JP4024790B2 - Sewage treatment equipment - Google Patents

Sewage treatment equipment Download PDF

Info

Publication number
JP4024790B2
JP4024790B2 JP2004317431A JP2004317431A JP4024790B2 JP 4024790 B2 JP4024790 B2 JP 4024790B2 JP 2004317431 A JP2004317431 A JP 2004317431A JP 2004317431 A JP2004317431 A JP 2004317431A JP 4024790 B2 JP4024790 B2 JP 4024790B2
Authority
JP
Japan
Prior art keywords
sewage
heating
steam
evaporator
communication pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004317431A
Other languages
Japanese (ja)
Other versions
JP2006122859A (en
Inventor
庄田賀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP2004317431A priority Critical patent/JP4024790B2/en
Publication of JP2006122859A publication Critical patent/JP2006122859A/en
Application granted granted Critical
Publication of JP4024790B2 publication Critical patent/JP4024790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種の産業活動から排出される汚水を、廃棄可能な形に処理する汚水処理装置に関するものである。   The present invention relates to a sewage treatment apparatus that treats sewage discharged from various industrial activities into a disposable form.

汚水を発生する産業としては、例えば酪農業や養豚業がある。これらの産業では、糞尿が混じった汚水が毎日大量に発生する。水産加工業や食品製造業でも、魚のはらわたや各種食材からの汚水が、毎日大量に発生する。これらは、勿論そのまま河川等へ排出することは禁じられている。何らかの処理を施し、廃棄基準を満たすようにしてからでないと、廃棄することは出来ない。
従来の汚水処理方法の1例としては、微生物を利用した処理方法がある。これは、汚水中に含まれる汚染物質を微生物により分解するものである。微生物による浄化作用を活発に行わせるには、汚水に含まれる汚染物質の濃度を、微生物が活動し易い濃度に調整してやる必要がある(濃度調整)。その濃度は、前記のような産業から排出されて来る汚水に比べて相当薄いものである。そのため、大量の水を加えて薄めた上で(原汚水の数十倍の水を加える場合もある)、微生物による処理を行っていた。
なお、環境問題は日本のみならず世界的にも年を追って注目されるようになり、良好な環境を後世に伝えるため、汚水を廃棄する基準も次第に厳しくなって来ている。
特開2002−361489号公報
Examples of industries that generate sewage include dairy farming and pig farming. In these industries, a large amount of sewage mixed with manure is generated every day. Even in the fishery processing industry and the food manufacturing industry, a large amount of sewage is generated every day from fish seeds and various ingredients. Of course, these are not allowed to be discharged into rivers. It must be treated to meet disposal standards before it can be discarded.
One example of a conventional sewage treatment method is a treatment method using microorganisms. In this method, pollutants contained in sewage are decomposed by microorganisms. In order to perform the purification action by microorganisms actively, it is necessary to adjust the concentration of pollutants contained in the sewage to a concentration at which microorganisms can easily act (concentration adjustment). Its concentration is considerably lower than that of sewage discharged from such industries. Therefore, after adding a large amount of water and diluting it (sometimes adding tens of times the amount of raw sewage water), treatment with microorganisms was performed.
In addition, environmental issues have been attracting attention not only in Japan but also worldwide, and the standards for disposal of sewage are becoming stricter in order to convey the good environment to future generations.
Japanese Patent Laid-Open No. 2002-361489

前記した微生物を利用した汚水処理方法には、次のような問題点があった。
(1)微生物による浄化作用を活発にするために汚水を薄める必要があるが、薄めるための大量の水が廉価で手に入る場所でなければ、設置することが出来なかった。
(2)汚水に大量の水を加える結果、汚水全体の量は大となる。従って、汚水処理設備としては、その大量の汚水を収容したり、移動させたりするための大きな設備が必要となると共に、それら設備を運用する経費(電気代,薬品代等)も嵩み、コストが高くなる。
(3)処理した水を近くの河川へ放流しようとする場合でも、その河川の種類によっては廃棄基準が厳しく、放流出来ない場合がある。また、今の時点では放流出来るものの、廃棄基準が改定され、従来と同じレベルの汚水処理をしていたのでは、1年後とか2年後とかには放流出来なくなるという事態も出て来ている(このことは、そのような土地に位置している事業所(例、酪農家)にとっては、事業所の存立を問われる極めて重大な問題となっている)。そのような事態に直面し、水分を河川に放流しなくても処理が出来るような処理方法が要請されているのに、未だその要請に応えることが出来ていない。
本発明は、以上のような問題点を有しない汚水処理装置を提供することを課題とするものである。
The above-described sewage treatment method using microorganisms has the following problems.
(1) It is necessary to dilute the sewage in order to activate the purification action by microorganisms, but it could not be installed unless a large amount of water for diluting was available at a low price.
(2) As a result of adding a large amount of water to sewage, the total amount of sewage becomes large. Therefore, as a sewage treatment facility, a large facility for accommodating and moving a large amount of sewage is required, and expenses (electricity fee, chemical fee, etc.) for operating these facilities are increased and cost is increased. Becomes higher.
(3) Even when trying to discharge treated water to a nearby river, depending on the type of the river, the disposal standards may be strict and may not be released. In addition, although it can be discharged at this point, the disposal standards have been revised and if the same level of sewage treatment as before has been carried out, it will not be possible to release it in one or two years. (This is a very serious problem for establishments located on such land (eg, dairymen) where the existence of establishments is questioned). In the face of such a situation, there is a demand for a treatment method that allows treatment even if water is not discharged into the river, but it has not been able to meet the demand.
This invention makes it a subject to provide the sewage treatment apparatus which does not have the above problems.

前記課題を解決するため、本発明の汚水処理装置は、蒸気熱源と、冷却水供給部と、熱交換器の構造を有し、前記蒸気熱源からの蒸気に後記エア源発生部からの高温圧縮空気が混合された蒸気と処理すべき汚水とを熱交換させて該汚水中の水分を蒸発させると共に、熱源としての蒸気が所定圧力以上になると大気中に放出する圧力調整弁が付設された加熱缶部と、該加熱缶部と上部連通管および下部連通管とにより上下が連通された蒸発缶と、供給路が前記上部連通管の途中と接続され、処理すべき汚水をその液面レベルが該上部連通管内に位置するように調節しつつ加熱缶部および蒸発缶へ供給する汚水供給部と、熱交換器の構造を有し、前記蒸発缶から吸い出した汚水蒸発蒸気と前記冷却水供給部からの冷却水とを熱交換させ、該汚水蒸発蒸気の気液分離を行う気液分離缶と、空気を吸い込む入力側が該気液分離缶で分離された気体を吸い出すよう接続され、圧縮により高温にした空気を吐き出す出力側が高温圧縮空気を熱源として供給するよう前記加熱缶部と接続されたエア源発生部とを具え、該エア源発生部による前記気液分離缶を介しての空気吸引により、前記加熱缶部および蒸発缶内を低圧にして前記汚水中に含まれる水分の蒸発を容易にし、次々と供給される汚水の水分が蒸発されることにより、汚水中に含まれる固形汚染物質が濃度大となって前記下部連通管に溜まるようにし、該固形汚染物質は前記下部連通管から吸い出し乾燥して廃棄し、汚水中に含まれる水分は前記汚水蒸発蒸気を前記気液分離缶で冷却して蒸留水とした後、吸い出して廃棄する構成とした。
In order to solve the above-mentioned problems, a sewage treatment apparatus according to the present invention has a structure of a steam heat source, a cooling water supply unit, and a heat exchanger, and compresses the steam from the steam heat source into high-temperature compression from an air source generation unit described later. the sewage to be treated and the air are mixed steam with evaporated moisture soil in water by the heat exchanger, a pressure control valve steam as a heat source is released into the atmosphere becomes more than a predetermined pressure has been attached heated the can portion, the evaporator top and bottom is communicated by the heating can portion and the upper communication pipe and the lower communicating pipe, the supply line is connected to the middle of the upper communicating tube, its liquid level wastewater to be treated A sewage supply unit that supplies the heating can and the evaporator while adjusting so as to be positioned in the upper communication pipe, and a structure of a heat exchanger, and the sewage evaporation vapor sucked from the evaporator and the cooling water supply unit Heat exchange with the cooling water from the A gas-liquid separation can for gas-liquid separation of the steam, connected to suck the gas input side is separated by the gas-liquid separation can suck air, the output side for discharging air which has a high temperature by compression of the hot compressed air as a heat source An air source generating unit connected to the heating can unit to supply, and the air source generating unit reduces the pressure in the heating can unit and the evaporator by air suction through the gas-liquid separation can. Evaporation of water contained in the sewage is facilitated, and moisture of sewage supplied one after another is evaporated, so that solid contaminants contained in the sewage increase in concentration and accumulate in the lower communication pipe. , constituting said solid contaminants and discarded dried sucking from the lower communication pipe, water contained in wastewater after the distilled water by cooling the sewerage evaporating vapor in the gas-liquid separation can, and discarded sucking Was

なお、前記加熱缶部が主加熱缶と予熱缶とから構成され、該予熱缶は熱交換器の構造を有し、汚水供給部から最初に汚水が供給され、予熱された該汚水が前記主加熱缶と蒸発缶とを接続する上部連通管の途中より該主加熱缶および該蒸発缶へ供給されるように配設されるようにしてもよい。
更に前記予熱缶は、その熱源として蒸気熱源から直接供給される蒸気と主加熱缶で加熱に使用された後の蒸気とが供給されるようにされ、それら蒸気が所定圧力以上になれば大気へ放出するようにした圧力調整弁が付設されているものとしてもよい。
The heating can is composed of a main heating can and a preheating can, the preheating can has a heat exchanger structure, and sewage is first supplied from a sewage supply unit, and the preheated sewage is the main heat can. You may make it arrange | position so that it may be supplied to this main heating can and this evaporator from the middle of the upper communicating pipe which connects a heating can and an evaporator.
Further, the preheating can is supplied with steam directly supplied from a steam heat source as the heat source and steam after being used for heating by the main heating can. It is good also as what is provided with the pressure regulation valve made to discharge | release.

あるいは、前記した汚水処理装置において、加熱缶部と蒸発缶との組み合わせを複数段設け、前段の下部連通管から吸い出した汚水を次段の上部連通管へ供給し、前段の蒸発缶から吸い出した汚水蒸発蒸気を次段の加熱缶部の熱源として供給し、最後の段の蒸発缶は気液分離缶へ接続し、次段の加熱缶部で熱源として使用した蒸気を前段の加熱缶部の熱源として供給する構成とし、汚水に含まれていた固形汚染物質は最後の段の下部連通管より吸い出して廃棄し、汚水に含まれていた水分は気液分離缶で蒸留水とした後吸い出して廃棄するようにすることも出来る。   Alternatively, in the sewage treatment apparatus described above, a plurality of combinations of heating cans and evaporators are provided, and the sewage sucked out from the lower communication pipe in the previous stage is supplied to the upper communication pipe in the next stage, and sucked out from the previous evaporator. Sewage evaporation vapor is supplied as a heat source for the next stage heating can, and the last stage evaporation can is connected to a gas-liquid separation can. It is configured to supply as a heat source. Solid pollutants contained in sewage are sucked out from the lower communication pipe at the last stage and discarded. It can also be discarded.

また、本発明の汚水処理装置は、蒸気熱源と、熱交換器の構造を有し、前記蒸気熱源および後記エア源発生部からの蒸気と処理すべき汚水とを熱交換させて該汚水中の水分を蒸発させると共に、熱源としての蒸気が所定圧力以上になると大気中に放出する圧力調整弁が付設された加熱缶部と、該加熱缶部と上部連通管および下部連通管とにより上下が連通された蒸発缶と、供給路が前記上部連通管の途中と接続され、処理すべき汚水をその液面レベルが該上部連通管内に位置するように調節しつつ加熱缶部および蒸発缶へ供給する汚水供給部と、空気を吸い込む入力側が前記蒸発缶内の蒸気を吸い出すよう接続され、圧縮により高温にした空気を吐き出す出力側が該高温圧縮蒸気を熱源として供給するよう前記加熱缶部と接続されたエア源発生部とを具え、該エア源発生部による前記蒸発缶を介しての空気吸引により、前記加熱缶部および蒸発缶内を低圧にして前記汚水中に含まれる水分の蒸発を容易にし、次々と供給される汚水の水分が蒸発されることにより、汚水中に含まれる固形汚染物質が濃度大となって前記下部連通管に溜まるようにし、該固形汚染物質は前記下部連通管から吸い出し乾燥して廃棄し、汚水中に含まれる水分は前記加熱缶部の圧力調整弁より蒸気の形で大気中に放出する構成としてもよい。
Further, sewage treatment apparatus of the present invention, a steam heat source, has a structure of the heat exchanger, the soil in water and sewage to be treated with steam from the steam heat source and below the air source generating portion by heat exchange The upper and lower parts communicate with each other by a heating can part provided with a pressure regulating valve for evaporating moisture and releasing the steam as a heat source to the atmosphere when the pressure exceeds a predetermined pressure, and the heating can part and the upper communication pipe and the lower communication pipe. The evaporator and the supply path are connected to the middle of the upper communication pipe, and the waste water to be treated is supplied to the heating can and the evaporator while adjusting the liquid level to be located in the upper communication pipe. The sewage supply unit and the input side for sucking air are connected to suck out the vapor in the evaporator , and the output side for discharging the air heated to high temperature by compression is connected to the heating can unit to supply the high-temperature compressed steam as a heat source. Air source Comprising a part, the air suction through the evaporator by the air source generating portion, the heating can part and evaporate in the can in the low pressure to facilitate the evaporation of water contained in the wastewater, sequentially supplied by sewage water is vaporized to be, solid pollutants contained in the wastewater so as to accumulate in the lower communicating tube as density large, the solid contaminants and dried sucking from the lower communication pipe waste And the water | moisture content contained in waste water is good also as a structure discharge | released in air | atmosphere in the form of vapor | steam from the pressure control valve of the said heating can part.

なお、加熱缶部が主加熱缶と予熱缶とから構成され、該予熱缶は熱交換器の構造を有し、汚水供給部から最初に汚水が供給され、予熱された該汚水が前記主加熱缶と蒸発缶とを接続する上部連通管の途中より該主加熱缶および該蒸発缶へ供給されるようにされるようにしてもよい。
更に前記予熱缶は、その熱源として蒸気熱源から直接供給される蒸気と主加熱缶で加熱に使用された後の蒸気とが供給されるようにされ、それら蒸気が所定圧力以上になれば大気へ放出するようにした圧力調整弁が付設されているものとしてもよい。
The heating can part is composed of a main heating can and a preheating can, and the preheating can has a heat exchanger structure. Sewage is first supplied from the sewage supply part, and the preheated sewage is supplied to the main heating can. You may make it be supplied to this main heating can and this evaporator from the middle of the upper communicating pipe which connects a can and an evaporator.
Further, the preheating can is supplied with steam directly supplied from a steam heat source as the heat source and steam after being used for heating by the main heating can. It is good also as what is provided with the pressure regulation valve made to discharge | release.

あるいは、エア源発生部の入力側を蒸発缶に直接接続したところの前記した各汚水処理装置において、加熱缶部と蒸発缶との組み合わせを複数段設け、前段の下部連通管から吸い出した汚水を次段の上部連通管へ供給し、前段の蒸発缶から吸い出した汚水蒸発蒸気を次段の加熱缶部の熱源として供給し、次段の加熱缶部で熱源として使用した蒸気を前段の加熱缶部の熱源として供給する構成とし、汚水に含まれていた固形汚染物質は最後の段の下部連通管より吸い出して廃棄し、汚水に含まれていた水分は最初の段の加熱缶部に付設されている圧力調整弁より大気中へ放出するようにすることも出来る。   Alternatively, in each of the sewage treatment apparatuses described above in which the input side of the air source generation unit is directly connected to the evaporator, a plurality of combinations of heating cans and evaporators are provided, and the sewage sucked from the lower communication pipe in the previous stage is provided. Supply to the upper communication pipe in the next stage, supply the sewage vapor evaporated from the previous stage evaporator as a heat source for the next stage heating can, and use the steam used as the heat source in the next stage heating can in the previous stage heating can The solid contaminant contained in the sewage is sucked out from the lower communication pipe of the last stage and discarded, and the moisture contained in the sewage is attached to the heating can part of the first stage. It can also be released into the atmosphere from the pressure regulating valve.

以上述べた如く、本発明の汚水処理装置によれば、次のような効果を奏する。
(1)汚水中の水分を、蒸留水の形で河川へ放流することも出来るし、蒸気の形で大気中へ放出してしまうことも出来る。
(2)汚水の蒸発を低圧下で行うためにエア源発生部を使用するが、その出力側から出る高温圧縮空気を大気へ放出してしまわないで、加熱缶部の加熱源の1つとして利用するようにした。そのため、エネルギーを再利用することが出来る。
(3)汚水処理装置の立地条件が軽減され、設置し易くなる。例えば、汚水を薄める必要がないから、大量の水を確保出来ない場所でも設置することが出来る。汚水をバッチ処理ではなく連続的に処理することが出来るから、汚水を溜めておく大型設備を建設する土地がなくとも設置することが出来る。汚水中の水分を放流し得る河川が近くになくとも、大気中に放出すればよいから設置することが出来る。
(4)汚水の蒸発を低圧下で行うようにしたので、低温で蒸発し、加熱エネルギーが少なくて済む。
(5)低温で処理するため、ガス体の発生少なく、発生する臭気が少ない。
As described above, the sewage treatment apparatus of the present invention has the following effects.
(1) The water in the sewage can be discharged into the river in the form of distilled water, or it can be released into the atmosphere in the form of steam.
(2) Although the air source generator is used to evaporate sewage under low pressure, it does not release the high-temperature compressed air from the output side to the atmosphere, and as one of the heating sources of the heating can I used it. Therefore, energy can be reused.
(3) The location conditions of the sewage treatment apparatus are reduced and it becomes easy to install. For example, since it is not necessary to dilute sewage, it can be installed in a place where a large amount of water cannot be secured. Since sewage can be treated continuously rather than batchwise, it can be installed even if there is no land to build a large facility for storing sewage. Even if there is no nearby river that can discharge the water in the sewage, it can be installed because it only needs to be released into the atmosphere.
(4) Since the sewage is evaporated under a low pressure, it evaporates at a low temperature and requires less heating energy.
(5) Since the treatment is performed at a low temperature, the generation of a gas body is small and the generated odor is small.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の汚水処理装置の構成を示すブロック図である。図1において、1は汚水供給部、2は蒸気熱源、3は加熱缶部、4は上部連通管、5は下部連通管、6は蒸発缶、6Vは圧力調整弁、7は気液分離缶、8は冷却水供給部、9はエア源発生部、L6 は液面レベルである。
汚水供給部1は、事業所から排出されて来た汚水を貯めておく部分であり、例えば、ポンプが付設された汚水貯留槽とされる。蒸気熱源2は例えば蒸気ボイラーで構成され、加熱缶部3に導入された汚水を加熱するための蒸気を提供する。
加熱缶部3は、汚水供給部1から送られて来た汚水を加熱する部分である。ここは、一般的な熱交換器と同様の構造をしており、蒸気の熱をパイプ壁面ごしに汚水に伝えて汚水を加熱している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the sewage treatment apparatus of the present invention. In FIG. 1, 1 is a sewage supply section, 2 is a steam heat source, 3 is a heating can section, 4 is an upper communication pipe, 5 is a lower communication pipe, 6 is an evaporator, 6V is a pressure regulating valve, and 7 is a gas-liquid separation can. , 8 is a cooling water supply unit, 9 is an air source generation unit, and L 6 is a liquid level.
The sewage supply unit 1 is a part for storing sewage discharged from the office, and is, for example, a sewage storage tank provided with a pump. The steam heat source 2 is composed of, for example, a steam boiler, and provides steam for heating the sewage introduced into the heating can 3.
The heating can part 3 is a part that heats the sewage sent from the sewage supply part 1. Here, it has the same structure as a general heat exchanger, and heat of steam is transmitted to the sewage through the pipe wall surface to heat the sewage.

蒸発缶6は、加熱缶部3の汚水通流部分と上部連通管4及び下部連通管5を介して連通させられており、下部には加熱された汚水が貯められ、上部には汚水からの蒸気が充満させられる。加熱缶部3と蒸発缶6とは連通しており、図示の液面レベルL6 は汚水の液面レベルを示している。
気液分離缶7は、蒸発缶6から蒸気を導入し、これを冷却水供給部8からの冷却水で冷やし、蒸気中に含まれる水分を液化するためのものである。気液分離缶7の構造も、一般的な熱交換器と同様の構造とされている。エア源発生部9は、その入力側では空気を吸い込むことにより、吸い込み先である気液分離缶7や蒸発缶6や加熱缶部3内を低圧にする。一方、その出力側へは、圧縮して高温にした空気を吐き出す。その高温圧縮空気は、加熱缶部3へ送られ、加熱源の一部として利用される。
The evaporator 6 is communicated with the sewage flow portion of the heating can 3 via the upper communication pipe 4 and the lower communication pipe 5, heated sewage is stored in the lower part, and the sewage from the sewage is stored in the upper part. Filled with steam. The heating can 3 and the evaporator 6 are in communication with each other, and the liquid level L 6 shown in the drawing indicates the liquid level of the sewage.
The gas-liquid separation can 7 is for introducing steam from the evaporator 6 and cooling it with cooling water from the cooling water supply unit 8 to liquefy water contained in the steam. The structure of the gas-liquid separation can 7 is the same as that of a general heat exchanger. The air source generation unit 9 sucks air on the input side thereof, thereby reducing the pressure in the gas-liquid separation can 7, the evaporation can 6, and the heating can 3 as the suction destination. On the other hand, the compressed air is discharged to the output side. The high-temperature compressed air is sent to the heating can part 3 and used as a part of the heating source.

汚水処理動作は、次の通りである。
汚水供給部1の汚水は、上部連通管4より加熱缶部3,下部連通管5,蒸発缶6へ入れられる。そして、その液面レベルL6 は、上部連通管4内に位置するように調節される。その位置に調節する理由は、加熱された汚水が上部連通管4,加熱缶部3,下部連通管5,蒸発缶6を循環的に移動し得るようにするためである。なお、液面レベルL6 の調節は、図示しない液面レベル検出器と汚水供給用ポンプとで行われる。液面レベルL6 が所定レベルより下がれば、汚水供給部1から汚水を供給する汚水供給用ポンプを駆動し、所定レベルより上がれば該ポンプを停止する。
The sewage treatment operation is as follows.
The sewage in the sewage supply unit 1 is put into the heating can 3, the lower communication pipe 5, and the evaporator 6 from the upper communication pipe 4. The liquid level L 6 is adjusted so as to be located in the upper communication pipe 4. The reason for adjusting the position is to allow heated sewage to move cyclically through the upper communication pipe 4, the heating can part 3, the lower communication pipe 5, and the evaporator 6. The liquid level L 6 is adjusted by a liquid level detector (not shown) and a sewage supply pump. When the liquid level L 6 is lower than the predetermined level, the sewage supply pump for supplying sewage from the sewage supply unit 1 is driven, and when the liquid level L 6 is higher than the predetermined level, the pump is stopped.

エア源発生部9は、気液分離缶7からのみならず、そこを通して蒸発缶6や加熱缶部3からも空気を吸い込み、その中を低圧にする。気液分離缶7の空気は蒸発缶6内の空気とつながっているため、気液分離缶7が低圧にされることにより、蒸発缶6の中も低圧にされる。しかし、あまりに低圧にすると危険な面も出て来るので、圧力調整弁6Vを設けて所定の低圧以下にはならないようにしておく。即ち、所定圧力以下になると、圧力調整弁6Vが開いて外の空気を入れ、所定圧力以下になるのを防ぐ。更に、蒸発缶6の空気は加熱缶部3の空気とつながっているので、加熱缶部3の中も低圧にされる。
かくして、汚水が加熱されている加熱缶部3や蒸発缶6内は低圧に保たれるので、汚水の沸点は下がる。そのため、蒸気熱源2等から加えられる熱がそれほど多くなくても、汚水からは盛んに蒸気が発生する。この蒸気は、蒸発缶6に充満する。
蒸発缶6の蒸気は気液分離缶7に引き込まれるが、ここで冷却水供給部8からの冷却水により冷却されて、液化する。液化した水は、図示しないポンプにより気液分離缶7から吸い出される。この水は、蒸気を冷却したものであるから、かなり浄化された蒸留水となっているので、河川等へ放流することが出来る。
The air source generation unit 9 draws air not only from the gas-liquid separation can 7 but also from the evaporation can 6 and the heating can unit 3 through the can and makes the pressure low. Since the air in the gas-liquid separation can 7 is connected to the air in the evaporator 6, the pressure in the evaporator 6 is also lowered by lowering the gas-liquid separation can 7. However, if the pressure is too low, there is a dangerous aspect. Therefore, a pressure regulating valve 6V is provided so that the pressure does not fall below a predetermined low pressure. That is, when the pressure is lower than the predetermined pressure, the pressure regulating valve 6V is opened and outside air is introduced to prevent the pressure from being lower than the predetermined pressure. Furthermore, since the air in the evaporator 6 is connected to the air in the heating can 3, the pressure in the heating can 3 is also reduced.
Thus, since the inside of the heating can 3 and the evaporator 6 where the sewage is heated is kept at a low pressure, the boiling point of the sewage falls. Therefore, even if not much heat is applied from the steam heat source 2 or the like, steam is actively generated from the sewage. This vapor fills the evaporator 6.
Although the vapor | steam of the evaporator 6 is drawn into the gas-liquid separation can 7, it is cooled with the cooling water from the cooling water supply part 8 here, and is liquefied. The liquefied water is sucked out from the gas-liquid separation can 7 by a pump (not shown). Since this water is obtained by cooling the steam, it is distilled water that has been considerably purified, and can be discharged into rivers and the like.

一方、汚水に含まれる固形の汚染物質は次第に沈下するが、汚水に含まれる水分はどんどん蒸発されるため、下部連通管5付近に濃度大になって溜まることになる。そこで、この固形汚染物質が濃度大に含まれた汚水液(どろどろとした汚泥状の液…固形汚染物質液)を、下部連通管5の途中から図示しないポンプで吸い出し、別途乾燥処理して(汚泥状なので水分少なく、乾燥処理も容易)、固形物として廃棄する。
なお、気液分離缶7等から空気を吸い込むためのエア源発生部9は、自ずと空気圧縮動作を行っているわけであるが、圧縮空気をそのまま大気中に放出してしまうのではなく、加熱缶部3に供給する。空気を圧縮すると高温になることはよく知られた現象であるが、その高温空気を大気中に逃がしてしまわず、加熱缶部3の熱源の一部として利用することにより、エア源発生部9で使用するエネルギーを再利用することが出来る。
空気を高温ならしめたエネルギーは、エア源発生部9運転のために使われた電気エネルギーであるから、その電気エネルギーを再利用することになる。
On the other hand, the solid pollutant contained in the sewage gradually sinks, but the water contained in the sewage evaporates more and more, so that the concentration increases in the vicinity of the lower communication pipe 5 and accumulates. Therefore, sewage liquid containing a large concentration of this solid pollutant (sludge sludge-like liquid ... solid pollutant liquid) is sucked out from the middle of the lower communication pipe 5 by a pump (not shown) and separately dried ( Because it is sludge, it is low in water and easy to dry) and is discarded as a solid.
The air source generation unit 9 for sucking air from the gas-liquid separation can 7 and the like naturally performs the air compression operation, but does not directly release the compressed air into the atmosphere, Supply to can 3. Although it is a well-known phenomenon that when the air is compressed, it becomes a high temperature, but the high-temperature air is not released into the atmosphere, but is used as a part of the heat source of the heating can unit 3, thereby generating the air source generating unit 9. The energy used in can be reused.
The energy obtained by adjusting the temperature of the air to high temperature is the electric energy used for the operation of the air source generation unit 9, so that the electric energy is reused.

図2は、熱交換器の一般的な構造を説明する図である。加熱缶部3や気液分離缶7の内部は、熱交換器と同様の構造をしていると述べたが、それは図2のようなものである。図2において、10は熱交換器、11は蒸気通流隙間、12は液体通流パイプ、13は蒸気入口、14は蒸気出口、15は液体入口、16は液体出口である。
液体は、液体入口15から入れられ、液体通流パイプ12を通り、液体出口16から出て行く。蒸気は、蒸気入口13から入れられ、蒸気通流隙間11(液体通流パイプ12間の隙間等)を通り、蒸気出口14から出て行く。液体は、液体通流パイプ12を通過してゆくときに、蒸気からパイプ壁を介して熱をもらい、加熱される。
FIG. 2 is a diagram illustrating a general structure of the heat exchanger. Although the inside of the heating can part 3 and the gas-liquid separation can 7 is described as having the same structure as the heat exchanger, it is as shown in FIG. In FIG. 2, 10 is a heat exchanger, 11 is a vapor flow gap, 12 is a liquid flow pipe, 13 is a vapor inlet, 14 is a vapor outlet, 15 is a liquid inlet, and 16 is a liquid outlet.
Liquid enters from the liquid inlet 15, passes through the liquid flow pipe 12, and exits from the liquid outlet 16. Steam enters from the steam inlet 13, passes through the steam flow gap 11 (gap between the liquid flow pipes 12), and exits from the steam outlet 14. As the liquid passes through the liquid flow pipe 12, the liquid receives heat from the vapor through the pipe wall and is heated.

(第1の実施形態)
図3は、本発明の第1の実施形態を示す図である。符号は図1のものに対応し、20は汚水、21はポンプ、22,23,24,25はパイプ、26は主加熱缶、27は圧力調整弁、28は予熱缶、29,30はパイプ、31はポンプ、32は貯留ピット、33は低圧乾燥部、34,35,36はパイプ、37はポンプ、38,39,40はパイプ、41はポンプ、42は逆止弁、43,44はブロワー、45は圧力調整弁、46はパイプ、L7 は液面レベルである。
(First embodiment)
FIG. 3 is a diagram showing a first embodiment of the present invention. 1 corresponds to that of FIG. 1, 20 is sewage, 21 is a pump, 22, 23, 24 and 25 are pipes, 26 is a main heating can, 27 is a pressure regulating valve, 28 is a preheating can, 29 and 30 are pipes , 31 is a pump, 32 is a storage pit, 33 is a low pressure drying section, 34, 35, and 36 are pipes, 37 is a pump, 38, 39, and 40 are pipes, 41 is a pump, 42 is a check valve, and 43 and 44 are blower 45 is a pressure regulating valve, 46 is a pipe, L 7 is a liquid level.

この例では、加熱缶部3を、主加熱缶26と予熱缶28とで構成するようにしている。そして予熱缶28の内部構造も、主加熱缶26と同様、熱交換器の構造とされている。
エア源発生部9は、ブロワー43,44,圧力調整弁45等で構成される。ブロワー43は、パイプ38を介して気液分離缶7から空気を吸い出し、その中を低圧にする。気液分離缶7の空気通路はパイプ34を経て蒸発缶6につながっているので、蒸発缶6の空気も吸い出し、その中も低圧にする(蒸発缶6内を低圧にすると、僅かの加熱で汚水を沸騰させ、蒸発させることが可能となる。)。
In this example, the heating can 3 is composed of a main heating can 26 and a preheating can 28. The internal structure of the preheating can 28 is the same as that of the main heating can 26 as a heat exchanger.
The air source generation unit 9 includes blowers 43 and 44, a pressure adjustment valve 45, and the like. The blower 43 sucks air from the gas-liquid separation can 7 through the pipe 38, and makes the inside low pressure. Since the air passage of the gas-liquid separation can 7 is connected to the evaporator 6 through the pipe 34, the air in the evaporator 6 is also sucked out, and the pressure in the evaporator 6 is also reduced. The sewage can be boiled and evaporated.)

ブロワー43の出口からは空気を吐出するから、出口側では少し空気が圧縮される。その圧縮された空気は次段のブロワー44へ入れられ、そこで更に圧縮される。従って、ブロワー44の出口側に吐出される空気は、2段階で圧縮されているので、高温圧縮空気となっている。
この空気は、パイプ35,46に供給される。パイプ46には圧力調整弁45が接続されていて、空気の圧力が圧力調整弁45で設定されている圧力以上になると、その弁が開いて大気に通ずるようにしてある。それにより、ブロワー44の出力側の空気の圧力は、圧力調整弁45で設定された圧力以下に保たれる。パイプ35に入った高温圧縮空気は、加熱缶部3(まず主加熱缶26)へ送られ、加熱源として用いられる。
Since air is discharged from the outlet of the blower 43, the air is slightly compressed on the outlet side. The compressed air enters the next stage blower 44 where it is further compressed. Therefore, since the air discharged to the outlet side of the blower 44 is compressed in two stages, it is high-temperature compressed air.
This air is supplied to the pipes 35 and 46. A pressure adjusting valve 45 is connected to the pipe 46, and when the pressure of air becomes equal to or higher than the pressure set by the pressure adjusting valve 45, the valve is opened and communicates with the atmosphere. As a result, the pressure of the air on the output side of the blower 44 is kept below the pressure set by the pressure adjustment valve 45. The high-temperature compressed air that has entered the pipe 35 is sent to the heating can 3 (first main heating can 26) and used as a heating source.

さて、次に汚水の流れを説明する。汚水供給部1の汚水20は、ポンプ21によりパイプ22を経て、先ず予熱缶28に送られる。予熱缶28の加熱源として使用されるのは、蒸気熱源2からパイプ24を経て送られて来る蒸気と、パイプ25を経て送られて来る高温空気とである。この高温空気は、蒸気熱源2からの蒸気とエア源発生部9からの高温圧縮空気とが、主加熱缶26で加熱に使用された後、主加熱缶26内で混ざって排出されて来るものであるので、蒸気混じりの空気となっている。
予熱缶28で加熱に使われた蒸気混じりの空気は、予熱缶28内で溜まって、圧力調整弁27で定められた圧力以上となると、圧力調整弁27を通って大気中へと放出される(なお、以上の動作から既に推測し得るように、圧力調整弁27と圧力調整弁45の設定圧力は、ほぼ同じにされる。)。
Now, the flow of sewage will be described. The sewage 20 of the sewage supply unit 1 is first sent to the preheating can 28 via the pipe 22 by the pump 21. What is used as a heating source for the preheating can 28 is steam sent from the steam heat source 2 via the pipe 24 and hot air sent via the pipe 25. This high-temperature air is the one in which the steam from the steam heat source 2 and the high-temperature compressed air from the air source generator 9 are used for heating in the main heating can 26 and then mixed and discharged in the main heating can 26. Therefore, it is air mixed with steam.
The steam-mixed air used for heating in the preheating can 28 accumulates in the preheating can 28 and is discharged to the atmosphere through the pressure regulating valve 27 when the pressure exceeds the pressure determined by the pressure regulating valve 27. (Note that the set pressures of the pressure regulating valve 27 and the pressure regulating valve 45 are substantially the same, as can be estimated from the above operation).

予熱缶28で予熱された汚水は、パイプ29を経て上部連通管4内に入れられる。入れられる汚水の量は、液面レベルL6 が上部連通管4の中に位置するように調節されるので、汚水は、主加熱缶26,下部連通管5,蒸発缶6,上部連通管4を通流することが出来る。
主加熱缶26での加熱は、蒸気熱源2からパイプ23を経て送られて来る蒸気と、エア源発生部9からパイプ35を経て送られて来る高温圧縮空気とにより行われる。この加熱は、外部の大気圧より遙かに低い低圧下で行われる。なぜなら、エア源発生部9は気液分離缶7から空気を吸い出し、気液分離缶7を通って蒸発缶6および主加熱缶26からも空気を吸い出すよう動作しているからである。低圧下で汚水を加熱すると、水分は100℃より遙かに低い温度で沸騰し、蒸発する。本発明でエア源発生部9により低圧環境を作り出した理由は、少ない熱で汚水を蒸発させるためである。
なお、蒸発缶6に付設されている圧力調整弁6Vは、前記したように、所定の低圧以下にはならないようにするためのものである。
The sewage preheated by the preheating can 28 is put into the upper communication pipe 4 through the pipe 29. Since the amount of sewage to be introduced is adjusted so that the liquid level L 6 is located in the upper communication pipe 4, the sewage is supplied to the main heating can 26, the lower communication pipe 5, the evaporator 6, and the upper communication pipe 4. Can flow through.
Heating in the main heating can 26 is performed by steam sent from the steam heat source 2 through the pipe 23 and high-temperature compressed air sent from the air source generation unit 9 through the pipe 35. This heating is performed under a low pressure much lower than the external atmospheric pressure. This is because the air source generation unit 9 operates to suck out air from the gas-liquid separation can 7 and to suck air out of the evaporation can 6 and the main heating can 26 through the gas-liquid separation can 7. When sewage is heated under low pressure, the water boils at a temperature much lower than 100 ° C. and evaporates. The reason why the low pressure environment is created by the air source generator 9 in the present invention is to evaporate the sewage with less heat.
Note that, as described above, the pressure regulating valve 6V attached to the evaporator 6 is for preventing the pressure from becoming lower than a predetermined low pressure.

汚水中の水分の蒸発が進むに伴い、下部連通管5内に溜まる固形汚染物質の濃度は大になる。固形汚染物質の濃度が高くなってどろどろとなった汚水液を、下部連通管5に接続されたパイプ30を通って外へ取り出す。その取り出しは、パイプ30の途中に設けられたポンプ31により行う。取り出した汚水液は、まず貯留ピット32に貯留し、そこから乾燥部例えば低圧乾燥部33に送り、粉体等の固形物として廃棄する。
一方、汚水より蒸発した水分は、まず蒸発缶6の上部空間に溜まり、次いでパイプ34を通って気液分離缶7へと吸い出されて行く。
As the water in the sewage evaporates, the concentration of the solid contaminant accumulated in the lower communication pipe 5 increases. The sewage liquid that has become thick due to the concentration of solid contaminants is taken out through the pipe 30 connected to the lower communication pipe 5. The extraction is performed by a pump 31 provided in the middle of the pipe 30. The taken out sewage liquid is first stored in the storage pit 32 and then sent to a drying unit, for example, the low-pressure drying unit 33, and discarded as a solid such as powder.
On the other hand, the water evaporated from the sewage is first accumulated in the upper space of the evaporator 6 and then sucked out to the gas-liquid separator 7 through the pipe 34.

気液分離缶7では、蒸発缶6から吸い出して来た蒸気を、冷却水で冷却する。冷却水は、冷却水供給部8からポンプ37の力によりパイプ36を通って供給され、パイプ39を通って冷却水供給部8へ回収される。
蒸気が冷却されると水分は液化して水となるが、この水はポンプ41で外部へ排出される。外部への排出は適宜行うことが出来るが、1例を挙げれば、気液分離缶7の底に少なくとも一定量は残しておき、それ以上溜まったところで排出するというやり方とすることが出来る。即ち、気液分離缶7の底に溜まった水の液面レベルL7 を、図示しない検出器で検出し、液面レベルL7 が所定値以上となるとポンプ41を駆動し、パイプ40を通って外部へ吸い出す。液面レベルL7 が所定値以下となるとポンプ41を停止し、水の吸い出しを停止する。
この水は、蒸留により出来たものであるから、固形汚染物質など勿論含んでおらず、他の基準(例、リンや窒素の許容含有基準)を満たせば、河川等へ放流することが出来る。 なお、パイプ40の途中に設けられた逆止弁42は、ポンプ41の力が弱くなった時、大気圧に押されて水が逆流しないようにするためのものである。
In the gas-liquid separator 7, the steam sucked out from the evaporator 6 is cooled with cooling water. The cooling water is supplied from the cooling water supply unit 8 through the pipe 36 by the force of the pump 37, and is recovered to the cooling water supply unit 8 through the pipe 39.
When the steam is cooled, the water is liquefied to become water, which is discharged to the outside by the pump 41. Although the discharge to the outside can be performed as appropriate, for example, at least a certain amount is left at the bottom of the gas-liquid separation can 7 and the discharge is performed when more than that amount is accumulated. That is, the liquid level L 7 collected at the bottom of the gas-liquid separation can 7 is detected by a detector (not shown). When the liquid level L 7 exceeds a predetermined value, the pump 41 is driven and passes through the pipe 40. And suck it out. The pump 41 is stopped when the liquid level L 7 is equal to or less than a predetermined value, it stops the suction of water.
Since this water is produced by distillation, it naturally does not contain solid contaminants and can be discharged into rivers and the like if it meets other standards (eg, acceptable standards for phosphorus and nitrogen). The check valve 42 provided in the middle of the pipe 40 is for preventing water from flowing back by being pushed by the atmospheric pressure when the force of the pump 41 becomes weak.

一方、気液分離缶7内で水分を除去された空気は、多少温度は下げられるものの、まだ暖かさを有している。この空気はパイプ38を通ってエア源発生部9へと吸い出される。エア源発生部9に吸い込まれた空気は、前記したように、エア源発生部9内のブロワー43,44による圧縮により高温とされると共に、圧力調整弁45の作用により圧力調整され、パイプ35を通って主加熱缶26へ送られる。かくして、先にも述べたように、エア源発生部9で使用される電気エネルギーの一部は、加熱のエネルギーとして再利用されることになる。
なお図3の例では、予熱缶28の熱源としては主加熱缶26で用いているのと同様の蒸気を用いたが、他の種類の熱源(例、電熱)を用いてもよい。
On the other hand, the air from which moisture has been removed in the gas-liquid separation can 7 is still warm, although the temperature is somewhat lowered. This air is sucked out through the pipe 38 to the air source generator 9. As described above, the air sucked into the air source generation unit 9 is heated to a high temperature by compression by the blowers 43 and 44 in the air source generation unit 9, and the pressure is adjusted by the action of the pressure adjustment valve 45, so that the pipe 35 To the main heating can 26. Thus, as described above, a part of the electric energy used in the air source generation unit 9 is reused as heating energy.
In the example of FIG. 3, steam similar to that used in the main heating can 26 is used as the heat source for the preheating can 28, but other types of heat sources (eg, electric heat) may be used.

以上述べた本発明の汚水処理装置の特徴をまとめると、次のようになる。
(1)処理するのに汚水の濃度を薄めたりする必要はなく(大量の薄め水不用)、ポンプで送り得る流動性を有していさえすれば処理することが出来る。そのため、汚水の質や性状を変えるための設備等を必要としない。
(2)汚水を連続的に送りながら処理することが出来るので、発生した汚水を直ぐに処理に回すことが出来る(或る程度の量貯めてから処理するバッチ処理では、処理の順が来るまで放置されるので、衛生管理が大変である。)。
(3)汚水を加熱蒸発させる際に大気圧より遙かに低い低圧下で行うので、蒸発させるに要する熱エネルギーが少なくて済むと共に、短時間で蒸発させることが出来る。
(4)低温で処理するため、固形汚染物質からのガス体の発生が少なく、そのため臭気が少ない。
(5)汚水を、最終的には乾燥固形物(例、粉体)と蒸留水という、廃棄し易い形に処理することが出来る。
(6)低圧環境を実現するために必要となるエア源発生部から出て来る高温圧縮空気を、蒸発のための熱源の一部として利用するようにしたので、エネルギーを再利用する形となり、使用エネルギーが少なくて済む(処理の途中から蒸気熱源の蒸気を止め、エア源発生部からの高温圧縮空気のみで足りるということになる場合もある。)
The characteristics of the sewage treatment apparatus of the present invention described above are summarized as follows.
(1) It is not necessary to dilute the concentration of sewage for treatment (a large amount of dilute water is unnecessary), and treatment can be performed as long as it has fluidity that can be pumped. For this reason, there is no need for equipment for changing the quality and properties of sewage.
(2) Since the wastewater can be processed while being sent continuously, the generated wastewater can be immediately sent to the treatment (in batch processing where a certain amount of water is stored and then left until the order of treatment comes) Therefore, hygiene management is difficult.)
(3) Since the sewage is heated and evaporated under a low pressure much lower than the atmospheric pressure, less heat energy is required for evaporation and the sewage can be evaporated in a short time.
(4) Since the treatment is performed at a low temperature, the generation of a gas body from the solid contaminants is small, and therefore the odor is small.
(5) The sewage can be finally processed into a form that can be easily discarded, such as a dry solid (eg, powder) and distilled water.
(6) Since the high-temperature compressed air that comes out of the air source generation unit necessary for realizing the low-pressure environment is used as part of the heat source for evaporation, the energy is reused. Less energy is required (in some cases, the steam from the steam heat source is stopped in the middle of the process, and only the high-temperature compressed air from the air source generator is sufficient.)

(第2の実施形態)
図4は、本発明の第2の実施形態を示す図である。符号は図3のものに対応し、47は圧力調整弁である。図3の第1の実施形態と相違する点は、加熱缶部3に予熱缶28を使用せず、主加熱缶26のみを使用するようにした点である。
汚水処理装置を設置する場所によっては、強力な蒸気熱源2が確保される場合がある。例えば、食品会社などでは、既に強力な蒸気ボイラーが設置されており、そこから加熱源としての蒸気がいくらでも手に入ることがある。そのような場所では、予熱缶28を省略することも出来る。
(Second Embodiment)
FIG. 4 is a diagram showing a second embodiment of the present invention. The reference numerals correspond to those in FIG. 3, and 47 is a pressure regulating valve. The difference from the first embodiment in FIG. 3 is that the preheating can 28 is not used in the heating can 3 and only the main heating can 26 is used.
Depending on the place where the sewage treatment apparatus is installed, a strong steam heat source 2 may be secured. For example, a food company or the like already has a powerful steam boiler installed, from which it can get as much steam as a heating source. In such a place, the preheating can 28 can be omitted.

第2の実施形態では、汚水供給部1の汚水20は、パイプ22を通って上部連通管4に入れられる。蒸気熱源2からの蒸気は、主加熱缶26のみに供給される。主加熱缶26に付設された圧力調整弁47は、図3で予熱缶28に付設された圧力調整弁27に相当するものである。主加熱缶26内の加熱用の蒸気混じりの高温圧縮空気の圧力が、圧力調整弁47で設定されている値以上となれば開いて大気に通じ、蒸気混じりの高温圧縮空気を大気中へ放出する。
他の部分の動作は、第1の実施形態と同様であるので、その説明は省略する。
In the second embodiment, the sewage 20 of the sewage supply unit 1 is put into the upper communication pipe 4 through the pipe 22. Steam from the steam heat source 2 is supplied only to the main heating can 26. The pressure adjustment valve 47 attached to the main heating can 26 corresponds to the pressure adjustment valve 27 attached to the preheating can 28 in FIG. When the pressure of the high-temperature compressed air mixed with steam for heating in the main heating can 26 becomes equal to or higher than the value set by the pressure control valve 47, it opens to the atmosphere and releases the high-temperature compressed air mixed with steam into the atmosphere. To do.
Since the operation of other parts is the same as that of the first embodiment, the description thereof is omitted.

(第3の実施形態)
図5は、本発明の第3の実施形態を示す図である。符号は図3のものに対応している。図3の第1の実施形態と相違する点は、気液分離缶7を設けないようにした点である。
この実施形態は、気液分離缶で蒸留した水を廃棄する場所が確保出来ない場合(例、放流する河川が近くに無い場合)に実施する。第1,第2の実施形態では、気液分離缶7から出て来る蒸留水を、近くの河川等へ放流するとしているが、河川の種類によっては放流基準が厳しく、その蒸留水さえも放流出来ない場合がある。
例えば、汚水の種類によってリンとか窒素とかを含んでいる場合があるが、その場合には図3,4の気液分離缶7からの蒸留水にも幾らか含まれて出て来る。その含有量が近くの河川の放流基準以上であると、そこへ放流することが出来ない。
(Third embodiment)
FIG. 5 is a diagram showing a third embodiment of the present invention. The reference numerals correspond to those in FIG. The difference from the first embodiment of FIG. 3 is that the gas-liquid separation can 7 is not provided.
This embodiment is implemented when the place which discards the water distilled with the gas-liquid separation can not be secured (for example, when there is no river to discharge near). In the first and second embodiments, the distilled water coming out of the gas-liquid separation can 7 is discharged to a nearby river or the like, but the discharge standard is strict depending on the type of river, and even the distilled water is discharged. It may not be possible.
For example, phosphorus or nitrogen may be included depending on the type of sewage, but in that case, some of the distilled water from the gas-liquid separation can 7 shown in FIGS. If the content exceeds the discharge standard of the nearby river, it cannot be discharged there.

この第3の実施形態では、汚水を蒸発させた蒸気を液化せず、最終的には蒸気のままで大気中へ放出する。大気中へは、前記したようなリンや窒素を少々含んでいても、放出基準にひっかかることもなく放出することが出来る。
第3の実施形態では、汚水の蒸発により発生した蒸気は、蒸発缶6からパイプ34を経て、直接エア源発生部9へ吸い出される。エア源発生部9の出口からは、蒸気混じりの高温圧縮空気が吐き出され、パイプ35を通って主加熱缶26へ送られ、そこから更にパイプ25を通って予熱缶28へ送られる。
主加熱缶26,予熱缶28で加熱源の一部として利用された後、最終的には予熱缶28に付設された圧力調整弁27から大気中へと放出される。即ち、汚水中の水分は、予熱缶28から大気へ放出される蒸気の形で廃棄される。従って、第3の実施形態の汚水処理装置は、蒸留水を放流する河川等が見当たらない場所でも、設置することが出来る。
他の部分の動作は、第1の実施形態と同様であるので、その説明は省略する。
In the third embodiment, the vapor obtained by evaporating the sewage is not liquefied and is finally released into the atmosphere as the vapor. Even if it contains a little phosphorus or nitrogen as described above, it can be released into the atmosphere without being caught by the release standard.
In the third embodiment, the steam generated by the evaporation of the sewage is sucked out directly from the evaporator 6 through the pipe 34 to the air source generator 9. From the outlet of the air source generation unit 9, high-temperature compressed air mixed with steam is discharged, sent to the main heating can 26 through the pipe 35, and further sent to the preheating can 28 through the pipe 25.
After being used as a part of the heating source in the main heating can 26 and the preheating can 28, it is finally discharged into the atmosphere from the pressure regulating valve 27 attached to the preheating can 28. That is, the water in the sewage is discarded in the form of steam released from the preheating can 28 to the atmosphere. Therefore, the sewage treatment apparatus of the third embodiment can be installed even in a place where there is no river or the like that discharges distilled water.
Since the operation of other parts is the same as that of the first embodiment, the description thereof is omitted.

(第4の実施形態)
図6は、本発明の第4の実施形態を示す図である。符号は図3,図4のものに対応している。図5の第3の実施形態と相違する点は、加熱缶部3に予熱缶28を使用せず、主加熱缶26のみを使用するようにした点である。この実施形態は、図4の第2の実施形態と同様、既に強力な蒸気熱源が設置されており、そこから加熱源としての蒸気がいくらでも手に入るような事業所(例、食品会社など)であって、且つ汚水の蒸留水を放流することが出来るような河川が、近くにない場合に実施する。
汚水中の水分は、主加熱缶26の圧力調整弁47を通って大気中へ放出され、汚水中の固形汚染物質は、低圧乾燥部33より粉体等の形で廃棄される。
装置の各部分の動作は、図4,図5のものと同様であるので、その説明は省略する。
(Fourth embodiment)
FIG. 6 is a diagram showing a fourth embodiment of the present invention. The reference numerals correspond to those in FIGS. The difference from the third embodiment of FIG. 5 is that the preheating can 28 is not used in the heating can 3 and only the main heating can 26 is used. This embodiment, like the second embodiment of FIG. 4, has already installed a powerful steam heat source, from which a steam as a heating source can be obtained as much as possible (eg, a food company, etc.) However, it is carried out when there is no river nearby where distilled water from sewage can be discharged.
Moisture in the sewage is released into the atmosphere through the pressure regulating valve 47 of the main heating can 26, and solid contaminants in the sewage are discarded in the form of powder or the like from the low-pressure drying unit 33.
Since the operation of each part of the apparatus is the same as that of FIGS. 4 and 5, the description thereof is omitted.

(第5の実施形態)
図7は、本発明の第5の実施形態を示す図である。符号は図6のものに対応し、50は第1段加熱蒸発部、51は第2段加熱蒸発部、52,53はパイプ、54はポンプ、4Bは上部連通管、5Bは下部連通管、6Bは蒸発缶、6BVは圧力調整弁、26Bは主加熱缶、34Bはパイプ、L6Bは液面レベルである。
これは、第4の実施形態(図6)の主加熱缶26と蒸発缶6の部分を、2段に縦続接続したものである。第1段加熱蒸発部50は主として主加熱缶26と蒸発缶6とで構成され、第2段加熱蒸発部51は主として主加熱缶26Bと蒸発缶6Bとで構成される。
(Fifth embodiment)
FIG. 7 is a diagram showing a fifth embodiment of the present invention. The reference numerals correspond to those in FIG. 6, 50 is the first stage heating evaporation section, 51 is the second stage heating evaporation section, 52 and 53 are pipes, 54 is a pump, 4B is an upper communication pipe, 5B is a lower communication pipe, 6B is an evaporator, 6BV is a pressure regulating valve, 26B is a main heating can, 34B is a pipe, and L 6B is a liquid level.
In this embodiment, the main heating can 26 and the evaporator 6 of the fourth embodiment (FIG. 6) are cascade-connected in two stages. The first stage heating evaporator 50 is mainly composed of the main heating can 26 and the evaporator 6, and the second stage heating evaporator 51 is mainly composed of the main heating can 26B and the evaporator 6B.

第1段加熱蒸発部50の蒸発缶6からパイプ34を通って出される蒸気(汚水蒸発分)は、次段の主加熱缶26Bの加熱源用として導入される。第段加熱蒸発部50の下部連通管5に溜まる液(固形汚染物質濃度大の液)は、パイプ52,ポンプ54を経て次段の上部連通管4Bに入れられる。そして、それが主加熱缶26B,蒸発缶6Bにより、再び加熱蒸発される。主加熱缶26Bの加熱源としては、パイプ34からの蒸気の他に、エア源発生部9からパイプ35を経て供給される高温圧縮空気と、蒸気熱源2よりパイプ23Bを経て供給される蒸気とがある。但し、蒸気熱源2からの蒸気は、補助的に用いられる程度である(例えば、装置の運転開始当初暫くの間だけとか、気温が下がった時だけ等)。
Steam (sewage evaporation) discharged from the evaporator 6 of the first stage heating evaporator 50 through the pipe 34 is introduced as a heating source for the next stage main heating can 26B. The liquid (liquid with a high solid contaminant concentration) accumulated in the lower communication pipe 5 of the first stage heating evaporator 50 is put into the upper communication pipe 4B of the next stage through the pipe 52 and the pump 54. And it is heated and evaporated again by the main heating can 26B and the evaporator 6B. As a heating source for the main heating can 26B, in addition to the steam from the pipe 34, high-temperature compressed air supplied from the air source generator 9 through the pipe 35, and steam supplied from the steam heat source 2 through the pipe 23B There is. However, the steam from the steam heat source 2 is only used in an auxiliary manner (for example, only for a while at the beginning of the operation of the apparatus, or when the temperature falls).

主加熱缶26Bで使用された蒸気混じりの高温空気は、パイプ53を経て主加熱缶26へ送られ、ここでも加熱源の1つとして利用される。主加熱缶26Bでは、蒸発缶6からの少し温度の下がった蒸気を熱源の1つとして使うため、主加熱缶26におけるよりも加熱エネルギーがやや少なくなることも考えられる。そのような場合でも蒸発を充分に行わせるためには、圧力調整弁6BVの設定圧力を、圧力調整弁6Vの設定圧力よりも少し低くしてやればよい。一層低圧にされれば、汚水の沸点は更に下がり、少ない加熱エネルギーでもよく蒸発するようになるからである。   The steam-mixed high-temperature air used in the main heating can 26B is sent to the main heating can 26 through the pipe 53, and again used as one of the heating sources. In the main heating can 26 </ b> B, steam slightly lowered in temperature from the evaporator 6 is used as one of the heat sources. Therefore, it is conceivable that the heating energy is slightly less than that in the main heating can 26. Even in such a case, the set pressure of the pressure regulating valve 6BV may be set slightly lower than the set pressure of the pressure regulating valve 6V in order to sufficiently evaporate. This is because if the pressure is further reduced, the boiling point of the sewage is further lowered, and it will evaporate well even with less heating energy.

蒸発缶6Bに溜まる汚水蒸発の蒸気は、パイプ34Bを通ってエア源発生部9に吸い出される。その蒸気はエア源発生部9で高温圧縮空気とされ、パイプ35を経て主加熱缶26Bへ送られて加熱に使われ、更にそれを抜けてパイプ53を経て主加熱缶26へと送られて加熱に使われる(蒸発缶6からパイプ34を経て送られて来ていた蒸気も、主加熱缶26B内でエア源発生部9からの蒸気と混じり合い、パイプ53を経て主加熱缶26へ送られる。)。そして、最後に、主加熱缶26に付設された圧力調整弁47より大気へと放出される。
結局、第1段加熱蒸発部50,第2段加熱蒸発部51で汚水から蒸発した水分は、最終的には、圧力調整弁47から大気へ放出される。一方、第2段加熱蒸発部51で更に濃度大にされた固形汚染物質液は、下部連通管5Bからポンプ31によりパイプ30を経て吸い出され、低圧乾燥部33等で処理され、粉体等の固形物とされる。
なお、図7では2段の縦続接続の例を示したが、3段以上にすることも可能である。また、図7は第4の実施形態(図6)のものを縦続接続したものであるが、他の実施形態(図3〜図5)のものをそれぞれ縦続接続することも出来る。
The sewage evaporation vapor collected in the evaporator 6B is sucked out to the air source generator 9 through the pipe 34B. The steam is converted into high-temperature compressed air by the air source generator 9, sent to the main heating can 26 B through the pipe 35, used for heating, and further passed through the pipe 53 to the main heating can 26. Steam used for heating (steam sent from the evaporator 6 through the pipe 34 is mixed with steam from the air source generation unit 9 in the main heating can 26B and sent to the main heating can 26 through the pipe 53. .) And finally, it is discharged into the atmosphere from a pressure regulating valve 47 attached to the main heating can 26.
Eventually, the water evaporated from the sewage in the first stage heating evaporator 50 and the second stage heating evaporator 51 is finally released from the pressure regulating valve 47 to the atmosphere. On the other hand, the solid contaminant liquid whose concentration is further increased in the second stage heating evaporation section 51 is sucked out from the lower communication pipe 5B through the pipe 30 by the pump 31, processed in the low pressure drying section 33, etc. The solid matter.
Although FIG. 7 shows an example of two-stage cascade connection, three or more stages can be used. 7 shows the fourth embodiment (FIG. 6) cascaded, but other embodiments (FIGS. 3 to 5) can also be cascaded.

本発明の汚水処理装置の構成を示すブロック図The block diagram which shows the structure of the sewage treatment apparatus of this invention 熱交換器の一般的な構造を説明する図Diagram explaining the general structure of a heat exchanger 本発明の第1の実施形態を示す図The figure which shows the 1st Embodiment of this invention 本発明の第2の実施形態を示す図The figure which shows the 2nd Embodiment of this invention 本発明の第3の実施形態を示す図The figure which shows the 3rd Embodiment of this invention 本発明の第4の実施形態を示す図The figure which shows the 4th Embodiment of this invention 本発明の第5の実施形態を示す図The figure which shows the 5th Embodiment of this invention

符号の説明Explanation of symbols

1…汚水供給部、2…蒸気熱源、3…加熱缶部、3V…圧力調整弁、4,4B…上部連通管、5,5B…下部連通管、6,6B…蒸発缶、6V,6BV…圧力調整弁、7…気液分離缶、8…冷却水供給部、9…エア源発生部、10…熱交換器、11…蒸気通流隙間、12…液体通流パイプ、13…蒸気入口、14…蒸気出口、15…液体入口、16…液体出口、20…汚水、21…ポンプ、22,23,23B,24,25…パイプ、26,26B…主加熱缶、27…圧力調整弁、28…予熱缶、29,30…パイプ、31…ポンプ、32…貯留ピット、33…低圧乾燥部、34,34B,35,36…パイプ、37…ポンプ、38,39,40…パイプ、41…ポンプ、42…逆止弁、43,44…ブロワー、45…圧力調整弁、46…パイプ、47…圧力調整弁、
50…第1段加熱蒸発部、51…第2段加熱蒸発部、52,53…パイプ、54…ポンプ、L6 ,L6B,L7 …液面レベル
DESCRIPTION OF SYMBOLS 1 ... Sewage supply part, 2 ... Steam heat source, 3 ... Heating can part, 3V ... Pressure control valve, 4, 4B ... Upper communication pipe, 5, 5B ... Lower communication pipe, 6, 6B ... Evaporator, 6V, 6BV ... Pressure regulating valve, 7 ... Gas-liquid separation can, 8 ... Cooling water supply unit, 9 ... Air source generation unit, 10 ... Heat exchanger, 11 ... Steam flow gap, 12 ... Liquid flow pipe, 13 ... Steam inlet, DESCRIPTION OF SYMBOLS 14 ... Steam outlet, 15 ... Liquid inlet, 16 ... Liquid outlet, 20 ... Sewage, 21 ... Pump, 22, 23, 23B, 24, 25 ... Pipe, 26, 26B ... Main heating can, 27 ... Pressure control valve, 28 ... Preheating can, 29, 30 ... Pipe, 31 ... Pump, 32 ... Storage pit, 33 ... Low pressure drying section, 34, 34B, 35, 36 ... Pipe, 37 ... Pump, 38, 39, 40 ... Pipe, 41 ... Pump 42 ... Check valve, 43, 44 ... Blower, 45 ... Pressure adjustment valve, 46 ... -Flops, 47 ... pressure regulating valve,
50 ... 1st stage heating evaporation part, 51 ... 2nd stage heating evaporation part, 52, 53 ... Pipe, 54 ... Pump, L 6 , L 6B , L 7 ... Liquid level

Claims (8)

蒸気熱源と、
冷却水供給部と、
熱交換器の構造を有し、前記蒸気熱源からの蒸気に後記エア源発生部からの高温圧縮空気が混合された蒸気と処理すべき汚水とを熱交換させて該汚水中の水分を蒸発させると共に、熱源としての蒸気が所定圧力以上になると大気中に放出する圧力調整弁が付設された加熱缶部と、
該加熱缶部と上部連通管および下部連通管とにより上下が連通された蒸発缶と、
供給路が前記上部連通管の途中と接続され、処理すべき汚水をその液面レベルが該上部連通管内に位置するように調節しつつ加熱缶部および蒸発缶へ供給する汚水供給部と、
熱交換器の構造を有し、前記蒸発缶から吸い出した汚水蒸発蒸気と前記冷却水供給部からの冷却水とを熱交換させ、該汚水蒸発蒸気の気液分離を行う気液分離缶と、
空気を吸い込む入力側が該気液分離缶で分離された気体を吸い出すよう接続され、圧縮により高温にした空気を吐き出す出力側が高温圧縮空気を熱源として供給するよう前記加熱缶部と接続されたエア源発生部と
を具え、
該エア源発生部による前記気液分離缶を介しての空気吸引により、前記加熱缶部および蒸発缶内を低圧にして前記汚水中に含まれる水分の蒸発を容易にし、次々と供給される汚水の水分が蒸発されることにより、汚水中に含まれる固形汚染物質が濃度大となって前記下部連通管に溜まるようにし、該固形汚染物質は前記下部連通管から吸い出し乾燥して廃棄し、
汚水中に含まれる水分は前記汚水蒸発蒸気を前記気液分離缶で冷却して蒸留水とした後、吸い出して廃棄するようにしたことを特徴とする汚水処理装置。
A steam heat source,
A cooling water supply unit;
Has a structure of the heat exchanger to evaporate the vapor to below air source water soil in water and sewage by heat exchange to be treated with the hot compressed air is mixed steam from generator from the steam heat source In addition, a heating can part provided with a pressure regulating valve that discharges into the atmosphere when the steam as a heat source exceeds a predetermined pressure, and
An evaporator whose upper and lower sides communicate with each other through the heating can part and an upper communication pipe and a lower communication pipe;
A sewage supply unit that is connected to the middle of the upper communication pipe and supplies the heated can and evaporator while adjusting the level of the sewage to be treated in the upper communication pipe ,
A gas-liquid separation can having a heat exchanger structure, heat-exchanging the sewage evaporating vapor sucked out from the evaporator and the cooling water from the cooling water supply unit, and performing gas-liquid separation of the sewage evaporating vapor;
It connected to suck the input side to suck the air separated by the gas-liquid separation can gases, air source is output to discharge the air to a high temperature is connected to the heating can section so as to supply hot compressed air as a heat source by compression With a generator,
Soil water supplied one after another by sucking air through the gas-liquid separation can by the air source generation unit to make the inside of the heating can and the evaporator low and to easily evaporate water contained in the waste water. by water is evaporated, the solid pollutants contained in the wastewater so as to accumulate in the lower communicating tube as density large, the solid contaminants and discarded dried sucking from the lower communication pipe,
The sewage treatment apparatus is characterized in that water contained in sewage is sucked and discarded after the sewage evaporation vapor is cooled by the gas-liquid separation can to form distilled water.
加熱缶部が主加熱缶と予熱缶とから構成され、
該予熱缶は熱交換器の構造を有し、汚水供給部から最初に汚水が供給され、予熱された該汚水が前記主加熱缶と蒸発缶とを接続する上部連通管の途中より該主加熱缶および該蒸発缶へ供給されるように配設されている
ことを特徴とする請求項1記載の汚水処理装置。
The heating can part is composed of a main heating can and a preheating can,
The preheating can has a heat exchanger structure, and sewage is first supplied from a sewage supply unit, and the preheated sewage is heated from the middle of the upper communication pipe connecting the main heating can and the evaporator. The sewage treatment apparatus according to claim 1, wherein the sewage treatment apparatus is disposed so as to be supplied to the can and the evaporator.
予熱缶は、その熱源として蒸気熱源から直接供給される蒸気と主加熱缶で加熱に使用された後の蒸気とが供給されるようにされ、それら蒸気が所定圧力以上になれば大気へ放出するようにした圧力調整弁が付設されている
ことを特徴とする請求項2記載の汚水処理装置。
The preheating can is supplied with steam directly supplied from the steam heat source as its heat source and steam after being used for heating by the main heating can, and when the steam exceeds a predetermined pressure, it is released to the atmosphere. The sewage treatment apparatus according to claim 2, further comprising a pressure regulating valve.
請求項1,2あるいは3記載の汚水処理装置において、加熱缶部と蒸発缶との組み合わせを複数段設け、
前段の下部連通管から吸い出した汚水を次段の上部連通管へ供給し、
前段の蒸発缶から吸い出した汚水蒸発蒸気を次段の加熱缶部の熱源として供給し、
最後の段の蒸発缶は気液分離缶へ接続し、
次段の加熱缶部で熱源として使用した蒸気を前段の加熱缶部の熱源として供給する
構成とし、
汚水に含まれていた固形汚染物質は最後の段の下部連通管より吸い出して廃棄し、汚水に含まれていた水分は気液分離缶で蒸留水とした後吸い出して廃棄するようにした
ことを特徴とする汚水処理装置。
In the sewage treatment apparatus according to claim 1, 2 or 3, a plurality of combinations of heating cans and evaporators are provided,
Supply the sewage sucked from the lower communication pipe in the previous stage to the upper communication pipe in the next stage,
Supply the sewage evaporation vapor sucked out from the previous evaporator as a heat source for the next heating can,
The last stage evaporator is connected to a gas-liquid separator,
The steam used as the heat source in the heating can part of the next stage is supplied as the heat source of the heating can part of the previous stage,
The solid pollutants contained in the sewage are sucked out from the lower communication pipe at the last stage and discarded, and the water contained in the sewage is made into distilled water in a gas-liquid separation can and then sucked out and discarded. A featured sewage treatment device.
蒸気熱源と、
熱交換器の構造を有し、前記蒸気熱源および後記エア源発生部からの蒸気と処理すべき汚水とを熱交換させて該汚水中の水分を蒸発させると共に、熱源としての蒸気が所定圧力以上になると大気中に放出する圧力調整弁が付設された加熱缶部と、
該加熱缶部と上部連通管および下部連通管とにより上下が連通された蒸発缶と、
供給路が前記上部連通管の途中と接続され、処理すべき汚水をその液面レベルが該上部連通管内に位置するように調節しつつ加熱缶部および蒸発缶へ供給する汚水供給部と、
空気を吸い込む入力側が前記蒸発缶内の蒸気を吸い出すよう接続され、圧縮により高温にした空気を吐き出す出力側が該高温圧縮蒸気を熱源として供給するよう前記加熱缶部と接続されたエア源発生部と
を具え、
該エア源発生部による前記蒸発缶を介しての空気吸引により、前記加熱缶部および蒸発缶内を低圧にして前記汚水中に含まれる水分の蒸発を容易にし、次々と供給される汚水の水分が蒸発されることにより、汚水中に含まれる固形汚染物質が濃度大となって前記下部連通管に溜まるようにし、該固形汚染物質は前記下部連通管から吸い出し乾燥して廃棄し、
汚水中に含まれる水分は前記加熱缶部の圧力調整弁より蒸気の形で大気中に放出するようにしたことを特徴とする汚水処理装置。
A steam heat source,
Has a structure of the heat exchanger, and a sewage to be treated with steam from the steam heat source and below the air source generator with evaporating moisture soil in water by heat exchange, the steam as a heat source is more than the predetermined pressure A heated can part attached with a pressure regulating valve to be released into the atmosphere when
An evaporator whose upper and lower sides communicate with each other through the heating can part and an upper communication pipe and a lower communication pipe;
A sewage supply unit that is connected to the middle of the upper communication pipe and supplies the heated can and evaporator while adjusting the level of the sewage to be treated in the upper communication pipe ,
It is connected to the input side to suck the air suck vapor in the evaporator, and an air source generating portion is output to discharge the air to a high temperature is connected to the heating can section so as to supply the hot compressed steam as a heat source by compression With
The suction of air through the evaporator by the air source generator facilitates the evaporation of moisture contained in the sewage by reducing the pressure in the heating can and the evaporator, and the moisture of the sewage supplied one after another by There is evaporated, the solid pollutants contained in the wastewater so as to accumulate in the lower communicating tube as density large, the solid contaminants and discarded dried sucking from the lower communication pipe,
The sewage treatment apparatus is characterized in that the moisture contained in the sewage is discharged into the atmosphere in the form of steam from the pressure regulating valve of the heating can.
加熱缶部が主加熱缶と予熱缶とから構成され、
該予熱缶は熱交換器の構造を有し、汚水供給部から最初に汚水が供給され、予熱された該汚水が前記主加熱缶と蒸発缶とを接続する上部連通管の途中より該主加熱缶および該蒸発缶へ供給されるように配設されている
ことを特徴とする請求項5記載の汚水処理装置。
The heating can part is composed of a main heating can and a preheating can,
The preheating can has a heat exchanger structure, and sewage is first supplied from a sewage supply unit, and the preheated sewage is heated from the middle of the upper communication pipe connecting the main heating can and the evaporator. 6. The sewage treatment apparatus according to claim 5, wherein the sewage treatment apparatus is disposed so as to be supplied to the can and the evaporator.
予熱缶は、その熱源として蒸気熱源から直接供給される蒸気と主加熱缶で加熱に使用された後の蒸気とが供給されるようにされ、それら蒸気が所定圧力以上になれば大気へ放出するようにした圧力調整弁が付設されている
ことを特徴とする請求項6記載の汚水処理装置。
The preheating can is supplied with steam directly supplied from the steam heat source as its heat source and steam after being used for heating by the main heating can, and when the steam exceeds a predetermined pressure, it is released to the atmosphere. The sewage treatment apparatus according to claim 6, further comprising a pressure regulating valve.
請求項5,6あるいは7記載の汚水処理装置において、加熱缶部と蒸発缶との組み合わせを複数段設け、
前段の下部連通管から吸い出した汚水を次段の上部連通管へ供給し、
前段の蒸発缶から吸い出した汚水蒸発蒸気を次段の加熱缶部の熱源として供給し、
次段の加熱缶部で熱源として使用した蒸気を前段の加熱缶部の熱源として供給する
構成とし、
汚水に含まれていた固形汚染物質は最後の段の下部連通管より吸い出して廃棄し、汚水に含まれていた水分は最初の段の加熱缶部に付設されている圧力調整弁より大気中へ放出するようにした
ことを特徴とする汚水処理装置。
In the sewage treatment apparatus according to claim 5, 6 or 7, a plurality of combinations of heating cans and evaporators are provided,
Supply the sewage sucked from the lower communication pipe in the previous stage to the upper communication pipe in the next stage,
Supply the sewage evaporation vapor sucked out from the previous evaporator as a heat source for the next heating can,
The steam used as the heat source in the heating can part of the next stage is supplied as the heat source of the heating can part of the previous stage,
Solid pollutants contained in the sewage are sucked out from the lower communication pipe in the last stage and discarded, and the moisture contained in the sewage is sent to the atmosphere from the pressure control valve attached to the heating can part in the first stage. A sewage treatment apparatus characterized by being discharged.
JP2004317431A 2004-11-01 2004-11-01 Sewage treatment equipment Active JP4024790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317431A JP4024790B2 (en) 2004-11-01 2004-11-01 Sewage treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317431A JP4024790B2 (en) 2004-11-01 2004-11-01 Sewage treatment equipment

Publications (2)

Publication Number Publication Date
JP2006122859A JP2006122859A (en) 2006-05-18
JP4024790B2 true JP4024790B2 (en) 2007-12-19

Family

ID=36718095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317431A Active JP4024790B2 (en) 2004-11-01 2004-11-01 Sewage treatment equipment

Country Status (1)

Country Link
JP (1) JP4024790B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2687629A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment apparatus
WO2011048650A1 (en) * 2009-10-19 2011-04-28 Mitsui Takahisa Distillation device and electric power generator
JP6246630B2 (en) * 2014-03-14 2017-12-13 三菱重工業株式会社 Radioactive water treatment apparatus, treatment system, and treatment method
CN105523597B (en) * 2015-12-11 2018-08-21 上海朴是环境科技股份有限公司 A kind of efficient liquid matchmaker thermal compression evaporation purification system
CN105854324B (en) * 2016-04-25 2018-10-30 钮德明 Injecting type gas-liquid contact evaporator
JP2020062578A (en) * 2018-10-15 2020-04-23 仁司 和泉 Excretion treatment apparatus for livestock barn
CN114661074B (en) * 2022-05-24 2022-09-20 深圳市家家分类科技有限公司 Liquid level control method and device

Also Published As

Publication number Publication date
JP2006122859A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US3323575A (en) Apparatus and process for dehydrating waste solids concentrates
US8747648B2 (en) Method and device for treating liquids, using an electrolytic stage
US20040045682A1 (en) Cogeneration wasteheat evaporation system and method for wastewater treatment utilizing wasteheat recovery
US20120067046A1 (en) Power plant with co2 capture and water treatment plant
JP6298464B2 (en) Treatment process of water produced in crude oil and natural gas treatment facility
JP4024790B2 (en) Sewage treatment equipment
US20140262730A1 (en) Mobile mechanical vapor recompression evaporator
JP3963124B2 (en) Organic waste treatment methods
CN107098417A (en) A kind of processing unit and technique of oil plant oil-polluted water
KR0119766B1 (en) Vaporizing and concentration drying apparatus and method
TW202103769A (en) System and method for recovering and purifying a gaseous sterilizing agent
CN102666393B (en) Distilled water production system
US11390545B2 (en) Zero discharge water treatment apparatus and method
JP4553810B2 (en) Organic waste liquid processing apparatus and processing method
CN107021603A (en) A kind of sludge heat drying system of low energy consumption
JP4349656B2 (en) Organic waste liquid processing apparatus and processing method
CA2362120C (en) Device for cleaning a fluid in the form of a vapor from a circuit
KR101801842B1 (en) Apparatus of treating wastewater using concentration control and Method of treating wastewater using the same
CN107921325A (en) The method that dissolved gas is removed from evaporation feed liquor stream
JPH10118404A (en) Method for concentrating liquid
KR20210021325A (en) Wastewater management
US9908791B2 (en) Steam condensation and water distillation system
JP7245805B2 (en) Sewage sludge treatment method and treatment equipment
CN217264918U (en) Evaporation system suitable for contain isopropanol and contain salt waste water
CN211284042U (en) Combined evaporation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Ref document number: 4024790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6