JP2008000645A - Treatment method and device of organic waste using wet oxidation method - Google Patents

Treatment method and device of organic waste using wet oxidation method Download PDF

Info

Publication number
JP2008000645A
JP2008000645A JP2006169978A JP2006169978A JP2008000645A JP 2008000645 A JP2008000645 A JP 2008000645A JP 2006169978 A JP2006169978 A JP 2006169978A JP 2006169978 A JP2006169978 A JP 2006169978A JP 2008000645 A JP2008000645 A JP 2008000645A
Authority
JP
Japan
Prior art keywords
organic waste
wet oxidation
hydrothermal reaction
reaction
hydrothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006169978A
Other languages
Japanese (ja)
Inventor
Shigeki Matsumoto
成樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006169978A priority Critical patent/JP2008000645A/en
Publication of JP2008000645A publication Critical patent/JP2008000645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method and a device for efficiently treating organic waste having fluidity or solubility by a combination of a hydrothermal reaction for hydrolyzing the organic waste with wet oxidation in a high temperature, high pressure and alkaline condition. <P>SOLUTION: This treatment method comprises the hydrothermal reaction process for hydrolyzing the organic waste in an aqueous condition of pH 8-14, and a wet oxidation process for oxidizing hydrothermal reaction liquid with oxygen-containing gas. A process for lowering pH of the hydrothermal reaction liquid is preferably included for performing wet oxidation reaction using the pH-lowered treated liquid. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、排水処理により発生する汚泥や生ゴミ等の有機性廃棄物の処理方法に関し、特に、流動性又は溶解性を有する有機性廃棄物を高温、高圧、アルカリ条件下に加水分解する水熱反応と湿式酸化とを組み合わせて処理する方法及び装置に関する。   The present invention relates to a method for treating organic waste such as sludge and garbage generated by wastewater treatment, and in particular, water that hydrolyzes organic waste having fluidity or solubility under high temperature, high pressure, and alkaline conditions. The present invention relates to a method and apparatus for performing a combination of thermal reaction and wet oxidation.

下水道処理施設や家庭の浄化槽など排水を生物学的処理により浄化する施設から発生する余剰汚泥は、脱水処理後、一般には産業廃棄物として埋め立て又は焼却処分されている。しかし、近年埋め立て処分地の不足問題や焼却時に燃焼炉の温度を低下させることによるダイオキシン発生の可能性を避けるため、大規模な乾燥装置を導入する必要があり、高額なコスト負担等が問題となっている。   Excess sludge generated from facilities that purify wastewater by biological treatment such as sewage treatment facilities and household septic tanks is generally landfilled or incinerated as industrial waste after dehydration. However, in recent years, in order to avoid the problem of shortage of landfill sites and the possibility of dioxin generation due to lowering the temperature of the combustion furnace during incineration, it is necessary to introduce a large-scale drying device, and the high cost burden is a problem. It has become.

余剰汚泥の生物学的減量法としては、従来、嫌気性微生物を用いた嫌気性消化法が知られている。しかし、嫌気性消化法の場合には消化時間が長く消化率が低いという欠点があり、現在ではあまり使われていない。また、家庭から排出される生ゴミ、残飯等にはビニール類やプラスチック類の夾雑物が混入している場合もあり、生物学的な処理方法には必ずしも適さない場合もある。   An anaerobic digestion method using anaerobic microorganisms is conventionally known as a method for biological reduction of excess sludge. However, the anaerobic digestion method has the disadvantage that the digestion time is long and the digestibility is low, and it is not used much at present. In addition, garbage, leftovers, and the like discharged from the home may be mixed with vinyl or plastic contaminants, and may not always be suitable for biological treatment methods.

このような問題点を解消する1つの方法として、湿式酸化法が知られている。湿式酸化法とは、有機性廃棄物を粉砕して水と混合した状態で容器に入れ、これを高温・高圧(水が液相を保持する圧力)下で酸化分解する方法である。この湿式酸化法によれば、有機性廃棄物そのものを酸化分解することができると共に、有機性廃棄物に含まれる夾雑物を除去しなくても、それら夾雑物を溶解して分解することができるという利点を有する。しかしながら、例えば、ポリプロピレン等、可溶化できない夾雑物も存在するという問題点がある。これらの問題点をさらに解決するため、この湿式酸化法と、水熱反応とを組み合わせた方法も報告されている(例えば、特許文献1及び2参照)。   As one method for solving such problems, a wet oxidation method is known. The wet oxidation method is a method in which organic waste is pulverized and mixed with water and put in a container, which is oxidatively decomposed at high temperature and high pressure (pressure at which water maintains a liquid phase). According to this wet oxidation method, the organic waste itself can be oxidatively decomposed, and the impurities can be dissolved and decomposed without removing the impurities contained in the organic waste. Has the advantage. However, there is a problem in that there are impurities that cannot be solubilized, such as polypropylene. In order to further solve these problems, a method combining this wet oxidation method and a hydrothermal reaction has also been reported (see, for example, Patent Documents 1 and 2).

特許文献1には、固形有機廃棄物を粉砕しアルカリ剤を加えた粉砕物を、昇圧、加熱して水熱反応により液状化させ、且つ酸化ガスを混合して酸化反応により有機物を湿式酸化分解することを特徴とする固形有機廃棄物の処理方法が開示されている。この方法によれば、固体有機廃棄物を悪臭を発生することなく確実に処理して排出することができ、又、簡単な構成で固形有機廃棄物を処理し得るので装置構成を小型化することができ、更に、アルカリ剤を加えているので固体有機廃棄物の液状化を促進するという効果を有する。   In Patent Document 1, a pulverized product obtained by pulverizing solid organic waste and adding an alkaline agent is liquefied by pressurizing and heating to be liquefied by a hydrothermal reaction, and mixed with an oxidizing gas to wet oxidatively decompose the organic matter by an oxidation reaction A method for treating solid organic waste is disclosed. According to this method, the solid organic waste can be reliably processed and discharged without generating a bad odor, and the solid organic waste can be processed with a simple configuration. Furthermore, since an alkali agent is added, it has an effect of promoting liquefaction of solid organic waste.

特許文献2には、有機性廃棄物に高圧水蒸気を供給して水熱反応させる水熱反応工程と、上記水熱反応によって生成した水熱反応処理液を酸素含有ガスによって酸化反応させる酸化反応工程と、上記酸化反応によって得られた酸化反応処理液とガスとを分離する気液分離工程とを備えた有機性廃棄物の処理方法が開示されている。   Patent Document 2 discloses a hydrothermal reaction step in which high-pressure steam is supplied to organic waste to cause a hydrothermal reaction, and an oxidation reaction step in which a hydrothermal reaction treatment liquid generated by the hydrothermal reaction is oxidized with an oxygen-containing gas. And a method for treating organic waste, comprising a gas-liquid separation step for separating an oxidation reaction treatment liquid obtained by the oxidation reaction and a gas.

特開2001−58172JP 2001-58172 A 特開2004−8912JP 2004-8912 A

しかしながら上記何れの方法においても有機性廃棄物の完全な処理は不可能であり、さらなる効率の高い処理方法が求められている。   However, in any of the above methods, complete treatment of organic waste is impossible, and a more efficient treatment method is required.

本発明は、有機性廃棄物を高温、高圧、アルカリ条件下で加水分解する水熱反応と湿式酸化とを組み合わせて処理する方法において、夫々の工程における条件を最適化すること、特に加水分解後の水熱反応液のpHを調整することや、酸化反応にイオン触媒を用いること等の工夫によって、従来法よりもはるかに効率よく有機性廃棄物を処理し得ることを見出して本発明を完成するに至った。   The present invention is a method for treating organic waste in combination with a hydrothermal reaction for hydrolyzing organic waste under high temperature, high pressure, and alkaline conditions, and wet oxidation, to optimize the conditions in each step, particularly after hydrolysis. The present invention has been completed by finding that organic waste can be treated much more efficiently than conventional methods by adjusting the pH of the hydrothermal reaction solution of the above and by using an ionic catalyst for the oxidation reaction. It came to do.

すなわち、本発明は少なくとも以下の方法及び装置を含む。
(1)有機性廃棄物を、pH8〜14の水性条件下において加水分解する水熱反応工程と、前記水熱反応液を酸素含有ガスによって酸化する湿式酸化工程と、を含むことを特徴とする有機性廃棄物の処理方法。
(2)有機性廃棄物を、pH8〜14の水性条件下において加水分解する水熱反応工程と、前記水熱反応液のpHを低下させる工程と、前記pHの低下した処理液を酸素含有ガスによって酸化する湿式酸化工程と、を含むことを特徴とする有機性廃棄物の処理方法。
(3)前記水熱反応工程における温度が100℃〜250℃、反応時間が1分〜180分である(1)又は(2)に記載の方法。
(4)前記水熱反応工程が、高圧水蒸気を前記有機性廃棄物に直接吹き込むことにより行われる(1)〜(3)何れか記載の方法。
(5)前記水熱反応工程における圧力が飽和水蒸気圧より高いことを特徴とする(1)〜(4)何れか記載の方法。
(6)前記水熱反応前の溶液から溶存酸素を除去することを特徴とする(1)〜(5)何れか記載の方法。
(7)前記pHの低下幅が0.01〜11であることを特徴とする(2)〜(6)何れか記載の方法。
(8)前記pHを低下させる方法が酸、水、及び/又はイオン触媒を添加することである(7)の方法。
(9)前記水熱反応液に残存する固体分を、前記湿式酸化反応を行う前に除去する工程を含むことを特徴とする(1)〜(8)何れか記載の方法。
(10)前記湿式酸化工程における温度が140℃〜260℃、圧力が0.37MPa〜7MPa、反応時間が1秒〜90分であることを特徴とする(1)〜(9)何れか記載の方法。
(11)前記湿式酸化工程において、イオン触媒を添加することを特徴とする(1)〜(10)何れか記載の方法。
(12)前記イオン触媒がマンガン、鉄、コバルト、ニッケル、クロム、ジルコニウム、ランタン、セリウム、タングステン、銅、銀、金、白金、パラジウム、ロジウム、ルテニウム及びイリジウムからなる群より選択される少なくとも1種の金属イオンである(11)に記載の方法。
(13)前記イオン触媒を回収することを特徴とする(11)又は(12)に記載の方法。
(14)前記湿式酸化反応液をさらに好気性微生物及び/又は嫌気性微生物により生物処理する工程を含むことを特徴とする(1)〜(13)何れか記載の方法。
(15)有機性廃棄物を、pH8〜14の水性条件下において加水分解する水熱反応工程と、前記水熱反応液を酸素含有ガスによって酸化する湿式酸化工程と、前記湿式酸化反応液をさらに好気性微生物及び/又は嫌気性微生物により生物処理する工程を含むことを特徴とする有機性廃棄物の処理方法。
(16)前記水熱反応工程処理液中の熱及び湿式酸化工程で発生する反応熱の何れか又は両方を回収する工程をさらに含む(1)〜(15)何れか記載の方法。
(17)有機性廃棄物にアルカリを添加して加熱する水熱反応器と、前記水熱反応液のpHを低下させる手段と、前記pHの低下した処理液と酸素含有ガスとを反応させる湿式酸化反応器と、前記湿式酸化反応液からガスと処理水とを分離する気液分離器と、を備えたことを特徴とする有機性廃棄物の処理装置。
(18)前記水熱反応液にイオン触媒を添加する手段をさらに備えることを特徴とする(17)に記載の有機性廃棄物の処理装置。
That is, the present invention includes at least the following method and apparatus.
(1) A hydrothermal reaction step of hydrolyzing organic waste under an aqueous condition of pH 8 to 14 and a wet oxidation step of oxidizing the hydrothermal reaction liquid with an oxygen-containing gas. Organic waste disposal methods.
(2) Hydrothermal reaction step of hydrolyzing organic waste under aqueous conditions of pH 8 to 14, a step of lowering the pH of the hydrothermal reaction solution, and a treatment solution having lowered pH as an oxygen-containing gas And a wet oxidation process that oxidizes the organic waste.
(3) The method according to (1) or (2), wherein the temperature in the hydrothermal reaction step is 100 ° C to 250 ° C and the reaction time is 1 minute to 180 minutes.
(4) The method according to any one of (1) to (3), wherein the hydrothermal reaction step is performed by directly blowing high-pressure steam into the organic waste.
(5) The method according to any one of (1) to (4), wherein a pressure in the hydrothermal reaction step is higher than a saturated water vapor pressure.
(6) The method according to any one of (1) to (5), wherein dissolved oxygen is removed from the solution before the hydrothermal reaction.
(7) The method according to any one of (2) to (6), wherein the pH decrease range is 0.01 to 11.
(8) The method according to (7), wherein the method for lowering the pH is to add an acid, water, and / or an ion catalyst.
(9) The method according to any one of (1) to (8), including a step of removing the solid content remaining in the hydrothermal reaction liquid before performing the wet oxidation reaction.
(10) The temperature in the wet oxidation step is 140 ° C. to 260 ° C., the pressure is 0.37 MPa to 7 MPa, and the reaction time is 1 second to 90 minutes, according to any one of (1) to (9) Method.
(11) The method according to any one of (1) to (10), wherein an ion catalyst is added in the wet oxidation step.
(12) The ion catalyst is at least one selected from the group consisting of manganese, iron, cobalt, nickel, chromium, zirconium, lanthanum, cerium, tungsten, copper, silver, gold, platinum, palladium, rhodium, ruthenium and iridium. (11) The method according to (11).
(13) The method according to (11) or (12), wherein the ion catalyst is recovered.
(14) The method according to any one of (1) to (13), further comprising biologically treating the wet oxidation reaction solution with an aerobic microorganism and / or an anaerobic microorganism.
(15) A hydrothermal reaction step of hydrolyzing organic waste under aqueous conditions of pH 8 to 14, a wet oxidation step of oxidizing the hydrothermal reaction solution with an oxygen-containing gas, and the wet oxidation reaction solution An organic waste treatment method comprising a step of biological treatment with an aerobic microorganism and / or an anaerobic microorganism.
(16) The method according to any one of (1) to (15), further including a step of recovering either or both of heat in the hydrothermal reaction process treatment liquid and reaction heat generated in the wet oxidation process.
(17) Hydrothermal reactor for adding alkali to organic waste and heating, means for lowering the pH of the hydrothermal reaction solution, wet treatment for reacting the treatment solution with lowered pH and an oxygen-containing gas An organic waste treatment apparatus comprising: an oxidation reactor; and a gas-liquid separator that separates gas and treated water from the wet oxidation reaction solution.
(18) The organic waste treatment apparatus according to (17), further comprising means for adding an ion catalyst to the hydrothermal reaction liquid.

本発明の方法によれば、従来法よりも効率的に有機性廃棄物を処理することができるため、簡易な装置による迅速且つ低コストによる有機性廃棄物の処理が可能となる。特に、廃水処理設備に付加することにより、従来の活性汚泥法による生物酸化反応を補完してその処理能力を格段に向上させることができる。   According to the method of the present invention, organic waste can be processed more efficiently than the conventional method, and therefore organic waste can be processed quickly and at low cost by a simple apparatus. In particular, by adding to a wastewater treatment facility, the biological oxidation reaction by the conventional activated sludge method can be complemented and the treatment capacity can be remarkably improved.

以下、本発明の実施の形態を、図面を参照しながら説明する。図1は、本発明を実施する装置の形態の一例を示すフローチャートである。図1に示したように、有機性廃棄物の処理装置は、有機性廃棄物をアルカリ水性条件下において加水分解する水熱反応器(3a、3b)と、水熱反応液と酸素含有ガスとを反応させる湿式酸化反応器(5)と、湿式酸化反応後の処理液からガスと処理水とを分離する気液分離器(8)とを備えている。上記アルカリ水性条件とは、pH8〜14の水性条件であり、有機物受入槽(1)から供給される有機性廃棄物と、アルカリ槽(2)から供給されるアルカリ、好ましくは苛性ゾーダとを、水熱反応器(3a)に受入れ、酸化反応後の処理液の酸化反応熱を伝導管を介して回収することにより加熱される。水熱反応器(3b)は、ボイラー(4)から供給される高圧水蒸気によって伝熱管を介して熱交換されるか、又は高圧水蒸気を有機性廃棄物に直接吹き込んで加熱してもよい。水熱反応器における反応温度は、100℃〜350℃、好ましくは140℃〜250℃、さらに好ましくは160℃〜230℃、最も好ましくは180℃〜220℃である。有機性廃棄物の濃度を調整する事により、外部より熱源を供給することなく、自ら発する酸化反応熱により一連の反応を維持することができる。反応時の圧力は飽和水蒸気圧より高いことが好ましい。また、反応時間も有機性廃棄物がある程度可溶化するために必用な時間であれば特に限定されないが、1分〜180分間程度加熱することが好ましい。また、水熱反応前の有機性廃棄物を含む溶液から溶存酸素を除去することが酸化反応を抑制し加水分解反応を促進することと、水熱反応器内にスケールの付着を抑制し、且つ水熱反応器の酸化腐蝕を防止する点で好ましい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart showing an example of an apparatus for carrying out the present invention. As shown in FIG. 1, the organic waste treatment apparatus includes a hydrothermal reactor (3a, 3b) that hydrolyzes organic waste under alkaline aqueous conditions, a hydrothermal reaction liquid, and an oxygen-containing gas. And a gas-liquid separator (8) for separating gas and treated water from the treated liquid after the wet oxidation reaction. The alkaline aqueous condition is an aqueous condition of pH 8 to 14, and an organic waste supplied from the organic substance receiving tank (1) and an alkali supplied from the alkaline tank (2), preferably caustic soda, It is received by the hydrothermal reactor (3a) and heated by collecting the oxidation reaction heat of the treatment liquid after the oxidation reaction via a conductive tube. The hydrothermal reactor (3b) may be heat-exchanged via the heat transfer tube by high-pressure steam supplied from the boiler (4), or may be heated by directly blowing high-pressure steam into the organic waste. The reaction temperature in the hydrothermal reactor is 100 ° C to 350 ° C, preferably 140 ° C to 250 ° C, more preferably 160 ° C to 230 ° C, and most preferably 180 ° C to 220 ° C. By adjusting the concentration of organic waste, a series of reactions can be maintained by the oxidation reaction heat generated by itself without supplying a heat source from the outside. The pressure during the reaction is preferably higher than the saturated water vapor pressure. The reaction time is not particularly limited as long as it is a time necessary for solubilizing the organic waste to some extent, but it is preferable to heat for about 1 to 180 minutes. Moreover, removing dissolved oxygen from the solution containing organic waste before the hydrothermal reaction suppresses the oxidation reaction and promotes the hydrolysis reaction, suppresses the adhesion of scale in the hydrothermal reactor, and It is preferable at the point which prevents the oxidative corrosion of a hydrothermal reactor.

次に、水熱反応により可溶化された処理液は、移送ライン(12)を通って湿式酸化反応器(5)に導かれる際にそのpHを低下させることが好ましい。このpHを低下させる手段としては、特に限定されるものではないが、例えば、酸若しくは水の添加、又はイオン触媒の添加により、pHとして0.01〜11の幅で低下させる。酸の種類は特に限定されないが、例えば、硝酸又は硫酸等を用いることができる。このようにして処理液のpHを低下させることにより、後続する湿式酸化反応を効率的に進めることができる。低下後のpHが9以下であることがさらに好ましい。   Next, it is preferable to lower the pH of the treatment liquid solubilized by the hydrothermal reaction when it is led to the wet oxidation reactor (5) through the transfer line (12). The means for lowering the pH is not particularly limited. For example, the pH is lowered within a range of 0.01 to 11 by adding an acid or water or an ion catalyst. The type of acid is not particularly limited, and for example, nitric acid or sulfuric acid can be used. Thus, the subsequent wet oxidation reaction can be efficiently advanced by lowering the pH of the treatment liquid. More preferably, the pH after the decrease is 9 or less.

上記イオン触媒とは、加水分解後の処理液のpHを低下させると共に、後続する湿式酸化反応工程において、酸素含有ガスによる有機物の酸化反応を促進する作用を示すものであり、例えば、マンガン、鉄、コバルト、ニッケル、クロム、ジルコニウム、ランタン、セリウム、タングステン、銅、銀、金、白金、パラジウム、ロジウム、ルテニウム及びイリジウム等の金属イオンを挙げることができる。中でも銅イオン及び銀イオンが好ましい。これらのイオン触媒は、通常、塩の形態で添加することが多く、例えば、硝酸塩、塩化物、硫酸塩等が挙げられるが、特に好ましくは硫酸銅溶液又は硫酸銀溶液として供給することができる。また、錯イオンの形のものも使用することができる。イオン触媒の濃度としては、通常5〜5000mg/Lであればよいが、10〜3000mg/Lであることが好ましく、50〜2000mg/Lであることがさらに好ましい。水性有機廃棄物には多くの場合、カルシウム、マグネシウム、シリカ等がイオンの形態で存在するため固体触媒を用いるとこれらのイオン、特にカルシウムイオンが固体表面に析出し固体触媒の表面をコーティングして触媒を不活性化するという問題がある。しかしながら、本発明に係るイオン触媒はこれらの影響を受けない。   The above-mentioned ionic catalyst lowers the pH of the treatment liquid after hydrolysis, and shows an action of promoting an oxidation reaction of an organic substance with an oxygen-containing gas in a subsequent wet oxidation reaction step. For example, manganese, iron And metal ions such as cobalt, nickel, chromium, zirconium, lanthanum, cerium, tungsten, copper, silver, gold, platinum, palladium, rhodium, ruthenium and iridium. Of these, copper ions and silver ions are preferred. These ion catalysts are usually added in the form of a salt. For example, nitrates, chlorides, sulfates and the like can be mentioned, but particularly preferably, they can be supplied as a copper sulfate solution or a silver sulfate solution. A complex ion form can also be used. The concentration of the ion catalyst is usually 5 to 5000 mg / L, preferably 10 to 3000 mg / L, and more preferably 50 to 2000 mg / L. In many cases, aqueous organic waste contains calcium, magnesium, silica, etc. in the form of ions. If a solid catalyst is used, these ions, especially calcium ions, precipitate on the solid surface and coat the surface of the solid catalyst. There is a problem of inactivating the catalyst. However, the ion catalyst according to the present invention is not affected by these effects.

好ましい実施形態において、湿式酸化反応器(5)における湿式酸化反応は、コンプレッサー(9)によって空気を供給することによって行う。酸化反応の速度を上げるために高濃度酸素含有ガスを供給してもよい。例えば、酸素及び/又はオゾンを含有するガス、過酸化水素等の酸化剤を含有してもよい。酸素及び/又はオゾンは適宜不活性ガス等により希釈して用いることができる。当該湿式酸化工程の実施条件は特に制限はなく、湿式酸化反応に一般に用いられている条件下に行うことができる。例えば、温度条件は、140℃〜260℃が好ましく、圧力は0.37MPa〜7MPaである。また、反応時間が1秒〜90分間であることが好ましい。さらに好ましい実施形態としては、上記水熱反応液に残存する固体分を湿式酸化反応を行う前に除去することにより酸化反応の効率を上げることができる。このようにして可溶化された有機性廃棄物を酸化することにより、処理液のCODを著しく低下させることができ、また有機性廃棄物に由来する着色も除去(脱色)することができる。湿式酸化反応工程で使用したイオン触媒を回収することがさらに好ましい。   In a preferred embodiment, the wet oxidation reaction in the wet oxidation reactor (5) is performed by supplying air by means of the compressor (9). In order to increase the speed of the oxidation reaction, a high-concentration oxygen-containing gas may be supplied. For example, you may contain oxidizing agents, such as gas containing oxygen and / or ozone, and hydrogen peroxide. Oxygen and / or ozone can be appropriately diluted with an inert gas or the like. The implementation conditions of the wet oxidation step are not particularly limited, and can be performed under conditions generally used for wet oxidation reactions. For example, the temperature condition is preferably 140 ° C. to 260 ° C., and the pressure is 0.37 MPa to 7 MPa. Moreover, it is preferable that reaction time is 1 second-90 minutes. In a more preferred embodiment, the efficiency of the oxidation reaction can be increased by removing the solid content remaining in the hydrothermal reaction liquid before performing the wet oxidation reaction. By oxidizing the organic waste solubilized in this way, the COD of the treatment liquid can be remarkably reduced, and the color derived from the organic waste can also be removed (decolorized). More preferably, the ion catalyst used in the wet oxidation reaction step is recovered.

本発明の1つの実施形態において、上記湿式酸化反応液をさらに好気性微生物及び/又は嫌気性微生物により生物処理する工程を含むことができる。「生物処理」とは、好気性微生物及び/又は嫌気性微生物を用いて有機物を代謝分解することを意味する。一般的な好気性微生物としては、アルカリゲネス属、バチルス属、エシェリヒア属、フラボバクテリウム属、及びシュードモナス属等の細菌の他、多少の糸状菌や繊毛虫類、輪虫類等の原生動物等が含まれる。嫌気性微生物としては、メタン発酵に用いられるような嫌気性ないし通性嫌気性細菌であるクロストリジウム属、スタフィロコッカス属の細菌や、絶対嫌気性細菌であるメタノバクテリウム属、メタノコッカス属、メタノサルシナ属の細菌等が含まれるがこれらに限定されない。その他の微生物には、例えば、好気性菌を主体とする酵母菌、子のう菌及びセルロース菌、通性嫌気性細菌を主体とする蛋白質分解菌、乳酸菌及び枯草菌、並びに嫌気性菌を主体とする光合成菌、窒素固定菌、酢酸菌及び酪酸菌等が挙げられる。これらの微生物による処理は、特に限定されないが、例えば、生物処理槽、排水処理装置、嫌気性処理装置、ばっき槽、生物担体槽等を用いて行うことができる。   In one embodiment of the present invention, the wet oxidation reaction solution may further include a step of biological treatment with an aerobic microorganism and / or an anaerobic microorganism. “Biological treatment” means metabolic decomposition of organic substances using aerobic microorganisms and / or anaerobic microorganisms. Typical aerobic microorganisms include bacteria such as Alkaligenes, Bacillus, Escherichia, Flavobacterium, and Pseudomonas, as well as some protozoa such as filamentous fungi, ciliates, and rotifers. included. Anaerobic microorganisms include Clostridium and Staphylococcus bacteria, which are anaerobic or facultative anaerobic bacteria used in methane fermentation, and the anaerobic bacteria Methanobacteria, Methanococcus, and Methanosarcina. Examples include, but are not limited to, genus bacteria. Other microorganisms include, for example, yeasts mainly composed of aerobic bacteria, bacillus and cellulose bacteria, proteolytic bacteria mainly composed of facultative anaerobic bacteria, lactic acid bacteria and Bacillus subtilis, and anaerobic bacteria. And photosynthetic bacteria, nitrogen-fixing bacteria, acetic acid bacteria, butyric acid bacteria, and the like. Although the treatment with these microorganisms is not particularly limited, for example, the treatment can be performed using a biological treatment tank, a wastewater treatment apparatus, an anaerobic treatment apparatus, an exhaust tank, a biological carrier tank, or the like.

以下、実施例及び比較例により本発明を詳細に説明するが、これらの実施例及び比較例により本発明は何ら制限されるものではない。なお、以下の実施例で用いる用語の意味は次のとおりである。SS:浮遊物質濃度(suspended solids)、MLSS:活性汚泥浮遊物質(mixed liquor suspended solids)、MLVSS:活性汚泥有機性浮遊物質(mixed liquor volatile suspended solids)、COD:化学的酸素要求量(chemical oxygen demand)。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not restrict | limited at all by these Examples and comparative examples. The meanings of terms used in the following examples are as follows. SS: suspended solids, MLSS: activated liquor suspended solids, MLVSS: mixed liquor volatile suspended solids, COD: chemical oxygen demand ).

A 水熱反応
(1)pHと液化率
活性汚泥をサンプルとして用い、処理温度200℃、加熱時間30分間、圧力2MPaで処理した時の液化率とサンプルのpHとの関係を調べた。なお、サンプルのpHは所定の活性汚泥を含む水溶液に苛性ソーダ(48%NaOH水溶液)を添加して調整した。また、液化率は以下の式で計算した。
液化率=(1−加水分解反応後の処理液のSS/サンプルSS)×100(%)
その結果を図2に示す。サンプルのpHが上昇するに従って液化率も向上することが分かった。
A Hydrothermal reaction (1) pH and liquefaction rate Using activated sludge as a sample, the relationship between the liquefaction rate when treated at a treatment temperature of 200 ° C, a heating time of 30 minutes, and a pressure of 2 MPa was examined. The pH of the sample was adjusted by adding caustic soda (48% NaOH aqueous solution) to an aqueous solution containing a predetermined activated sludge. The liquefaction rate was calculated by the following formula.
Liquefaction rate = (1-SS of processing solution after hydrolysis reaction / sample SS) × 100 (%)
The result is shown in FIG. It was found that the liquefaction rate improved as the pH of the sample increased.

(2)時間と液化率
活性汚泥をサンプルとして用い、処理pH13、処理温度200℃、圧力2MPaで処理した時の液化率と処理時間との関係を調べた。なお、液化率の計算式は上記(1)と同様である。その結果を図3に示す。反応開始後10分程度で液化率は大きく上昇し、30分経過後にはほぼ一定となった。
(2) Time and Liquefaction Rate Using activated sludge as a sample, the relationship between the liquefaction rate and treatment time when treated at a treatment pH of 13, a treatment temperature of 200 ° C., and a pressure of 2 MPa was examined. The calculation formula for the liquefaction rate is the same as (1) above. The result is shown in FIG. The liquefaction rate greatly increased about 10 minutes after the start of the reaction, and became almost constant after 30 minutes.

(3)温度と液化率
活性汚泥をサンプルとして用い、処理pH13、処理時間30分、圧力2MPaで処理した時の液化率と処理温度との関係を調べた。その結果を図4に示す。反応温度が200℃の時に液化率が最大となり、240℃までほぼ一定となった。
(3) Temperature and liquefaction rate Using activated sludge as a sample, the relationship between the liquefaction rate and the treatment temperature when treated at a treatment pH of 13, a treatment time of 30 minutes, and a pressure of 2 MPa was examined. The result is shown in FIG. When the reaction temperature was 200 ° C., the liquefaction rate became maximum and became almost constant up to 240 ° C.

B 湿式酸化反応
(1)イオン触媒の存在と酸化率の関係
300mlの高圧オートクレーブに100mlのサンプル(活性汚泥の水熱処理液)を入れ、密閉後、上部空隙の空気を酸素ガスと置換して圧力を1MPaにして反応させた。ガス化率は以下の式で計算した。
ガス化率=(1−湿式酸化処理液のCODmn/サンプルCODmn)×100(%)
なお、サンプルのpHは8とし、処理時間10分、反応温度220℃とした。サンプルに硫酸銅を1000mg/L添加した場合と添加しなかった場合とを比較した。その結果を図5に示す。添加した硫酸銅が触媒として大変有効に働いていることが分かった。
B Wet oxidation reaction (1) Relationship between the presence of ion catalyst and oxidation rate 100ml sample (active heat sludge hydrothermal treatment liquid) is placed in a 300ml high-pressure autoclave, and after sealing, the air in the upper space is replaced with oxygen gas and pressure Was reacted at 1 MPa. The gasification rate was calculated by the following formula.
Gasification rate = (1−CODmn of wet oxidation treatment liquid / sample CODmn) × 100 (%)
The pH of the sample was 8, the treatment time was 10 minutes, and the reaction temperature was 220 ° C. The case where 1000 mg / L of copper sulfate was added to the sample was compared with the case where copper sulfate was not added. The result is shown in FIG. It was found that the added copper sulfate works very effectively as a catalyst.

(2)水熱処理液を湿式酸化した場合と、無処理固体を直接湿式酸化した場合のガス化率の測定
300mlの高圧オートクレーブに100mlのサンプル(サンプルAは活性汚泥の水熱処理液(液体)、サンプルBは活性汚泥(固体)である。)を入れ、密閉後、上部空隙の空気を酸素ガスと置換して圧力を1MPaにして反応させた。ガス化率の計算方法は上記(1)と同様である。
なお、サンプルのpHは8とし、処理時間10分、反応温度220℃とした。それぞれのサンプルに硫酸銅を1000mg/L添加した。その結果を表1、及び図6に示す。
(2) Measurement of gasification rate when hydrothermal treatment liquid is wet-oxidized and direct wet oxidation of untreated solid 100 ml sample in 300 ml high-pressure autoclave (sample A is hydrothermal treatment liquid (liquid) of activated sludge, Sample B was activated sludge (solid).) After sealing, the air in the upper space was replaced with oxygen gas, and the reaction was performed at a pressure of 1 MPa. The calculation method of the gasification rate is the same as (1) above.
The pH of the sample was 8, the treatment time was 10 minutes, and the reaction temperature was 220 ° C. 1000 mg / L of copper sulfate was added to each sample. The results are shown in Table 1 and FIG.

表1及び図6に示したように、サンプルとして水熱処理液を用いた方が、ガス化率が高く、有機物がほぼ完全に酸化されていることが分かった。その理由は、水熱処理をすることにより、有機物が低分子化するため酸素との接触機会が増大するため酸化されやすい。また硫酸銅は銅がイオンの形態で存在するため処理液中に一応に分散している。酸素と銅イオンと有機物が同時に接触する機会が圧倒的に多いので酸化反応が大変早く且つ確実に行われる。また、サンプルとして水熱処理液を用いた場合は固体残渣がなく、排水処理を行わずに直接放流でき、SSがないので処理液中の銅イオンの分離が容易である。   As shown in Table 1 and FIG. 6, it was found that the gasification rate was higher when the hydrothermal treatment liquid was used as the sample, and the organic matter was almost completely oxidized. The reason for this is that the hydrothermal treatment reduces the molecular weight of the organic substance, so that the chance of contact with oxygen increases, so that it is easily oxidized. Copper sulfate is temporarily dispersed in the treatment liquid because copper is present in the form of ions. Since there are overwhelmingly many opportunities for oxygen, copper ions, and organic substances to come into contact at the same time, the oxidation reaction is performed very quickly and reliably. Further, when a hydrothermal treatment liquid is used as a sample, there is no solid residue, and it can be discharged directly without performing wastewater treatment, and since there is no SS, it is easy to separate copper ions in the treatment liquid.

(3)湿式酸化処理温度とガス化率
300mlの高圧オートクレーブに100mlのサンプル(活性汚泥の水熱処理液)を入れ、密閉後、上部空隙の空気を酸素ガスと置換して圧力を1MPaにして反応させた。ガス化率の計算方法は上記(1)と同様である。
なお、サンプルのpHは8とし、処理時間10分とし、サンプルに硫酸銅を1000mg/L添加した。その結果を図7に示す。
(3) Wet oxidation temperature and gasification rate Put 100 ml sample (hydrothermal treatment liquid of activated sludge) in a 300 ml high-pressure autoclave, and after sealing, replace the air in the upper gap with oxygen gas and react at a pressure of 1 MPa. I let you. The calculation method of the gasification rate is the same as (1) above.
The pH of the sample was 8, the treatment time was 10 minutes, and 1000 mg / L of copper sulfate was added to the sample. The result is shown in FIG.

図7に示したように、低温域から高いガス化率を得ることができた。その理由は、水熱処理をすることにより、有機物が低分子化するため酸化されやすく、硫酸銅による触媒の効果も大きいと考えられる。低い圧力で酸化処理ができるので経済的に大変有利である。   As shown in FIG. 7, a high gasification rate could be obtained from a low temperature region. The reason for this is considered to be that the hydrous heat treatment reduces the molecular weight of the organic substance, so that it is easily oxidized and the effect of the catalyst by copper sulfate is great. Since the oxidation treatment can be performed at a low pressure, it is very advantageous economically.

(4)pHとガス化率
300mlの高圧オートクレーブに100mlのサンプル(活性汚泥の水熱処理液)を入れ、密閉後、上部空隙の空気を酸素ガスと置換して圧力を1MPaにして反応させた。ガス化率の計算方法は上記(1)と同様である。
なお、サンプルの処理時間10分、反応温度220℃とし、サンプルに硫酸銅を100mg/L添加した。その結果を図8に示す。
(4) pH and gasification rate A 100 ml sample (hydrothermal treatment liquid of activated sludge) was placed in a 300 ml high-pressure autoclave, and after sealing, the air in the upper space was replaced with oxygen gas, and the reaction was performed at a pressure of 1 MPa. The calculation method of the gasification rate is the same as (1) above.
The sample was treated for 10 minutes, the reaction temperature was 220 ° C., and 100 mg / L of copper sulfate was added to the sample. The result is shown in FIG.

図8に示したように、pHが低下するに従ってガス化率が向上した。その理由は、水熱処理液のpHが高いままの場合は、可溶化した有機廃棄物が炭酸ガスまで完全に分解されずに有機酸で分解が止まると考えられる。また、アルカリ条件では銅イオンが水酸化銅となってイオンでなくなるため触媒の機能が落ちると思われる。   As shown in FIG. 8, the gasification rate improved as the pH decreased. The reason is considered to be that when the pH of the hydrothermal treatment liquid remains high, the solubilized organic waste is not completely decomposed to carbon dioxide, and the decomposition is stopped by the organic acid. Also, under alkaline conditions, the copper ion becomes copper hydroxide and is no longer an ion, so the function of the catalyst seems to be reduced.

典型的な余剰汚泥(MLSS:8320mg/L、MLVSS:7434mg/L)を用いて本発明の方法による処理を行った。
1 水熱反応工程
余剰汚泥200mLに苛性ソーダ(48%NaOH水溶液)を加えてpH13に調整し、当該サンプルを高圧オートクレーブに入れて密封した。オートクレーブ上部の空気を1MPaの圧力の窒素ガスで置換し、外部ヒーターにより200℃で30分間加熱して水熱反応を行った。冷却後、水熱反応液を取り出し、硫酸でpHを8に調整した。
The treatment by the method of the present invention was performed using typical excess sludge (MLSS: 8320 mg / L, MLVSS: 7434 mg / L).
1 Hydrothermal reaction process Caustic soda (48% NaOH aqueous solution) was added to 200 mL of excess sludge to adjust to pH 13, and the sample was put in a high-pressure autoclave and sealed. The air at the top of the autoclave was replaced with nitrogen gas at a pressure of 1 MPa, and a hydrothermal reaction was performed by heating at 200 ° C. for 30 minutes with an external heater. After cooling, the hydrothermal reaction liquid was taken out and the pH was adjusted to 8 with sulfuric acid.

2 湿式酸化工程
上記でpHを調整した水熱反応液100mLを高圧オートクレーブに入れ、同時に硫酸銅を0.1g添加して密封した。オートクレーブ上部の空間に酸素ガスを入れて1MPaの圧力に調整し、外部ヒーターにより220℃で10分間加熱した。高圧オートクレーブに装備されている攪拌機を1200rpmで回転した。冷却後、酸化処理液を得た。
2 Wet oxidation process 100 mL of the hydrothermal reaction liquid whose pH was adjusted as described above was placed in a high-pressure autoclave, and at the same time, 0.1 g of copper sulfate was added and sealed. Oxygen gas was introduced into the space above the autoclave, adjusted to a pressure of 1 MPa, and heated by an external heater at 220 ° C. for 10 minutes. The stirrer equipped in the high-pressure autoclave was rotated at 1200 rpm. After cooling, an oxidation treatment liquid was obtained.

上記各反応前後の処理液のCOD、MLSS及びMLVSSを測定した結果を以下の表2及び3に示す。   Tables 2 and 3 below show the results of measuring COD, MLSS and MLVSS of the treatment liquid before and after each of the above reactions.


これらの結果より、本発明の方法によるCODmn分解率は92%(1−291/3874)×100;及びMLVSS分解率は100%であることが分かった。

From these results, it was found that the CODmn decomposition rate by the method of the present invention was 92% (1-291 / 3874) × 100; and the MLVSS decomposition rate was 100%.

本発明に係る湿式酸化式有機物処理のフローチャートである。It is a flowchart of the wet oxidation type organic substance processing concerning the present invention. 本発明に係る水熱反応におけるpH条件と液化率の関係を調べた結果である。It is the result of investigating the relationship between the pH conditions and the liquefaction rate in the hydrothermal reaction according to the present invention. 本発明に係る水熱反応における反応時間と液化率の関係を調べた結果である。It is the result of investigating the relationship between the reaction time and the liquefaction rate in the hydrothermal reaction according to the present invention. 本発明に係る水熱反応における反応温度と液化率の関係を調べた結果である。It is the result of investigating the relationship between the reaction temperature and the liquefaction rate in the hydrothermal reaction according to the present invention. 本発明に係る湿式酸化反応におけるイオン触媒の存在と酸化率の関係を調べた結果である。It is the result of investigating the relationship between the presence of the ion catalyst and the oxidation rate in the wet oxidation reaction according to the present invention. 本発明に係る湿式酸化反応における水熱反応の有無の影響を調べた結果である。It is the result of investigating the influence of the presence or absence of a hydrothermal reaction in the wet oxidation reaction according to the present invention. 本発明に係る式酸化反応における湿式酸化処理温度とガス化率の関係を調べた結果である。It is the result of investigating the relationship between the wet oxidation temperature and the gasification rate in the formula oxidation reaction according to the present invention. 本発明に係る式酸化反応における水熱反応処理液のpH条件とガス化率の関係を調べた結果である。It is the result of investigating the relationship between the pH conditions and gasification rate of the hydrothermal reaction treatment liquid in the formula oxidation reaction according to the present invention.

符号の説明Explanation of symbols

1 有機物受入槽
2 アルカリ槽
3a、3b 水熱反応器
4 ボイラ
5 湿式酸化反応器
6 硫酸銅貯槽
7 硫酸貯槽
8 気液分離器
9 コンプレッサー
10 背圧弁
11a、11b、11c、11d ポンプ
12 移送ライン
DESCRIPTION OF SYMBOLS 1 Organic substance reception tank 2 Alkali tank 3a, 3b Hydrothermal reactor 4 Boiler 5 Wet oxidation reactor 6 Copper sulfate storage tank 7 Sulfuric acid storage tank 8 Gas-liquid separator 9 Compressor 10 Back pressure valve 11a, 11b, 11c, 11d Pump 12 Transfer line

Claims (18)

有機性廃棄物を、pH8〜14の水性条件下において加水分解する水熱反応工程と、
前記水熱反応液を酸素含有ガスによって酸化する湿式酸化工程と、
を含むことを特徴とする有機性廃棄物の処理方法。
A hydrothermal reaction step of hydrolyzing organic waste under aqueous conditions of pH 8-14;
A wet oxidation step of oxidizing the hydrothermal reaction liquid with an oxygen-containing gas;
A method for treating organic waste, comprising:
有機性廃棄物を、pH8〜14の水性条件下において加水分解する水熱反応工程と、
前記水熱反応液のpHを低下させる工程と、
前記pHの低下した処理液を酸素含有ガスによって酸化する湿式酸化工程と、
を含むことを特徴とする有機性廃棄物の処理方法。
A hydrothermal reaction step of hydrolyzing organic waste under aqueous conditions of pH 8-14;
Reducing the pH of the hydrothermal reaction solution;
A wet oxidation step of oxidizing the treatment liquid having lowered pH with an oxygen-containing gas;
A method for treating organic waste, comprising:
前記水熱反応工程における温度が100℃〜250℃、反応時間が1分〜180分である請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein a temperature in the hydrothermal reaction step is 100 ° C to 250 ° C and a reaction time is 1 minute to 180 minutes. 前記水熱反応工程が、高圧水蒸気を前記有機性廃棄物に直接吹き込むことにより行われる請求項1〜3何れか記載の方法。   The method according to claim 1, wherein the hydrothermal reaction step is performed by blowing high-pressure steam directly into the organic waste. 前記水熱反応工程における圧力が飽和水蒸気圧より高いことを特徴とする請求項1〜4何れか記載の方法。   The method according to any one of claims 1 to 4, wherein a pressure in the hydrothermal reaction step is higher than a saturated water vapor pressure. 前記水熱反応前の溶液から溶存酸素を除去することを特徴とする請求項1〜5何れか記載の方法。   The method according to claim 1, wherein dissolved oxygen is removed from the solution before the hydrothermal reaction. 前記pHの低下幅が0.01〜11であることを特徴とする請求項2〜6何れか記載の方法。   The method according to any one of claims 2 to 6, wherein the pH decrease range is 0.01 to 11. 前記pHを低下させる方法が酸、水、及び/又はイオン触媒を添加することである請求項7の方法。   The method of claim 7, wherein the method of lowering the pH is to add an acid, water, and / or an ionic catalyst. 前記水熱反応液に残存する固体分を、前記湿式酸化反応を行う前に除去する工程を含むことを特徴とする請求項1〜8何れか記載の方法。   The method according to any one of claims 1 to 8, further comprising a step of removing a solid content remaining in the hydrothermal reaction liquid before performing the wet oxidation reaction. 前記湿式酸化工程における温度が140℃〜260℃、圧力が0.37MPa〜7MPa、反応時間が1秒〜90分であることを特徴とする請求項1〜9何れか記載の方法。   10. The method according to claim 1, wherein the temperature in the wet oxidation step is 140 ° C. to 260 ° C., the pressure is 0.37 MPa to 7 MPa, and the reaction time is 1 second to 90 minutes. 前記湿式酸化工程において、イオン触媒を添加することを特徴とする請求項1〜10何れか記載の方法。   The method according to any one of claims 1 to 10, wherein an ion catalyst is added in the wet oxidation step. 前記イオン触媒がマンガン、鉄、コバルト、ニッケル、クロム、ジルコニウム、ランタン、セリウム、タングステン、銅、銀、金、白金、パラジウム、ロジウム、ルテニウム及びイリジウムからなる群より選択される少なくとも1種の金属イオンである請求項11に記載の方法。   The ion catalyst is at least one metal ion selected from the group consisting of manganese, iron, cobalt, nickel, chromium, zirconium, lanthanum, cerium, tungsten, copper, silver, gold, platinum, palladium, rhodium, ruthenium and iridium. The method of claim 11, wherein 前記イオン触媒を回収することを特徴とする請求項11又は12に記載の方法。   The method according to claim 11 or 12, wherein the ion catalyst is recovered. 前記湿式酸化反応液をさらに好気性微生物及び/又は嫌気性微生物により生物処理する工程を含むことを特徴とする請求項1〜13何れか記載の方法。   The method according to any one of claims 1 to 13, further comprising a step of biologically treating the wet oxidation reaction solution with an aerobic microorganism and / or an anaerobic microorganism. 有機性廃棄物を、pH8〜14の水性条件下において加水分解する水熱反応工程と、
前記水熱反応液を酸素含有ガスによって酸化する湿式酸化工程と、
前記湿式酸化反応液をさらに好気性微生物及び/又は嫌気性微生物により生物処理する工程を含むことを特徴とする有機性廃棄物の処理方法。
A hydrothermal reaction step of hydrolyzing organic waste under aqueous conditions of pH 8-14;
A wet oxidation step of oxidizing the hydrothermal reaction liquid with an oxygen-containing gas;
A method for treating organic waste, further comprising a step of biologically treating the wet oxidation reaction solution with an aerobic microorganism and / or an anaerobic microorganism.
前記水熱反応工程処理液中の熱及び湿式酸化工程で発生する反応熱の何れか又は両方を回収する工程をさらに含む請求項1〜15何れか記載の方法。   The method according to any one of claims 1 to 15, further comprising a step of recovering either or both of heat in the hydrothermal reaction step treatment liquid and reaction heat generated in a wet oxidation step. 有機性廃棄物にアルカリを添加して加熱する水熱反応器と、
前記水熱反応液のpHを低下させる手段と、
前記pHの低下した処理液と酸素含有ガスとを反応させる湿式酸化反応器と、
前記湿式酸化反応液からガスと処理水とを分離する気液分離器と、
を備えたことを特徴とする有機性廃棄物の処理装置。
A hydrothermal reactor that heats organic waste by adding alkali;
Means for lowering the pH of the hydrothermal reaction solution;
A wet oxidation reactor for reacting the treatment solution having lowered pH with an oxygen-containing gas;
A gas-liquid separator that separates gas and treated water from the wet oxidation reaction liquid;
An organic waste processing apparatus comprising:
前記水熱反応液にイオン触媒を添加する手段をさらに備えることを特徴とする請求項17に記載の有機性廃棄物の処理装置。
The organic waste treatment apparatus according to claim 17, further comprising means for adding an ion catalyst to the hydrothermal reaction liquid.
JP2006169978A 2006-06-20 2006-06-20 Treatment method and device of organic waste using wet oxidation method Pending JP2008000645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169978A JP2008000645A (en) 2006-06-20 2006-06-20 Treatment method and device of organic waste using wet oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006169978A JP2008000645A (en) 2006-06-20 2006-06-20 Treatment method and device of organic waste using wet oxidation method

Publications (1)

Publication Number Publication Date
JP2008000645A true JP2008000645A (en) 2008-01-10

Family

ID=39005451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169978A Pending JP2008000645A (en) 2006-06-20 2006-06-20 Treatment method and device of organic waste using wet oxidation method

Country Status (1)

Country Link
JP (1) JP2008000645A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008055508A1 (en) * 2008-12-11 2010-06-17 Herzberg, Patrik Von Process for the treatment of waste
JP2011516246A (en) * 2008-03-31 2011-05-26 ヴェオリア・ウォーター・ソリューション・アンド・テクノロジーズ・サポート Apparatus and method for continuously pyrolyzing biological material
JP2016529084A (en) * 2013-05-14 2016-09-23 シリス エナジー、インク. Carbonaceous raw material processing
CN105967490A (en) * 2016-06-27 2016-09-28 东方电气集团东方锅炉股份有限公司 Method and continuous system for treating wet organic waste
CN106630526A (en) * 2017-03-06 2017-05-10 东方电气集团东方锅炉股份有限公司 Sludge hydrothermal oxidization reaction system and method with function of product reflux pretreatment
CN106746198A (en) * 2016-12-13 2017-05-31 浙江省环境保护科学设计研究院 A kind of integrated processing method of the high salt high concentration hard-degraded organic waste water for producing cellulose ether
CN106865938A (en) * 2017-03-31 2017-06-20 彭丽 A kind of processing method of sludge CWO
CN107892456A (en) * 2017-12-18 2018-04-10 江南大学 A kind of method of the efficient minimizing of municipal sludge
CN108911455A (en) * 2018-09-29 2018-11-30 四川建筑职业技术学院 A kind of preparation method and equipment of the sludge substratess material based on multiphase wet oxidation
CN110818213A (en) * 2019-12-13 2020-02-21 无锡市张华医药设备有限公司 Wet catalytic oxidation sludge treatment system based on pre-electrolysis and method thereof
CN111847820A (en) * 2020-07-08 2020-10-30 中建中环工程有限公司 Sludge dewatering method based on hydrothermal method
CN112495982A (en) * 2020-10-22 2021-03-16 湖北君集水处理有限公司 Method for converting kitchen waste into wastewater denitrification carbon source through catalytic wet oxidation
CN114804320A (en) * 2022-01-06 2022-07-29 河南天辰环保装备研究院有限公司 Method for treating organic wastewater by catalytic wet oxidation method
CN115672951A (en) * 2022-09-27 2023-02-03 中南大学 Efficient harmless treatment method for antibiotic fungi residues

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222360A (en) * 1975-08-14 1977-02-19 Mitsui Toatsu Chem Inc Wet catalyst oxidation process
JPH11285677A (en) * 1998-04-03 1999-10-19 Hitachi Ltd Treatment of organic waste and device therefor
JP2003245628A (en) * 2002-02-25 2003-09-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment method for waste generated in food material processing process and treatment apparatus using the same
JP2004008912A (en) * 2002-06-06 2004-01-15 Hitachi Zosen Corp Method and apparatus for treating organic waste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222360A (en) * 1975-08-14 1977-02-19 Mitsui Toatsu Chem Inc Wet catalyst oxidation process
JPH11285677A (en) * 1998-04-03 1999-10-19 Hitachi Ltd Treatment of organic waste and device therefor
JP2003245628A (en) * 2002-02-25 2003-09-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment method for waste generated in food material processing process and treatment apparatus using the same
JP2004008912A (en) * 2002-06-06 2004-01-15 Hitachi Zosen Corp Method and apparatus for treating organic waste

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516246A (en) * 2008-03-31 2011-05-26 ヴェオリア・ウォーター・ソリューション・アンド・テクノロジーズ・サポート Apparatus and method for continuously pyrolyzing biological material
DE102008055508A1 (en) * 2008-12-11 2010-06-17 Herzberg, Patrik Von Process for the treatment of waste
JP2016529084A (en) * 2013-05-14 2016-09-23 シリス エナジー、インク. Carbonaceous raw material processing
CN105967490A (en) * 2016-06-27 2016-09-28 东方电气集团东方锅炉股份有限公司 Method and continuous system for treating wet organic waste
CN106746198A (en) * 2016-12-13 2017-05-31 浙江省环境保护科学设计研究院 A kind of integrated processing method of the high salt high concentration hard-degraded organic waste water for producing cellulose ether
CN106746198B (en) * 2016-12-13 2019-12-20 浙江省环境保护科学设计研究院 Integrated treatment method for high-salt high-concentration degradation-resistant organic wastewater for producing cellulose ether
CN106630526A (en) * 2017-03-06 2017-05-10 东方电气集团东方锅炉股份有限公司 Sludge hydrothermal oxidization reaction system and method with function of product reflux pretreatment
CN106865938B (en) * 2017-03-31 2020-06-09 彭丽 Treatment method for catalytic wet oxidation of sludge
CN106865938A (en) * 2017-03-31 2017-06-20 彭丽 A kind of processing method of sludge CWO
CN107892456A (en) * 2017-12-18 2018-04-10 江南大学 A kind of method of the efficient minimizing of municipal sludge
CN108911455A (en) * 2018-09-29 2018-11-30 四川建筑职业技术学院 A kind of preparation method and equipment of the sludge substratess material based on multiphase wet oxidation
CN108911455B (en) * 2018-09-29 2024-04-09 四川建筑职业技术学院 Preparation method and equipment of sludge-based material based on multiphase wet oxidation
CN110818213A (en) * 2019-12-13 2020-02-21 无锡市张华医药设备有限公司 Wet catalytic oxidation sludge treatment system based on pre-electrolysis and method thereof
CN111847820A (en) * 2020-07-08 2020-10-30 中建中环工程有限公司 Sludge dewatering method based on hydrothermal method
CN112495982A (en) * 2020-10-22 2021-03-16 湖北君集水处理有限公司 Method for converting kitchen waste into wastewater denitrification carbon source through catalytic wet oxidation
CN114804320A (en) * 2022-01-06 2022-07-29 河南天辰环保装备研究院有限公司 Method for treating organic wastewater by catalytic wet oxidation method
CN115672951A (en) * 2022-09-27 2023-02-03 中南大学 Efficient harmless treatment method for antibiotic fungi residues

Similar Documents

Publication Publication Date Title
JP2008000645A (en) Treatment method and device of organic waste using wet oxidation method
CA2098807C (en) Waste treatment process employing oxidation
CN112093982A (en) Treatment method of high-concentration organic wastewater
KR101224624B1 (en) Wastes treatment system for ship
JP5192134B2 (en) Waste treatment method and system
CN106242181A (en) A kind of coal chemical industrial waste water administering method of economical and efficient
JP2006297205A (en) Processing method of organic waste and its apparatus
JP3977174B2 (en) Sludge treatment method and apparatus for reducing generation amount of excess sludge
JP4667890B2 (en) Organic waste treatment methods
JP2007216207A (en) Method and apparatus for anaerobic digestion of organic waste liquid
JP4404976B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JPH06269797A (en) Treatment of waste water incorporating telephthalic acid
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
CN112239264B (en) Method for treating carbon-containing organic matters in waste brine
JP4480008B2 (en) Organic waste treatment method and apparatus
JP4406749B2 (en) Organic wastewater treatment method and organic wastewater treatment apparatus
JP3223145B2 (en) Organic wastewater treatment method
JP2006239625A (en) Method and equipment for treating organic waste
JPH07148500A (en) Method for treating organic sludge
JP4812261B2 (en) Method for solubilizing solid content in high-concentration organic substance, and method for treating high-concentration organic substance
JP2002001384A (en) Treating method for organic waste water and treating apparatus for the same
JP2008030008A (en) Methane fermentation method of organic waste
JP2008221096A (en) Organic material oxidation decomposition system
JP2003260491A (en) Biological treatment method for organic sewage and apparatus therefor
JP2000317498A (en) Treatment of anaerobically treated sludge md anaerobic digestion method for anaerobically digested sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025