JP4019943B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4019943B2
JP4019943B2 JP2003000269A JP2003000269A JP4019943B2 JP 4019943 B2 JP4019943 B2 JP 4019943B2 JP 2003000269 A JP2003000269 A JP 2003000269A JP 2003000269 A JP2003000269 A JP 2003000269A JP 4019943 B2 JP4019943 B2 JP 4019943B2
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
heat
tank
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003000269A
Other languages
Japanese (ja)
Other versions
JP2004211986A (en
Inventor
雅之 藤本
和久 森上
芳久 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003000269A priority Critical patent/JP4019943B2/en
Publication of JP2004211986A publication Critical patent/JP2004211986A/en
Application granted granted Critical
Publication of JP4019943B2 publication Critical patent/JP4019943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として温水熱交換負荷を備え、大気熱を利用するヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来のこの種のヒートポンプ給湯装置は、図4に示すような構成となっていた。
【0003】
以下、その構成を図4に基づいて説明する。図4において、41はヒートポンプユニットで、冷媒を加熱する圧縮機42と、膨張弁43と、給湯用熱交換器44と、大気熱交換器45を備えている。46はタンクユニットで、給湯用のカランCが配管接続されたタンク47と、給水管Dと、タンク47の下部の水温を検出する入水サーミスタMと、積層ポンプ48を備えている。49は温水暖房ユニットで、タンク47内の高温水と熱交換する温水熱交換パイプ50と、温水循環ポンプ51と、送風機52と、温風熱交換器53を備えている。
【0004】
次に上記構成において、動作を説明する。まず、冷媒を圧縮機42で高温高圧にした後に、給湯用熱交換器44で積層ポンプ48により循環するタンク47内の水と熱交換させ、タンク47の水を温める。給湯用熱交換器44から膨張弁43を通った後に冷媒は凝縮液化するが、大気熱交換器45で、大気熱と熱交換することにより蒸発ガス化され、その蒸発ガス化した冷媒を再び圧縮機42に流入させるというサイクルを繰り返すことにより貯湯を行う。
【0005】
次に給湯を行うにはカランCを開くとタンク47上部より高温水が出湯され、同時にタンク47の下部には給水管Dより低温の水道水が供給される。
【0006】
一方、温水暖房ユニット49は、温水循環ポンプ51により温水熱交換パイプ50内を流れる循環水を、タンク47内に貯湯されている高温水と熱交換させることにより温め、さらに送風機52と温風熱交換器53により室内空気を温め温風暖房を行う。
【0007】
【発明が解決しようとする課題】
近年、ヒートポンプ給湯装置の場合、単なる湯の沸き上げと貯湯機能だけでなく、温水暖房等の暖房機能付加への要望が高まっている。
【0008】
しかしながら、温水暖房等の暖房負荷は必要熱量が大きく、長時間暖房運転を行うと、給湯には使えるが、暖房運転に対しては十分な熱量供給が行えない使い勝手の悪い中温水が大量に貯湯されてしまう。
【0009】
ヒートポンプ給湯装置は、低温の水道水と大気熱から熱を回収し、さらに圧縮機で高温に加熱した冷媒とを熱交換させることにより、効率的に高温の湯を沸き上げ、ランニングコストでメリットを出そうとするものである。
【0010】
しかし、タンク内の給湯には使えるが、暖房運転に対しては十分な熱量供給が行えない中温水と冷媒を熱交換させても熱交換効率が低下し、結果としてランニングコストが高くなり、必ずしもユーザーの期待に添ったものでなくなるという課題を有していた。
【0011】
また、中温水を加熱する場合にはCOP(エネルギー消費効率)が1以下となることを防ぐために、入水サーミスターMが所定温度以上を検出すると、加熱動作を行わないように制御している。
【0012】
すなわち、中温水をユーザーが給湯に使用し、給水管Dから低温の水道水がタンク内に供給され、入水サーミスタMが所定温度以下の水の流入を検出しない限りは加熱動作を行わないので、高温水が確実に得られず、使い勝手の面でも課題を有していた。
【0013】
【課題を解決するための手段】
本発明は上記課題を解決するために、大気熱を冷媒に回収し熱交換器を介して水を加熱するヒートポンプユニットと、前記ヒートポンプユニットで加熱された湯を貯めるタンクと、前記タンク内の中温水を循環させ熱回収する熱回収手段と、前記タンク内の高温水と熱交換する熱交換手段とを備え、前記ヒートポンプユニットの熱回収手段として、大気熱を用いるか、タンク内の中温水を用いるかを切り換えるようにした構成としている。
【0014】
上記発明によれば、冷媒は大気熱より熱回収するか、タンク内に中温水がある場合には中温水を利用して熱回収するように切り換えられることにより、タンク内の高温水と熱交換して運転する温水暖房ユニット等の熱交換手段を運転し中温水が生じても、中温水の温度を低下させ、効率良く湯を沸き上げることができる。
【0015】
【発明の実施の形態】
本発明の請求項1に記載したヒートポンプ給湯装置は、冷媒を加熱する圧縮機と、加熱された冷媒を熱交換させて水を温める給湯用熱交換器と、熱交換した冷媒を減圧膨張させる第1膨張弁と、減圧膨張した冷媒を湯と熱交換して加熱する冷媒加熱用熱交換器と、この冷媒加熱用熱交換器で加熱された冷媒を減圧膨張させる第2膨張弁と、減圧膨張した冷媒が大気より回収された熱により加熱される大気熱交換器を通るか、バイパス回路を通るかを流路制御する第1電磁弁と第2電磁弁とで構成した第1冷媒加熱回路と、湯を貯めるタンクと、このタンク下部の水を前記給湯用熱交換器で加熱し、前記タンク上部に高温の湯を貯めるための積層ポンプと、水がタンク下部からタンク上部方向のみに流れるよう制御する第1逆止弁とで構成した沸き上げ回路と、前記沸き上げ回路を流れる水が流れ込むのを防止する第2逆止弁と、タンク略中間部からタンク内の湯を冷媒加熱用ポンプにより冷媒加熱用熱交換器へと導き冷媒を加熱し、再び湯を沸き上げ回路の前記第1逆止弁よりも下流側へと戻す第2冷媒加熱回路と、タンク内の湯を熱交換することにより加熱される温水熱交換負荷を備えた構成としている。
【0016】
そして、冷媒は大気熱より熱回収するか、タンク内に中温水がある場合には中温水を利用して熱回収するように切り換えられることにより、タンク内の高温水と熱交換して運転する温水暖房ユニット等の熱交換手段を運転し中温水が生じても、中温水の熱を冷媒加熱に使うことにより中温水の温度を低下させ、効率よく湯を沸き上げ、ランニングコストメリットが出せる使い勝手の良いヒートポンプ給湯装置を提供できる。
【0017】
そして、タンク内の高温水と熱交換する温水暖房ユニット等の温水熱交換負荷による暖房運転を行い中温水が生じても、タンク略中間部からタンク内の中温水を冷媒加熱用ポンプにより冷媒加熱用熱交換器へと導き、中温水と熱交換することにより冷媒を加熱するようにしているので、温水熱交換負荷が必要とする高温水を効率よく確保できる。
【0018】
本発明の請求項2に記載したヒートポンプ給湯装置は、冷媒を加熱する圧縮機と、加熱された冷媒を熱交換させて水を温める給湯用熱交換器と、熱交換した冷媒を減圧膨張させる第1膨張弁と、減圧膨張した冷媒を湯と熱交換して加熱する冷媒加熱用熱交換器と、この冷媒加熱用熱交換器で加熱された冷媒を減圧膨張させる第2膨張弁と、減圧膨張した冷媒が大気より回収された熱により加熱される大気熱交換器を通るか、バイパス回路を通るかを流路制御する第1電磁弁と第2電磁弁とで構成した第1冷媒加熱回路と、湯を貯めるタンクと、このタンク下部の水を前記給湯用熱交換器で加熱し、前記タンク上部に高温の湯を貯めるための積層ポンプと、水がタンク下部からタンク上部方向のみに流れるよう制御する第1逆止弁とで構成した沸き上げ回路と、冷媒加熱用ポンプによりタンク略中間部内の湯を冷媒加熱用熱交換器へと導き冷媒を加熱し、冷媒加熱後の湯を再び前記第一逆止弁よりも下流側の沸き上げ回路に戻すか、あるいはタンクの下部へ戻すかを制御する流路切換弁と、沸き上げ回路を流れる水が流れ込むのを防止する第2逆止弁で構成された第2冷媒加熱回路と、タンク内の湯を熱交換することにより加熱される温水熱交換負荷を備えた構成としている。
【0019】
そして、冷媒と熱交換した後の中温水を流路切換弁により湯温に応じて沸き上げ回路に戻すか、水温の低いタンク下部に戻すかを制御することにより、中温水による沸き上げをより効率よく行うことができる。
【0020】
本発明の請求項3に記載したヒートポンプ給湯装置は、冷媒加熱用熱交換器出口の第2冷媒加熱回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときのみ、第2冷媒加熱回路より供給される湯を給湯用熱交換器で加熱するようにした構成としている。
【0021】
そして、冷媒と熱交換した後の中温水の温度低下が所定温度以下のときのみ中温水を給湯用熱交換器で加熱することにより、より効率よく中温水と冷媒を熱交換させることができ、熱交換効率が向上することにより給湯用熱交換器を小さくすることが可能となる。
【0022】
本発明の請求項4に記載したヒートポンプ給湯装置は、給湯用熱交換器出口の沸き上げ回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、第2冷媒加熱回路より供給される湯の加熱動作を停止するようにした構成としている。
【0023】
そして、第2冷媒加熱回路を通過した後の中温水の温度低下が十分でなく、給湯用熱交換器での冷媒と中温水の熱交換効率が低下するなどの原因により沸き上げ温度が所定温度以下となった場合には、第2冷媒加熱回路による加熱動作を停止することにより、COPが1以下となることを防ぐことができると共に、タンク上部に高温水以外が貯まらないようにできる。
【0024】
本発明の請求項5に記載したヒートポンプ給湯装置は、給湯用熱交換器出口の沸き上げ回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、流路切換弁を制御して沸き上げ回路の流量を調節するようにした構成としている。
【0025】
そして、給湯用熱交換器で沸き上げられた湯の温度が所定温度以下のときには、流路切換弁から沸き上げ回路に流れる中温水の流量を絞ることにより、より確実にタンク上部に高温水を確保することができると共に、タンク内での高温水の占める割合を増加させることができる。
【0026】
本発明の請求項6に記載したヒートポンプ給湯装置は、給湯用熱交換器出口の沸き上げ回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、冷媒加熱用ポンプを制御して沸き上げ回路の流量を調節するようにした構成としている。
【0027】
そして、給湯用熱交換器で沸き上げられた湯の温度が所定温度以下のときは、冷媒加熱用ポンプから沸き上げ回路に流れる中温水の流量を絞ることにより、より確実にタンク上部に高温水を確保することができると共に、タンク内での高温水の占める割合を増加させることができる。
【0028】
本発明の請求項7に記載したヒートポンプ給湯装置は、温水熱交換負荷は、第2冷媒回路の湯の取出口より上方に位置させるようにした構成としている。
そして、温水熱交換負荷を中温水が多く貯まっている第2冷媒加熱回路の湯の取出口よりも上方に位置させていることにより、温水熱交換負荷はタンク上部の高温水と優先的に熱交換することができ、ユーザーの要望に添った使い勝手のよいヒートポンプ給湯装置を提供することができる。
【0029】
本発明の請求項8に記載したヒートポンプ給湯装置は、冷媒加熱用熱交換器出口の第2冷媒回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、第1冷媒加熱回路の冷媒経路としてバイパス回路に冷媒が流れるように切り換え、大気熱交換器側の第1電磁弁を閉塞するようにした構成としている。
【0030】
そして、第2冷媒加熱回路で検出される中温水の湯温が所定温度以下の場合には、第1電磁弁を閉塞し、大気熱交換器による冷媒の加熱を行わないようにし、より積極的に中温水を利用した沸き上げを行い、効率よくタンク内での高温水の占める割合を増加させることができる。
【0031】
本発明の請求項9に記載したヒートポンプ給湯装置は、第2冷媒加熱回路より供給される湯を給湯用熱交換器で加熱するときは、積層ポンプの運転を停止するように制御するようにした構成としている。
【0032】
そして、第2冷媒加熱回路に中温水が流れているときには、積層ポンプの運転を停止するように制御するので、より確実に中温水のみを高温水に沸き上げることができ、使い勝手のよいヒートポンプ給湯装置を提供することができる。
【0033】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0034】
(実施例1)
図1は本発明の実施例1におけるヒートポンプ給湯装置のシステム構成図ある。図1において、1はヒートポンプユニットで、2は冷媒を加熱する圧縮機、3は加熱された冷媒を熱交換させて水を温める給湯用熱交換器、4は冷媒を減圧膨張させる第1膨張弁、5は減圧膨張した冷媒を湯と熱交換して加熱する熱回収手段の1つとなる冷媒加熱用熱交換器、6は第2膨張弁、7は大気熱より熱を回収し、冷媒を気化蒸発させるもう1つの熱回収手段である大気熱交換器、8は大気熱交換器7の入口側に設けられた第1電磁弁、9はバイパス回路で、このバイパス回路9の入り口側には第2電磁弁10が設けられており、圧縮機2と、給湯用熱交換器3と、第1膨張弁4と、冷媒加熱用熱交換器5と、第2膨張便6と、大気熱交換器7と、第1電磁弁8と、バイパス回路9と、第2電磁弁10とで第1冷媒加熱回路11を形成している。
【0035】
12はタンクユニットで、13は湯を貯めるタンク、Wはタンク13に水道水を供給する給水管、14は循環パイプで、タンク下部15の水を給湯用熱交換器3からタンク上部16へと導く配管で、配管途中にタンク下部15の水をタンク上部16に送る積層ポンプ17と、タンク下部15からタンク上部16方向のみに水が流れるよう制御する第1逆止弁18を設けており、タンク13と、循環パイプ14と、積層ポンプ17と、第1逆止弁18と、給湯用熱交換器3とで沸き上げ回路19を形成している。Fはタンク上部16の湯温を検出する湯温サーミスター、Gはタンク下部15の湯温を検出する入水サーミスター、Hはタンク上部16に配管接続された給湯管で給湯口であるカランKが接続されている。
【0036】
20はタンク略中間部21の湯の取出口Aから冷媒加熱用熱交換器5を通り、循環パイプ14の第1逆止弁18よりも下流側の略T字接続部Bに配管接続された第2冷媒加熱パイプで、冷媒加熱用熱交換器5の出口側には温度検出器22と、循環パイプ17を流れる水が第2冷媒加熱パイプ20に流れ込むのを防止する第2逆止弁23と、タンク略中間部21の湯を導く冷媒加熱用ポンプ24を備えており、第2冷媒加熱パイプ20と、冷媒加熱用熱交換器5と、温度検出器22と、第2逆止弁23と、冷媒加熱用ポンプ24とで第2冷媒加熱回路25を形成している。
【0037】
26は温水熱交換負荷である温水暖房ユニットで、温水循環ポンプ27によりタンク13の湯の取出口Aより上方に位置させた温水循環パイプ28(熱交換手段)内に、タンク13内の高温水と熱交換する循環水を循環させ、室内に温風を供給するための送風機29と温風熱交換器30を備えている。
【0038】
次に以上のような構成にて、大気熱交換器7を使って大気熱を熱回収した場合の湯の沸き上げ動作について説明する。
【0039】
まず、圧縮機2から吐出した高温高圧のガス冷媒は、給湯用熱交換器3に流入する。一方タンク下部16の水は、積層ポンプ17によって循環パイプ14を通り給湯用熱交換器3に流入し、ここで冷媒の凝縮熱によって循環パイプ14内の水は加熱され、高温水となってタンク上部16に流入する。また、凝縮液化した冷媒は第1減圧弁4で減圧され、冷媒加熱用熱交換器5に流入する。そして冷媒は、第2減圧弁6を通りさらに減圧され開弁された第1電磁弁8から大気熱交換器7で熱回収された大気熱により気化蒸発させられ、再び圧縮機2に流入して1サイクルの運転となる。
【0040】
尚、大気熱交換器7により熱回収を行う場合には、バイパス回路9の入口側の第2電磁弁10は閉塞するように制御され、冷媒加熱用ポンプ24も駆動しないように制御されている。
【0041】
次に給湯動作について説明する。まず、カランKを開けると、給湯管より高温水が出湯される。高温水が出湯されると同時にタンク下部15には給水管Wより低温の水道水が供給される。
【0042】
次にタンク13内の高温水と熱交換して暖房を行う温水暖房ユニット26の動作について説明する。
【0043】
まず、温水循環ポンプ27が駆動すると、温水熱交換パイプ28内の循環水がタンク上部16の高温水と熱交換し加熱され、温風熱交換器30で送風機29により室内空気と熱交換し、室内に温風を供給する。室内で熱交換した循環水は再びタンク上部16に流入して1サイクルの運転となる。
【0044】
このときタンク上部16の高温水は、温水熱交換パイプ28内を流れる循環水との熱交換により中温水となり、タンク上部16からタンク略中間部21へと位置を下げる。すなわち、暖房運転によりタンク略中間部21には、中温水が蓄積される。
【0045】
また、温水熱交換パイプ28は、湯の取出口Aよりも上方に位置していることにより、高温水を積極的に熱交換できるようにしており、必要熱量が多い暖房運転が長時間できるようにしている。
【0046】
次にタンク13内の中温水を循環させて第2冷媒加熱回路5により熱回収した場合の沸き上げ動作について説明する。
【0047】
中温水を利用して第2冷媒加熱回路5での湯の加熱動作を行うのは、例えば、温水暖房ユニット26より供給される温風温度がユーザーの設定した温度に達しなかった場合、かつタンク上部16の湯温サーミスターFで検出される湯温が所定温度以下であることが検出され、タンク上部16に暖房運転に必要な高温水がないと判断した場合、あるいはタンク下部15の入水サーミスターGが所定温度以上を検出し、タンク上部16に高温水が殆どないと判断した場合である。
【0048】
まず、冷媒加熱用ポンプ24が駆動すると、タンク略中間部21の湯の取出口Aから中温水が第2冷媒加熱パイプ20に流入する。
【0049】
一方、給湯用熱交換器3から第1膨張弁4を通った後の減圧膨張された冷媒は、冷媒加熱用熱交換器5で中温水と熱交換することにより加熱され、第2膨張弁で減圧膨張した後に第2電磁弁10が開弁されたバイパス回路9を通って圧縮機2へと流入する。圧縮機2に流入した冷媒は、高温高圧になって吐出され、給湯用熱交換器3で第2冷媒加熱回路25を経て循環パイプ14へと流入してきた熱交換後の温度の低下した中温水と熱交換し、加熱された中温水は高温水となり、タンク上部16に流入しタンク13内に貯湯される。
【0050】
一方、給湯用熱交換器3で熱交換した後の冷媒は液化凝縮し、第1膨張弁で減圧膨張した後、再び冷媒加熱用熱交換器5に流入し、上記動作を繰り返し中温水を高温水に沸き上げる。
【0051】
尚、冷媒加熱用ポンプ24が駆動した場合には、第1電磁弁8は閉塞するように制御され、冷媒が大気熱交換器7側に流入することはない。これは、たとえ大気の温度が冷媒の温度より高くても、冷媒は既に冷媒加熱用熱交換器5で加熱されていることにより、大気熱交換器で熱交換させても熱交換効率が悪く、大気熱交換器7を動かす分だけ余分な電力を消費することになるからである。
【0052】
上記中温水を利用した沸き上げ動作において、冷媒加熱用熱交換器5と熱交換した後の中温水の温度が所定温度以下でないことを温度検出器22が検出した場合、あるいは、給湯用熱交換器5の出口に設けられた温度検出器Eが所定温度以下の場合には、冷媒加熱用ポンプ24の流量が減少するように流量調整し、中温水の温度を低下させる。それでもなお温度検出器22が所定温度以下でないことを検出した場合には、第2冷媒加熱回路25より供給される中温水の加熱動作を停止するようにしている。
【0053】
また、本実施例では第1逆止弁18と、第2逆止弁23により沸き上げ回路19と第2冷媒加熱回路25の流路制御を行ったが、循環パイプ14に冷媒加熱パイプ20を接している略T字接続部Bに冷媒加熱用ポンプ24駆動時には循環パイプ14側に中温水が流れ込まないようにし、冷媒加熱用ポンプ24が駆動していないときには、冷媒加熱パイプ20側には水が流れ込まないよう制御する流路制御弁(図示せず)を設けても同じ動作を行うことができる。
【0054】
(実施例2)
図2は本発明の実施例2におけるヒートポンプ給湯装置のシステム図である。実施例1と同一符号のものは同一構造を有するものであり説明は省略する。
【0055】
31はタンク略中間部21の湯の取出口Aから冷媒加熱用熱交換器5を通り、循環パイプ14に設けられた第1逆止弁18よりも下流側に配管接続された第2冷媒加熱パイプで、冷媒加熱用熱交換器5の出口側には温度検出器22と、この温度検出器22が所定温度以下のときのみ湯の取出口Aから取り入れた湯を循環パイプ17に流し、所定温度以上を検出したときにはタンク下部15に湯を戻す流路切換弁32と、循環パイプ17を流れる水が2冷媒加熱パイプ30に流れ込むのを防止する第2逆止弁23と、タンク略中間部21の湯を導く冷媒加熱用ポンプ24を備えており、循環パイプ14と、冷媒加熱用熱交換器5と、温度検出器22と、流路切換弁32と、第2逆止弁23と、冷媒加熱用ポンプ24とで第2冷媒加熱回路33を形成している。34は流路切換弁32からタンク下部15に配管接続された戻りパイプである。
【0056】
次にタンク13内の中温水を循環させて第2冷媒加熱回路33により熱回収し、温度検出手段22で検出される中温水の温度が所定温度以下の場合の沸き上げ動作について説明する。
【0057】
まず、冷媒加熱用ポンプ24が駆動すると、タンク略中間部21の湯の取出口Aから中温水が第2冷媒加熱パイプ31に流入する。
【0058】
一方、給湯用熱交換器3から第1膨張弁4を通った後の減圧膨張された冷媒は、冷媒加熱用熱交換器5で中温水と熱交換することにより加熱され、第2膨張弁で減圧膨張した後に第2電磁弁10が開弁されたバイパス回路9を通って圧縮機2へと流入する。圧縮機2に流入した冷媒は、高温高圧になって吐出され、給湯用熱交換器3に流入する。
【0059】
中温水は第2冷媒加熱回路33で冷媒との熱交換により温度低下し、沸き上げ回路19側に流路が開かれた流路切換弁32から循環パイプ14へと流入し、給湯用熱交換器3で高温高圧の冷媒により加熱され高温水となり、タンク上部16に流入しタンク13内に貯湯される。
【0060】
一方、給湯用熱交換器3で熱交換した後の冷媒は液化凝縮し、第1膨張弁で減圧膨張した後、再び冷媒加熱用熱交換器5に流入し、上記動作を繰り返し中温水を高温水に沸き上げる。
【0061】
ただし、給湯用熱交換器3の出口側の温度検出器Eで検出された高温水の温度が所定温度以下のときには、流路切換弁32の弁開度を制御し、中温水の一部を戻りパイプ34からタンク下部15に戻し、沸き上げ回路19側に流れる中温水の流量を調節することにより沸き上げ温度を確保するようにしている。しかしながら、流路切換弁32での流量調節後も温度検出器Eが所定温度以下を検出したときには、第2冷媒加熱回路5から供給される中温水の加熱動作を停止するようにしている。
【0062】
また中温水の一部を水温の低いタンク下部15に戻すことは、中温水の温度を低下させる効果があり、中温水を無駄なく効率的に加熱する有効な手段である。
【0063】
尚、実施例1と同じように、冷媒加熱用ポンプ24が駆動した場合には、第1電磁弁8は閉塞するように制御され、冷媒が大気熱交換器7側に流入することはない。
【0064】
次に冷媒加熱用熱交換器5と熱交換した後の中温水の温度が所定温度以下でないことを温度検出器22が検出した場合の中温水を利用した沸き上げ動作について説明する。
【0065】
冷媒加熱用熱交換器5と熱交換した後の中温水の温度が所定温度以下でないときは、冷媒加熱用ポンプ24から取り込まれる中温水の流量が減少するように調節し、冷媒加熱用熱交換器5での湯温低下を促進させるようにする。そして、温度検出器22が所定温度以下を検出したときの加熱動作は、前述した第2冷媒加熱回路33による中温水の加熱動作と同じである。
【0066】
(実施例3)
図3は本発明の実施例3におけるヒートポンプ給湯装置のシステム図である。実施例1および実施例2と同一符号のものは同一構造を有するものであり説明は省略する。
【0067】
35は外部温水熱交換器で、タンク上部16に配管接続された往き管36と、タンク略中間部21の湯の取出口Aの上方に配管接続された戻り管37に接続されている。38は外部熱交換器35に内蔵された熱交コイルで、温水熱交換負荷である温水暖房ユニット26の温水循環パイプ39に接続されており、内部に循環ポンプ27により循環する熱交換用の循環水が入っている。40は熱交ポンプで、戻り管37の配管途中に接続されており、タンク上部16の高温水を外部温水熱交換器35に取り入れる。
【0068】
次に外部温水熱交換器35内を流れるタンク13内の高温水と熱交換して暖房を行う温水暖房ユニット26の動作について説明する。
【0069】
まず、温水循環ポンプ27が駆動すると、温水循環パイプ39内の循環水がタンク上部16から外部温水熱交換器35内に引き込まれた高温水と熱交コイル38部分で熱交換し加熱され、温風熱交換器30で送風機29により室内空気と熱交換し、室内に温風を供給する。室内で熱交換した循環水は再び外部温水熱交換器35に流入して1サイクルの運転となる。
【0070】
一方、外部温水熱交換器35内で循環水と熱交換した湯は、中温水となってタンク略中間部21に戻される。
【0071】
尚、本実施例3では、外部温水熱交換器35により温水暖房ユニットを運転したが、タンク上部16の高温水と熱交換して循環水を加熱する点において、その効果は実施例1同じである。また、本実施例3では熱交換後の中温水を戻り管37から直接タンク略中間部21に戻したが、実施例1においては、タンク13内に発生する自然対流により中間水がタンク略中間部に蓄積されるようになっており、同様の結果が得られる。
【0072】
【発明の効果】
以上の説明から明らかなように、請求項1に記載したヒートポンプ給湯装置によれば、冷媒は大気熱より熱回収するか、タンク内に中温水がある場合には中温水を利用して熱回収するように切り換えられることにより、タンク内の高温水と熱交換して運転する温水暖房ユニット等の熱交換手段を運転し中温水が生じても、中温水の熱を冷媒の加熱に使うことにより温度を低下させ、効率よく湯を沸き上げ、ランニングコストメリットが出せる、使い勝手の良いヒートポンプ給湯装置を提供できる。
【0073】
また、請求項2に記載したヒートポンプ給湯装置によれば、中温水より加熱した高温水をタンク上部に戻すようにしていることにより、タンク上部に高温水が確実に確保でき、使い勝手の良いヒートポンプ給湯装置を提供できる。
【0074】
また、請求項3に記載したヒートポンプ給湯装置によれば、タンク内の高温水と熱交換する温水暖房ユニット等の温水熱交換負荷による暖房運転を行い中温水が生じても、タンク略中間部からタンク内の中温水を冷媒加熱用ポンプにより冷媒加熱用熱交換器へと導き、中温水と熱交換することにより冷媒を加熱するようにしているので、温水熱交換負荷が必要とする高温水を効率よく確保でき、使い勝手の悪い中温水の割合を低下させることができる。
【0075】
また、請求項4に記載したヒートポンプ給湯装置によれば、冷媒と熱交換した後の中温水を流路切換弁により湯温に応じて沸き上げ回路に戻すか、水温の低いタンク下部に戻すかを制御することにより、中温水による沸き上げをより効率よく行うことができる。
【0076】
また、請求項5に記載したヒートポンプ給湯装置によれば、冷媒と熱交換した後の中温水の温度低下が所定温度以下のときのみ中温水を給湯用熱交換器で加熱することにより、より効率よく中温水と冷媒を熱交換させることができ、熱交換効率が向上することにより給湯用熱交換器を小さくすることが可能となる。
【0077】
また、請求項6に記載したヒートポンプ給湯装置によれば、第2冷媒加熱回路を通過した後の中温水の温度低下が十分でなく、給湯用熱交換器での冷媒による中温水への熱交換効率が低下するなどの原因により沸き上げ温度が所定温度以下となった場合には、第2冷媒加熱回路による加熱動作を停止することにより、COPが1以下となることを防ぐことができると共に、タンク上部に高温水以外が貯まらないようにできる。
【0078】
また、請求項7に記載したヒートポンプ給湯装置によれば、そして、給湯用熱交換器で沸き上げられた湯の温度が所定温度以下のときには、流路切換弁から沸き上げ回路に流れる中温水の流量を絞ることにより、確実に中温水を高温水に沸き上げることができ、その結果、確実にタンク上部に高温水を確保することができると共に、タンク内での高温水の占める割合を増加させることができる。
【0079】
また、請求項8に記載したヒートポンプ給湯装置によれば、給湯用熱交換器で沸き上げられた湯の温度が所定温度以下のときは、冷媒加熱用ポンプから沸き上げ回路に流れる中温水の流量を絞ることにより、確実に中温水を高温水に沸き上げることができ、その結果、確実にタンク上部に高温水を確保することができると共に、タンク内での高温水の占める割合を増加させることができる。
【0080】
また、請求項9に記載したヒートポンプ給湯装置によれば、温水熱交換負荷を中温水が多く貯まっている第2冷媒加熱回路の湯の取出口よりも上方に位置させていることにより、温水熱交換負荷はタンク上部の高温水と優先的に熱交換することができ、その結果、長時間運転しても能力低下しにくく、ユーザーの要望に添った使い勝手のよいヒートポンプ給湯装置を提供することができる。
【0081】
また、請求項10に記載したヒートポンプ給湯装置によれば、第2冷媒加熱回路で検出される中温水の湯温が所定温度以下の場合には、第1電磁弁を閉塞し、大気熱交換器による冷媒の加熱を行わないようにし、より積極的に中温水を利用した沸き上げを行い、中温水を給湯で使用しなくても効率よくタンク内での高温水の占める割合を増加させることができる。
【0082】
また、請求項11に記載したヒートポンプ給湯装置によれば、第2冷媒加熱回路で中温水による冷媒の加熱を行うときには、積層ポンプの運転を停止するように制御するので、より確実に中温水のみを高温水に沸き上げることができ、タンク内の中温水の割合を確実に低下させることができる使い勝手のよいヒートポンプ給湯装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ給湯装置のシステム構成図
【図2】 本発明の実施例2におけるヒートポンプ給湯装置のシステム構成図
【図3】 本発明の実施例3におけるヒートポンプ給湯装置のシステム構成図
【図4】 従来のヒートポンプ給湯装置のシステム構成図
【符号の説明】
1 ヒートポンプユニット
2 圧縮機
3 給湯用熱交換器
5 冷媒加熱用熱交換器(熱回収手段)
7 大気熱交換器(熱回収手段)
9 バイパス回路
11 第1冷媒加熱回路
12 タンクユニット
13 タンク
19 沸き上げ回路
25 第2冷媒加熱回路
26 温水暖房ユニット
28 温水熱交換パイプ(熱交換手段)
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heat pump hot water supply apparatus that mainly includes a hot water heat exchange load and uses atmospheric heat.
[0002]
[Prior art]
  A conventional heat pump hot water supply apparatus of this type has a structure as shown in FIG.
[0003]
  The configuration will be described below with reference to FIG. In FIG. 4, reference numeral 41 denotes a heat pump unit that includes a compressor 42 that heats the refrigerant, an expansion valve 43, a hot water supply heat exchanger 44, and an atmospheric heat exchanger 45. A tank unit 46 includes a tank 47 to which a hot water supply curan C is connected by piping, a water supply pipe D, a water-filling thermistor M that detects the water temperature at the bottom of the tank 47, and a stacking pump 48. A hot water heating unit 49 includes a hot water heat exchange pipe 50 that exchanges heat with the high temperature water in the tank 47, a hot water circulation pump 51, a blower 52, and a hot air heat exchanger 53.
[0004]
  Next, the operation of the above configuration will be described. First, after the refrigerant is heated to a high temperature and a high pressure by the compressor 42, heat is exchanged with water in the tank 47 circulated by the stacking pump 48 in the hot water supply heat exchanger 44, thereby warming the water in the tank 47. After passing through the expansion valve 43 from the hot water supply heat exchanger 44, the refrigerant condenses and liquefies. However, in the atmospheric heat exchanger 45, the refrigerant is vaporized by exchanging heat with atmospheric heat, and the vaporized refrigerant is compressed again. Hot water is stored by repeating the cycle of flowing into the machine 42.
[0005]
  Next, in order to supply hot water, when Karan C is opened, hot water is discharged from the upper part of the tank 47, and at the same time, low-temperature tap water is supplied to the lower part of the tank 47 from the water supply pipe D.
[0006]
  On the other hand, the hot water heating unit 49 heats the circulating water flowing in the hot water heat exchange pipe 50 by the hot water circulation pump 51 by exchanging heat with the high temperature water stored in the tank 47, and further, the hot water and hot air heat. The room air is warmed by the exchanger 53 and warm air heating is performed.
[0007]
[Problems to be solved by the invention]
  In recent years, in the case of a heat pump water heater, there is an increasing demand not only for boiling water and storing hot water but also for adding a heating function such as hot water heating.
[0008]
  However, heating loads such as hot water heating require a large amount of heat and can be used for hot water supply for long periods of heating operation. Will be.
[0009]
  The heat pump water heater recovers heat from low-temperature tap water and atmospheric heat, and also heat-exchanges the refrigerant heated to high temperature with a compressor, thereby boiling hot water efficiently and providing merit at running cost. I'm trying to get it out.
[0010]
  However, it can be used for hot water supply in the tank, but sufficient heat cannot be supplied for heating operation. The problem was that it would not meet user expectations.
[0011]
  Further, when heating the medium temperature water, in order to prevent the COP (energy consumption efficiency) from being 1 or less, when the incoming water thermistor M detects a predetermined temperature or higher, the heating operation is controlled not to be performed.
[0012]
  That is, since the user uses medium-temperature water for hot water supply, low-temperature tap water is supplied from the water supply pipe D into the tank, and the heating operation is not performed unless the incoming water thermistor M detects the inflow of water below a predetermined temperature. High-temperature water could not be obtained reliably, and there was a problem in terms of usability.
[0013]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a heat pump unit that collects atmospheric heat into a refrigerant and heats water through a heat exchanger, a tank that stores hot water heated by the heat pump unit, and a medium in the tank. A heat recovery means for circulating heat and recovering heat; and a heat exchange means for exchanging heat with the high-temperature water in the tank. As heat recovery means for the heat pump unit, atmospheric heat is used, or medium temperature water in the tank is used. The configuration is such that the use is switched.
[0014]
  According to the above invention, the refrigerant recovers heat from atmospheric heat, or if there is medium temperature water in the tank, it is switched to recover heat using the medium temperature water, thereby exchanging heat with the high temperature water in the tank. Even if heat exchange means such as a hot water heating unit that is operated is operated to generate intermediate warm water, the temperature of the intermediate warm water can be lowered and hot water can be efficiently boiled.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
  Of the present inventionClaim 1The heat pump hot-water supply device described in 1 is a compressor that heats the refrigerant, a heat exchanger for hot water supply that heats the heated refrigerant to warm water, a first expansion valve that decompresses and expands the heat-exchanged refrigerant, A refrigerant heating heat exchanger that heats the expanded refrigerant by exchanging heat with hot water, a second expansion valve that decompresses and expands the refrigerant heated by the refrigerant heating heat exchanger, and the decompressed and expanded refrigerant is recovered from the atmosphere. A first refrigerant heating circuit composed of a first electromagnetic valve and a second electromagnetic valve that control whether the air passes through an atmospheric heat exchanger heated by the generated heat or a bypass circuit, and a tank for storing hot water A stack pump for heating the water in the lower portion of the tank with the heat exchanger for hot water supply and storing hot water in the upper portion of the tank, and a first check for controlling the water to flow only from the lower portion of the tank toward the upper portion of the tank. A boiling circuit composed of a valve, The second check valve that prevents the water flowing through the boiling circuit from flowing in, the hot water in the tank from the substantially intermediate portion of the tank to the refrigerant heating heat exchanger by the refrigerant heating pump, and the refrigerant is heated again. A second refrigerant heating circuit for returning hot water to the downstream side of the first check valve of the boiling circuit and a hot water heat exchange load heated by exchanging the hot water in the tank are provided.
[0016]
  The refrigerant recovers heat from the atmospheric heat, or when there is medium temperature water in the tank, it is switched to recover heat using the medium temperature water, thereby exchanging heat with the high temperature water in the tank. Even if medium temperature water is generated by operating heat exchange means such as a hot water heating unit, the temperature of the medium temperature water can be lowered by using the heat of the medium temperature water for refrigerant heating, boiling water efficiently, and the convenience of running costs can be achieved A heat pump hot water supply device with good quality can be provided.
[0017]
  Then, even if medium temperature water is generated by heating operation using a warm water heat exchange load such as a warm water heating unit that exchanges heat with the high temperature water in the tank, the medium temperature water in the tank is heated by the refrigerant heating pump from a substantially middle part of the tank. Since the refrigerant is heated by being guided to the heat exchanger for heat and exchanging heat with the medium temperature water, the high temperature water required by the hot water heat exchange load can be efficiently secured.
[0018]
  Of the present inventionClaim 2The heat pump hot-water supply device described in 1 is a compressor that heats the refrigerant, a heat exchanger for hot water supply that heats the heated refrigerant to warm water, a first expansion valve that decompresses and expands the heat-exchanged refrigerant, A refrigerant heating heat exchanger that heats the expanded refrigerant by exchanging heat with hot water, a second expansion valve that decompresses and expands the refrigerant heated by the refrigerant heating heat exchanger, and the decompressed and expanded refrigerant is recovered from the atmosphere. A first refrigerant heating circuit composed of a first electromagnetic valve and a second electromagnetic valve that control whether the air passes through an atmospheric heat exchanger heated by the generated heat or a bypass circuit, and a tank for storing hot water A stack pump for heating the water in the lower portion of the tank with the heat exchanger for hot water supply and storing hot water in the upper portion of the tank, and a first check for controlling the water to flow only from the lower portion of the tank toward the upper portion of the tank. A boiling circuit composed of a valve, Whether the hot water in the tank's middle part is led to the refrigerant heating heat exchanger by the medium heating pump to heat the refrigerant, and the hot water after heating the refrigerant is returned to the boiling circuit downstream from the first check valve. Or a flow path switching valve that controls whether to return to the lower part of the tank, a second refrigerant heating circuit configured by a second check valve that prevents water flowing through the boiling circuit from flowing in, and hot water in the tank It is set as the structure provided with the hot water heat exchange load heated by heat exchange.
[0019]
  Then, by controlling whether the medium temperature water after heat exchange with the refrigerant is returned to the boiling circuit according to the hot water temperature or returned to the lower part of the tank where the water temperature is low by the flow path switching valve, the boiling with the intermediate temperature water is further increased. It can be done efficiently.
[0020]
  Of the present inventionClaim 3The heat pump hot-water supply apparatus described in 1 is provided with a temperature detector in the second refrigerant heating circuit at the outlet of the heat exchanger for heating the refrigerant, and the second refrigerant heating circuit only when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature. The hot water supplied is heated by a hot water supply heat exchanger.
[0021]
  And, by heating the medium temperature water with the heat exchanger for hot water supply only when the temperature drop of the medium temperature water after the heat exchange with the refrigerant is equal to or lower than a predetermined temperature, the medium temperature water and the refrigerant can be more efficiently heat exchanged, By improving the heat exchange efficiency, it is possible to reduce the size of the heat exchanger for hot water supply.
[0022]
  Of the present inventionClaim 4Is provided with a temperature detector in the boiling circuit at the outlet of the hot water supply heat exchanger, and is supplied from the second refrigerant heating circuit when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature. The heating operation of the hot water is stopped.
[0023]
  Then, the boiling temperature becomes a predetermined temperature due to the reason that the temperature drop of the medium temperature water after passing through the second refrigerant heating circuit is not sufficient and the heat exchange efficiency of the refrigerant and the medium temperature water in the hot water supply heat exchanger is lowered. In the case of the following, by stopping the heating operation by the second refrigerant heating circuit, it is possible to prevent the COP from becoming 1 or less, and to prevent other than hot water from being stored in the upper part of the tank.
[0024]
  Of the present inventionClaim 5The heat pump hot water supply device described in 1 is provided with a temperature detector in the boiling circuit at the outlet of the hot water supply heat exchanger, and when the temperature detected by the temperature detector is lower than a predetermined temperature, the flow path switching valve is controlled. The flow rate of the boiling circuit is adjusted.
[0025]
  And when the temperature of the hot water boiled by the heat exchanger for hot water supply is below a predetermined temperature, the flow of the medium-temperature water flowing from the flow path switching valve to the boiling circuit is reduced to more reliably supply hot water to the upper part of the tank. It can be ensured and the proportion of high-temperature water in the tank can be increased.
[0026]
  Of the present inventionClaim 6The heat pump hot water supply apparatus described in 1 is provided with a temperature detector in the boiling circuit at the outlet of the hot water supply heat exchanger, and when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature, the refrigerant heating pump is controlled. The flow rate of the boiling circuit is adjusted.
[0027]
  When the temperature of the hot water boiled in the hot water supply heat exchanger is below a predetermined temperature, the flow of the medium-temperature water flowing from the refrigerant heating pump to the boiling circuit is reduced to ensure that the high-temperature water is Can be ensured, and the proportion of high-temperature water in the tank can be increased.
[0028]
  Of the present inventionClaim 7The heat pump hot-water supply apparatus described in 1 is configured such that the hot water heat exchange load is positioned above the hot water outlet of the second refrigerant circuit.
Since the hot water heat exchange load is positioned above the hot water outlet of the second refrigerant heating circuit in which a large amount of medium hot water is stored, the hot water heat exchange load is preferentially heated with the hot water in the upper part of the tank. It is possible to provide a heat pump hot water supply device that can be exchanged and is easy to use according to the user's request.
[0029]
  Of the present inventionClaim 8The heat pump hot water supply device described in 1 is provided with a temperature detector in the second refrigerant circuit at the outlet of the heat exchanger for heating the refrigerant, and when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature, The refrigerant path is switched so that the refrigerant flows into the bypass circuit, and the first electromagnetic valve on the atmospheric heat exchanger side is closed.
[0030]
  When the hot water temperature detected by the second refrigerant heating circuit is equal to or lower than a predetermined temperature, the first electromagnetic valve is closed so that the refrigerant is not heated by the atmospheric heat exchanger, and more aggressive. It is possible to increase the proportion of high-temperature water in the tank efficiently by boiling up using medium-temperature water.
[0031]
  Of the present inventionClaim 9The heat pump hot-water supply device described in 1 is configured to control the operation of the laminated pump to be stopped when the hot water supplied from the second refrigerant heating circuit is heated by the hot water supply heat exchanger.
[0032]
  And when intermediate temperature water is flowing through the second refrigerant heating circuit, control is performed so as to stop the operation of the laminated pump, so that only the intermediate temperature water can be heated to high temperature water more reliably, and the heat pump hot water supply is easy to use. An apparatus can be provided.
[0033]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0034]
  Example 1
  FIG. 1 is a system configuration diagram of a heat pump hot water supply apparatus in Embodiment 1 of the present invention. In FIG. 1, 1 is a heat pump unit, 2 is a compressor that heats the refrigerant, 3 is a heat exchanger for hot water supply that heats the heated refrigerant to heat water, and 4 is a first expansion valve that expands the refrigerant under reduced pressure. 5 is a heat exchanger for heating the refrigerant, which is one of the heat recovery means for exchanging heat with the hot water under reduced pressure, 6 is the second expansion valve, 7 is the heat recovered from the atmospheric heat, and the refrigerant is vaporized An atmospheric heat exchanger which is another heat recovery means for evaporating, 8 is a first electromagnetic valve provided on the inlet side of the atmospheric heat exchanger 7, 9 is a bypass circuit, 2 solenoid valve 10 is provided, compressor 2, hot water supply heat exchanger 3, first expansion valve 4, refrigerant heating heat exchanger 5, second expansion stool 6, and atmospheric heat exchanger 7, the first solenoid valve 8, the bypass circuit 9, and the second solenoid valve 10 form a first refrigerant heating circuit 11. It is.
[0035]
  12 is a tank unit, 13 is a tank for storing hot water, W is a water supply pipe for supplying tap water to the tank 13, 14 is a circulation pipe, and water in the tank lower part 15 is transferred from the heat exchanger 3 for hot water supply to the tank upper part 16. In the pipe to be led, a laminated pump 17 that sends water in the tank lower part 15 to the tank upper part 16 in the middle of the pipe, and a first check valve 18 that controls the water to flow only from the tank lower part 15 toward the tank upper part 16 are provided. The tank 13, the circulation pipe 14, the stacking pump 17, the first check valve 18, and the hot water supply heat exchanger 3 form a boiling circuit 19. F is a hot water temperature thermistor for detecting the hot water temperature in the tank upper part 16, G is a incoming water thermistor for detecting the hot water temperature in the lower tank part 15, and H is a hot water pipe connected to the tank upper part 16 as a hot water outlet. Is connected.
[0036]
  20 is pipe-connected to a substantially T-shaped connection portion B downstream of the first check valve 18 of the circulation pipe 14 from the hot water outlet A of the tank substantially intermediate portion 21 through the refrigerant heating heat exchanger 5. The second refrigerant heating pipe has a temperature detector 22 on the outlet side of the refrigerant heating heat exchanger 5 and a second check valve 23 for preventing water flowing through the circulation pipe 17 from flowing into the second refrigerant heating pipe 20. And a refrigerant heating pump 24 that guides the hot water in the substantially intermediate tank 21, a second refrigerant heating pipe 20, a refrigerant heating heat exchanger 5, a temperature detector 22, and a second check valve 23. And the refrigerant heating pump 24 forms a second refrigerant heating circuit 25.
[0037]
  A hot water heating unit 26 is a hot water heat exchange load, and hot water in the tank 13 is placed in a hot water circulation pipe 28 (heat exchange means) positioned above the hot water outlet A of the tank 13 by the hot water circulation pump 27. A blower 29 and a hot air heat exchanger 30 are provided to circulate the circulating water for heat exchange and supply hot air to the room.
[0038]
  Next, the hot water boiling operation when the atmospheric heat exchanger 7 is used to recover the atmospheric heat with the above configuration will be described.
[0039]
  First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the hot water supply heat exchanger 3. On the other hand, the water in the tank lower part 16 flows into the hot water supply heat exchanger 3 through the circulation pipe 14 by the stacking pump 17, where the water in the circulation pipe 14 is heated by the condensation heat of the refrigerant and becomes high-temperature water. It flows into the upper part 16. The condensed and liquefied refrigerant is depressurized by the first pressure reducing valve 4 and flows into the refrigerant heating heat exchanger 5. Then, the refrigerant is vaporized and evaporated by the atmospheric heat recovered by the atmospheric heat exchanger 7 from the first electromagnetic valve 8 which has been further depressurized and opened through the second pressure reducing valve 6 and flows into the compressor 2 again. The operation is one cycle.
[0040]
  When heat recovery is performed by the atmospheric heat exchanger 7, the second electromagnetic valve 10 on the inlet side of the bypass circuit 9 is controlled to be closed, and the refrigerant heating pump 24 is also controlled not to be driven. .
[0041]
  Next, the hot water supply operation will be described. First, when Karan K is opened, hot water is discharged from the hot water supply pipe. At the same time as the hot water is discharged, tap water having a lower temperature than the water supply pipe W is supplied to the tank lower part 15.
[0042]
  Next, the operation of the hot water heating unit 26 that performs heating by exchanging heat with the high temperature water in the tank 13 will be described.
[0043]
  First, when the hot water circulation pump 27 is driven, the circulating water in the hot water heat exchange pipe 28 is heated by exchanging heat with the high temperature water in the tank upper portion 16, and heat is exchanged with room air by the blower 29 in the hot air heat exchanger 30. Supply warm air indoors. Circulating water that has undergone heat exchange in the room flows again into the tank upper part 16 and operates in one cycle.
[0044]
  At this time, the high-temperature water in the tank upper portion 16 becomes medium-temperature water by heat exchange with circulating water flowing in the hot water heat exchange pipe 28, and the position is lowered from the tank upper portion 16 to the tank substantially intermediate portion 21. That is, the medium-temperature water is accumulated in the tank substantially intermediate portion 21 by the heating operation.
[0045]
  Further, the hot water heat exchange pipe 28 is positioned above the hot water outlet A so that the hot water can be actively exchanged heat, so that the heating operation with a large amount of heat can be performed for a long time. I have to.
[0046]
  Next, the boiling operation when the medium temperature water in the tank 13 is circulated and heat is recovered by the second refrigerant heating circuit 5 will be described.
[0047]
  The operation of heating the hot water in the second refrigerant heating circuit 5 using the medium-temperature water is performed, for example, when the temperature of the hot air supplied from the hot-water heating unit 26 does not reach the temperature set by the user and When it is detected that the hot water temperature detected by the hot water temperature thermistor F in the upper portion 16 is lower than a predetermined temperature and it is determined that the high temperature water necessary for the heating operation is not present in the upper tank portion 16, or the incoming water temperature in the lower tank portion 15 This is a case where Mr. G detects a predetermined temperature or higher and determines that there is almost no high-temperature water in the tank upper part 16.
[0048]
  First, when the refrigerant heating pump 24 is driven, medium-temperature water flows into the second refrigerant heating pipe 20 from the hot water outlet A of the substantially tank intermediate portion 21.
[0049]
  On the other hand, the refrigerant expanded under reduced pressure after passing through the first expansion valve 4 from the hot water supply heat exchanger 3 is heated by exchanging heat with intermediate temperature water in the refrigerant heating heat exchanger 5, and After decompression and expansion, the refrigerant flows into the compressor 2 through the bypass circuit 9 in which the second electromagnetic valve 10 is opened. The refrigerant flowing into the compressor 2 is discharged at a high temperature and high pressure, and is discharged from the hot water supply heat exchanger 3 and flows into the circulation pipe 14 through the second refrigerant heating circuit 25. The medium-temperature water heated by the heat exchange becomes high-temperature water, flows into the tank upper portion 16 and is stored in the tank 13.
[0050]
  On the other hand, the refrigerant after the heat exchange in the hot water supply heat exchanger 3 is liquefied and condensed, decompressed and expanded by the first expansion valve, and then flows into the refrigerant heating heat exchanger 5 again. Boil in water.
[0051]
  When the refrigerant heating pump 24 is driven, the first electromagnetic valve 8 is controlled so as to be closed, and the refrigerant does not flow into the atmospheric heat exchanger 7 side. This is because even if the temperature of the atmosphere is higher than the temperature of the refrigerant, the refrigerant has already been heated by the refrigerant heating heat exchanger 5, so that the heat exchange efficiency is poor even if the heat is exchanged by the atmospheric heat exchanger, This is because extra electric power is consumed for moving the atmospheric heat exchanger 7.
[0052]
  In the boiling operation using the medium temperature water, when the temperature detector 22 detects that the temperature of the medium temperature water after the heat exchange with the refrigerant heating heat exchanger 5 is not lower than the predetermined temperature, or heat exchange for hot water supply When the temperature detector E provided at the outlet of the vessel 5 is equal to or lower than the predetermined temperature, the flow rate is adjusted so that the flow rate of the refrigerant heating pump 24 is decreased, and the temperature of the medium temperature water is lowered. Still, when the temperature detector 22 detects that the temperature is not lower than the predetermined temperature, the heating operation of the medium temperature water supplied from the second refrigerant heating circuit 25 is stopped.
[0053]
  In this embodiment, the flow control of the boiling circuit 19 and the second refrigerant heating circuit 25 is performed by the first check valve 18 and the second check valve 23, but the refrigerant heating pipe 20 is connected to the circulation pipe 14. The medium heating water is prevented from flowing into the circulation pipe 14 side when the refrigerant heating pump 24 is driven, and when the refrigerant heating pump 24 is not driven, the refrigerant heating pipe 20 side is supplied with water. The same operation can be performed even if a flow path control valve (not shown in the figure) is provided to control so as not to flow.
[0054]
  (Example 2)
  FIG. 2 is a system diagram of a heat pump water heater in Embodiment 2 of the present invention. Components having the same reference numerals as those in the first embodiment have the same structure and will not be described.
[0055]
  31 is a second refrigerant heating pipe connected to the downstream side of the first check valve 18 provided in the circulation pipe 14 through the refrigerant heating heat exchanger 5 from the hot water outlet A of the tank substantially intermediate portion 21. A pipe is provided with a temperature detector 22 at the outlet side of the refrigerant heating heat exchanger 5 and hot water taken from the hot water outlet A is allowed to flow through the circulation pipe 17 only when the temperature detector 22 is below a predetermined temperature. A flow path switching valve 32 for returning hot water to the tank lower part 15 when the temperature is detected, a second check valve 23 for preventing the water flowing through the circulation pipe 17 from flowing into the two refrigerant heating pipes 30, and a substantially tank intermediate part 21 includes a refrigerant heating pump 24 that guides the hot water of 21, a circulation pipe 14, a refrigerant heating heat exchanger 5, a temperature detector 22, a flow path switching valve 32, a second check valve 23, The second refrigerant heating circuit 33 is connected to the refrigerant heating pump 24. Forms. Reference numeral 34 denotes a return pipe connected by piping from the flow path switching valve 32 to the tank lower part 15.
[0056]
  Next, the boiling operation in the case where the temperature of the medium temperature water detected by the temperature detection means 22 is below a predetermined temperature by circulating the medium temperature water in the tank 13 and recovering heat by the second refrigerant heating circuit 33 will be described.
[0057]
  First, when the refrigerant heating pump 24 is driven, medium-temperature water flows into the second refrigerant heating pipe 31 from the hot water outlet A of the substantially tank intermediate portion 21.
[0058]
  On the other hand, the refrigerant expanded under reduced pressure after passing through the first expansion valve 4 from the hot water supply heat exchanger 3 is heated by exchanging heat with intermediate temperature water in the refrigerant heating heat exchanger 5, and After decompression and expansion, the refrigerant flows into the compressor 2 through the bypass circuit 9 in which the second electromagnetic valve 10 is opened. The refrigerant flowing into the compressor 2 is discharged at a high temperature and pressure and flows into the hot water supply heat exchanger 3.
[0059]
  The temperature of the medium-temperature water is lowered by heat exchange with the refrigerant in the second refrigerant heating circuit 33, and flows into the circulation pipe 14 from the flow path switching valve 32 having a flow path opened to the boiling circuit 19 side, so that heat exchange for hot water supply is performed. Heated by the high-temperature and high-pressure refrigerant in the vessel 3 to become high-temperature water, flows into the tank upper part 16 and is stored in the tank 13.
[0060]
  On the other hand, the refrigerant after the heat exchange in the hot water supply heat exchanger 3 is liquefied and condensed, decompressed and expanded by the first expansion valve, and then flows into the refrigerant heating heat exchanger 5 again. Boil in water.
[0061]
  However, when the temperature of the hot water detected by the temperature detector E on the outlet side of the hot water supply heat exchanger 3 is equal to or lower than a predetermined temperature, the valve opening degree of the flow path switching valve 32 is controlled, and a part of the medium temperature water is removed. The boiling temperature is ensured by returning from the return pipe 34 to the tank lower portion 15 and adjusting the flow rate of the medium-temperature water flowing to the boiling circuit 19 side. However, the heating operation of the medium-temperature water supplied from the second refrigerant heating circuit 5 is stopped when the temperature detector E detects a temperature equal to or lower than the predetermined temperature even after the flow rate is adjusted by the flow path switching valve 32.
[0062]
  Moreover, returning a part of the medium-temperature water to the tank lower part 15 having a low water temperature has an effect of lowering the temperature of the medium-temperature water, and is an effective means for efficiently heating the medium-temperature water without waste.
[0063]
  As in the first embodiment, when the refrigerant heating pump 24 is driven, the first electromagnetic valve 8 is controlled to close, and the refrigerant does not flow into the atmospheric heat exchanger 7 side.
[0064]
  Next, the boiling operation using the medium temperature water when the temperature detector 22 detects that the temperature of the medium temperature water after the heat exchange with the refrigerant heating heat exchanger 5 is not below a predetermined temperature will be described.
[0065]
  When the temperature of the medium temperature water after heat exchange with the refrigerant heating heat exchanger 5 is not below a predetermined temperature, the flow rate of the medium temperature water taken in from the refrigerant heating pump 24 is adjusted so as to decrease, and heat exchange for refrigerant heating is performed. The hot water temperature drop in the vessel 5 is promoted. The heating operation when the temperature detector 22 detects a temperature equal to or lower than the predetermined temperature is the same as the heating operation of the medium-temperature water by the second refrigerant heating circuit 33 described above.
[0066]
  (Example 3)
  FIG. 3 is a system diagram of a heat pump water heater in Embodiment 3 of the present invention. Components having the same reference numerals as those in the first and second embodiments have the same structure and will not be described.
[0067]
  An external hot water heat exchanger 35 is connected to a forward pipe 36 connected to the tank upper part 16 by piping and a return pipe 37 connected to the upper part of the hot water outlet A of the tank approximately middle part 21. Reference numeral 38 denotes a heat exchange coil built in the external heat exchanger 35, which is connected to a hot water circulation pipe 39 of the hot water heating unit 26, which is a hot water heat exchange load, and circulates for heat exchange that is circulated by a circulation pump 27 therein. There is water in it. A heat exchange pump 40 is connected in the middle of the return pipe 37, and takes in the high temperature water in the tank upper part 16 into the external hot water heat exchanger 35.
[0068]
  Next, the operation of the hot water heating unit 26 that performs heating by exchanging heat with the high temperature water in the tank 13 flowing in the external hot water heat exchanger 35 will be described.
[0069]
  First, when the hot water circulation pump 27 is driven, the circulating water in the hot water circulation pipe 39 is heated by exchanging heat with the high-temperature water drawn into the external hot water heat exchanger 35 from the tank upper part 16 in the heat exchange coil 38 part. The air heat exchanger 30 exchanges heat with room air by the blower 29, and supplies warm air into the room. The circulating water heat-exchanged indoors again flows into the external hot water heat exchanger 35 to be operated for one cycle.
[0070]
  On the other hand, the hot water heat-exchanged with the circulating water in the external hot water heat exchanger 35 is returned to the tank substantially intermediate portion 21 as intermediate temperature water.
[0071]
  In the third embodiment, the hot water heating unit is operated by the external hot water heat exchanger 35. However, the effect is the same as that of the first embodiment in that the circulating water is heated by exchanging heat with the high temperature water in the tank upper portion 16. is there. In the third embodiment, the medium-temperature water after heat exchange is returned directly from the return pipe 37 to the tank substantially intermediate portion 21. However, in the first embodiment, the intermediate water is substantially intermediate in the tank due to natural convection generated in the tank 13. The same result is obtained.
[0072]
【The invention's effect】
  As is apparent from the above description, according to the heat pump hot water supply apparatus described in claim 1, the refrigerant recovers heat from atmospheric heat, or if there is medium temperature water in the tank, heat recovery is performed using medium temperature water. By using heat from the medium-temperature water to heat the refrigerant even if medium-temperature water is generated even when heat-exchange means such as a hot-water heating unit is operated by exchanging heat with the high-temperature water in the tank. It is possible to provide an easy-to-use heat pump hot water supply device that can lower the temperature, boil hot water efficiently, and provide a running cost advantage.
[0073]
  In addition, according to the heat pump hot water supply device described in claim 2, by returning the high temperature water heated from the medium temperature water to the upper part of the tank, the high temperature water can be surely secured in the upper part of the tank, and the heat pump hot water supply is easy to use. Equipment can be provided.
[0074]
  Moreover, according to the heat pump hot water supply apparatus described in claim 3, even if a warm operation is performed by a hot water heat exchange load such as a hot water heating unit that exchanges heat with the high temperature water in the tank, even if intermediate warm water is generated, The medium temperature water in the tank is guided to the heat exchanger for refrigerant heating by the refrigerant heating pump, and the refrigerant is heated by exchanging heat with the medium temperature water. It can be secured efficiently and the proportion of medium-temperature water that is inconvenient to use can be reduced.
[0075]
  According to the heat pump hot water supply apparatus of claim 4, whether the medium temperature water after heat exchange with the refrigerant is returned to the boiling circuit according to the hot water temperature by the flow path switching valve, or returned to the lower part of the tank having a low water temperature. By controlling the above, boiling with medium-temperature water can be performed more efficiently.
[0076]
  In addition, according to the heat pump hot water supply apparatus described in claim 5, more efficient by heating the intermediate temperature water with the hot water supply heat exchanger only when the temperature drop of the intermediate temperature water after heat exchange with the refrigerant is equal to or lower than a predetermined temperature. It is possible to frequently exchange heat between the medium-temperature water and the refrigerant, and it is possible to reduce the size of the heat exchanger for hot water supply by improving the heat exchange efficiency.
[0077]
  According to the heat pump hot water supply apparatus described in claim 6, the temperature drop of the medium temperature water after passing through the second refrigerant heating circuit is not sufficient, and the heat exchange to the medium temperature water by the refrigerant in the hot water supply heat exchanger When the boiling temperature becomes a predetermined temperature or lower due to a decrease in efficiency or the like, the heating operation by the second refrigerant heating circuit can be stopped to prevent the COP from becoming 1 or lower, It is possible to prevent other than hot water from accumulating at the top of the tank.
[0078]
  According to the heat pump hot water supply apparatus described in claim 7, and when the temperature of the hot water boiled by the hot water supply heat exchanger is equal to or lower than a predetermined temperature, the medium-temperature water flowing from the flow path switching valve to the boiling circuit is supplied. By restricting the flow rate, it is possible to boil medium-temperature water to high-temperature water, and as a result, it is possible to ensure high-temperature water at the top of the tank and increase the proportion of high-temperature water in the tank. be able to.
[0079]
  According to the heat pump hot water supply apparatus of claim 8, when the temperature of the hot water boiled in the hot water supply heat exchanger is equal to or lower than a predetermined temperature, the flow rate of the medium-temperature water flowing from the refrigerant heating pump to the boiling circuit By squeezing down, it is possible to surely boil medium-temperature water to high-temperature water, and as a result, it is possible to ensure high-temperature water at the top of the tank and increase the proportion of high-temperature water in the tank. Can do.
[0080]
  According to the heat pump hot water supply apparatus described in claim 9, the hot water heat exchange load is positioned above the hot water outlet of the second refrigerant heating circuit in which a large amount of medium hot water is stored. The exchange load can preferentially exchange heat with the hot water at the top of the tank. As a result, it is possible to provide an easy-to-use heat pump water heater that meets the user's requirements and is less likely to lose its capacity even when operated for a long time. it can.
[0081]
  According to the heat pump hot water supply apparatus described in claim 10, when the hot water temperature of the medium-temperature water detected by the second refrigerant heating circuit is equal to or lower than the predetermined temperature, the first electromagnetic valve is closed, and the atmospheric heat exchanger It is possible to increase the proportion of high-temperature water in the tank efficiently without using the medium-temperature water for hot water supply. it can.
[0082]
  According to the heat pump hot water supply apparatus described in claim 11, when the second refrigerant heating circuit heats the refrigerant with the medium-temperature water, the operation of the stacked pump is controlled to stop, so that only the medium-temperature water is more reliably produced. It is possible to provide an easy-to-use heat pump water heater capable of boiling water into high-temperature water and reliably reducing the proportion of medium-temperature water in the tank.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a heat pump water heater in Embodiment 1 of the present invention.
FIG. 2 is a system configuration diagram of a heat pump water heater in Embodiment 2 of the present invention.
FIG. 3 is a system configuration diagram of a heat pump water heater in Embodiment 3 of the present invention.
FIG. 4 is a system configuration diagram of a conventional heat pump hot water supply apparatus.
[Explanation of symbols]
  1 Heat pump unit
  2 Compressor
  3 Heat exchanger for hot water supply
  5 Heat exchanger for refrigerant heating (heat recovery means)
  7 Atmospheric heat exchanger (heat recovery means)
  9 Bypass circuit
  11 First refrigerant heating circuit
  12 Tank unit
  13 tanks
  19 Heating circuit
  25 Second refrigerant heating circuit
  26 Hot water heating unit
  28 Hot water heat exchange pipe (heat exchange means)

Claims (9)

冷媒を加熱する圧縮機と、加熱された冷媒を熱交換させて水を温める給湯用熱交換器と、熱交換した冷媒を減圧膨張させる第1膨張弁と、減圧膨張した冷媒を湯と熱交換して加熱する冷媒加熱用熱交換器と、この冷媒加熱用熱交換器で加熱された冷媒を減圧膨張させる第2膨張弁と、減圧膨張した冷媒が大気より回収された熱により加熱される大気熱交換器を通るか、バイパス回路を通るかを流路制御する第1電磁弁と第2電磁弁とで構成した第1冷媒加熱回路と、湯を貯めるタンクと、このタンク下部の水を前記給湯用熱交換器で加熱し、前記タンク上部に高温の湯を貯めるための積層ポンプと、水がタンク下部からタンク上部方向のみに流れるよう制御する第1逆止弁とで構成した沸き上げ回路と、前記沸き上げ回路を流れる水が流れ込むのを防止する第2逆止弁と、タンク略中間部からタンク内の湯を冷媒加熱用ポンプにより冷媒加熱用熱交換器へと導き冷媒を加熱し、再び湯を沸き上げ回路の前記第1逆止弁よりも下流側へと戻す第2冷媒加熱回路と、タンク内の湯を熱交換することにより加熱される温水熱交換負荷を備えたヒートポンプ給湯装置。  A compressor that heats the refrigerant, a heat exchanger for hot water supply that heats the heated refrigerant to heat water, a first expansion valve that decompresses and expands the heat-exchanged refrigerant, and heat-exchanges the decompressed and expanded refrigerant with hot water A refrigerant heating heat exchanger that heats the refrigerant, a second expansion valve that decompresses and expands the refrigerant heated by the refrigerant heating heat exchanger, and an atmosphere in which the decompressed and expanded refrigerant is heated by heat recovered from the atmosphere A first refrigerant heating circuit composed of a first solenoid valve and a second solenoid valve for controlling a flow path through a heat exchanger or a bypass circuit, a tank for storing hot water, and water at the bottom of the tank A boiling circuit comprising a stacking pump for heating with a heat exchanger for hot water supply and storing hot water in the upper part of the tank, and a first check valve for controlling the water to flow only from the lower part of the tank toward the upper part of the tank. And water flowing through the boiling circuit flows in The first check valve of the circuit for boiling the hot water again by heating the hot water in the tank from the substantially intermediate portion of the tank to the heat exchanger for heating the refrigerant by the refrigerant heating pump. A heat pump hot water supply apparatus comprising a second refrigerant heating circuit that returns to the downstream side of the check valve, and a hot water heat exchange load that is heated by exchanging the hot water in the tank. 冷媒を加熱する圧縮機と、加熱された冷媒を熱交換させて水を温める給湯用熱交換器と、熱交換した冷媒を減圧膨張させる第1膨張弁と、減圧膨張した冷媒を湯と熱交換して加熱する冷媒加熱用熱交換器と、この冷媒加熱用熱交換器で加熱された冷媒を減圧膨張させる第2膨張弁と、減圧膨張した冷媒が大気より回収された熱により加熱される大気熱交換器を通るか、バイパス回路を通るかを流路制御する第1電磁弁と第2電磁弁とで構成した第1冷媒加熱回路と、湯を貯めるタンクと、このタンク下部の水を前記給湯用熱交換器で加熱し、前記タンク上部に高温の湯を貯めるための積層ポンプと、水がタンク下部からタンク上部方向のみに流れるよう制御する第1逆止弁とで構成した沸き上げ回路と、冷媒加熱用ポンプによりタンク略中間部内の湯を冷媒加熱用熱交換器へと導き冷媒を加熱し、冷媒加熱後の湯を再び前記第一逆止弁よりも下流側の沸き上げ回路に戻すか、あるいはタンクの下部へ戻すかを制御する流路切換弁と、沸き上げ回路を流れる水が流れ込むのを防止する第2逆止弁で構成された第2冷媒加熱回路と、タンク内の湯を熱交換することにより加熱される温水熱交換負荷を備えたヒートポンプ給湯装置。  A compressor that heats the refrigerant, a heat exchanger for hot water supply that heats the heated refrigerant to heat water, a first expansion valve that decompresses and expands the heat-exchanged refrigerant, and heat-exchanges the decompressed and expanded refrigerant with hot water A refrigerant heating heat exchanger that heats the refrigerant, a second expansion valve that decompresses and expands the refrigerant heated by the refrigerant heating heat exchanger, and an atmosphere in which the decompressed and expanded refrigerant is heated by heat recovered from the atmosphere A first refrigerant heating circuit composed of a first solenoid valve and a second solenoid valve for controlling a flow path through a heat exchanger or a bypass circuit, a tank for storing hot water, and water at the bottom of the tank A boiling circuit comprising a stacking pump for heating with a heat exchanger for hot water supply and storing hot water in the upper part of the tank, and a first check valve for controlling the water to flow only from the lower part of the tank toward the upper part of the tank. And the tank approximately in the middle by the refrigerant heating pump The hot water in the inside is led to the heat exchanger for heating the refrigerant, the refrigerant is heated, and the hot water after the refrigerant is heated is returned to the boiling circuit downstream from the first check valve, or returned to the lower part of the tank. Is heated by exchanging heat in the water in the tank, and a second refrigerant heating circuit composed of a second check valve for preventing water flowing in the boiling circuit from flowing in A heat pump water heater with a hot water heat exchange load. 冷媒加熱用熱交換器出口の第2冷媒加熱回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときのみ、第2冷媒加熱回路より供給され
る湯を給湯用熱交換器で加熱するようにした請求項1または2記載のヒートポンプ給湯装置。
A temperature detector is provided in the second refrigerant heating circuit at the outlet of the refrigerant heating heat exchanger, and hot water supplied from the second refrigerant heating circuit is used for hot water supply only when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature. The heat pump hot water supply apparatus according to claim 1 or 2 , wherein the heat pump is heated by a heat exchanger.
給湯用熱交換器出口の沸き上げ回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、第2冷媒加熱回路より供給される湯の加熱動作を停止するようにした請求項1〜3のいずれか1項記載のヒートポンプ給湯装置。A temperature detector is provided in the boiling circuit at the outlet of the hot water supply heat exchanger, and when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature, the heating operation of the hot water supplied from the second refrigerant heating circuit is stopped. The heat pump hot-water supply apparatus of any one of Claims 1-3 which did it. 給湯用熱交換器出口の沸き上げ回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、流路切換弁を制御して沸き上げ回路の流量を調節するようにした請求項2または3記載のヒートポンプ給湯装置。A temperature detector is provided in the boiling circuit at the outlet of the hot water supply heat exchanger, and when the temperature detected by the temperature detector is below a predetermined temperature, the flow rate of the boiling circuit is adjusted by controlling the flow path switching valve. The heat pump hot-water supply apparatus of Claim 2 or 3 which was made to do. 給湯用熱交換器出口の沸き上げ回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、冷媒加熱用ポンプを制御して沸き上げ回路の流量を調節するようにした請求項1〜5のいずれか1項記載のヒートポンプ給湯装置。A temperature detector is provided in the boiling circuit at the outlet of the hot water supply heat exchanger, and when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature, the refrigerant heating pump is controlled to adjust the flow rate of the boiling circuit. The heat pump hot-water supply apparatus of any one of Claims 1-5 which were made to do. 温水熱交換負荷は、第2冷媒回路の湯の取出口より上方に位置させるようにした請求項1〜5のいずれか1項記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to any one of claims 1 to 5 , wherein the hot water heat exchange load is positioned above the hot water outlet of the second refrigerant circuit. 冷媒加熱用熱交換器出口の第2冷媒回路に温度検出器を設け、前記温度検出器で検出された温度が所定温度以下のときは、第1冷媒加熱回路の冷媒経路としてバイパス回路に冷媒が流れるように切り換え、大気熱交換器側の第1電磁弁を閉塞するようにした請求項1または2記載のヒートポンプ給湯装置。A temperature detector is provided in the second refrigerant circuit at the outlet of the heat exchanger for heating the refrigerant, and when the temperature detected by the temperature detector is equal to or lower than a predetermined temperature, the refrigerant is supplied to the bypass circuit as a refrigerant path of the first refrigerant heating circuit. The heat pump hot-water supply apparatus according to claim 1 or 2 , wherein the first electromagnetic valve on the atmospheric heat exchanger side is closed by switching to flow. 第2冷媒加熱回路より供給される湯を給湯用熱交換器で加熱するときは、積層ポンプの運転を停止するように制御した請求項1〜8いずれか1項記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to any one of claims 1 to 8 , wherein when the hot water supplied from the second refrigerant heating circuit is heated by a heat exchanger for hot water supply, the operation of the stacking pump is stopped.
JP2003000269A 2003-01-06 2003-01-06 Heat pump water heater Expired - Fee Related JP4019943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000269A JP4019943B2 (en) 2003-01-06 2003-01-06 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000269A JP4019943B2 (en) 2003-01-06 2003-01-06 Heat pump water heater

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007171465A Division JP4251227B2 (en) 2007-06-29 2007-06-29 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2004211986A JP2004211986A (en) 2004-07-29
JP4019943B2 true JP4019943B2 (en) 2007-12-12

Family

ID=32818633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000269A Expired - Fee Related JP4019943B2 (en) 2003-01-06 2003-01-06 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4019943B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965145A4 (en) * 2005-12-08 2013-09-25 Sharp Kk Heat pump hot-water supply device
JP2007198671A (en) * 2006-01-26 2007-08-09 Sanden Corp Water heater
JP4957026B2 (en) * 2006-03-13 2012-06-20 株式会社ノーリツ Heat pump heat supply system
JP4856489B2 (en) 2006-07-31 2012-01-18 サンデン株式会社 Water heater
KR100910131B1 (en) * 2007-06-29 2009-08-03 순천대학교 산학협력단 Lonicera japonica Extract with Suppression of Cell Mutation by Ultraviolet lay, Extracting Process thereof and Composition Containing the Extract

Also Published As

Publication number Publication date
JP2004211986A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
US8245948B2 (en) Co-generation and control method of the same
KR100640137B1 (en) Heat pumped water heating and heating apparaturs
JP5097624B2 (en) Hot water supply system
JP2013104583A (en) Air-conditioning water heater
JP4019943B2 (en) Heat pump water heater
JP5176474B2 (en) Heat pump water heater
JP4251227B2 (en) Heat pump water heater
JP2007278655A (en) Heat storage type hot water supplier
KR101078070B1 (en) Hot and cool water, heating and cooling heat-pump system
JP2007155275A (en) Heat pump hot water feeder
JP2009264714A (en) Heat pump hot water system
JP4790538B2 (en) Hot water storage hot water heater
JP3869801B2 (en) Heat pump water heater / heater
JP2006308261A (en) Heat pump type hot water supplier
JP4882478B2 (en) Regenerative water heater
JP4631365B2 (en) Heat pump heating device
JP2011043273A (en) Heat pump type heating liquid system
JP4848971B2 (en) Heat pump water heater
JP2006234211A (en) Heat pump water heater
JP2005083659A (en) Water heater
JP3841051B2 (en) Heat pump water heater
JP2006132873A (en) Hot water supply apparatus
JP3846385B2 (en) Heat pump water heater with solar system
JP2004218920A (en) Water heater
JP2004101022A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees