device for storing electrolyzed water, FIG. 1 schematically shows an electrolyzed water generation device provided with a storage device according to the present invention, and FIG. 2 and FIG. Schematically shows a longitudinal section and a transverse section of the storage device. FIGS. 4 and 5 are graphs showing the results of experiments performed to establish a storage method and a storage device according to the present invention.
[0024]
The electrolyzed water generator has a diaphragm electrolyzer 10, and includes, as storage devices, an acidic water storage device 20a that stores electrolyzed acidic water, and an alkaline water storage device 20b that stores electrolyzed alkaline water. I have. These two storage devices 20a, 20b have the same configuration, and in the following description of the two storage devices 20a, 20b, the same storage device 20 will be described except when the two storage devices 20a, 20b are properly used.
[0025]
The diaphragm electrolyzer 10 constituting the electrolyzed water generating apparatus uses a dilute aqueous solution of sodium chloride as the electrolyzed water, and is disposed in a diaphragm 12 that partitions the inside of the tank body 11 and in each of the compartments partitioned by the diaphragm 12. Electrode plates 13a and 13b are provided to form electrolytic chambers R1 and R2. A branch pipe of a supply pipe 14 for supplying water to be electrolyzed is connected to the electrolysis chambers R1 and R2, and an outflow pipe for flowing out electrolysis water generated in the electrolysis chambers R1 and R2. The roads 15a and 15b are connected.
[0026]
Of the two electrolysis waters, for example, the electrolysis chamber R1 is formed in the anode-side electrolysis chamber, and the electrolysis acid water generated in the electrolysis chamber R1 flows out of the outflow pipe 15a. The electrolysis chamber R2 is formed in the anode-side electrolysis chamber, and the electrolytically generated alkaline water generated in the electrolysis chamber R2 flows out of the outflow pipe 15b. The outflow pipe 15a is connected to a storage tank 21 constituting the storage device 20a. Further, the outflow pipe 15b is connected to a storage tank 21 constituting the storage device 20b.
[0027]
Therefore, one storage device 20a is a dedicated storage device for storing electrolytically generated acidic water, and the other storage device 20b is a dedicated storage device for storing electrolytically generated alkaline water. The electrolytically generated acidic water stored in the storage tank 21 of the storage device 20a is extracted from the storage tank 21 and used when necessary. Similarly, the electrolytically generated alkaline water stored in the storage tank 21 of the storage device 20b is extracted from the storage tank 21 and used when necessary.
[0028]
The method for storing electrolyzed water according to the present invention is performed for storing each electrolyzed water generated in the diaphragm electrolyzer 10 of the electrolyzed water generator, and the electrolyzed water according to the present invention. The storage device for the generated water is implemented in the storage device 20 (20a, 20b).
[0029]
The inventor of the present invention assumed that the electrolytically produced water is stored in a storage tank, and assumed that the air contact area of the surface of the electrolytically produced acidic water contained in the cylindrical glass beaker having various opening dimensions and the chlorine gas were not sufficient. We are trying to confirm the relationship with the amount of volatilization. In this experiment, pH 2.62, an effective chlorine concentration of 38 mg / L, an oxidation-reduction potential of 1155 mV, and a water temperature of 20 ° C. were used as the electrogenerated water, and the diameter was 5 cm, 8.6 cm, 10.4 cm, 13 cm, Five kinds of beakers of 15 cm each accommodated 500 mL of the electrolytically produced acidic water, and allowed to stand in a room (under a fluorescent lamp) at a room temperature of 20 ° C., and measured a temporal change of available chlorine in the electrolytically produced acidic water.
[0030]
The measurement results are shown in the graph of FIG. Also, from the experimental results, the relationship between the air contact area of the electrolytically generated acidic water and the amount of chlorine volatilized for 1 minute was calculated on the assumption that all of the available chlorine lost in the electrolytically generated acidic water was volatilized as chlorine gas. The results are shown in the graph of FIG.
[0031]
From these results, the contained electrolytically produced acidic water is to generate the chlorine component in the electrolytically produced acidic water as chlorine gas with time, and the amount of generated chlorine gas is large in the air contact area of the electrolytically produced acidic water. It can be confirmed that reducing the air contact area can reduce the amount of chlorine gas generated, and reducing the air contact area of the electrolytically produced acidic water to zero reduces the amount of chlorine gas generated to substantially zero. It can be estimated that it can be suppressed.
[0032]
Based on these findings, in the embodiment of the method for storing electrolyzed water according to the present invention, in the storage tank 21 of the storage device 20a, the level of the stored electrolyzed acidic water and the air on the same water surface Electrolytically generated acidic water is stored in a state where contact with the gas is cut off. Further, in the storage tank 21 of the storage device 20b, the electrolytically generated alkaline water is stored in a state where the surface of the contained electrolytically generated alkaline water and the gas such as air on the same surface are cut off. I have.
[0033]
According to the storage method, the generation of chlorine gas from the electrolytically generated acidic water can be greatly suppressed in the storage tank 21 of the storage device 20a, and the electrolytically generated alkaline water can be suppressed in the storage tank 21 of the storage device 20b. Generation of hydrogen gas from water can be greatly suppressed. Accordingly, it is not necessary to discharge a gas mainly composed of a chemical substance generated in each of the storage devices 20a and 20b to the outside, or it is possible to greatly suppress the discharge to the outside.
[0034]
The storage device according to the present invention is used to carry out the storage method. In the embodiment of the storage device for electrolytically generated water according to the present invention, as shown in FIGS. (20a, 20b) is constituted by a storage tank 21 for storing the electrolyzed water and a contact blocking member 22 floating on the surface of the stored electrolyzed water. In the storage device according to the present invention, as the contact blocking member, the contact between the electrolytically produced water and the gas, which floats on the surface of the contained electrolytically produced water and is interposed between the surface of the electrolytically produced water and the gas above it, As long as it is a member that forms a contact-blocking layer that blocks light, a member having an appropriate shape and structure can be adopted.
[0035]
In the present embodiment, as the contact blocking member 22, a large number of two types of floating balls 22a and 22b having different sizes are employed. The floating balls 22a and 22b are appropriately arranged side by side due to the difference in shape and buoyancy to be in a state close to close packing, and cover the surface of the electrolytically generated water accurately. Thereby, in the electrolyzed water stored in the storage tank 21, the contact between the water surface and the gas is substantially cut off, and the generation of gas from the stored electrolyzed water is largely suppressed. it can.
[0036]
A large number of two types of floating balls 22a and 22b having different sizes employed in the present embodiment are used to regulate the internal shape of the storage tank 21 and the floating of the contact blocking member by various components disposed therein. It corresponds to. The floating balls 22a, 22b have a high degree of freedom in the parallel arrangement on the surface of the contained electrolysis water, and are arranged in a finely packed state corresponding to the internal shape of the storage tank 21. The contact between the water surface of the electrolyzed water and the gas is substantially cut off in parallel with the finely packed state, avoiding the components arranged in the water.
[0037]
In the present embodiment, floating balls of an appropriate material can be used as the floating balls 22a and 22b. For example, plastic floating balls of an appropriate shape can be used. The contact blocking member is suitable for storing electrolyzed water at room temperature such as room temperature. In addition, suitably shaped ice blocks can be employed as the floating balls 22a and 22b. The contact blocking member (ice block) is suitable for storing electrolyzed water in a cooled state at room temperature or lower.
[0038]
Further, when ice blocks are employed as the floating balls 22a and 22b, the ice blocks are melted to form an aqueous layer W shown in FIG. The water layer W forms a contact-blocking layer with each ice block, and the contact-blocking layer functions to absorb a gas to be generated from the electrolyzed water, thereby enhancing the effect of blocking the electrolyzed water.
[0039]
In the present embodiment, a cylindrical beaker made of glass having a diameter of 15 cm and a capacity of 500 mL is used as the storage tank, and ice blocks are used as the floating balls 22a and 22b as the contact blocking members. An experiment was conducted to measure the amount of chlorine gas generated.
[0040]
In this experiment, 400 mL of electrolytically generated acidic water was stored in a beaker, and a large number of ice blocks of different sizes were floated on the surface of the stored electrolytically generated acidic water. In this state, two types of experimental devices were constructed with beakers whose upper end openings were sealed.
[0041]
In these experimental devices, a space with a height of 2 cm is formed between the surface of the electrolytically generated acidic water contained in the beaker and the lid, and the gas in the space after 5 minutes and 10 minutes is formed. All were sampled, and the chlorine gas concentration in the sampled gas was measured. Table 1 shows the obtained results.
[0042]
[Table 1]
Figure 2004209341

[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram schematically showing an entire electrolyzed water generation device provided with a storage device according to the present invention.
FIG. 2 is a longitudinal sectional view of the storage device.
FIG. 3 is a cross-sectional view of the storage device.
FIG. 4 is a graph showing a measurement result of a temporal change of available chlorine in an electrolytically produced acidic water.
FIG. 5 is a graph showing a relationship between an air contact area of an electrolytically generated acidic water calculated from the measurement result and a chlorine volatilization amount for one minute.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Separation membrane electrolysis tank, 20a, 20b ... Reservoir, R1, R2 ... Electrolysis chamber, 11 ... Tank main body, 12 ... Diaphragm, 13a, 13b ... Electrode plate, 14 ... Supply pipeline, 15a, 15b ... Outflow pipeline , 21 ... storage tank, 22 ... contact blocking member, 22a, 22b ... floating ball.

Claims (9)

被電解水を電解して生成される電解生成水を貯留するための貯留方法であり、貯留槽内に収容されている電解生成水を、同電解生成水の水面と同水面上の気体との接触を遮断した状態で貯留することを特徴とする電解生成水の貯留方法。A storage method for storing electrolyzed water generated by electrolyzing water to be electrolyzed, wherein the electrolyzed water contained in the storage tank is combined with a surface of the electrolyzed water and a gas on the water surface. A method for storing electrolyzed water, wherein the water is stored in a state where contact is interrupted. 請求項1に記載の電解生成水の貯留方法において、前記貯留槽内に収容されている電解生成水の水面に接触遮断層を形成することにより、前記電解生成水の水面と同水面上の気体との接触を遮断することを特徴とする電解生成水の貯留方法。The method for storing electrolyzed water according to claim 1, wherein a contact blocking layer is formed on a surface of the electrolyzed water contained in the storage tank, thereby forming a gas on the water surface with the electrolyzed water. A method for storing electrolyzed water, comprising: blocking contact with water. 請求項2に記載の電解生成水の貯留方法において、前記接触遮断層は、前記電解生成水の水面上に浮遊する接触遮断部材にて形成することを特徴とする電解生成水の貯留方法。3. The method for storing electrolyzed water according to claim 2, wherein the contact blocking layer is formed by a contact blocking member floating on a water surface of the electrolyzed water. 請求項3に記載の電解生成水の貯留方法において、前記接触遮断層を形成する接触遮断部材として、大きさの異なる複数種類の多数の浮き玉を採用することを特徴とする電解生成水の貯留方法。4. The method for storing electrolyzed water according to claim 3, wherein a plurality of floating balls of different sizes are used as the contact blocking member forming the contact blocking layer. Method. 請求項4に記載の電解生成水の貯留方法において、前記浮き球は、大きさの異なる複数種類の多数の氷塊であることを特徴とする電解生成水に貯留方法。The method for storing electrolytically generated water according to claim 4, wherein the floating sphere is a plurality of ice blocks of a plurality of types having different sizes. 請求項2に記載の電解生成水の貯留方法において、前記接触遮断層は、前記電解生成水の水面上に浮遊する大きさの異なる複数種類の多数の氷塊と、同氷塊が溶融して形成される水層にて形成することを特徴とする電解生成水に貯留方法。In the method for storing electrolyzed water according to claim 2, the contact blocking layer is formed by melting a plurality of ice blocks of a plurality of types having different sizes floating on the surface of the electrolyzed water and melting the ice blocks. A method for storing in electrolytically produced water, characterized in that it is formed in an aqueous layer. 被電解水を電解して生成される電解生成水を貯留するための貯留装置であり、被電解水を電解する電解槽に接続されて同電解槽で生成される電解生成水を収容する貯留槽と、同貯留槽内にて収容されている電解生成水の水面に浮遊する接触遮断部材とを備えていることを特徴とする電解生成水の貯留装置。A storage device for storing electrolyzed water generated by electrolyzing water to be electrolyzed, which is connected to an electrolyzer for electrolyzing the electrolyzed water and stores electrolyzed water generated in the electrolyzer. And a contact blocking member that floats on the surface of the electrolyzed water stored in the storage tank. 請求項7に記載の電解生成水の貯留装置において、前記貯留槽は電解生成水の収容量を制御する制御手段を備えるもので、前記接触遮断部材として、大きさの異なる複数種類の多数の浮き玉を採用することを特徴とする電解生成水の貯留装置。The storage device for electrolyzed water according to claim 7, wherein the storage tank includes a control unit for controlling a storage amount of the electrolyzed water, and a plurality of floating members of different sizes as the contact blocking member. A storage device for electrolytically produced water, characterized by employing balls. 請求項8に記載の電解生成水の貯留装置において、前記浮き球は、大きさの異なる複数種類の多数の氷塊であることを特徴とする電解生成水の貯留装置。9. The storage device for electrolyzed water according to claim 8, wherein the floating ball is a plurality of ice blocks of a plurality of types having different sizes.
JP2002380182A 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water Expired - Fee Related JP4031984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380182A JP4031984B2 (en) 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380182A JP4031984B2 (en) 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water

Publications (2)

Publication Number Publication Date
JP2004209341A true JP2004209341A (en) 2004-07-29
JP4031984B2 JP4031984B2 (en) 2008-01-09

Family

ID=32816484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380182A Expired - Fee Related JP4031984B2 (en) 2002-12-27 2002-12-27 Method and apparatus for storing electrolytically generated water

Country Status (1)

Country Link
JP (1) JP4031984B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122729A (en) * 2004-10-26 2006-05-18 Shimazaki Denki Kk Water filling part structure of water storage tank
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method
WO2015193725A3 (en) * 2014-06-20 2016-02-18 Ion Ag S. De R.L. De C.V. Development of a water purifier for disinfecting water contained in storage and supply tanks for human use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122729A (en) * 2004-10-26 2006-05-18 Shimazaki Denki Kk Water filling part structure of water storage tank
JP4540446B2 (en) * 2004-10-26 2010-09-08 島崎電機株式会社 Water injection part structure of the water tank
JP5238899B1 (en) * 2012-07-13 2013-07-17 稔 菅野 Disinfecting water generating apparatus and disinfecting cleaning method
WO2015193725A3 (en) * 2014-06-20 2016-02-18 Ion Ag S. De R.L. De C.V. Development of a water purifier for disinfecting water contained in storage and supply tanks for human use

Also Published As

Publication number Publication date
JP4031984B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
ES2644446T3 (en) Electrolytic enrichment method for heavy water
JP5807232B2 (en) Deodorizing device
KR101436138B1 (en) A seawater electrolysi and fuel cell complex system
JP5191350B2 (en) Vehicle air purification device
KR101373389B1 (en) On-site sodium hypochlorite generator for high concentration product
KR101427563B1 (en) Seawater electrolytic apparatus
KR20200031206A (en) Secondary battery for manufacturing desalinated water
CN101891331A (en) Integrated treatment device for active carbon adsorption and electrochemical regeneration and use method thereof
JP2004209341A (en) Method and apparatus for storing electrolytically generated water
JP2010104704A (en) Air purifier
US20200024759A1 (en) High efficiency electrolytic ozone production system
JP2004344777A (en) Reducing water making device
JPH06269776A (en) Device for removing ammoniacal nitrogen in water
KR20130077099A (en) Apparatus for providing purified water and ionized water with the ability to sterilize tanks
ES2219223T3 (en) PARALLEL OPERATION OF AMALGAMA ELECTROLYZERS AND MEMBRANE ELECTROLYZERS.
US7252760B2 (en) Waste liquid processing method and waste liquid processing apparatus using the same
US20180371628A1 (en) Device for generating hydrogen peroxide
JP4348195B2 (en) Method and apparatus for treating chlorine gas generated by diaphragm electrolysis
WO2021245302A1 (en) Electrochemical reactor for the electrochemical regeneration of activated carbon
JP2018153781A (en) Method for producing electrolyzed water
JPH08311676A (en) Method for removing dissolved hydrogen of electrolyzer and device therefor
JP3668902B2 (en) Waste liquid treatment mechanism
JP2007185580A (en) Water treatment method and system
JP2007059196A (en) Power generating system
JP3906732B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071022

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101026

LAPS Cancellation because of no payment of annual fees