JP3963124B2 - Organic waste treatment methods - Google Patents

Organic waste treatment methods Download PDF

Info

Publication number
JP3963124B2
JP3963124B2 JP2002165311A JP2002165311A JP3963124B2 JP 3963124 B2 JP3963124 B2 JP 3963124B2 JP 2002165311 A JP2002165311 A JP 2002165311A JP 2002165311 A JP2002165311 A JP 2002165311A JP 3963124 B2 JP3963124 B2 JP 3963124B2
Authority
JP
Japan
Prior art keywords
pressure
organic waste
reaction
hydrothermal reaction
oxidation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002165311A
Other languages
Japanese (ja)
Other versions
JP2004008912A (en
Inventor
英一 堀田
勇 野島
隆正 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2002165311A priority Critical patent/JP3963124B2/en
Publication of JP2004008912A publication Critical patent/JP2004008912A/en
Application granted granted Critical
Publication of JP3963124B2 publication Critical patent/JP3963124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、し尿、浄化槽汚泥、生ゴミ等の有機性廃棄物の処理方法に関するものである。
【0002】
【従来の技術】
家庭から排出されるし尿や浄化槽汚泥、生ゴミ、生活排水等は、いろいろな方法で処理されている。これらは一般廃棄物と呼ばれ、これまでは環境保全を目的とした衛生処理だけが行われていた。しかし昨今、資源循環型社会の形成が叫ばれるようになり、それら廃棄物の処理施設においても単なる衛生処理だけで終わるのではなく、それら廃棄物を資源化して社会に循環させることが強く要望されている。
このような社会情勢に対応して、例えばし尿や浄化槽汚泥、生ゴミ等の有機性廃棄物を処理する処理施設においては、それら有機性廃棄物からコンポスト(堆肥)、メタンガス、炭化物、溶融スラグ等を製造して、廃棄物を資源化することが行われている。
【0003】
【発明が解決しようとする課題】
ところが、生ゴミ等の有機性廃棄物にはビニール類やプラスチック類等の夾雑物が混入していることが多く、このような有機性廃棄物から炭化物や溶融スラグ等を製造する場合は問題ないが、コンポスト等を製造した場合には、それら夾雑物が完全に処理されずに残留して製品の品質が低下するという問題点があった。
【0004】
上記問題点を解消する方法の一つとして、湿式酸化法が知られている。湿式酸化法とは、有機性廃棄物を粉砕して水と混合した状態で容器に入れ、これを高温・高圧(水が液相を保持する圧力)下で酸化分解する方法である。この湿式酸化法によれば、有機性廃棄物そのものを酸化分解することができると共に、有機性廃棄物に含まれる夾雑物を除去しなくても、それら夾雑物を溶解して分解することができ、製品に夾雑物が混入することを防止できるという利点を有する。
【0005】
この湿式酸化法には、酸化温度が260℃以上のHPO(高圧酸化)法、酸化温度が180〜260℃のMPO(中圧酸化)法、酸化温度が180℃以下のLPO(低圧酸化)法があり、これらの中でHPO法とMPO法によれば、有機性廃棄物に含まれるビニール類やプラスチック類等の夾雑物を可溶化させて完全に処理することができる。
しかしながら、HPO法やMPO法では、圧力が1MPa以上の有酸素状態で酸化反応処理が行われることとなるので、現在の日本国内においては「高圧ガス保安法」の適用対象となって、その処理設備の運転に際して管理者を常駐させる等の対応が必要になり、その分ランニングコストがかかるという問題点があった。
一方、LPO法では、上記対応が不要になることからランニングコストを低減することが可能になるものの、夾雑物が年々多様化する中で、例えばポリプロピレンなど、可溶化できない夾雑物も多くなってきており、この方法だけではコンポスト等の製品への夾雑物混入を防止できないという問題点があった。
【0006】
本発明は、かかる事情に鑑みてなされたもので、有機性廃棄物から製造されるコンポスト等の製品に、ビニール類やプラスチック類等の夾雑物が混入することを防止できる有機性廃棄物の処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の本発明に係る有機性廃棄物の処理方法は、有機性廃棄物に高圧水蒸気を供給して水熱反応させる水熱反応工程と、上記水熱反応によって生成した水熱反応処理液を酸素含有ガスによって酸化反応させる酸化反応工程と、上記酸化反応によって得られた酸化反応処理液とガスとを分離する気液分離工程とを備え、上記水熱反応の処理温度を190〜220℃、圧力を1〜3 MPa 、反応時間を30〜90 min としたことを特徴とするものである。
【0008】
請求項2に記載の本発明に係る有機性廃棄物の処理方法は、有機性廃棄物に高圧水蒸気を供給して水熱反応させる水熱反応工程と、上記水熱反応によって生成した水熱反応処理液を酸素含有ガスによって酸化反応させる酸化反応工程と、上記酸化反応によって得られた酸化反応処理液とガスとを分離する気液分離工程とを備え、上記酸化反応の処理温度を160〜180℃、圧力を0.6〜1 MPa 、反応時間を30〜90 min とし、かつ上記酸素含有ガスの酸素濃度を21〜75 vol %としたことを特徴とするものである。
【0009】
請求項1または2に記載の本発明に係る有機性廃棄物の処理方法によれば、有機性廃棄物に含まれる夾雑物を水熱反応により可溶化させてから酸化反応させることが可能になる。したがって、有機性廃棄物から製造されるコンポスト等の製品にビニール類やプラスチック類等の夾雑物が混入することを防止でき、それら製品の品質を向上させることが可能になる。
また、有機性廃棄物に含まれる夾雑物を水熱反応により可溶化させてから酸化反応させるようにすることで、酸化反応時の温度、圧力の設定条件を下げることが可能になり、その結果として、有機性廃棄物の減量化や脱水性の向上等を図ることができる。さらに、酸化反応処理液からのメタンガスの回収量を増加させて、炭酸ガスの排出量を減少させることもできる。
また、高圧水蒸気を利用して有機性廃棄物を水熱反応させるようにしたので、水熱反応の処理効率を高めることができるとともに、水熱反応の処理を連続的にかつ安定的に行うことができる。
【0011】
さらに、請求項1に記載の発明によれば、水熱反応の処理温度を190〜220℃、圧力を1〜3MPa、反応時間を30〜90minとしたことにより、有機性廃棄物に含まれるナイロン、ポリプロピレン、アセテートおよびビニヨン等の夾雑物を可溶化させることができ、水熱反応の処理を安定させることができる。
また、水熱反応の処理が190〜220℃で行われることから、ダイオキシン類の発生を極力防止することができる。
なお、水熱反応装置に高圧水蒸気のみを供給し、無酸素・加圧状態で水熱反応を行うようにしているので、反応圧力が1MPa以上であっても、「高圧ガス保安法」の適用対象外となり、人件費や法定検査費等のランニングコストを抑制することができる。
【0015】
また、請求項2に記載の発明によれば、酸化反応の処理温度を160〜180℃、圧力を0.6〜1MPa、反応時間を30〜90minとしたことにより、水熱反応処理液に含まれる有機成分を好気性条件下でさらに可溶化させることができる。そして、酸化反応の処理が160〜180℃で行われることから、ダイオキシン類の発生を極力防止することができる。
また、酸化反応の処理が1MPa未満で行われることから、「高圧ガス保安法」の適用対象外となり、人件費等のランニングコストを抑制することも可能になる。さらに、酸素含有ガスを供給するコンプレッサー等の負荷も軽減され、その分設備コストを低減することができる。
さらに、酸素含有ガスの酸素濃度を高く設定したことにより、酸素含有ガスの供給量を減らすことができるので、酸化反応装置内ガス液比の関係から反応圧力を低くできるとともに、酸化反応によって排出されるガスの量を減らすことができる。そして、酸素分圧の関係から酸化反応を迅速に行わせることができる。
【0035】
【発明の実施の形態】
図1〜図3は、本発明に係る有機性廃棄物の処理装置の一実施形態を示すもので、図中符号1が有機性廃棄物の処理装置である。
この有機性廃棄物の処理装置1は、原料となる有機性廃棄物を貯留する原料タンク2と、この原料タンク2から送られる有機性廃棄物を破砕する破砕機3と、この破砕機3で破砕された有機性廃棄物(以下、破砕処理物と略称する。)を加熱する加熱手段と、この加熱手段で加熱された破砕処理物に高圧水蒸気を供給して水熱反応させる水熱反応塔(水熱反応装置)7と、この水熱反応塔7からの水熱反応処理液を高濃度酸素ガス(酸素含有ガス)により酸化反応させる酸化反応塔(酸化反応装置)8と、この酸化反応塔8からの酸化反応処理液とガスとを分離するサイクロン9(気液分離装置)とを備えている。
【0036】
加熱手段は、複数の熱交換器4、5、6からなり、熱交換器4、5の伝熱管は二重管によって構成される一方、熱交換器6の伝熱管6aは蛇管によって構成されている。熱交換器4と破砕機3との間には、破砕機3で破砕された破砕処理物を水熱反応塔7に向けて移送するための原料供給ポンプ10が設けられ、この原料供給ポンプ10の近傍には、破砕処理物にアルカリ剤を注入するアルカリ剤注入ポンプ12が設けられている。
【0037】
原料供給ポンプ10と熱交換器4との間にはpH計16が設けられ、このpH計16による検出に基づいてアルカリ剤の注入量が適宜調整されるようになっている。また、熱交換器5と熱交換器6との間には、破砕処理物の温度を検出する温度検出器17が設けられ、この温度検出器17による検出結果が温度指示制御器(TIC)18に出力されるようになっている。
【0038】
水熱反応塔7は略円筒状に形成され、その下部に、高圧ボイラ11の蒸気管がが液位制御弁(LCV)20を介して接続されている。この水熱反応塔7には、水熱反応塔7内の温度を検出する温度検出器26、圧力を検出する圧力検出器25、液位を検出する液位検出器24が設けられる他、これら検出器による検出に基づき水熱反応塔7内の温度、圧力、液位のそれぞれを制御する温度指示制御器(TIC)27、圧力指示制御器(PIC)28、液位指示制御器(LIC)29が設けられている。
【0039】
酸化反応塔8は略円筒状に形成され、その下部に、高濃度酸素ガス製造装置13の給気管または空気の給気管がコンプレッサー14および逆止弁15を介して接続されている。この高濃度酸素ガス製造装置13は、例えば図3に示すようなPSA(Pressure Swing Adsorption)方式の高濃度酸素ガス製造装置等によって構成されている。
【0040】
この高濃度酸素ガス製造装置は、ゼオライト等の吸着剤が充填された一対の吸着塔51、52を有し、これら吸着塔51、52の上部が電磁弁53を介して相互に連結されている。
この高濃度酸素ガス製造装置においては、ブロワー55によって取り込まれた加圧空気が、フィルタ56および電磁弁57を通って一方の吸着塔51(52)に流入し、この吸着塔51(52)を通過する過程で窒素等の成分が吸着されて酸素濃度が高められ、その大部分が電磁弁58、59および流量計60を通ってチャンバ61内に流入する一方、一部が他方の吸着塔52(51)に流入して、この吸着塔52(51)内の吸着剤に吸着されている窒素等の吸着物を脱着させてから、電磁弁62を通って外部に排出される。すなわち、一方の吸着塔51(52)で高濃度酸素ガスが生成されている間に、他方の吸着塔52(51)で吸着剤が再生される処理が行われ、この処理が電磁弁53、57、58、62による切り換えにより各吸着塔51、52で交互に行われるようになっている。これにより、高濃度の酸素ガスが連続的に製造され、製造された高濃度酸素ガスがチャンバ61内に貯留される。チャンバ61内の高濃度酸素ガスは、コンプレッサー14により吸引されて酸化反応塔8に直接供給される。
【0041】
酸化反応塔8と水熱反応塔7との間には、水熱反応塔7から熱交換器6を経由して酸化反応塔8に至る移送ライン30が設けられ、この移送ライン30上には、水熱反応処理液の流量を調整する圧力制御弁(PCV)21が設けられている。また、酸化反応塔8からサイクロン9に至る排出ライン31上には、酸化反応塔8内の圧力を検出する圧力検出器32が設けられ、この圧力検出器32の検出結果が圧力指示制御器(PIC)33へ送信され、圧力制御弁(PCV)23に出力されるようになっている。
【0042】
また、酸化反応塔8からサイクロン9に至る排出ライン31は途中で、熱交換器5を経由する分岐ライン31aと、熱交換器5を経由しない分岐ライン31bとに2分岐して、熱交換器4の上流側で再び合流する。熱交換器5を経由しない分岐ライン31b上には、両分岐ライン31a、31bを流れる酸化反応処理液の流量配分を調整することにより破砕処理物の温度制御を行う温度制御弁(TCV)22が設けられ、熱交換器4とサイクロン9との間には、サイクロン9に流入する酸化反応処理液の流量を調整する圧力制御弁(PCV)23が設けられている。
【0043】
次に、本発明に係る有機性廃棄物の処理方法の一実施形態について、各工程毎に説明する。
1.破砕工程
し尿や浄化槽汚泥、生ゴミ等のメタン発酵汚泥、生物処理設備にて発生した余剰汚泥等の有機性廃棄物(原料)は、原料タンク2に投入され、この原料タンク2において、全蒸発残留物(TS)濃度2〜5%に希釈調整された後、均一化を図るために所要時間貯留される。
【0044】
その後、濃度調整された有機性廃棄物は、破砕機3により10mm以下の大きさに破砕されて、その一部が撹拌用として原料タンク2に環流される一方、その残りがpH調整されて原料供給ポンプ10に送られる。すなわち、pH計16による検出に基づき、原料供給ポンプ10の吸入側で、破砕処理物のpHが8〜12になるよう水酸化ナトリウムや水酸化カリウム等のアルカリ剤がアルカリ剤注入ポンプ12で適量注入される。これにより、各熱交換器4、5、6や各反応塔7、8内等にスケールが付着することを防止することができるとともに、後述の酸化反応工程において生じる有機酸等を中和することができる。なお、アルカリ剤を原料タンク2内に注入して、原料タンク2内でpH調整を行うようにしてもよい。
【0045】
2.加熱工程
pH調整された破砕処理物は、原料供給ポンプ10により、圧力1.5〜2.5MPaで水熱反応塔7に向けて送り出され、熱交換器4、5を通過する過程で、酸化反応塔8から排出される酸化反応処理液との熱交換により加熱され、熱交換器6を通過する過程で、水熱反応塔7から排出される水熱反応処理液との熱交換により加熱される。また、熱交換器6の入口側では、破砕処理物の温度が温度検出器17により検出され、この検出に基づいて温度指示制御器(TIC)18により温度制御弁(TCV)22が制御されて、破砕処理物の加熱温度が適宜調整される。熱交換器4、5、6により所定温度に加熱された破砕処理物は、水熱反応塔7内に流入する。
【0046】
3.水熱反応工程
水熱反応塔7内において破砕処理物は、温度が190〜220℃、圧力が1.2〜2.3MPa(水熱反応塔7内の液体が液相を保持する圧力)、反応時間が30〜90minの条件で水熱処理される。
この水熱反応塔7には、環流式の高圧ボイラ11等により製造された高圧水蒸気が液位制御弁20を介して塔下部から供給され、この高圧水蒸気の吹き込みによって、水熱反応塔7内の液体が撹拌されて水熱反応が促進されるようになっている。また、水熱反応塔7内の上部には、液化前の水蒸気により蒸気層7aが形成され、この蒸気層7aに接する液面の高さ(液位)がほぼ一定に保たれるように、高圧水蒸気の供給流量が液位制御弁(LCV)20により調整されている。
【0047】
水熱反応塔7内の圧力、温度および液位は、それぞれ圧力検出器25、温度検出器26、液位検出器24によって検出され、それら検出結果に基づいてPID制御が行われることにより、各々が設定値に保たれるようになっている。すなわち、圧力検出器25による検出結果に基づき圧力指示制御器(PIC)28によって圧力制御弁(PCV)21が操作され、これにより、水熱反応塔7内の圧力が調整される。また、温度検出器26および液位検出器24による検出に基づき温度指示制御器(TIC)27と液位指示制御器(LIC)29の双方によって液位制御弁(LCV)20が操作され、これにより、水熱反応塔7内の温度および液位が調整される。これらの制御操作は、圧力、温度、液位の順序で行われる。
【0048】
なお、水熱反応塔7には、圧力指示制御器(PIC)28が異常な圧を示した場合(例えば、水熱反応塔7内の圧力が設計圧以上となった場合)に、液位制御弁(LCV)20を即時に閉状態に変換して、水熱反応塔7への高圧水蒸気の供給を停止させるインターロック回路が設けられ、このインターロック回路によって水熱反応塔7の運転時における安全性が高められている。
水熱反応塔7内に流入した破砕処理物は、水熱反応により、その中の高分子成分が低分子となって一部可溶化されるとともに、ビニール類、プラスチック類等の夾雑物が可溶化あるいは分解される。
【0049】
4.酸化反応工程
水熱反応により可溶化された水熱反応処理液は、移送ライン30を通って熱交換器6に導かれ、この熱交換器6を通過する過程で、破砕処理物との熱交換により冷却され、その後、圧力制御弁(PCV)によって1MPa未満に降圧されてから酸化反応塔8内に流入する。
酸化反応塔8内において水熱反応処理液は、温度が150〜180℃、圧力が1MPa未満(酸化反応塔8内の液体が液相を保持する圧力)、反応時間が30〜90minの条件で酸化処理される。
【0050】
この酸化反応塔8には、高濃度酸素ガス製造装置13により製造された高濃度酸素ガス(酸素含有ガス)がコンプレッサー14により塔下部から供給され、この高濃度酸素ガスの吹き込みによって、酸化反応塔8内の液体が撹拌されて酸化反応が促進されるようになっている。ただし、水熱反応処理液に含まれる有機成分が分解まで行われないように、高濃度酸素ガスの供給量が適量に調整されている。
高濃度酸素ガスの酸素濃度は21〜75vol%であり、好ましくは50〜60vol%である。このように酸素含有ガスとして高濃度酸素ガスを用いた場合には、(1)空気を使用する場合に比べ吹き込み量が少なくなるので飽和水蒸気圧等の関係から酸化反応塔8内の絶対ガス量が少なくなり、反応に適した状態にガス液比が改善され反応圧力を低くできる、(2)酸素分圧が高くなることから酸化反応を迅速に行うことができる、(3)酸化反応塔8から排出されるガスの処理量が少なくなる等の利点が得られる。
【0051】
酸化反応塔8内の圧力は、圧力検出器32によって検出され、この検出に基づき圧力指示制御器(PIC)33により圧力制御弁(PCV)23が操作されることによって、設定値に保たれるようになっている。
なお、酸化反応塔8には、圧力指示制御器(PIC)33が異常な圧を示した場合(例えば、酸化反応塔8内の圧力が設計圧以上となった場合)に、酸化反応塔8への高濃度酸素ガスの供給等を停止させるインターロック回路が設けられ、このインターロック回路によって酸化反応塔8の運転時における安全性が高められている。
酸化反応塔8内に流入した水熱反応処理液は、酸化反応により、その中の有機成分が可溶化して減量化されるとともに、脱水性等が大幅に改善される。
【0052】
5.気液分離工程
酸化反応塔8から排出された酸化反応処理液とガスとの混合物は、排出ライン31を通って熱交換器4、5に導かれ、この熱交換器4、5を通過する過程で、破砕処理物との熱交換により冷却され、その後、圧力制御弁(PCV)23によって大気圧まで降圧されてからサイクロン9に流入する。
サイクロン9では、上記混合物の気液分離が行われ、酸化反応処理ガスは、そのまま生物処理槽等の撹拌用に用いられるか、あるいは脱臭処理設備で適正な処理が施された後大気に放出される。
【0053】
一方、酸化反応処理液は、例えば図2(a)に示すように、そのままメタン発酵槽41に移送されて、メタン発酵の原料として用いられる。メタン発酵により発生したバイオガスは回収される一方、メタン発酵槽41でメタン発酵を終えた消化汚泥は脱水装置42で脱水分離液と脱水汚泥とに分離される。脱水汚泥は生物処理槽等に移送され、脱水分離液は堆肥化装置43でコンポスト(堆肥)に加工される。
【0054】
なお、酸化反応処理液の処理方法は、上記処理方法に限られるものではなく、利用者の要望に応じて、例えば図2(b)に示すように、酸化反応処理液を固液分離装置44で分離液と分離汚泥とに分離してから、分離汚泥を脱水装置42で処理し、分離液をメタン発酵槽41で処理するようにしてもよいし、図2(c)に示すように、固液分離装置44からの分離液と脱水装置42からの脱水分離液とをメタン発酵槽41ではなく生物処理槽等に移送したり、それら分離液を混合したものをそのまま液体肥料として用いたりするようにしてもよい。固液分離装置44は、重力沈降方式、機械分離方式、膜分離方式など、如何なる形式のものであってもよい。また、脱水装置42には、フィルタープレス、ベルトプレス、遠心分離機等、周知の脱水装置を用いることができる。
【0055】
以上のように、上記有機性廃棄物の処理方法によれば、有機性廃棄物に含まれる夾雑物を水熱反応により可溶化させてから酸化反応させるようにしたので、有機性廃棄物から製造されるコンポスト等の製品にビニール類やプラスチック類等の夾雑物が混入することを防止でき、それら製品の品質を向上させることが可能になる。
また、有機性廃棄物に含まれる夾雑物を水熱反応により可溶化させてから酸化反応させるようにしたことで、酸化温度が180℃以下のLPO(低圧酸化)法を採用することが可能になり、その結果として、有機性廃棄物の減量化や脱水性の向上等を図ることができる。さらに、酸化反応処理液からのメタンガスの回収量を増加させて、炭酸ガスの排出量を減少させることもできる。
【0056】
また、酸化反応の処理を1MPa未満で行うようにしたので、「高圧ガス保安法」の適用対象外となる。水熱反応工程においても、水熱反応塔7に高圧水蒸気のみを供給し、無酸素・加圧状態で水熱反応を行うようにしたので、反応圧力が1MPa以上であっても、「高圧ガス保安法」の適用対象外となる。したがって、人件費等のランニングコストを抑制することが可能になる。
【0057】
また、高圧水蒸気を利用して破砕処理物を水熱反応させるようにしたので、水熱反応の処理効率を高めることができるとともに、水熱反応の処理を連続的にかつ安定的に行うことができる。
また、水熱反応および酸化反応の各処理がいずれも220℃以下で行われることから、ダイオキシン類の発生を極力防止することができる。
また、水熱反応工程と酸化反応工程で発生する反応熱を利用して、破砕処理物を加熱するようにしたので、それら反応熱を有効に活用することができるとともに、破砕処理物の加熱に要するコストを低減することができる。
また、酸化反応処理液をコンポストやメタンガス等の原料に用いるようにしたので、有機性廃棄物を無駄にすることなく資源化して社会に循環させることができる。
さらに、熱交換器4、5、6の伝熱管を蛇管または二重管で構成したので、伝熱管に破砕処理物が詰まって伝熱管が閉塞される等の問題が生じることを防止することができる。
【0058】
【発明の効果】
以上説明したように、本発明によれば、有機性廃棄物から製造されるコンポスト等の製品にビニール類やプラスチック類等の夾雑物が混入することを防止でき、それら製品の品質を向上させることが可能になる。これにより、有機性廃棄物から製造されるコンポスト等の製品の需要を喚起することができ、資源循環型社会の形成に寄与することができる。しかも、人件費や法定検査費等のランニングコストを低減することができる。
【図面の簡単な説明】
【図1】 本発明に係る有機性廃棄物の処理装置の一実施形態を示す概略構成図である。
図2】 図1の有機性廃棄物の処理装置で発生する酸化反応処理液の処理フローを示す図である。
図3】 図1の有機性廃棄物の処理装置に備わる高濃度酸素ガス製造装置の一例を示す概略構成図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates night soil, septic tank sludge, the process how the organic waste such as food scraps.
[0002]
[Prior art]
Human waste, septic tank sludge, garbage, domestic wastewater, etc. discharged from homes are treated in various ways. These are called general waste, and until now, only sanitary treatment for the purpose of environmental conservation has been performed. However, in recent years, the formation of a resource recycling society has been screamed, and it is strongly requested that these waste treatment facilities not only end with mere hygiene, but also be recycled into society. ing.
In response to such social conditions, for example, in processing facilities that process organic waste such as human waste, septic tank sludge, and garbage, compost (compost), methane gas, carbide, molten slag, etc. To produce waste and turn it into a resource.
[0003]
[Problems to be solved by the invention]
However, organic waste such as garbage often contains contaminants such as vinyls and plastics, and there is no problem when producing carbides, molten slag, etc. from such organic wastes. However, when compost or the like is manufactured, there is a problem in that the impurities remain without being completely processed and the quality of the product is deteriorated.
[0004]
As one method for solving the above problems, a wet oxidation method is known. The wet oxidation method is a method in which organic waste is pulverized and mixed with water and put in a container, which is oxidatively decomposed at high temperature and high pressure (pressure at which water maintains a liquid phase). According to this wet oxidation method, the organic waste itself can be oxidatively decomposed, and the impurities can be dissolved and decomposed without removing the impurities contained in the organic waste. , It has the advantage that it can prevent contamination from entering the product.
[0005]
This wet oxidation method includes an HPO (high pressure oxidation) method with an oxidation temperature of 260 ° C. or higher, an MPO (medium pressure oxidation) method with an oxidation temperature of 180 to 260 ° C., and an LPO (low pressure oxidation) method with an oxidation temperature of 180 ° C. or lower. Among them, according to the HPO method and the MPO method, impurities such as vinyls and plastics contained in organic waste can be solubilized and completely treated.
However, in the HPO method and the MPO method, the oxidation reaction process is performed in an aerobic state with a pressure of 1 MPa or more. There is a problem in that it is necessary to make a manager resident for the operation of the equipment, which increases the running cost.
On the other hand, in the LPO method, since the above-mentioned measures are not necessary, it becomes possible to reduce the running cost. However, with the diversification of contaminants year by year, the number of contaminants that cannot be solubilized, such as polypropylene, has increased. However, this method alone has a problem that it cannot prevent contamination of products such as compost.
[0006]
The present invention has been made in view of such circumstances, and is a treatment of organic waste that can prevent contamination such as vinyls and plastics from being mixed into products such as compost manufactured from organic waste. an object of the present invention is to provide an mETHODS.
[0007]
[Means for Solving the Problems]
The organic waste processing method according to claim 1 is a hydrothermal reaction step in which high pressure steam is supplied to the organic waste to cause a hydrothermal reaction, and a hydrothermal reaction generated by the hydrothermal reaction. and the oxidation reaction step of the oxidation reaction of the treatment solution with oxygen-containing gas, e Bei a gas-liquid separation step of separating the oxidation reaction treatment liquid and gas obtained by the oxidation reaction, the process temperature of the hydrothermal reaction 190 to 220 ° C., it is characterized in that it has 1 to 3 MPa pressure, the reaction time 30 to 90 min.
[0008]
The organic waste processing method according to the present invention described in claim 2 includes a hydrothermal reaction step in which high-pressure steam is supplied to the organic waste to cause a hydrothermal reaction, and a hydrothermal reaction generated by the hydrothermal reaction. An oxidation reaction step of oxidizing the treatment liquid with an oxygen-containing gas; and a gas-liquid separation step of separating the oxidation reaction treatment liquid obtained by the oxidation reaction and the gas, and a treatment temperature of the oxidation reaction of 160 to 180. C., pressure of 0.6 to 1 MPa , reaction time of 30 to 90 min , and oxygen concentration of the oxygen-containing gas of 21 to 75 vol %.
[0009]
According to the method for treating organic waste according to the first or second aspect of the present invention, it becomes possible to oxidize the impurities contained in the organic waste after solubilizing them by hydrothermal reaction. . Therefore, it is possible to prevent foreign substances such as vinyls and plastics from being mixed into products such as compost manufactured from organic waste, and to improve the quality of these products.
In addition, it is possible to reduce the temperature and pressure setting conditions during the oxidation reaction by solubilizing the impurities contained in the organic waste and then oxidizing it after hydrothermal reaction. As a result, it is possible to reduce the amount of organic waste and improve the dewaterability. Furthermore, the amount of methane gas recovered from the oxidation reaction treatment liquid can be increased, and the amount of carbon dioxide discharged can be reduced.
In addition, since the organic waste is hydrothermally reacted using high-pressure steam, the hydrothermal reaction treatment efficiency can be increased and the hydrothermal reaction treatment can be performed continuously and stably. Can do.
[0011]
Furthermore, according to the invention described in claim 1 , nylon contained in organic waste is obtained by setting the hydrothermal reaction temperature to 190 to 220 ° C., the pressure to 1 to 3 MPa, and the reaction time to 30 to 90 min. In addition, impurities such as polypropylene, acetate and vinyon can be solubilized, and the hydrothermal reaction treatment can be stabilized.
In addition, since the hydrothermal reaction is performed at 190 to 220 ° C., generation of dioxins can be prevented as much as possible.
Note that only high-pressure steam is supplied to the hydrothermal reactor and the hydrothermal reaction is carried out in an oxygen-free and pressurized state. Therefore, even if the reaction pressure is 1 MPa or more, the “high-pressure gas safety method” is applied. It becomes out of scope and can reduce running costs such as labor costs and legal inspection costs.
[0015]
Moreover, according to invention of Claim 2 , it is contained in a hydrothermal reaction processing liquid by the processing temperature of oxidation reaction being 160-180 degreeC, the pressure being 0.6-1 MPa, and reaction time being 30-90 minutes. The organic component can be further solubilized under aerobic conditions. And since the process of an oxidation reaction is performed at 160-180 degreeC, generation | occurrence | production of dioxins can be prevented as much as possible.
In addition, since the oxidation reaction is performed at less than 1 MPa, the “high pressure gas safety law” is not applicable, and it is possible to reduce running costs such as personnel costs. Furthermore, the load on the compressor or the like for supplying the oxygen-containing gas is reduced, and the equipment cost can be reduced accordingly.
Furthermore, since the supply amount of the oxygen-containing gas can be reduced by setting the oxygen concentration of the oxygen-containing gas high, the reaction pressure can be lowered due to the gas-liquid ratio in the oxidation reaction apparatus, and exhausted by the oxidation reaction. This reduces the amount of gas used. And an oxidation reaction can be rapidly performed from the relationship of oxygen partial pressure.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an embodiment of an organic waste processing apparatus according to the present invention, and reference numeral 1 in the figure denotes an organic waste processing apparatus.
The organic waste processing apparatus 1 includes a raw material tank 2 that stores organic waste as a raw material, a crusher 3 that crushes organic waste sent from the raw material tank 2, and a crusher 3. Heating means for heating crushed organic waste (hereinafter abbreviated as crushed treated product), and hydrothermal reaction tower for supplying hydrothermal reaction by supplying high-pressure steam to the crushed treated product heated by the heating means. (Hydrothermal reactor) 7, an oxidation reaction tower (oxidation reactor) 8 for oxidizing the hydrothermal reaction treatment liquid from the hydrothermal reactor 7 with high-concentration oxygen gas (oxygen-containing gas), and this oxidation reaction A cyclone 9 (gas-liquid separator) that separates the oxidation reaction treatment liquid and gas from the tower 8 is provided.
[0036]
The heating means is composed of a plurality of heat exchangers 4, 5, 6, and the heat transfer tubes of the heat exchangers 4, 5 are configured by double tubes, while the heat transfer tube 6 a of the heat exchanger 6 is configured by a serpentine tube. Yes. A raw material supply pump 10 is provided between the heat exchanger 4 and the crusher 3 to transfer the crushed material crushed by the crusher 3 toward the hydrothermal reaction tower 7. Is provided with an alkaline agent injection pump 12 for injecting an alkaline agent into the crushed material.
[0037]
A pH meter 16 is provided between the raw material supply pump 10 and the heat exchanger 4, and the injection amount of the alkaline agent is appropriately adjusted based on detection by the pH meter 16. A temperature detector 17 for detecting the temperature of the crushed material is provided between the heat exchanger 5 and the heat exchanger 6, and the detection result by the temperature detector 17 is a temperature indication controller (TIC) 18. Is output.
[0038]
The hydrothermal reaction tower 7 is formed in a substantially cylindrical shape, and a steam pipe of a high-pressure boiler 11 is connected to the lower part thereof via a liquid level control valve (LCV) 20. The hydrothermal reaction tower 7 is provided with a temperature detector 26 for detecting the temperature in the hydrothermal reaction tower 7, a pressure detector 25 for detecting pressure, and a liquid level detector 24 for detecting liquid level. A temperature indication controller (TIC) 27, a pressure indication controller (PIC) 28, and a liquid level indication controller (LIC) that control the temperature, pressure, and liquid level in the hydrothermal reaction tower 7 based on detection by the detector. 29 is provided.
[0039]
The oxidation reaction tower 8 is formed in a substantially cylindrical shape, and an air supply pipe or an air supply pipe of the high-concentration oxygen gas production apparatus 13 is connected to the lower part thereof via a compressor 14 and a check valve 15. The high concentration of oxygen gas production apparatus 13 is constituted by, for example, high-concentration oxygen gas manufacturing apparatus of PSA (Pressure Swing Adsorption) system as shown in FIG.
[0040]
This high-concentration oxygen gas production apparatus has a pair of adsorption towers 51 and 52 filled with an adsorbent such as zeolite, and the upper parts of these adsorption towers 51 and 52 are connected to each other via an electromagnetic valve 53. .
In this high-concentration oxygen gas production apparatus, the pressurized air taken in by the blower 55 flows into one adsorption tower 51 (52) through the filter 56 and the electromagnetic valve 57, and this adsorption tower 51 (52) is passed through. In the process of passing, components such as nitrogen are adsorbed to increase the oxygen concentration, most of which flows into the chamber 61 through the electromagnetic valves 58 and 59 and the flow meter 60, while a part thereof is the other adsorption tower 52. The adsorbent such as nitrogen adsorbed by the adsorbent in the adsorption tower 52 (51) is desorbed and then discharged to the outside through the electromagnetic valve 62. That is, while the high-concentration oxygen gas is generated in one adsorption tower 51 (52), a process is performed in which the adsorbent is regenerated in the other adsorption tower 52 (51). The adsorption towers 51 and 52 are alternately operated by switching by 57, 58 and 62. Thereby, high-concentration oxygen gas is continuously produced, and the produced high-concentration oxygen gas is stored in the chamber 61. The high-concentration oxygen gas in the chamber 61 is sucked by the compressor 14 and directly supplied to the oxidation reaction tower 8.
[0041]
A transfer line 30 is provided between the oxidation reaction tower 8 and the hydrothermal reaction tower 7 from the hydrothermal reaction tower 7 via the heat exchanger 6 to the oxidation reaction tower 8. A pressure control valve (PCV) 21 for adjusting the flow rate of the hydrothermal reaction treatment liquid is provided. A pressure detector 32 for detecting the pressure in the oxidation reaction tower 8 is provided on the discharge line 31 from the oxidation reaction tower 8 to the cyclone 9, and the detection result of the pressure detector 32 is a pressure indication controller ( PIC) 33 and output to the pressure control valve (PCV) 23.
[0042]
In addition, the discharge line 31 from the oxidation reaction tower 8 to the cyclone 9 is branched into a branch line 31a that passes through the heat exchanger 5 and a branch line 31b that does not pass through the heat exchanger 5, and the heat exchanger 4 merges again on the upstream side. On the branch line 31b not passing through the heat exchanger 5, there is a temperature control valve (TCV) 22 that controls the temperature of the crushed material by adjusting the flow rate distribution of the oxidation reaction treatment liquid flowing through both the branch lines 31a and 31b. A pressure control valve (PCV) 23 is provided between the heat exchanger 4 and the cyclone 9 to adjust the flow rate of the oxidation reaction treatment liquid flowing into the cyclone 9.
[0043]
Next, an embodiment of the organic waste processing method according to the present invention will be described for each step.
1. Organic waste (raw materials) such as urine, septic tank sludge, methane fermentation sludge such as raw garbage, surplus sludge generated in biological treatment facilities, etc., is put into the raw material tank 2 and is completely evaporated in this raw material tank 2 After the dilution (residue (TS) concentration is adjusted to 2 to 5%), it is stored for a required time for homogenization.
[0044]
Thereafter, the organic waste whose concentration has been adjusted is crushed to a size of 10 mm or less by the crusher 3, and a part of the organic waste is circulated to the raw material tank 2 for stirring, while the rest is adjusted to pH. It is sent to the supply pump 10. That is, based on the detection by the pH meter 16, an appropriate amount of alkali agent such as sodium hydroxide or potassium hydroxide is added by the alkaline agent injection pump 12 so that the pH of the crushed material is 8 to 12 on the suction side of the raw material supply pump 10. Injected. Thereby, it is possible to prevent the scale from adhering to each of the heat exchangers 4, 5, 6 and the reaction towers 7, 8, etc. Can do. Note that an alkaline agent may be injected into the raw material tank 2 to adjust pH in the raw material tank 2.
[0045]
2. The crushed material whose pH is adjusted in the heating process is sent out toward the hydrothermal reaction tower 7 by the raw material supply pump 10 at a pressure of 1.5 to 2.5 MPa, and is oxidized in the process of passing through the heat exchangers 4 and 5. Heated by heat exchange with the oxidation reaction treatment liquid discharged from the reaction tower 8, and heated by heat exchange with the hydrothermal reaction treatment liquid discharged from the hydrothermal reaction tower 7 in the process of passing through the heat exchanger 6. The On the inlet side of the heat exchanger 6, the temperature of the crushed material is detected by a temperature detector 17, and a temperature control valve (TCV) 22 is controlled by a temperature indication controller (TIC) 18 based on this detection. The heating temperature of the crushed product is adjusted as appropriate. The crushed material heated to a predetermined temperature by the heat exchangers 4, 5, 6 flows into the hydrothermal reaction tower 7.
[0046]
3. Hydrothermal reaction step In the hydrothermal reaction tower 7, the crushed product has a temperature of 190 to 220 ° C. and a pressure of 1.2 to 2.3 MPa (pressure at which the liquid in the hydrothermal reaction tower 7 maintains the liquid phase), Hydrothermal treatment is performed under a reaction time of 30 to 90 min.
The hydrothermal reaction tower 7 is supplied with high-pressure steam produced by a circulating high-pressure boiler 11 or the like from the lower part of the tower via a liquid level control valve 20, and the high-pressure steam is blown into the hydrothermal reaction tower 7. The liquid is agitated to promote the hydrothermal reaction. Further, in the upper part of the hydrothermal reaction tower 7, a vapor layer 7a is formed by water vapor before liquefaction, and the height (liquid level) of the liquid surface in contact with the vapor layer 7a is kept substantially constant. The supply flow rate of high-pressure steam is adjusted by a liquid level control valve (LCV) 20.
[0047]
The pressure, temperature, and liquid level in the hydrothermal reaction tower 7 are detected by a pressure detector 25, a temperature detector 26, and a liquid level detector 24, respectively, and PID control is performed based on the detection results, respectively. Is kept at the set value. That is, the pressure control valve (PCV) 21 is operated by the pressure indication controller (PIC) 28 based on the detection result by the pressure detector 25, thereby adjusting the pressure in the hydrothermal reaction tower 7. Further, based on the detection by the temperature detector 26 and the liquid level detector 24, the liquid level control valve (LCV) 20 is operated by both the temperature indicating controller (TIC) 27 and the liquid level indicating controller (LIC) 29. Thus, the temperature and liquid level in the hydrothermal reaction tower 7 are adjusted. These control operations are performed in the order of pressure, temperature, and liquid level.
[0048]
In the hydrothermal reaction tower 7, when the pressure indication controller (PIC) 28 shows an abnormal pressure (for example, when the pressure in the hydrothermal reaction tower 7 exceeds the design pressure), the liquid level An interlock circuit is provided that immediately converts the control valve (LCV) 20 to the closed state and stops the supply of high-pressure steam to the hydrothermal reaction tower 7, and this interlock circuit causes the hydrothermal reaction tower 7 to operate. The safety in is improved.
The crushed material that has flowed into the hydrothermal reaction tower 7 is partially solubilized by the hydrothermal reaction, with the polymer component in it becoming a low molecule, and it is also possible to contain contaminants such as vinyls and plastics. Solubilized or decomposed.
[0049]
4). Oxidation reaction process Hydrothermal reaction treatment liquid solubilized by hydrothermal reaction is guided to the heat exchanger 6 through the transfer line 30, and in the process of passing through the heat exchanger 6, heat exchange with the crushed material is performed. After that, the pressure is reduced to less than 1 MPa by the pressure control valve (PCV), and then flows into the oxidation reaction tower 8.
In the oxidation reaction tower 8, the hydrothermal reaction treatment liquid has a temperature of 150 to 180 ° C., a pressure of less than 1 MPa (pressure at which the liquid in the oxidation reaction tower 8 maintains the liquid phase), and a reaction time of 30 to 90 min. Oxidized.
[0050]
The oxidation reaction tower 8 is supplied with high-concentration oxygen gas (oxygen-containing gas) produced by the high-concentration oxygen gas production apparatus 13 from the lower part of the tower by the compressor 14, and the high-concentration oxygen gas is blown into the oxidation reaction tower. The liquid in 8 is agitated to promote the oxidation reaction. However, the supply amount of the high-concentration oxygen gas is adjusted to an appropriate amount so that the organic component contained in the hydrothermal reaction treatment solution is not decomposed.
The oxygen concentration of the high-concentration oxygen gas is 21 to 75 vol%, preferably 50 to 60 vol%. When high-concentration oxygen gas is used as the oxygen-containing gas as described above, (1) the amount of blown gas is smaller than when air is used, so the absolute gas amount in the oxidation reaction column 8 is related to the saturated water vapor pressure. The gas-liquid ratio is improved in a state suitable for the reaction and the reaction pressure can be lowered. (2) The oxygen partial pressure is increased, so that the oxidation reaction can be performed rapidly. (3) The oxidation reaction column 8 Advantages such as a reduction in the amount of gas discharged from the gas can be obtained.
[0051]
The pressure in the oxidation reaction tower 8 is detected by the pressure detector 32, and the pressure control valve (PCV) 23 is operated by the pressure indication controller (PIC) 33 based on this detection, so that the set value is maintained. It is like that.
In the oxidation reaction column 8, when the pressure indication controller (PIC) 33 shows an abnormal pressure (for example, when the pressure in the oxidation reaction column 8 becomes higher than the design pressure), the oxidation reaction column 8 An interlock circuit for stopping the supply of the high-concentration oxygen gas to the gas is provided, and the safety during operation of the oxidation reaction tower 8 is enhanced by this interlock circuit.
The hydrothermal reaction treatment liquid which has flowed into the oxidation reaction tower 8 is solubilized and reduced in amount by the oxidation reaction, and the dehydrating property and the like are greatly improved.
[0052]
5). Gas-liquid separation step The mixture of the oxidation reaction treatment liquid and gas discharged from the oxidation reaction tower 8 is guided to the heat exchangers 4 and 5 through the discharge line 31 and passes through the heat exchangers 4 and 5. Then, it is cooled by heat exchange with the crushed material, and after that, the pressure is reduced to atmospheric pressure by the pressure control valve (PCV) 23 and then flows into the cyclone 9.
In the cyclone 9, gas-liquid separation of the above mixture is performed, and the oxidation reaction treatment gas is used as it is for stirring in a biological treatment tank or the like, or after being appropriately treated in a deodorization treatment facility, released to the atmosphere. The
[0053]
On the other hand, as shown in FIG. 2A , for example, the oxidation reaction treatment liquid is directly transferred to the methane fermentation tank 41 and used as a raw material for methane fermentation. Biogas generated by methane fermentation is recovered, while digested sludge that has finished methane fermentation in the methane fermentation tank 41 is separated into a dehydrated separation liquid and a dehydrated sludge by the dehydrator 42. The dehydrated sludge is transferred to a biological treatment tank or the like, and the dehydrated separation liquid is processed into compost (compost) by the composting device 43.
[0054]
Note that the treatment method of the oxidation reaction treatment liquid is not limited to the above treatment method, and the oxidation reaction treatment liquid is removed from the solid-liquid separation device 44 according to the user's request, for example, as shown in FIG. After separating into separated liquid and separated sludge, the separated sludge may be treated with a dehydrator 42, and the separated liquid may be treated with a methane fermentation tank 41, as shown in FIG. The separated liquid from the solid-liquid separator 44 and the dehydrated separated liquid from the dehydrator 42 are transferred to a biological treatment tank or the like instead of the methane fermentation tank 41, or a mixture of these separated liquids is used as it is as a liquid fertilizer. You may do it. The solid-liquid separation device 44 may be of any type such as a gravity sedimentation method, a mechanical separation method, or a membrane separation method. As the dehydrating device 42, a known dehydrating device such as a filter press, a belt press, or a centrifugal separator can be used.
[0055]
As described above, according to the method for treating organic waste, since the impurities contained in the organic waste are solubilized by hydrothermal reaction and then oxidized, the organic waste is produced from the organic waste. It is possible to prevent contamination such as vinyls and plastics from being mixed into products such as compost, and to improve the quality of these products.
In addition, it is possible to adopt an LPO (low pressure oxidation) method with an oxidation temperature of 180 ° C. or less by making the impurities contained in organic waste solubilized by hydrothermal reaction and then causing the oxidation reaction. As a result, it is possible to reduce the amount of organic waste and improve the dewaterability. Furthermore, the amount of methane gas recovered from the oxidation reaction treatment liquid can be increased, and the amount of carbon dioxide discharged can be reduced.
[0056]
Further, since the oxidation reaction process is performed at less than 1 MPa, the “high pressure gas safety law” is not applicable. Also in the hydrothermal reaction step, only high-pressure steam is supplied to the hydrothermal reaction tower 7 and the hydrothermal reaction is carried out in an oxygen-free and pressurized state. Therefore, even if the reaction pressure is 1 MPa or more, “high-pressure gas” The “Safety Law” is not applicable. Therefore, running costs such as personnel costs can be suppressed.
[0057]
In addition, since the crushed material is subjected to hydrothermal reaction using high-pressure steam, the hydrothermal reaction treatment efficiency can be increased and the hydrothermal reaction treatment can be performed continuously and stably. it can.
Moreover, since each process of a hydrothermal reaction and an oxidation reaction is performed at 220 degrees C or less, generation | occurrence | production of dioxins can be prevented as much as possible.
In addition, since the crushed product is heated using the reaction heat generated in the hydrothermal reaction step and the oxidation reaction step, the reaction heat can be used effectively, and the crushed product can be heated. Costs required can be reduced.
Further, since the oxidation reaction treatment liquid is used as a raw material such as compost or methane gas, the organic waste can be recycled and recycled to society without wasting it.
Furthermore, since the heat transfer tubes of the heat exchangers 4, 5, and 6 are formed of a serpentine tube or a double tube, it is possible to prevent problems such as clogging of the heat transfer tubes with clogged materials and blocking the heat transfer tubes. it can.
[0058]
【The invention's effect】
As described above, according to the present invention, it is possible to prevent foreign substances such as vinyls and plastics from being mixed into products such as compost produced from organic waste, and to improve the quality of those products. Is possible. Thereby, demand for products such as compost produced from organic waste can be stimulated, and it can contribute to the formation of a resource recycling society. Moreover, running costs such as labor costs and legal inspection costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of an organic waste processing apparatus according to the present invention.
FIG. 2 is a diagram showing a processing flow of an oxidation reaction processing solution generated in the organic waste processing apparatus of FIG. 1;
FIG. 3 is a schematic configuration diagram showing an example of a high-concentration oxygen gas production apparatus provided in the organic waste treatment apparatus of FIG.

Claims (2)

有機性廃棄物に高圧水蒸気を供給して水熱反応させる水熱反応工程と、
上記水熱反応によって生成した水熱反応処理液を酸素含有ガスによって酸化反応させる酸化反応工程と、
上記酸化反応によって得られた酸化反応処理液とガスとを分離する気液分離工程とを備え、
上記水熱反応の処理温度を190〜220℃、圧力を1〜3 MPa 、反応時間を30〜90 min としたことを特徴とする有機性廃棄物の処理方法。
A hydrothermal reaction step in which high-pressure steam is supplied to organic waste to cause hydrothermal reaction;
An oxidation reaction step of oxidizing the hydrothermal reaction solution generated by the hydrothermal reaction with an oxygen-containing gas;
Bei example a gas-liquid separation step of separating the oxidation reaction treatment liquid and gas obtained by the oxidation reaction,
Processing method of the water treatment temperature 190 to 220 ° C. of thermal reaction, 1 to 3 MPa pressure, organic waste, characterized in that the reaction time was 30 to 90 min.
有機性廃棄物に高圧水蒸気を供給して水熱反応させる水熱反応工程と、A hydrothermal reaction step in which high-pressure steam is supplied to organic waste to cause hydrothermal reaction;
上記水熱反応によって生成した水熱反応処理液を酸素含有ガスによって酸化反応させる酸化反応工程と、An oxidation reaction step of oxidizing the hydrothermal reaction treatment liquid generated by the hydrothermal reaction with an oxygen-containing gas;
上記酸化反応によって得られた酸化反応処理液とガスとを分離する気液分離工程とを備え、A gas-liquid separation step for separating the oxidation reaction treatment liquid obtained by the oxidation reaction and the gas,
上記酸化反応の処理温度を160〜180℃、圧力を0.6〜1The treatment temperature for the oxidation reaction is 160 to 180 ° C., and the pressure is 0.6 to 1. MPaMPa 、反応時間を30〜90, Reaction time 30-90 minmin とし、かつ上記酸素含有ガスの酸素濃度を21〜75And the oxygen concentration of the oxygen-containing gas is 21 to 75. volvol %としたことを特徴とする有機性廃棄物の処理方法。% Organic waste processing method.
JP2002165311A 2002-06-06 2002-06-06 Organic waste treatment methods Expired - Fee Related JP3963124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165311A JP3963124B2 (en) 2002-06-06 2002-06-06 Organic waste treatment methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165311A JP3963124B2 (en) 2002-06-06 2002-06-06 Organic waste treatment methods

Publications (2)

Publication Number Publication Date
JP2004008912A JP2004008912A (en) 2004-01-15
JP3963124B2 true JP3963124B2 (en) 2007-08-22

Family

ID=30433178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165311A Expired - Fee Related JP3963124B2 (en) 2002-06-06 2002-06-06 Organic waste treatment methods

Country Status (1)

Country Link
JP (1) JP3963124B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020120A (en) * 2018-08-31 2018-12-18 四川深蓝环保科技有限公司 A kind of sludge sand removing process and system
EP3753999A1 (en) 2019-06-19 2020-12-23 The Hong Kong Research Institute of Textiles and Apparel Limited Semi-continous hydrothermal reaction system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751977B2 (en) * 2005-07-04 2011-08-17 エコマテリアル株式会社 Organic waste treatment equipment
JPWO2007032163A1 (en) * 2005-09-16 2009-03-19 株式会社カラサワ ファイン Organic waste oxidation treatment method and organic waste oxidation treatment equipment
JP2007136293A (en) * 2005-11-16 2007-06-07 Hitachi Zosen Corp Method for treating liquid organic waste material
JP2008000645A (en) * 2006-06-20 2008-01-10 Shigeki Matsumoto Treatment method and device of organic waste using wet oxidation method
JP5030275B2 (en) * 2007-03-29 2012-09-19 国立大学法人広島大学 Biomass gasification power generation system
EP2107108A1 (en) * 2008-03-31 2009-10-07 KRÜGER Off-Shore A/S An apparatus and a method for continuous thermal hydrolysis of biological material
ES2339321B1 (en) * 2008-11-17 2011-03-31 Ingelia, S.L. PRESSURE AND TEMPERATURE CONTROL SYSTEM OF A REACTOR OR SET OF CHEMICAL REACTORS.
JP2012135705A (en) * 2010-12-24 2012-07-19 Mitsubishi Kakoki Kaisha Ltd Method and apparatus for anaerobic digestion treatment
SE540137C2 (en) * 2016-06-23 2018-04-10 C Green Tech Ab Method for oxidation of a liquid phase in a hydrothermal carbonization process
SE541813C2 (en) * 2017-12-21 2019-12-17 C Green Tech Ab Hydrothermal carbonization of sludge including recycling of a wet-oxidized fraction
JP6712817B1 (en) * 2019-02-27 2020-06-24 株式会社伸光テクノス Waste biogasification treatment device and waste biogasification treatment method
JP7300902B2 (en) * 2019-06-19 2023-06-30 清水建設株式会社 Apparatus and method for treating nitrogen-containing organic matter
CN111253032A (en) * 2020-03-11 2020-06-09 成都科衡环保技术有限公司 Device and process for harmless treatment of waste oil-based mud
CN115666805A (en) * 2020-05-22 2023-01-31 伸光科技株式会社 Waste biomass gasification treatment device and waste biomass gasification treatment method
CN115557656A (en) * 2022-10-24 2023-01-03 上海大学 Degradation method of polycondensation type micro-plastic in sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020120A (en) * 2018-08-31 2018-12-18 四川深蓝环保科技有限公司 A kind of sludge sand removing process and system
EP3753999A1 (en) 2019-06-19 2020-12-23 The Hong Kong Research Institute of Textiles and Apparel Limited Semi-continous hydrothermal reaction system

Also Published As

Publication number Publication date
JP2004008912A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
JP3963124B2 (en) Organic waste treatment methods
JP4888911B2 (en) Organic waste treatment facility and treatment method
US9868964B2 (en) Solid waste treatment with conversion to gas and anaerobic digestion
US20040168990A1 (en) Method of and arrangement for continuous hydrolysis of organic material
JP5711895B2 (en) Hydrothermal treatment method for garbage
JP2007203213A (en) Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus
WO2012086416A1 (en) Anaerobic digestion treatment method and anaerobic digestion treatment apparatus
JP2007061710A (en) Organic sludge treatment method and apparatus
JP2009207957A (en) Treatment method of object to be treated
JP5020490B2 (en) Organic sludge treatment method and organic sludge treatment equipment
CN106315885A (en) System and method for simultaneously performing circulation utilization on sewage, sludge and domestic garbage
KR20100041053A (en) The producing process of bio gas from wastewater and manufacturing apparatus
JP2020157261A (en) Organic sludge treatment method and treatment apparatus
KR20100002945U (en) Excess sludge decrement equipment of a wastewater treatment facility
TWI795126B (en) Hydrothermal treatment system
KR101167500B1 (en) Apparatus and method for disposing organic waste
JP6424807B2 (en) Water treatment system and water treatment method
CN209957454U (en) Pure oxygen circulation system ozone sewage treatment device
JP2002219482A (en) Wastewater treatment equipment
JP2006272198A (en) Apparatus and method for treating sludge
KR20150114152A (en) Treatment System of Food Waste Leachate Capable of Denitration and Highly Concentration with High Solubility
CN113382969B (en) Water treatment system and water treatment method
JP2002273482A (en) Method and equipment for treating human waste and/or sludge in septic tank
KR101784346B1 (en) The Equipment and Method for Bio-Gas Production
KR100977020B1 (en) Apparatus and methods for successive disposal of food wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees