JP4021750B2 - 受光素子に光電子増倍管を用いた共焦点顕微鏡システム、コンピュータプログラム、及び画面表示の明るさ調整方法 - Google Patents
受光素子に光電子増倍管を用いた共焦点顕微鏡システム、コンピュータプログラム、及び画面表示の明るさ調整方法 Download PDFInfo
- Publication number
- JP4021750B2 JP4021750B2 JP2002345053A JP2002345053A JP4021750B2 JP 4021750 B2 JP4021750 B2 JP 4021750B2 JP 2002345053 A JP2002345053 A JP 2002345053A JP 2002345053 A JP2002345053 A JP 2002345053A JP 4021750 B2 JP4021750 B2 JP 4021750B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- photomultiplier tube
- light receiving
- sample
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
Description
【発明の属する技術分野】
本発明は、試料からの光をピンホールを通して光電子増倍管で受光し、光電子増倍管から出力される受光量に応じた電気信号に基づいて試料の観察又は測定を行う光学測定装置に関する。
【0002】
【従来の技術】
このような光学測定装置として共焦点顕微鏡がある。共焦点顕微鏡は、レーザ等の光源から発せられる単色光で試料を走査し、試料からの光を共焦点光学系を介して受光素子で受光し、その受光量に基づいて試料の超焦点深度画像や高さ分布等の情報を取得する。例えば、ステージに載置された試料と対物レンズとの距離を光軸方向に変化させると、共焦点光学系を介して受光素子に入射する光の量、すなわち受光量が変化し、試料の表面にピントが合ったときに受光量が最大となる。したがって、最大受光量が得られるときの試料と対物レンズとの相対距離から試料の表面の高さ情報を算出し、試料の表面を光で走査することによって試料の表面の高さ分布を取得することができる。
【0003】
取得された高さ分布は、例えば三次元表示によって表示装置の画面上に表示される。あるいは、高さ分布を輝度分布や色分布に置き換えたものが画面上に表示される。表示装置としてCRT(陰極線管)やLCD(液晶表示装置)が使用され、共焦点顕微鏡に制御用のコントローラ、表示装置、コンソール等が接続されて共焦点顕微鏡システムが構成される。
【0004】
また、試料表面の各点(画素)でピントが合ったときの受光量の情報(すなわち各画素の最大輝度情報)をつなぎ合わせることにより、焦点深度の非常に深い試料表面の白黒画像を得ることができる。この画像がいわゆる超深度画像である。
【0005】
上記のような共焦点顕微鏡システムにおいて、受光素子として光電子増倍管(フォトマルチプライヤチューブ)を用いることが多い。光電子増倍管は、光電面、二次電子増倍機構、陽極からなる真空管であり、光が光電面に入射したときに放出される光電子が増倍されて陽極に捕集され、出力電流として外部に取り出される。多段の二次電子放出面を用いることにより、大きな増倍度(高い受光感度)が得られる。
【0006】
このような光電子増倍管を受光素子として用いた光学測定装置、特に共焦点顕微鏡において、例えば鏡面のように光反射率が非常に高い試料を測定(観察)したときに過大な光量が光電子増倍管に入射し、最大定格を超える光電流が流れて光電子増倍管が破壊に至ることがある。
【0007】
この現象を防ぐために、光源から発せられる光(例えばレーザ光)の出力を下げ、あるいは投光側の光路中に光透過量を制限するNDフィルタを挿入することにより、試料に照射される光の強さ(光量)を制限することが従来の共焦点顕微鏡で行われている。また、光電子増倍管そのものの光電変換効率(ゲイン)を下げて、最大定格を超える電流が光電子増倍管に流れないように調節することが可能な光学測定装置もある。
【0008】
【発明が解決しようとする課題】
しかし、光源から発せられる光(例えばレーザ光)の出力を下げる方法は、例えば光量モニター用の受光素子を別途備えた構成の場合に、そのS/N比が悪くなる一因となる。また、光源が半導体レーザである場合は、その静電破壊状態や寿命劣化を動作電流から判定することが可能であるが、出力を下げるために動作電流を下げると、静電破壊や寿命劣化の進み具合を的確に判定することが難しくなる。しかも、環境温度のような外的要因のために、一定の出力を維持することが困難になる。半導体レーザのような光源の出力を安定させるには、その駆動回路をできるだけ簡素な構成で安定するように設計することが望ましい。
【0009】
また、投光側の光路中にNDフィルタを挿入して光量を制限する方法は、NDフィルタの固定に関して高い精度が要求される。つまり、光軸に対してNDフィルタを正確に直角に固定しないと光軸がシフトし、予期しない光軸ずれに起因して光学性能が悪くなるおそれがある。特に、光透過量(光透過率)の異なる複数のNDフィルタを切り替えて使用する場合は、すべてのNDフィルタが正確に光軸に直角である必要があるので、製造時の位置決めや調整に手間が掛かり、製造コストの上昇要因となる。
【0010】
また、光電子増倍管そのものの光電変換効率(ゲイン)を下げて、最大定格を超える電流が光電子増倍管に流れないように調節する方法は、次のような問題がある。つまり、光電子増倍管の受光面に入射する光が強すぎると、受光面自体に飽和現象(受光量に比例して光電流が増加しなくなる現象)が発生する。光電子増倍管は瞬間的な大光量には追従して光電流を出力できるが、大光量が連続して入射すると飽和して出力電流が低下する特性を有する。この結果、出力電流にリンギングが発生する。
【0011】
試料表面をレーザ光で走査することによって試料表面の画像を取得する場合に、試料表面の光反射率の低い部分から高い部分に切り替わる画像のエッジ部において走査方向に白い尾を引くような現象が発生することがある。これは、光反射率の低い暗部から光反射率の高い明部に移る部分では、周囲の明部より更に明るく表示されるためである。このような現象は、得られた画像の見映えを悪くするだけでなく、測定精度や信頼性にも悪影響を及ぼす場合がある。
【0012】
本発明は上記のような課題に鑑み、投光側の光路を含む光学系や光源駆動回路に悪影響を与えないで、光電子増倍管の飽和を防止して適切な受光量に調整し、信頼性の高い画像を得ることができる光学測定装置、共焦点顕微鏡システム及びコンピュータプログラムを提供することを目的とする。
【0015】
本発明による共焦点顕微鏡システムは、ピンホールを含む共焦点光学系を介して試料からの光を受光素子で受光し、その受光情報に基づいて前記試料の表面の高さ情報及び光量情報を取得し、前記試料の表面の画像を表示手段に画面表示する共焦点顕微鏡システムであって、前記受光素子は光電子増倍管であり、前記ピンホールと前記光電子増倍管との間に配置され、前記ピンホールから前記光電子増倍管への光透過量を制限するNDフィルタと、前記NDフィルタを用いて前記光透過量を変更する光透過量変更手段と、が設けられていることを特徴とする。
【0016】
このような構成によれば、投光側の光路を含む光学系や光量モニター用の受光素子に悪影響を与えないで、光電子増倍管の飽和を防止することができる。つまり、ピンホールを通過した後の光学系は、ピンホールを通過する前の光学系に比べて光学素子の配置精度がさほどきびしくない。また、光電子増倍管の性能を十分に生かすためにはピンホールと光電子増倍管との距離をある程度確保する必要がある。このピンホールと光電子増倍管との間のスペースを活かしてNDフィルタを配置することにより、光電子増倍管の飽和を効果的に防止することができる。よって、投光側の光路を含む光学系や光量モニター用の受光素子に悪影響を与えないで、光電子増倍管の飽和を防止して適切な受光量に調整し、信頼性の高い画像(超深度画像等)を得ることができる。
【0017】
また、本発明によるコンピュータプログラムは、上記の共焦点顕微鏡システムに接続されたコンピュータに実行させるプログラムであって、受光素子の受光面が飽和する限界より僅かに小さい所定光量の光によって画面表示の明るさが飽和するように受光ゲインを調整するステップと、調整後の受光ゲインを下限値として記憶するステップと、ユーザによる画面表示の明るさ調整に際して、受光ゲインが下限値より下がることを制限し、画面表示の明るさを更に下げるにはNDフィルタによる光透過量を減少する必要があることをユーザに知らせるステップとを備えていることを特徴とする。
【0018】
共焦点顕微鏡システムに接続されたコンピュータを用いて共焦点顕微鏡システムの測定条件の設定や調整を行う際に、上記のようなコンピュータプログラムによって受光素子(光電子増倍管)へ入射する光の強さがNDフィルタで適切に調整される。その結果、光電子増倍管の飽和が防止されて信頼性の高い画像を得ることができる。
【0019】
このようなコンピュータプログラムは、例えばCD−ROMのようなコンピュータ読み取り可能な記憶媒体に記憶された状態で供給され、記憶媒体からコンピュータにインストールされて実行される。
【0020】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0021】
図1は、本発明の実施形態に係る光学測定装置である共焦点顕微鏡システムの概略構成を示している。この共焦点顕微鏡システム1は、共焦点光学系2及び非共焦点光学系3を有する共焦点顕微鏡と、共焦点顕微鏡の光源駆動回路44、第1AD変換器41、CCD駆動回路43、第2AD変換器42、対物レンズ移動機構40、マイクロコンピュータを用いた制御部46等を含むコントローラと、コントローラに接続された表示装置47及び入力装置(コンソール)48とを備えている。
【0022】
まず、共焦点顕微鏡の共焦点光学系2とその信号処理について説明する。共焦点光学系2は、試料wkに単色光(例えばレーザ光)を照射するための光源10、コリメートレンズ11、偏光ビームスプリッタ12、1/4波長板13、水平垂直偏向装置14、ハーフミラー15、対物レンズ17、PHレンズ18、ピンホール板9、受光素子19等を含んでいる。
【0023】
光源10には、例えば半導体レーザが用いられる。但し光源10はレーザに限るわけではなく、単色光源であればよい。また、水銀ランプのように単色光源でなくても、バンドフィルタと組み合わせることによって単色光源として使用することができる。光源駆動回路44によって駆動される光源10から出たレーザ光は、コリメートレンズ11を通り、偏光ビームスプリッタ12で光路を曲げられ、1/4波長板13を通過する。この後、水平垂直偏向装置14によって水平(横)方向及び垂直(縦)方向に偏向された後、ハーフミラー15で反射して光路を曲げられ、対物レンズ17によって試料ステージ30上に置かれた試料wkの表面に集光される。
【0024】
水平垂直偏向装置14は水平偏向用のレゾナント(共振型)スキャナーと垂直偏向用のガルバノ(電磁型)スキャナーで構成されている。両者でレーザ光を水平及び垂直方向に偏向させることにより、試料wkの表面をレーザ光で走査する。説明の便宜上、水平方向をX方向、垂直方向をY方向ということにする。対物レンズ17は、対物レンズ移動機構40によりZ方向(光軸方向)に駆動される。これにより、対物レンズ17の焦点と試料wkとの光軸方向(すなわち試料wkの高さ方向)での距離を変化させることができる。
【0025】
ただし、対物レンズ17の焦点と試料wkとの光軸方向での距離は、他の方法で変化させることもできる。例えば、対物レンズ17をZ方向に駆動する代わりに試料ステージ30をZ方向に駆動してもよい。あるいは、対物レンズ17と試料wkとの間に屈折率が変化するレンズを挿入することにより、対物レンズ17の焦点をZ方向に移動させる構成も可能である。
【0026】
本実施形態の共焦点顕微鏡では、制御部46からの制御信号によって対物レンズ移動機構40を介して対物レンズ17がZ軸方向に電動で移動可能であると共に、試料ステージ30は、ステージ手動操作機構31を介して手動操作によってX方向、Y方向及びZ方向に変位可能である。また、入力装置48のキー操作(例えばアップ/ダウンキーの操作)によって制御部46及び対物レンズ移動機構40を介して対物レンズ17を上下動することも可能である。
【0027】
試料wkで反射されたレーザ光は、上記の光路を逆にたどるように、対物レンズ17を通ってハーフミラー15で反射し、水平垂直偏向装置14を介して1/4波長板13を再び通る。この結果、レーザ光は偏光ビームスプリッタ12を透過し、PHレンズ18によって集光される。集光されたレーザ光は、PHレンズ18の焦点位置に配置されたピンホール板9のピンホールを通過し、NDフィルタ49を通過して受光素子19に入射する。受光素子19は光電子増倍管(フォトマルチプライヤチューブ)で構成され、受光量を電気信号に変換する。受光量に相当する電気信号は、出力アンプ及びゲイン制御回路(図示せず)を介して第1AD変換器41に与えられ、ディジタル値に変換される。
【0028】
上記のような構成の共焦点光学系2により、試料wkの高さ(深さ)情報を取得することができる。以下に、その原理を簡単に説明する。
【0029】
上述のように、対物レンズ17が対物レンズ移動機構40によってZ方向(光軸方向)に駆動されると、対物レンズ17の焦点と試料wkとの光軸方向での相対距離が変化する。そして、対物レンズ17の焦点が試料wkの表面に結ばれたときに、試料wkの表面で反射されたレーザ光は上記の光路を経てPHレンズ18で集光され、ほとんどすべてのレーザ光がピンホール板9のピンホールを通過する。したがって、このときに、受光素子19の受光量が最大になる。逆に、対物レンズ17の焦点が試料wkの表面からずれている状態では、PHレンズ18によって集光されたレーザ光はピンホール板9からずれた位置に焦点を結ぶので、一部のレーザ光しかピンホールを通過することができない。その結果、受光素子19の受光量は著しく低下する。
【0030】
したがって、試料wkの表面の任意の点について、対物レンズ17をZ方向(光軸方向)に駆動しながら受光素子19の受光量を検出すれば、その受光量が最大になるときの対物レンズ17のZ方向位置(対物レンズ17の焦点と試料wkとの光軸方向での距離)を高さ情報として一義的に求めることができる。
【0031】
実際には、対物レンズ17を1ステップ(1ピッチ)移動するたびに水平垂直偏向装置14によって試料wkの表面を走査して受光素子19の受光量を得る。対物レンズ17をZ方向での測定範囲の下端から上端までZ方向に移動させたとき、走査範囲内の各点(画素)について、Z方向位置に応じて変化する受光量データが得られる。
【0032】
図2は、対物レンズ17のZ方向位置に応じて変化する受光量の例を示すグラフである。このような受光量データに基づいて、最大受光量とそのときのZ方向位置が各点(画素)ごとに得られる。したがって、試料wkの表面高さのXY平面での分布が得られる。この処理は、マイクロコンピュータを用いた制御部46によって実行される。
【0033】
得られた表面高さの分布情報は、いくつかの方法で表示装置47のモニター画面に表示することができる。例えば3次元表示によって試料の高さ分布(表面形状)を立体的に表示することができる。あるいは、高さデータを輝度データに変換することにより、明るさの二次元分布として表示できる。高さデータを色差データに変換することにより、高さの分布を色の分布として表示することもできる。
【0034】
また、XY走査範囲内の各点(画素)について得られた受光量を輝度データとする輝度信号から、試料wkの表面画像(白黒画像)が得られる。各画素における最大受光量を輝度データとして輝度信号を生成すれば、表面高さの異なる各点でピントの合った焦点深度の非常に深い超深度画像が得られる。また、任意の注目画素で最大受光量が得られた高さ(Z方向位置)に固定した場合は、注目画素の部分と高低差が大きい部分の画素の受光量は著しく小さくなり、注目画素と同じ高さの部分のみが明るい画像(すなわちスライス画像)が得られる。
【0035】
図1において、受光素子(光電子増倍管)19の前に設けられたNDフィルタ49は、光透過量(透過率)を制限するフィルタであり、受光素子(光電子増倍管)19に入射する光の強さ(光量)を制限する働きを有する。また、光透過率の異なる複数のNDフィルタ49が円板70上に円環状に配置され、この円板70を回転させるモータ71が設けられている。制御部46は、駆動回路72を介してモータ71の駆動制御を行い、複数のNDフィルタ49を切り替えることができる。つまり、NDフィルタ49による光透過量を変更する手段が円板70、モータ71、駆動回路72等によって構成されている。
【0036】
なお、ピンホール板9のピンホールを通過した後の光学系は、ピンホールを通過する前の光学系に比べて光学素子の配置精度がさほどきびしくない。したがって、光学系の設計後にNDフィルタ49を追加しても問題ない。また、NDフィルタ49の表面仕上げや減反射コート処理の必要もないので、低コストに抑えることができる。
【0037】
また、受光素子19である光電子増倍管の性能を十分に生かすためには、ピンホール板9と受光素子19との距離をある程度確保する必要がある。このピンホール板9と受光素子19との間のスペースを有効活用してNDフィルタ49を配置することにより、受光素子19の飽和を効果的に防止することができる。また、受光素子19の受光量の調整のために光源10の出力を調整する必要がないので、光源駆動回路44の構成を簡素化できる。受光素子19の受光量の調整方法(画面表示の明るさ調整方法)については後述する。
【0038】
次に、非共焦点光学系3とその信号処理について説明する。非共焦点光学系3は、試料wkに白色光(カラー画像撮影用の照明光)を照射するための白色光源20、コレクタレンズ21、コンデンサレンズ22、フィルタハーフミラー16、ハーフミラー15、対物レンズ17、結像レンズ23及びカラーCCD(カラー撮像素子)24を含んでいる。ハーフミラー15及び対物レンズ17は共焦点光学系2及び非共焦点光学系3に共用されており、対物レンズ17の光軸は共焦点光学系2及び非共焦点光学系3に共通である。
【0039】
白色光源20には例えば白色ランプが用いられるが、特に専用の光源を設けないで自然光又は室内光を利用してもよい。白色光源20から出た白色光は、コレクタレンズ21及びコンデンサレンズ22を通り、フィルタハーフミラー16で反射して光路を曲げられ、ハーフミラー15を通過して対物レンズ17によって試料ステージ30上の試料wkの表面に集光される。
【0040】
試料wkで反射された白色光は、上記の光路を逆にたどるように、対物レンズ17及びハーフミラー15を通過する。そして、フィルタハーフミラー16を通過した光が結像レンズ23を通りカラーCCD24に入射して結像する。カラーCCD24は、共焦点光学系2のピンホール板9のピンホールと共役又は共役に近い位置に設けられている。カラーCCD24で撮像されたカラー画像は、CCD駆動回路43によって読み出され、そのアナログ出力信号は第2AD変換器42に与えられ、ディジタル値に変換される。
【0041】
フィルタハーフミラー16は、光源(半導体レーザ)10からの単色光を通過させないで白色光源20からの白色光のほとんどの成分を通過させるように不純物が混ぜられたフィルタガラスに金属膜や誘電体膜を蒸着して反射面16aを形成したものである。したがって、フィルタハーフミラー16を通過して結像レンズ23でカラーCCD24に結像される光には半導体レーザ10からの単色光はほとんど含まれていない。その結果、エネルギー密度の高いレーザスポットでカラーCCD24(特にカラーフィルタ)がダメージを受けるおそれが解消される。 上記のようにして得られたカラー画像は、試料wkの観察用の拡大カラー画像として表示装置47のモニター画面に表示される。このカラー画像は、共焦点光学系による超深度画像等の測定を行いたい試料表面の場所を見つけるのにも役立つ。また、共焦点光学系2で得られた超深度画像と非共焦点光学系3で得られた通常のカラー画像とを組み合わせて、すべての画素で略ピントの合った焦点深度の深いカラー超深度画像を生成し、表示することもできる。
【0042】
上記のようなカラー画像に関する処理についても、制御部46を含むコントローラが司る。コントローラにはコンソール(操作卓)のような入力装置48やCRT(陰極線管)又はLCD(液晶表示装置)のような表示装置47が接続されている。
【0043】
ユーザは、表示装置47の画面上に表示されるガイダンスにしたがって入力装置48を用いて種々の測定用パラメータを設定することができる。例えば、対物レンズ17のZ方向移動範囲(測定範囲)や移動ピッチを設定する。あるいは、試料wkの表面の光反射率等に応じて受光素子19の受光感度(受光ゲイン)やNDフィルタ49による光透過率(減衰量)の設定を行うことにより、画面に表示された超深度画像やスライス画像が適当な明るさ(輝度)になるように調整する。また、カラーCCD24によるカラー画像の取得のためのシャッタースピードやゲイン及びホワイトバランスの設定を行う。
【0044】
また、本実施形態の共焦点顕微鏡システム1(のコントローラ)には、パーソナルコンピュータのような外部コンピュータシステムを接続するための通信インターフェイスも備えられている。共焦点顕微鏡システム1の制御を行うための専用ソフトウェアをインストールした外部コンピュータシステムを共焦点顕微鏡システム1に接続することにより、取得された試料wkの画像情報や高さ分布情報等の加工をシームレスに行うことが可能になる。
【0045】
図3は、共焦点顕微鏡システム1のコントローラに外部コンピュータシステム50を接続したハードウェア構成例を示すブロック図である。外部コンピュータシステム50は、CRT又はLCD等の表示装置51、キーボード52、マウス(他のポインティングデバイスでもよい)53、RS232C、USB(ユニバーサルシリアルバス)、IEEE1394等の通信インターフェイス54、処理装置(CPU)55、半導体記憶媒体である主メモリ56、補助記憶装置である固定ディスク装置57及びリムーバブルディスク装置58を備えている。
【0046】
共焦点顕微鏡システム1の制御を行うための専用ソフトウェアは、CD−ROMのような記憶媒体59に記憶された状態で供給され、CD−ROMドライブ装置のようなリムーバブルディスク装置58によって記憶媒体59から読み出され、固定ディスク装置57にインストールされる。固定ディスク装置57にインストールされた専用ソフトウェアは、主メモリ56にロードされ、処理装置55によって実行される。このような専用ソフトウェアによって実行される処理には、共焦点顕微鏡システム1の測定条件の設定を行うための処理や測定の結果得られた画像の処理等が含まれている。
【0047】
図4は、専用ソフトウェアによる表示装置51の画面表示の例を示す図である。表示装置51に表示される画面表示60において、左側の画像表示領域61は共焦点顕微鏡システム1から得られたカラー画像、超深度画像、スライス画像、高さ分布画像等の測定結果を表示するための領域であり、その右側に測定条件の設定のための縦長の操作部領域62が表示されている。
【0048】
図5は、図4の画面表示60における操作部領域62の拡大図である。操作部領域62のプッシュボタンやスライドバーの操作及び各プルダウンメニューの選択等をマウス53を用いて行うことにより、各測定パラメータのマニュアル設定を行うことができる。例えば、ゲイン調整用スライドレバー63をマウス53のドラッグ操作によって上下移動すれば、受光素子19の受光感度(受光ゲイン)が変化し、画像の明るさ(輝度)を調整することができる。また、その隣のNDフィルタ調整用スライドレバー64を上下移動して光透過量を変化させることによっても画像の明るさ(輝度)を調整することができる。
【0049】
あるいは、ディスタンスの右側の三角マーク65をマウス53でクリックしたときに現れるプルダウンメニューから適切な数値を選択することにより、対物レンズ17のZ方向移動範囲(測定範囲)を設定することができる。その下のピッチについても同様に、三角マーク66をクリックしたときに現れるプルダウンメニューから適切な数値を選択することにより、適切なZ方向移動ピッチを設定することができる。
【0050】
その他、測定モードや走査モードの設定等を含む各種の設定を適切に行った後に測定ボタン67を押下すれば自動測定が始まり、所定の測定時間経過後に超深度画像(又はカラー超深度画像)や高さ分布画像が画面表示60の画像表示領域61に現れる。
【0051】
図6及び図7は、受光ゲインの調整とNDフィルタの光透過率の調整による画像の明るさの調整方法に関するフローチャートである。これらのフローチャートには外部コンピュータシステム50の処理装置55が専用ソフトウェア(コンピュータプログラム)にしたがって処理するステップとユーザの操作ステップとが含まれているが、以下の説明の中で明らかにする。
【0052】
まず、受光ゲインの下限値を設定するための処理を図6にしたがって説明する。ステップ#101においてユーザは、受光素子19である光電子増倍管(PMTと略記することがある)の受光面が飽和する限界より僅かに小さい所定光量の光を光電子増倍管に入射させる。続くステップ#102でユーザは、画面表示の明るさが飽和するように受光ゲイン(PMTゲイン)を調整する。そして、ステップ#103で処理装置55は、調整後の受光ゲインを下限値として記憶する。後述するように、ユーザによる明るさ調整の際に、処理装置55はこの記憶された下限値を用いて適切な調整が行われるようにユーザに報知する。
【0053】
受光素子19である光電子増倍管の受光面の飽和は、受光面に入射する光の強さ(入射光量)が一定の値を超えないようにすれば防ぐことができる。受光素子19の出力信号から生成される画像の明るさが強すぎる場合にユーザは明るさを下げるための操作を行う。つまり、図5で示した操作部領域62において、受光ゲインを下げるかNDフィルタ49の光透過量を下げる(減衰量を上げる)。
【0054】
このとき、NDフィルタ49の光透過量を下げた場合は受光素子19への入射光量が下がるが、受光ゲインを下げた場合は受光素子19への入射光量はそのままである。すなわち、入射光量が一定の値を超えている場合に受光ゲインを下げても受光面の飽和状態は解消されない。そこで、上記のステップ#101〜103のようにして、受光素子19の受光面が飽和する限界より僅かに小さい光量の光が入射しているときに画面表示の明るさが飽和するように受光ゲインを調整し、調整後の受光ゲインを記憶しておく。
【0055】
次に、図7のフローチャートに従ってユーザによる明るさ調整が行われる。ユーザは、ステップ#201で画面表示の明るさが飽和していると判断すると、次のステップ#202で受光ゲイン(PMTゲイン)を下げる。その結果、飽和状態が解消した場合(ステップ#203のYes)は調整処理を終了するが、飽和状態がまだ解消していない場合(ステップ#203のNo)にユーザはさらに受光ゲインを下げようとする。このとき、処理装置55は、前述の記憶した受光ゲインの下限値を読み出し、ステップ#204で現在の受光ゲインと比較する。現在の受光ゲインが下限値より大きい場合はステップ#202に戻って受光ゲインを更に下げる調整を可能とするが、現在の受光ゲインが下限値に達した場合(ステップ#204のNo)は、次のステップ#205でユーザはNDフィルタ49の透過量を下げる調整を行うことになる。
【0056】
このとき、処理装置55は、受光ゲインが下限値より下がることを制限し、画面表示の明るさを更に下げるにはNDフィルタ49による光透過量を減少する必要があることをユーザに知らせる。例えば、図5で示した操作部領域62において、受光ゲインを下げるためのゲイン調整用スライドレバー63の下方への移動を禁止し、NDフィルタ49による光透過量を下げることを促す内容のメッセージを表示する。
【0057】
次のステップ#206で飽和状態が解消したと判断した場合は調整処理を終了し、飽和状態がまだ解消していないと判断した場合はステップ#205に戻って更にNDフィルタ49の透過量を下げる調整を行うことになる。
【0058】
上記のような明るさ調整方法によれば、ユーザは画面の明るさを下げる調整を行う場合に、受光ゲインを下げる調整のみで所望の明るさまで下げることができずにNDフィルタ49による透過量を下げる調整を行うことになるので、受光素子への入射光量が常に飽和光量以下に抑えられる。こうして、信頼性の高い画像を得ることができる。
【0059】
以上、本発明の実施形態を適宜変形例を含めながら説明したが、本発明は上記の実施形態に限らず、種々の形態で実施することが可能である。例えば、上記の実施形態の光学測定装置は反射型のカラー共焦点顕微鏡であるが、透過型のカラー共焦点顕微鏡にも本発明を適用することができる。透過型のカラー共焦点顕微鏡の場合は、試料の裏面から共焦点光学系のレーザ光及び非共焦点光学系の白色光が照射される。共焦点光学系に用いる単色光源はレーザ光源に限らず、水銀ランプのような複数波長を含む光源とバンドフィルタとの組合せで単色光源を構成してもよい。非共焦点光学系の光源は自然光又は室内光で代用することもできる。また、本発明は共焦点顕微鏡に限らず、受光素子に光電子増倍管を用いた光学測定装置に広く適用することが可能である。
【0060】
【発明の効果】
以上に説明したように、本発明の光学測定装置、共焦点顕微鏡システム及びコンピュータプログラムによれば、ピンホールと受光素子である光電子増倍管との間にNDフィルタを設けて、その光透過量を調整できるようにしたことにより、投光側の光路を含む光学系や光源の駆動回路等を複雑化しないで光電子増倍管の飽和を効果的に防止することができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る光学測定装置である共焦点顕微鏡システムの概略構成を示す図である。
【図2】対物レンズのZ方向位置に応じて変化する受光量の例を示すグラフである。
【図3】共焦点顕微鏡システムのコントローラに外部コンピュータシステムを接続したハードウェア構成例を示すブロック図である。
【図4】専用ソフトウェアによる表示装置の画面表示の例を示す図である。
【図5】図4の画面表示における操作部領域の拡大図である。
【図6】受光ゲインの調整とNDフィルタの光透過率の調整による画像の明るさの調整方法に関するフローチャートである。
【図7】受光ゲインの調整とNDフィルタの光透過率の調整による画像の明るさの調整方法に関するフローチャートである。
【符号の説明】
2 共焦点光学系
9 ピンホール板
17 対物レンズ
19 受光素子(光電子増倍管)
24 カラー撮像素子(カラーCCD)
49 NDフィルタ
70,71,72 NDフィルタによる光透過量を変更する手段
wk 試料
Claims (4)
- ピンホールを含む共焦点光学系を介して試料からの光を受光素子で受光し、その受光情報に基づいて前記試料の表面の高さ情報及び光量情報を取得し、前記試料の表面の画像を表示手段に画面表示する共焦点顕微鏡システムであって、
前記受光素子は光電子増倍管であり、
前記ピンホールと前記光電子増倍管との間に配置され、前記ピンホールから前記光電子増倍管への光透過量を制限するNDフィルタと、
前記NDフィルタを用いて前記光透過量を変更する光透過量変更手段と、
が設けられていることを特徴とする共焦点顕微鏡システム。 - 前記共焦点顕微鏡システムは更に、
前記光電子増倍管の受光ゲインを調整する受光ゲイン調整手段と、
前記光電子増倍管が飽和する限界より僅かに小さい所定光量の光によって前記表示手段の画面表示の明るさが飽和するように、前記受光ゲイン調整手段により調整された受光ゲインを受光ゲインの調整範囲の下限値として記憶する記憶手段と、
ユーザによる前記表示手段の画面表示の明るさ調整に際して、前記受光ゲインが前記記憶手段の下限値より下がることを制限する制限手段と、
前記制限手段により前記受光ゲイン調整手段の調整が制限された際に、前記表示手段の画面表示の明るさを更に下げるには前記光透過量変更手段により前記NDフィルタを用いて光透過量を減少する必要があることをユーザに知らせる報知手段と
を備えていることを特徴とする請求項1に記載の共焦点顕微鏡システム。 - ピンホールを含む共焦点光学系と、
前記共焦点光学系を介して試料からの光を受光する光電子増倍管と、
前記光電子増倍管からの受光情報に基づいて前記試料の表面の高さ情報及び光量情報を取得し、前記試料の表面の画像を画面表示する表示手段と、
前記ピンホールと前記光電子増倍管との間に配置され、前記ピンホールから前記光電子増倍管への光透過量を制限するNDフィルタと、
前記NDフィルタを用いて前記光透過量を変更する光透過量変更手段とを備えた共焦点顕微鏡システムに接続されたコンピュータで実行させるプログラムであって、
前記光電子増倍管が飽和する限界より僅かに小さい所定光量の光によって前記表示手段の画面表示の明るさが飽和するように受光ゲインを調整するステップと、
前記調整後の受光ゲインを下限値として記憶するステップと、
ユーザによる画面表示の明るさ調整に際して、前記受光ゲインが前記下限値より下がることを制限し、画面表示の明るさを更に下げるには前記光透過量変更手段により前記NDフィルタを用いて光透過量を減少する必要があることをユーザに知らせるステップと
を備えていることを特徴とするコンピュータプログラム。 - ピンホールを含む共焦点光学系と、
前記共焦点光学系を介して試料からの光を受光する光電子増倍管と、
前記光電子増倍管からの受光情報に基づいて前記試料の表面の高さ情報及び光量情報を取得し、前記試料の表面の画像を画面表示する表示手段と、
前記ピンホールと前記光電子増倍管との間に配置され、前記ピンホールから前記光電子増倍管への光透過量を制限するNDフィルタと、
前記NDフィルタを用いて前記光透過量を変更する光透過量変更手段とを備えた共焦点顕微鏡システムで用いられる画面表示の明るさ調整方法であって、
前記光電子増倍管が飽和する限界より僅かに小さい所定光量の光によって前記表示手段の画面表示の明るさが飽和するように受光ゲインを調整するステップと、
前記調整後の受光ゲインを下限値として記憶するステップと、
ユーザによる画面表示の明るさ調整に際して、前記受光ゲインが前記下限値より下がることを制限し、前記表示手段の画面表示の明るさを更に下げるには前記光透過量変更手段により前記NDフィルタを用いて光透過量を減少する必要があることをユーザに知らせるステップと
からなることを特徴とする共焦点顕微鏡システムで用いられる画面表示の明るさ調整方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002345053A JP4021750B2 (ja) | 2002-11-28 | 2002-11-28 | 受光素子に光電子増倍管を用いた共焦点顕微鏡システム、コンピュータプログラム、及び画面表示の明るさ調整方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002345053A JP4021750B2 (ja) | 2002-11-28 | 2002-11-28 | 受光素子に光電子増倍管を用いた共焦点顕微鏡システム、コンピュータプログラム、及び画面表示の明るさ調整方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004177307A JP2004177307A (ja) | 2004-06-24 |
JP4021750B2 true JP4021750B2 (ja) | 2007-12-12 |
Family
ID=32706327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002345053A Expired - Fee Related JP4021750B2 (ja) | 2002-11-28 | 2002-11-28 | 受光素子に光電子増倍管を用いた共焦点顕微鏡システム、コンピュータプログラム、及び画面表示の明るさ調整方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4021750B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4999046B2 (ja) * | 2006-04-05 | 2012-08-15 | Hoya株式会社 | 共焦点内視鏡システム |
JP5289756B2 (ja) | 2007-11-26 | 2013-09-11 | オリンパス株式会社 | 顕微鏡観察システム |
KR101749240B1 (ko) | 2010-12-17 | 2017-06-21 | 한국전자통신연구원 | 반도체 포토멀티플라이어의 상부 광학 구조 및 그 제작 방법 |
-
2002
- 2002-11-28 JP JP2002345053A patent/JP4021750B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004177307A (ja) | 2004-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39751E1 (en) | Confocal microscope apparatus and photographing apparatus for confocal microscope | |
US8188412B2 (en) | Confocal microscope which weights and combines signals output from a plurality of photodetectors and calculates omnifocal brightness information for the plurality of signals | |
US20190025213A1 (en) | Microscopy system, microscopy method, and computer-readable storage medium | |
JP2007139884A (ja) | 共焦点走査型顕微鏡 | |
JP4542302B2 (ja) | 共焦点顕微鏡システム | |
JP4021750B2 (ja) | 受光素子に光電子増倍管を用いた共焦点顕微鏡システム、コンピュータプログラム、及び画面表示の明るさ調整方法 | |
JP2000275541A (ja) | レーザ顕微鏡 | |
JP4180322B2 (ja) | 共焦点顕微鏡システム及びパラメータ設定用コンピュータプログラム | |
JP2009109315A (ja) | 光計測装置及び走査光学系 | |
JP4912862B2 (ja) | 顕微鏡 | |
JP3722535B2 (ja) | 走査型共焦点顕微鏡及びこの顕微鏡を使用した測定方法 | |
JPH0961720A (ja) | 共焦点走査型光学顕微鏡及びこの顕微鏡を使用した測定方法 | |
JP3618481B2 (ja) | レーザ走査型顕微鏡 | |
US12061327B2 (en) | White light interference microscope | |
JP4050039B2 (ja) | 走査型共焦点顕微鏡及びその画像構築方法 | |
JP4473987B2 (ja) | 共焦点顕微鏡 | |
JP2000305021A (ja) | 共焦点顕微鏡 | |
JP3783790B2 (ja) | レーザー顕微鏡 | |
JP2003232749A (ja) | 半導体デバイス故障解析装置 | |
JP4290413B2 (ja) | 測定反復モードを有する共焦点顕微鏡システム | |
JP2005156651A (ja) | 走査型光学顕微鏡 | |
JP4493453B2 (ja) | 光検出回路および該光検出回路を備えた走査型共焦点顕微鏡 | |
JP2004138947A (ja) | 走査モード選択可能な共焦点顕微鏡システム | |
JP4185712B2 (ja) | カラー顕微鏡 | |
JP2004145153A (ja) | 光量飽和表示機能付共焦点顕微鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20050810 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070927 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |