JP4019738B2 - Method for producing porous material made of thermoplastic polyurethane resin and porous material made of thermoplastic polyurethane resin - Google Patents

Method for producing porous material made of thermoplastic polyurethane resin and porous material made of thermoplastic polyurethane resin Download PDF

Info

Publication number
JP4019738B2
JP4019738B2 JP2002051721A JP2002051721A JP4019738B2 JP 4019738 B2 JP4019738 B2 JP 4019738B2 JP 2002051721 A JP2002051721 A JP 2002051721A JP 2002051721 A JP2002051721 A JP 2002051721A JP 4019738 B2 JP4019738 B2 JP 4019738B2
Authority
JP
Japan
Prior art keywords
polyurethane resin
thermoplastic polyurethane
porous material
material made
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002051721A
Other languages
Japanese (ja)
Other versions
JP2003253035A (en
Inventor
真二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2002051721A priority Critical patent/JP4019738B2/en
Publication of JP2003253035A publication Critical patent/JP2003253035A/en
Application granted granted Critical
Publication of JP4019738B2 publication Critical patent/JP4019738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性ポリウレタン樹脂よりなる多孔性材料の製造方法と、この方法により製造された熱可塑性ポリウレタン樹脂製多孔性材料に関する。
【0002】
【従来の技術】
熱可塑性ポリウレタン樹脂製の多孔性材料はその優れた肌触りなどから、人工皮革や化粧品用パフを始め多くの産業で利用されている。
【0003】
従来、熱可塑性ポリウレタン樹脂製多孔性材料は、一般に熱可塑性ポリウレタン樹脂を良溶媒であるジメチルホルムアミドやN−メチル−2−ピロリドンなどの極性有機溶媒に溶解し、ここへ孔形成剤を添加混合して凝固させた後、良溶媒と孔形成剤を抽出除去する、所謂、湿式製膜法で製造されている。ここで、孔形成剤としてはポリビニルピロリドン、ポリビニルアルコール、セルロース誘導体などの水溶性高分子化合物が、孔径の制御が容易であり、孔径分布もシャープな多孔性材料が得られるため、広く利用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、溶媒に溶解した熱可塑性ポリウレタン樹脂を凝固浴中で凝固させる湿式製膜法の欠点として、得られる多孔性材料の表層部分には、内部と極端に構造ないし通気性の異なる緻密層、所謂、スキン層が生成するという問題がある。
【0005】
このスキン層は多孔性材料の通気性、即ち、吸水性に悪影響を及ぼし、触感も非常に悪くなる要因であるため、通常、このようなスキン層が形成された多孔性材料は、表層部分のスキン層を研磨するか、或いはスキン層及びその下部の多孔構造層の一部をスライスすることにより除去することが行われている。
【0006】
しかしながら、スキン層の研磨やスライス処理は、対象面が平滑な平面であれば容易に行うことができるが、表面が曲面となっている多孔性材料の場合には、スキン層の除去が困難又は不可能となる。また、たとえ研磨やスライスが可能であったとしても、研磨面は網状構造体のほつれや、研磨屑による汚染が確認され、また、スライス面は刃の摩擦によって均質な切断面とはならず、凹凸のある表面となるという問題があった。更に、スキン層の除去処理に要する手間と時間や、除去したスキン層を廃棄することで歩留まりが低下するという問題もあった。
【0007】
また、これらの処理は、多孔性材料の孔径サイズが数十μmレベルであれば比較的容易であるものの、150μmを超える大きな孔径の多孔性材料の場合、多孔性材料が刃に噛み込み、安定した研磨ないしスライス処理が困難である。そして、この多孔性材料の噛み込みを防止するためには、液体窒素による凍結処理などの特殊な操作も必要となってくる。
【0008】
本発明は上記従来の問題点を解決し、表層部分に緻密なスキン層を生成させることなく、全面が均質な網状構造からなる熱可塑性ポリウレタン樹脂製多孔性材料を製造する方法と、この方法により製造された熱可塑性ポリウレタン樹脂製多孔性材料を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の熱可塑性ポリウレタン樹脂製多孔性材料の製造方法は、熱可塑性ポリウレタン樹脂と、少なくとも一個のα−1,4結合及び/又はβ−1,4結合を有するオリゴ糖及び多糖並びにこれらの誘導体よりなる群から選ばれる1種又は2種以上の水溶性高分子化合物と、分子内に酸素原子又は窒素原子を含む含酸素/窒素有機溶媒とを含むポリマードープを、親水性有機溶媒を含む凝固浴中に浸漬し、前記含酸素/窒素有機溶媒を抽出除去して前記熱可塑性ポリウレタン樹脂を凝固せしめた後、前記水溶性高分子化合物及び親水性有機溶媒を抽出除去する工程を含む熱可塑性ポリウレタン樹脂製多孔性材料の製造方法であって、前記熱可塑性ポリウレタン樹脂の凝固に際して、前記ポリマードープを、少なくとも一部が該親水性有機溶媒の通液が可能となっている仕切部材内に収容して該凝固浴中に浸漬することを特徴とする。
【0010】
本発明においては、孔形成剤としてポリマードープ中に混合分散させる水溶性高分子化合物として、凝固浴の親水性有機溶媒に対する溶解性が低い水溶性高分子化合物、即ち、少なくとも一個のα−1,4結合及び/又はβ−1,4結合を有するオリゴ糖及び多糖並びにこれらの誘導体よりなる群から選ばれる1種又は2種以上を用いる。
【0011】
このような親水性有機溶媒への溶解性の低い水溶性高分子化合物を孔形成剤として分散させたポリマードープを親水性有機溶媒中に浸漬し、熱可塑性ポリウレタン樹脂の良溶媒である含酸素/窒素有機溶媒のみを選択的に抽出除去し、かつ、この良溶媒の抜けたサイトに親水性有機溶媒を侵入させることができるため、高次構造が維持されたまま熱可塑性ポリウレタン樹脂を凝固させることができる。このため、どのような平均孔径の多孔性材料であっても、シャープな孔径分布で、ボイドやピンホールなどの欠陥のない多孔性材料を製造することができる。
【0012】
しかして、本発明では、凝固浴中でポリマードープ中の熱可塑性ポリウレタン樹脂を凝固させる際に、ポリマードープを仕切部材内に収容し、ポリマードープと親水性有機溶媒との界面にこの仕切部材を介在させることにより、スキン層のない多孔性材料を容易に製造することができる。
【0013】
即ち、熱可塑性ポリウレタン樹脂の凝固に際して、凝固浴とポリマードープとの界面に仕切部材を介在させておくと、スキン層がないか、或いは、外観上は表面にスキン層が形成された多孔性材料が得られる。スキン層が形成された多孔性材料が得られた場合であっても、このスキン層は多孔性材料の多孔性の本体部分とは癒着しておらず、容易に剥し取ることができる。
【0014】
本発明の熱可塑性ポリウレタン樹脂製多孔性材料は、このような本発明の熱可塑性ポリウレタン樹脂製多孔性材料の製造方法により製造されたものであり、シャープな孔径分布で、ボイドやピンホールなどの欠陥がなく、しかも表面にスキン層がなく、内部から表層まで実質的に均質なものである。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態を、本発明の熱可塑性ポリウレタン樹脂製多孔性材料の製造手順に従って詳細に説明する。
【0016】
本発明においては、まず、熱可塑性ポリウレタン樹脂と、孔形成剤である水溶性高分子化合物と、熱可塑性ポリウレタン樹脂の良溶媒である含酸素/窒素有機溶媒とを混合してポリマードープを製造する。具体的には、熱可塑性ポリウレタン樹脂を含酸素/窒素有機溶媒に混合して均一溶液とした後、この溶液中に水溶性高分子化合物を混合分散させる。
【0017】
このポリマードープの組成としては、熱可塑性ポリウレタン樹脂0.2〜90重量部、水溶性高分子化合物0.2〜90重量部、含酸素/窒素有機溶媒0.2〜99.6重量部の範囲とすることが好ましく(ただし、熱可塑性ポリウレタン樹脂、水溶性高分子化合物及び含酸素/窒素有機溶媒の合計で100重量部とする。)、特に好ましくは、熱可塑性ポリウレタン樹脂0.2〜50重量部、水溶性高分子化合物0.2〜50重量部、含酸素/窒素有機溶媒0.2〜99.6重量部、とりわけ好ましくは、熱可塑性ポリウレタン樹脂0.2〜20重量部、水溶性高分子化合物0.2〜20重量部、含酸素/窒素有機溶媒60〜99.6重量部であり、このような配合割合であれば、産業上利用しやすい、熱可塑性ポリウレタン樹脂多孔性材料本来の優れた触感を発現させた多孔性材料を得ることができる。
【0018】
特に、熱可塑性ポリウレタン樹脂と水溶性高分子化合物との混合割合は、熱可塑性ポリウレタン樹脂:水溶性高分子化合物=1:0.1〜10(重量比)、好ましくは1:0.1〜2.0であり、このような組成とすることにより、本発明による、多孔性材料の高次構造の安定化効果が有効に発揮される。
【0019】
本発明において、熱可塑性ポリウレタン樹脂の良溶媒としての含酸素/窒素有機溶媒は、分子内に酸素原子又は窒素原子を含む有機溶媒であり、具体的にはテトラヒドロフラン、N−メチルピロリドン、N,N−ジメチルホルムアミド、ピリジン及びこれらの単純置換体を使用することが可能である。これらの含酸素/窒素有機溶媒は、1種を単独で用いても良く、2種以上を混合して用いても良い。なお、単純置換体とは、例えば、2−メチルピリジン、2−メチルテトラヒドロフラン、2−ピロリドンのように複素環にアルカン原子が導入されたものや、その逆に水素原子が導入されたものを指す。
【0020】
また、孔形成剤としての水溶性高分子化合物は、少なくとも一個のα−1,4結合及び/又はβ−1,4結合を有するオリゴ糖及び多糖並びにこれらの誘導体の1種又は2種以上であり、好ましくはカルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース等のセルロースエーテルが挙げられるが、熱可塑性ポリウレタン樹脂と均質に分散し、親水性有機溶媒中へフリーに溶解しないものであればこの限りではない。
【0021】
熱可塑性ポリウレタン樹脂、含酸素/窒素有機溶媒及び水溶性高分子化合物より製造されたポリマードープは、少なくとも一部が、凝固浴の親水性有機溶媒の通液可能とされた仕切部材内に収容して、親水性有機溶媒を含む凝固液中に浸漬し、含酸素/窒素有機溶媒を抽出除去して熱可塑性ポリウレタン樹脂を凝固浴させる。
【0022】
この含酸素/窒素有機溶媒を抽出する親水性有機溶媒としては、メタノール、エタノール、プロパノール及びアセトン並びにこれらの誘導体が例示できるが、この限りではない。これらの親水性有機溶媒は1種を単独で用いても良く、2種以上を混合して用いても良い。
【0023】
熱可塑性ポリウレタン樹脂の凝固の際に、ポリマードープと凝固浴との界面に存在させる仕切部材としては、金属材料、高分子材料又は無機材料等で構成される構造体を用いることができ、例えば、ポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、フッ素樹脂、シリコン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂及び多糖等の高分子材料の1種又は2種以上で構成される構造体が使用可能であるが、この限りではない。なお、多糖としては、紙、布、木等が含まれる。
【0024】
この界面に介在させる仕切部材としては、特に多孔性材料で構成されるものが好ましく、これによりスキン層のない内部から表層まで均質な熱可塑性ポリウレタン樹脂製多孔性材料が得ることができる。
【0025】
本発明において、このような仕切部材としては、具体的には、凝固浴の親水性有機溶媒が流通し得る流出入口を有する容器、例えば管状、球状、円錐形状、人手形状、放射(星)状、瓢箪状、シート状、棒状などいかなる形状であっても良く、研磨やスライス処理が不可能な複雑な形状の容器等が挙げられ、このような開口付き容器にポリマードープを充填し、凝固浴中に浸漬する方法が挙げられる。
【0026】
凝固浴の親水性有機溶媒の温度としては10℃以上であることが好ましい。これは孔形成剤である少なくとも一個のα−1,4結合及び/又はβ−1,4結合を有するオリゴ糖及び多糖並びにこれらの誘導体の溶解度を考慮して設定された温度であり、低温度にて溶解性が発現され易いこれらをポリマードープ中に保持させるために必要な温度である。従って、凝固浴の親水性有機溶媒の温度はより高い温度、例えば40℃以上であることがより好ましく、該親水性有機溶媒の0.1MPa(760mmHg)での沸点温度以上であること、即ち、還流状態で凝固を行うことも好ましい。
【0027】
この含酸素/窒素有機溶媒の抽出除去に当たり、ポリマードープ及び凝固浴を減圧状態にすることも可能である。これにより、凝固浴の親水性有機溶媒だけでなく熱可塑性ポリウレタン樹脂の良溶媒の沸点も下がり、該良溶媒の凝固浴への拡散を助長させる効果が得られる。
【0028】
このようにして、含酸素/窒素有機溶媒を抽出除去して熱可塑性ポリウレタン樹脂を凝固させた後は、孔形成剤の水溶性高分子化合物を抽出除去することにより、熱可塑性ポリウレタン樹脂製多孔性材料を得ることができる。この水溶性高分子化合物の抽出除去は、水を用いて容易に行うことができる。
【0029】
このような本発明の熱可塑性ポリウレタン樹脂製多孔性材料により製造される熱可塑性ポリウレタン樹脂製多孔性材料は、平均孔径0.1〜500μm、好ましくは0.1〜200μmの幅広い平均粒径において、孔径分布がシャープでボイドやピンホール等の欠陥のない均質な高次構造材料であり、しかも、表面に緻密なスキン層がなく、内部から表層まで均質な多孔質構造が形成された高品質の熱可塑性ポリウレタン樹脂製多孔性材料である。
【0030】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。
【0031】
実施例1
熱可塑性ポリウレタン樹脂(日本ミラクトラン社製,ミラクトランE980PNAT)をN−メチル−2−ピロリドン(関東化学社製,試薬,ペプチド合成用,NMP)にディゾルバーを使用して室温下で溶解して、3.5%溶液(重量/重量)を得た。このNMP溶液約1.0kgをプラネタリーミキサー(井上製作所製,2.0L仕込み)に入れ、ポリウレタン樹脂と同重量のメチルセルロース(関東化学社製,試薬,25cp)を40℃で20分間混合し、その後、10分間20mmHg(2.7kPa)まで減圧して脱泡し、ポリマードープを得た。
【0032】
このポリマードープを内径5mmφ、長さ40mmのポリプロピレン製の筒体中へ充填し、両末端を脱脂綿で封をして還流状態にあるメタノール(関東化学社,試薬特級)中へ投入し、96時間還流を続けた。
【0033】
還流操作中、筒体の両末端からメタノールが脱脂綿を透過浸透し、内部からポリマードープ中のNMPが拡散してくるのが確認され、約24時間で筒体の側周面が40mmの全面にわたって白色化するのが確認された。
【0034】
96時間の還流後、両末端の脱脂綿を取り外し、凝固したポリマーを筒体から引き抜き、流水中で24時間洗浄して熱可塑性ポリウレタン樹脂製多孔性材料を得た。
【0035】
得られた熱可塑性ポリウレタン樹脂製多孔性材料の表層部の実体顕微鏡(キーエンス社、VH−6300)写真(35倍)を図1に示す。この実体顕微鏡像より、この熱可塑性ポリウレタン樹脂製多孔性材料は、外観上はスキン層が生成しているが、このスキン層は多孔性材料本体とは癒着しておらず、隙間を確認することができる。このスキン層はピンセットで引くことにより、図2の実体顕微鏡写真(35倍)に示す如く、全面にわたって容易に剥離除去することができた。
【0036】
なお、この熱可塑性ポリウレタン樹脂製多孔性材料は平均孔径39μmで、ピンホールやボイドのない、均質な3次元網状構造の多孔性材料であることが確認された。
【0037】
実施例2
実施例1と同様にして調製したポリマードープを濾紙(東洋濾紙社製,定性分析用,2番)で作成した5mmφの紙管に注入し、両末端を脱脂綿で封をして還流状態にあるメタノール(関東化学社,試薬特級)中へ投入し、48時間還流を続けた。その後取り出して冷却した後、紙管を除去し、流水中で17時間洗浄して、熱可塑性ポリウレタン樹脂製多孔性材料を得た。
【0038】
得られた熱可塑性ポリウレタン樹脂製多孔性材料の表層部のSEM(走査電子顕微鏡、JEOL社製 JMS−5800LV)写真(500倍)を図3に示す。このSEM像より、この熱可塑性ポリウレタン樹脂製多孔性材料は、表層から内部まで均質で相似な構造の、スキン層のない3次元網状構造の多孔性材料であることが確認された。なお、この熱可塑性ポリウレタン樹脂製多孔性材料は平均孔径169μmで、ピンホールやボイドは存在しなかった。
【0039】
比較例1
実施例1と同様にして調製したポリマードープを、紙皿に入れ、この状態でメタノール中に投入したこと以外は同様にして熱可塑性ポリウレタン樹脂製多孔性材料を得た。
【0040】
得られた熱可塑性ポリウレタン樹脂製多孔性材料は、内部は多孔質であったが、その表面(紙皿当接面と反対側の面)に厚さ10μmの緻密なスキン層が生成していた。このスキン層をダイアモンド刃を装着した精密グラインダーで研磨することにより除去することを試みたが、完全に除去することはできず、研磨の削りむらなど不均質な部分が発生した。
【0041】
【発明の効果】
以上詳述した通り、本発明の方法によれば、様々な孔径において良好な高次構造を有し、シャープな孔径分布で、ボイドやピンホールなどの欠陥もなく、しかも内部から表層まで実質的に均質な熱可塑性ポリウレタン樹脂製多孔性材料を、安定かつ効率的に製造することが可能となり、これにより高品質の熱可塑性ポリウレタン樹脂製多孔性材料が安価に提供される。
【図面の簡単な説明】
【図1】実施例1で製造された熱可塑性ポリウレタン樹脂製多孔性材料の表層部の実体顕微鏡写真である。
【図2】実施例1で製造された熱可塑性ポリウレタン樹脂製多孔性材料のスキン層を剥離した後の表層部の実体顕微鏡写真である。
【図3】実施例2で製造された熱可塑性ポリウレタン樹脂製多孔性材料の表層部のSEM写真である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a porous material made of a thermoplastic polyurethane resin, and a porous material made of a thermoplastic polyurethane resin produced by this method.
[0002]
[Prior art]
Porous materials made of thermoplastic polyurethane resin are used in many industries such as artificial leather and cosmetic puffs because of their excellent touch.
[0003]
Conventionally, a porous material made of a thermoplastic polyurethane resin is generally obtained by dissolving a thermoplastic polyurethane resin in a polar organic solvent such as dimethylformamide or N-methyl-2-pyrrolidone, which is a good solvent, and adding and mixing a pore-forming agent thereto. Then, after being solidified, it is produced by a so-called wet film forming method in which the good solvent and the pore-forming agent are extracted and removed. Here, water-soluble polymer compounds such as polyvinyl pyrrolidone, polyvinyl alcohol, and cellulose derivatives are widely used as pore-forming agents because the pore size can be easily controlled and a porous material having a sharp pore size distribution can be obtained. Yes.
[0004]
[Problems to be solved by the invention]
However, as a disadvantage of the wet film-forming method in which a thermoplastic polyurethane resin dissolved in a solvent is coagulated in a coagulation bath, the surface layer portion of the resulting porous material has a dense layer that is extremely different in structure or air permeability from the inside, so-called There is a problem that a skin layer is generated.
[0005]
Since this skin layer is a factor that adversely affects the air permeability of the porous material, that is, the water absorption, and the touch feeling becomes very bad, usually, the porous material on which such a skin layer is formed is the surface layer portion. The skin layer is polished or removed by slicing the skin layer and a part of the porous structure layer below the skin layer.
[0006]
However, the polishing and slicing of the skin layer can be easily performed if the target surface is a smooth plane, but in the case of a porous material having a curved surface, it is difficult to remove the skin layer or It becomes impossible. In addition, even if polishing and slicing are possible, fraying of the network structure and contamination by polishing debris are confirmed on the polished surface, and the sliced surface does not become a uniform cut surface due to friction of the blade, There was a problem that the surface was uneven. Further, there are problems in that the labor and time required for the removal process of the skin layer and the yield is reduced by discarding the removed skin layer.
[0007]
These treatments are relatively easy if the pore size of the porous material is on the order of several tens of μm. However, in the case of a porous material having a large pore size exceeding 150 μm, the porous material bites into the blade and is stable. Polishing or slicing is difficult. In order to prevent the porous material from being caught, special operations such as freezing with liquid nitrogen are required.
[0008]
The present invention solves the above-mentioned conventional problems, and without producing a dense skin layer on the surface layer portion, a method for producing a porous material made of a thermoplastic polyurethane resin having a homogeneous network structure on the entire surface, and this method An object of the present invention is to provide a porous material made of a thermoplastic polyurethane resin.
[0009]
[Means for Solving the Problems]
The method for producing a porous material made of a thermoplastic polyurethane resin according to the present invention comprises a thermoplastic polyurethane resin, an oligosaccharide and a polysaccharide having at least one α-1,4 bond and / or β-1,4 bond, and derivatives thereof. A polymer dope comprising one or more water-soluble polymer compounds selected from the group consisting of an oxygen-containing / nitrogen organic solvent containing an oxygen atom or nitrogen atom in the molecule, and a solidification containing a hydrophilic organic solvent A thermoplastic polyurethane comprising a step of immersing in a bath, extracting and removing the oxygen-containing / nitrogen organic solvent to coagulate the thermoplastic polyurethane resin, and then extracting and removing the water-soluble polymer compound and the hydrophilic organic solvent. A method for producing a resinous porous material, wherein at the time of coagulation of the thermoplastic polyurethane resin, the polymer dope is at least partially made of the hydrophilic organic solvent. It is characterized in that it is housed in a partition member capable of passing liquid and immersed in the coagulation bath.
[0010]
In the present invention, as the water-soluble polymer compound to be mixed and dispersed in the polymer dope as the pore-forming agent, the water-soluble polymer compound having low solubility in the hydrophilic organic solvent of the coagulation bath, that is, at least one α-1, One type or two or more types selected from the group consisting of oligosaccharides and polysaccharides having 4 bonds and / or β-1,4 bonds and derivatives thereof are used.
[0011]
A polymer dope in which a water-soluble polymer compound having low solubility in such a hydrophilic organic solvent is dispersed as a pore-forming agent is immersed in the hydrophilic organic solvent, and oxygen-containing / Since only the nitrogen organic solvent can be selectively extracted and removed, and the hydrophilic organic solvent can enter the site from which this good solvent has been removed, the thermoplastic polyurethane resin can be solidified while maintaining the higher order structure. Can do. Therefore, a porous material having any average pore size can be produced with a sharp pore size distribution and free from defects such as voids and pinholes.
[0012]
Therefore, in the present invention, when the thermoplastic polyurethane resin in the polymer dope is solidified in the coagulation bath, the polymer dope is accommodated in the partition member, and the partition member is placed at the interface between the polymer dope and the hydrophilic organic solvent. By interposing, a porous material without a skin layer can be easily produced.
[0013]
That is, when the thermoplastic polyurethane resin is solidified, if a partition member is interposed at the interface between the coagulation bath and the polymer dope, there is no skin layer, or the appearance is a porous material having a skin layer formed on the surface. Is obtained. Even when a porous material in which a skin layer is formed is obtained, this skin layer does not adhere to the porous body portion of the porous material and can be easily peeled off.
[0014]
The porous material made of thermoplastic polyurethane resin of the present invention is produced by the method for producing the porous material made of thermoplastic polyurethane resin of the present invention, and has a sharp pore size distribution, such as voids and pinholes. There is no defect, and there is no skin layer on the surface, and it is substantially homogeneous from the inside to the surface layer.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail according to the production procedure of the porous material made of thermoplastic polyurethane resin of the present invention.
[0016]
In the present invention, first, a polymer dope is produced by mixing a thermoplastic polyurethane resin, a water-soluble polymer compound that is a pore-forming agent, and an oxygen-containing / nitrogen organic solvent that is a good solvent for the thermoplastic polyurethane resin. . Specifically, a thermoplastic polyurethane resin is mixed with an oxygen-containing / nitrogen organic solvent to form a uniform solution, and then a water-soluble polymer compound is mixed and dispersed in this solution.
[0017]
The composition of the polymer dope is 0.2 to 90 parts by weight of a thermoplastic polyurethane resin, 0.2 to 90 parts by weight of a water-soluble polymer compound, and 0.2 to 99.6 parts by weight of an oxygen-containing / nitrogen organic solvent. (However, the total of the thermoplastic polyurethane resin, the water-soluble polymer compound and the oxygen-containing / nitrogen organic solvent is 100 parts by weight.) Particularly preferably, the thermoplastic polyurethane resin is 0.2 to 50 parts by weight. Parts, water-soluble polymer compound 0.2 to 50 parts by weight, oxygen-containing / nitrogen organic solvent 0.2 to 99.6 parts by weight, particularly preferably 0.2 to 20 parts by weight of thermoplastic polyurethane resin, water-soluble high Thermoplastic polyurethane resin porous material that is 0.2 to 20 parts by weight of a molecular compound and 60 to 99.6 parts by weight of an oxygen-containing / nitrogen organic solvent and is easily used industrially at such a blending ratio. It is possible to obtain a porous material that expressed originally excellent feel.
[0018]
In particular, the mixing ratio of the thermoplastic polyurethane resin and the water-soluble polymer compound is as follows: thermoplastic polyurethane resin: water-soluble polymer compound = 1: 0.1 to 10 (weight ratio), preferably 1: 0.1 to 2 With such a composition, the effect of stabilizing the higher-order structure of the porous material according to the present invention is effectively exhibited.
[0019]
In the present invention, the oxygen-containing / nitrogen organic solvent as a good solvent for the thermoplastic polyurethane resin is an organic solvent containing an oxygen atom or a nitrogen atom in the molecule, specifically, tetrahydrofuran, N-methylpyrrolidone, N, N -It is possible to use dimethylformamide, pyridine and simple substitutions thereof. One of these oxygen-containing / nitrogen organic solvents may be used alone, or two or more thereof may be mixed and used. In addition, the simple substituent refers to, for example, a compound in which an alkane atom is introduced into a heterocyclic ring such as 2-methylpyridine, 2-methyltetrahydrofuran, or 2-pyrrolidone, or a substance in which a hydrogen atom is introduced in the opposite direction. .
[0020]
The water-soluble polymer compound as the pore-forming agent is at least one of oligosaccharides and polysaccharides having at least one α-1,4 bond and / or β-1,4 bond, and derivatives thereof. Yes, preferably cellulose ethers such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, etc., but as long as it is homogeneously dispersed with the thermoplastic polyurethane resin and does not dissolve freely in the hydrophilic organic solvent Absent.
[0021]
A polymer dope produced from a thermoplastic polyurethane resin, an oxygen-containing / nitrogen organic solvent, and a water-soluble polymer compound is at least partially housed in a partition member through which a hydrophilic organic solvent in a coagulation bath can be passed. Then, it is immersed in a coagulation liquid containing a hydrophilic organic solvent, and the oxygen-containing / nitrogen organic solvent is extracted and removed to cause the thermoplastic polyurethane resin to coagulate.
[0022]
Examples of the hydrophilic organic solvent from which the oxygen-containing / nitrogen organic solvent is extracted include methanol, ethanol, propanol, acetone, and derivatives thereof, but are not limited thereto. These hydrophilic organic solvents may be used individually by 1 type, and may mix and use 2 or more types.
[0023]
As the partition member to be present at the interface between the polymer dope and the coagulation bath when coagulating the thermoplastic polyurethane resin, a structure composed of a metal material, a polymer material, an inorganic material, or the like can be used. Structures composed of one or more polymer materials such as polyolefin resin, polyester resin, polycarbonate resin, fluororesin, silicon resin, polyamide resin, polyimide resin, polyether ether ketone resin and polysaccharide can be used. Yes, but this is not the case. The polysaccharide includes paper, cloth, wood and the like.
[0024]
The partition member interposed at the interface is particularly preferably made of a porous material, whereby a homogeneous porous material made of thermoplastic polyurethane resin can be obtained from the inside without the skin layer to the surface layer.
[0025]
In the present invention, as such a partition member, specifically, a container having an outflow inlet through which the hydrophilic organic solvent of the coagulation bath can flow, for example, a tubular shape, a spherical shape, a conical shape, a hand shape, and a radiation (star) shape. It may be any shape such as a bowl, sheet, rod, etc., and examples include containers with complicated shapes that cannot be polished or sliced. The method of immersing in is mentioned.
[0026]
The temperature of the hydrophilic organic solvent in the coagulation bath is preferably 10 ° C. or higher. This is a temperature set in consideration of the solubility of oligosaccharides and polysaccharides having at least one α-1,4 bond and / or β-1,4 bond, and their derivatives, which are pore-forming agents, and low temperature. This is the temperature required to maintain these in the polymer dope, which is easily soluble in the polymer dope. Accordingly, the temperature of the hydrophilic organic solvent in the coagulation bath is more preferably a higher temperature, for example, 40 ° C. or higher, and is equal to or higher than the boiling temperature of the hydrophilic organic solvent at 0.1 MPa (760 mmHg), It is also preferable to perform coagulation in a reflux state.
[0027]
In extracting and removing the oxygen-containing / nitrogen organic solvent, the polymer dope and the coagulation bath can be in a reduced pressure state. Thereby, not only the hydrophilic organic solvent of the coagulation bath but also the boiling point of the good solvent of the thermoplastic polyurethane resin is lowered, and the effect of promoting the diffusion of the good solvent into the coagulation bath can be obtained.
[0028]
In this way, after the oxygen-containing / nitrogen organic solvent is extracted and solidified to solidify the thermoplastic polyurethane resin, the water-soluble polymer compound of the pore-forming agent is extracted and removed, so that the porosity of the thermoplastic polyurethane resin is increased. Material can be obtained. This extraction and removal of the water-soluble polymer compound can be easily performed using water.
[0029]
The thermoplastic polyurethane resin porous material produced from the thermoplastic polyurethane resin porous material of the present invention has an average pore diameter of 0.1 to 500 μm, preferably a wide average particle diameter of 0.1 to 200 μm. A high-quality material with a sharp pore size distribution and no defects such as voids and pinholes, and a high-quality structure with no dense skin layer on the surface and a homogeneous porous structure from the inside to the surface. It is a porous material made of thermoplastic polyurethane resin.
[0030]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[0031]
Example 1
2. A thermoplastic polyurethane resin (produced by Nippon Milactolan, Milactolan E980PNAT) is dissolved in N-methyl-2-pyrrolidone (produced by Kanto Chemical Co., Ltd., reagent, for peptide synthesis, NMP) at room temperature using a dissolver. A 5% solution (weight / weight) was obtained. About 1.0 kg of this NMP solution was put into a planetary mixer (Inoue Seisakusho, 2.0 L charged), and methyl cellulose (made by Kanto Chemical Co., Inc., reagent, 25 cp) of the same weight as the polyurethane resin was mixed at 40 ° C. for 20 minutes. Thereafter, the pressure was reduced to 20 mmHg (2.7 kPa) for 10 minutes for defoaming to obtain a polymer dope.
[0032]
The polymer dope is filled into a polypropylene cylinder having an inner diameter of 5 mmφ and a length of 40 mm, and both ends are sealed with absorbent cotton and charged into refluxing methanol (Kanto Chemical Co., Ltd., reagent grade) for 96 hours. Refluxing continued.
[0033]
During the reflux operation, it was confirmed that methanol permeated through the absorbent cotton from both ends of the cylinder, and NMP in the polymer dope diffused from the inside, and the side peripheral surface of the cylinder over the entire surface of 40 mm in about 24 hours. Whitening was confirmed.
[0034]
After 96 hours of reflux, the absorbent cotton on both ends was removed, the solidified polymer was pulled out from the cylinder, and washed in running water for 24 hours to obtain a porous material made of thermoplastic polyurethane resin.
[0035]
A stereomicroscope (Keyence Co., VH-6300) photograph (35 times) of the surface layer portion of the obtained porous material made of thermoplastic polyurethane resin is shown in FIG. From this stereomicroscopic image, this thermoplastic polyurethane resin porous material has a skin layer on its appearance, but this skin layer is not adhered to the porous material body, and the gap should be confirmed. Can do. By pulling this skin layer with tweezers, as shown in a stereoscopic micrograph (35 times) in FIG.
[0036]
This porous material made of thermoplastic polyurethane resin was confirmed to be a porous material having an average pore size of 39 μm and having no pinholes or voids and having a homogeneous three-dimensional network structure.
[0037]
Example 2
The polymer dope prepared in the same manner as in Example 1 was poured into a 5 mmφ paper tube made of filter paper (manufactured by Toyo Roshi Kaisha, No. 2), and both ends were sealed with absorbent cotton and in a reflux state. The solution was put into methanol (Kanto Chemical Co., Inc., reagent grade) and refluxed for 48 hours. Then, after taking out and cooling, the paper tube was removed and washed in running water for 17 hours to obtain a porous material made of thermoplastic polyurethane resin.
[0038]
FIG. 3 shows a SEM (scanning electron microscope, JMS-5800LV, JEOL Co., Ltd., JMS-5800LV) photograph (500 times) of the surface layer portion of the obtained porous material made of thermoplastic polyurethane resin. From this SEM image, it was confirmed that this porous material made of thermoplastic polyurethane resin is a porous material having a three-dimensional network structure having no skin layer and having a homogeneous and similar structure from the surface layer to the inside. The porous material made of thermoplastic polyurethane resin had an average pore diameter of 169 μm and no pinholes or voids.
[0039]
Comparative Example 1
A porous material made of a thermoplastic polyurethane resin was obtained in the same manner except that the polymer dope prepared in the same manner as in Example 1 was put in a paper plate and put into methanol in this state.
[0040]
The obtained porous material made of thermoplastic polyurethane resin was porous inside, but a dense skin layer having a thickness of 10 μm was formed on its surface (surface opposite to the paper plate contact surface). . Although this skin layer was tried to be removed by polishing with a precision grinder equipped with a diamond blade, it could not be completely removed, and inhomogeneous portions such as uneven polishing were generated.
[0041]
【The invention's effect】
As described above in detail, according to the method of the present invention, it has a good higher-order structure in various hole diameters, has a sharp hole diameter distribution, is free from defects such as voids and pinholes, and substantially from the inside to the surface layer. It is possible to stably and efficiently produce a porous material made of a thermoplastic polyurethane resin that is homogeneous, thereby providing a low-quality porous material made of a thermoplastic polyurethane resin.
[Brief description of the drawings]
1 is a stereomicrograph of a surface layer portion of a porous material made of a thermoplastic polyurethane resin produced in Example 1. FIG.
2 is a stereomicrograph of a surface layer portion after peeling a skin layer of a porous material made of a thermoplastic polyurethane resin manufactured in Example 1. FIG.
3 is a SEM photograph of a surface layer portion of a porous material made of a thermoplastic polyurethane resin produced in Example 2. FIG.

Claims (12)

熱可塑性ポリウレタン樹脂と、
少なくとも一個のα−1,4結合及び/又はβ−1,4結合を有するオリゴ糖及び多糖並びにこれらの誘導体よりなる群から選ばれる1種又は2種以上の水溶性高分子化合物と、
分子内に酸素原子又は窒素原子を含む含酸素/窒素有機溶媒と
を含むポリマードープを、親水性有機溶媒を含む凝固浴中に浸漬し、前記含酸素/窒素有機溶媒を抽出除去して前記熱可塑性ポリウレタン樹脂を凝固せしめた後、前記水溶性高分子化合物及び親水性有機溶媒を抽出除去する工程を含む熱可塑性ポリウレタン樹脂製多孔性材料の製造方法であって、
前記熱可塑性ポリウレタン樹脂の凝固に際して、前記ポリマードープを、少なくとも一部が該親水性有機溶媒の通液が可能となっている仕切部材内に収容して該凝固浴中に浸漬することを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。
A thermoplastic polyurethane resin;
One or more water-soluble polymer compounds selected from the group consisting of oligosaccharides and polysaccharides having at least one α-1,4 bond and / or β-1,4 bond, and derivatives thereof;
A polymer dope containing an oxygen-containing / nitrogen organic solvent containing oxygen atoms or nitrogen atoms in the molecule is immersed in a coagulation bath containing a hydrophilic organic solvent, and the oxygen-containing / nitrogen organic solvent is extracted and removed. A method for producing a porous material made of a thermoplastic polyurethane resin comprising a step of solidifying a plastic polyurethane resin and then extracting and removing the water-soluble polymer compound and the hydrophilic organic solvent,
When solidifying the thermoplastic polyurethane resin, the polymer dope is housed in a partition member in which at least a part of the hydrophilic organic solvent can be passed and immersed in the coagulation bath. A method for producing a porous material made of thermoplastic polyurethane resin.
請求項1において、該ポリマードープが、熱可塑性ポリウレタン樹脂0.2〜90重量部と、前記水溶性高分子化合物0.2〜90重量部と、前記含酸素/窒素有機溶媒0.2〜99.6重量部とを合計で100重量部含むことを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。2. The polymer dope according to claim 1, wherein the polymer dope comprises 0.2 to 90 parts by weight of a thermoplastic polyurethane resin, 0.2 to 90 parts by weight of the water-soluble polymer compound, and 0.2 to 99 of the oxygen-containing / nitrogen organic solvent. A method for producing a porous material made of a thermoplastic polyurethane resin, comprising 100 parts by weight in total of 6 parts by weight. 請求項2において、該ポリマードープが熱可塑性ポリウレタン樹脂0.2〜50重量部と、前記水溶性高分子化合物0.2〜50重量部と、
前記含酸素/窒素有機溶媒0.2〜99.6重量部とを含むことを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。
The polymer dope according to claim 2, wherein the polymer dope is 0.2 to 50 parts by weight of a thermoplastic polyurethane resin, 0.2 to 50 parts by weight of the water-soluble polymer compound,
A method for producing a porous material made of a thermoplastic polyurethane resin, comprising 0.2 to 99.6 parts by weight of the oxygen-containing / nitrogen organic solvent.
請求項1ないし3のいずれか1項において、前記親水性有機溶媒がメタノール、エタノール、プロパノール及びアセトン並びにこれらの誘導体よりなる群から選ばれる1種又は2種以上であることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。The thermoplastic resin according to any one of claims 1 to 3, wherein the hydrophilic organic solvent is one or more selected from the group consisting of methanol, ethanol, propanol, acetone, and derivatives thereof. A method for producing a polyurethane resin porous material. 請求項1ないし4のいずれか1項において、前記含酸素/窒素有機溶媒がテトラヒドロフラン、N−メチルピロリドン、N,N−ジメチルホルムアミド、ピリジン及びそれらの単純置換体よりなる群から選ばれる1種又は2種以上であることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。5. The oxygen-containing / nitrogen organic solvent according to claim 1, wherein the oxygen-containing / nitrogen organic solvent is selected from the group consisting of tetrahydrofuran, N-methylpyrrolidone, N, N-dimethylformamide, pyridine, and simple substitutes thereof, or A method for producing a porous material made of a thermoplastic polyurethane resin, characterized by comprising two or more kinds. 請求項1ないし5のいずれか1項において、前記仕切部材が金属材料、高分子材料及び無機材料よりなる群から選ばれる1種又は2種以上で構成されることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。The thermoplastic polyurethane resin according to any one of claims 1 to 5, wherein the partition member is composed of one or more selected from the group consisting of a metal material, a polymer material, and an inorganic material. A method for producing a porous material. 請求項6において、前記高分子材料がポリオレフィン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、フッ素樹脂、シリコン樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂及び多糖よりなる群から選ばれる1種又は2種以上であることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。7. The polymer material according to claim 6, wherein the polymer material is selected from the group consisting of a polyolefin resin, a polyester resin, a polycarbonate resin, a fluorine resin, a silicon resin, a polyamide resin, a polyimide resin, a polyether ether ketone resin, and a polysaccharide. A method for producing a porous material made of a thermoplastic polyurethane resin, characterized in that: 請求項1ないし7のいずれか1項において、前記仕切部材が多孔性材料で構成されることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。The method for manufacturing a porous material made of thermoplastic polyurethane resin according to any one of claims 1 to 7, wherein the partition member is made of a porous material. 請求項1ないし8のいずれか1項において、前記水溶性高分子化合物がセルロースエーテルであることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。The method for producing a porous material made of thermoplastic polyurethane resin according to any one of claims 1 to 8, wherein the water-soluble polymer compound is cellulose ether . 請求項9において、前記水溶性高分子化合物がカルボキシメチルセルロース、メチルセルロース、エチルセルロース、及びヒドロキシプロピルセルロースよりなる群から選ばれる1種又は2種以上であることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料の製造方法。The porous material made of thermoplastic polyurethane resin according to claim 9, wherein the water-soluble polymer compound is one or more selected from the group consisting of carboxymethylcellulose, methylcellulose, ethylcellulose, and hydroxypropylcellulose. Manufacturing method. 請求項1ないし10のいずれか1項に記載の熱可塑性ポリウレタン樹脂製多孔性材料の製造方法により製造された熱可塑性ポリウレタン樹脂製多孔性材料。A porous material made of a thermoplastic polyurethane resin produced by the method for producing a porous material made of a thermoplastic polyurethane resin according to any one of claims 1 to 10. 請求項11において、表層まで実質的に均質であることを特徴とする熱可塑性ポリウレタン樹脂製多孔性材料。The porous material made of thermoplastic polyurethane resin according to claim 11, wherein the porous material is substantially homogeneous up to the surface layer.
JP2002051721A 2002-02-27 2002-02-27 Method for producing porous material made of thermoplastic polyurethane resin and porous material made of thermoplastic polyurethane resin Expired - Lifetime JP4019738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002051721A JP4019738B2 (en) 2002-02-27 2002-02-27 Method for producing porous material made of thermoplastic polyurethane resin and porous material made of thermoplastic polyurethane resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002051721A JP4019738B2 (en) 2002-02-27 2002-02-27 Method for producing porous material made of thermoplastic polyurethane resin and porous material made of thermoplastic polyurethane resin

Publications (2)

Publication Number Publication Date
JP2003253035A JP2003253035A (en) 2003-09-10
JP4019738B2 true JP4019738B2 (en) 2007-12-12

Family

ID=28663622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002051721A Expired - Lifetime JP4019738B2 (en) 2002-02-27 2002-02-27 Method for producing porous material made of thermoplastic polyurethane resin and porous material made of thermoplastic polyurethane resin

Country Status (1)

Country Link
JP (1) JP4019738B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051942A (en) * 2002-05-29 2004-02-19 Daicel Chem Ind Ltd Dispersion and method for producing molded article using the same
JP2009298879A (en) * 2008-06-11 2009-12-24 Nhk Spring Co Ltd Cushion material for sheet and method for producing it

Also Published As

Publication number Publication date
JP2003253035A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US7445712B2 (en) Asymmetric forward osmosis membranes
EP0121911B1 (en) Hollow fiber filter medium and process for preparing the same
CN102908906B (en) Preparation method and application of separation film with nano composite cortical layer
JPH0389927A (en) Asymmetric porous polyamide film
KR101490140B1 (en) Manufacturing method of polyurethane synthetic leather or film having high air permeability and softness
JP4019738B2 (en) Method for producing porous material made of thermoplastic polyurethane resin and porous material made of thermoplastic polyurethane resin
CN106674580A (en) Preparation method of polysulfone nano-porous polymer
JP3499993B2 (en) Method for producing porous membrane and porous membrane
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
JPH07163849A (en) Polysulfone hollow fiber membrane and production thereof
JPS6336805B2 (en)
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JP2528893B2 (en) Method for producing polysulfone hollow fiber membrane
JP2003192823A (en) Method for producing thermoplastic polyurethane resin porous material and thermoplastic polyurethane porous material
JP2010075851A (en) Porous film and method for manufacturing the same
JP2005296849A (en) Manufacturing method of porous film
WO2012144555A1 (en) Method for dissolving and degassing polymer, and method for producing porous film
JP2818366B2 (en) Method for producing cellulose ester hollow fiber membrane
JPH05161833A (en) Production of semipermeable membrane having high water permeability
JP2001252540A5 (en) Method for producing reverse osmosis composite membrane
JP2001149763A (en) Semipermeable membrane and production method for semipermeable membrane
JP2004097687A (en) Resin base material for living body, and production method therefor
JP3316145B2 (en) Permselective hollow fiber membrane and method for producing the same
JPS59228017A (en) Preparation of hollow yarn membrane of aromatic polysulfone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4019738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term