JP4017403B2 - Sand making system - Google Patents

Sand making system Download PDF

Info

Publication number
JP4017403B2
JP4017403B2 JP2002010921A JP2002010921A JP4017403B2 JP 4017403 B2 JP4017403 B2 JP 4017403B2 JP 2002010921 A JP2002010921 A JP 2002010921A JP 2002010921 A JP2002010921 A JP 2002010921A JP 4017403 B2 JP4017403 B2 JP 4017403B2
Authority
JP
Japan
Prior art keywords
slag
water
separation
specific gravity
rotary drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002010921A
Other languages
Japanese (ja)
Other versions
JP2003211141A (en
Inventor
清一 阿部
正治 岡田
節一 笠井
憲彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
OHSHIMA KOGYO CO Ltd
Original Assignee
Kubota Corp
OHSHIMA KOGYO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp, OHSHIMA KOGYO CO Ltd filed Critical Kubota Corp
Priority to JP2002010921A priority Critical patent/JP4017403B2/en
Publication of JP2003211141A publication Critical patent/JP2003211141A/en
Application granted granted Critical
Publication of JP4017403B2 publication Critical patent/JP4017403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/58Construction or demolition [C&D] waste

Description

【0001】
【発明の属する技術分野】
本発明は製砂システムに係り、都市ごみ焼却灰、シュレッダーダスト、埋立物等の一般廃棄物および産業廃棄物を原料とする廃棄物溶融スラグから製砂する技術に係るものである。
【0002】
【従来の技術】
従来、都市ごみ焼却灰等の廃棄物は最終的に埋立処分を行っていたが、埋立処分場の建設による環境破壊、ならびに埋立地において浸出水中に有害物質が溶出することによる地下水中への有害物質の漏出を懸念するがために、新たに埋立処分場を確保することが困難となっている。このために、廃棄物を溶融炉において溶融処理して廃棄物溶融スラグを形成し、廃棄物の減容化ならびに有害成分の固定化を果たしている。
【0003】
また、廃棄物溶融スラグの資源化を目的として、廃棄物溶融スラグを破砕して土木建設用骨材や窯業原料化する試みが行われている。ところで、都市ごみ焼却灰、シュレッダーダスト、産業廃棄物の埋立物等を原料とする廃棄物溶融スラグはアルミ、鉄、銅等の金属物質を含んでいる。この金属物は廃棄物溶融スラグの破砕物を土木建設用骨材や窯業原料として資源化する場合には不純物として存在するが、金属自体は有用なものであるので、金属を廃棄物溶融スラグから分離回収することができれば、廃棄物溶融スラグのより有効な再資源化を図ることができる。
【0004】
この種の技術の公知のものとしては、例えば特開平10−156329号公報、特開2000−272938号公報、特開2000−202321号公報に記載のものがある。例えば、図11に示す構成では、原料の廃棄物を溶融して後に溶融炉から排出する水砕スラグ101をスラグ破砕機102で破砕して金属粒子とスラグ粒子が混在する破砕スラグを形成するとともに、アルミ等の延展性に優れた金属粒子を所定径の大きさの薄片に圧延し、破砕スラグを篩103により分級して薄片となったアルミ等の金属104を他の破砕スラグから分離して回収し、篩103の後の破砕スラグを磁選機105により磁力選別して鉄の金属粒子106を破砕スラグから分離して回収し、磁力選別後の破砕スラグを水−スラグ分離機107で固液分離して製品砂108としての破砕スラグを得る。回収した分離水は水処理設備109で処理後にスラグ破砕機102へ戻して利用する。
【0005】
【発明が解決しようとする課題】
しかし、廃棄物溶融スラグには銅やSUS等の磁力選別が困難なものが含まれており、これらの成分が廃棄物溶融スラグの破砕物を土木建設用骨材や窯業原料として資源化する際に、品質を低下させる要因となっている。
【0006】
本発明は上記した課題を解決するものであり、シュレッダーダストや産業廃棄物等を原料とする廃棄物溶融スラグの破砕スラグから有用金属を回収するとともに、土木建設用骨材や窯業原料に適した破砕スラグを得ることができる製砂システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記した課題を解決するために、請求項1に係る本発明の製砂システムは、金属を含む廃棄物溶融スラグを破砕処理して金属粒子とスラグ粒子が混在する破砕スラグとなし、圧延処理によってアルミ等の延展性に優れた金属粒子をスラグ粒子に比べて大きな径の薄片に形成し、この薄片の金属を篩による分級によって分離して回収し、篩後の破砕スラグを比重分離処理して他の金属粒子を分離して回収し、残った破砕スラグを製品砂とする製砂システムにおいて、比重分離処理を行う比重分離装置が、水平に対して所定角度に傾斜した回転軸心回りに回転し、円錐部を有する筒体をなす回転胴と、回転胴の下端側に位置する円錐部の頂部に形成した小径開口に接続する排出部と、回転胴の上端側の大径開口から回転胴内に挿入し、先端開口が円錐部の頂部に対向する分離対象物投入部と、分離対象物投入部の先端開口と円錐部の小径開口との間に配置する水流調整手段とを備え、回転胴は胴内で沈降した分離物を回転軸心回りの回転に伴って小径開口側へ送り出す螺旋溝を内周面に有し、排出部は回転胴内へ所定流速、所定水量の分離作用水を供給する給水手段と、排出部に流入する分離物を排出する分離物排出手段とが接続し、水流調整手段は分離対象物投入部の先端開口に向けて拡径して開口した通水性を有するケーシング内に所定比重、所定形状をなして分離作用水の水流を所定流速に調整する抵抗体を保持してなることを特徴とするものである。
【0011】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1において、原料スラグ111の廃棄物溶融スラグは、シュレッダーダストや各種汚泥等の産業廃棄物に由来する水冷スラグもしくは徐冷スラグ、前記産業廃棄物の廃棄埋立物に由来する水冷スラグもしくは徐冷スラグ、都市ごみ等の一般廃棄物に由来する水冷スラグもしくは徐冷スラグ、前記一般廃棄物の焼却灰に由来する水冷スラグもしくは徐冷スラグ、前記一般廃棄物に準じる廃棄物に由来する水冷スラグもしくは徐冷スラグの少なくとも何れかであり、適宜に組み合わせて用いる。
【0012】
この原料スラグ111をスラグ破砕機112で多数度にわたる破砕処理と圧延処理を施す。スラグ破砕機112では、水平な回転軸廻りに回動する胴体の内部に、複数の可動体を水砕スラグ、緩衝流体である水とともに収納し、胴体の回動に伴って相互に接近離間し合う可動体の間において原料スラグ111の破砕処理と圧延処理を行う。原料スラグ111は内部に複数種類の物質を内包しており、破砕の進行に伴ってガラス質のスラグ粒子、アルミ、鉄等の金属粒子を含む破砕スラグとなる。金属粒子は延展性を有し、ガラス質のスラグ粒子は脆弱性を有するので、可動体による押圧力はガラス質のスラグ粒子に破砕作用を及ぼし、金属粒子に圧延作用を及ぼす。
【0013】
このため、アルミ等の延展性に優れた金属粒子は大径化して薄片となり、鉄、銅、SUS等の他の金属粒子と粒径において差別化され、ガラス質のスラグ粒子はその脆弱性によって小径化する。この破砕スラグを篩113によって分級して薄片のアルミ114を破砕スラグの他の粒子から分離して回収する。
【0014】
篩113の後の破砕スラグを比重分離装置115で比重分離して他の鉄、銅、SUS等の金属粒子116を分離して回収する。比重分離後に残ったガラス質のスラグ粒子の破砕スラグは水−スラグ分離機117において固液分離して製品砂118とし、分離水は水処理設備119を経てスラグ破砕機112に戻して循環利用する。
【0015】
比重分離装置115としては種々のものが適用可能であるが、本実施の形態における比重分離装置115を以下に説明する。
図2〜図10において、比重分離装置115は円錐部2を有する筒体をなす回転胴3を有しており、回転胴3は可動台4の上にローラ4aを介して回転軸心回りに回転自在に保持している。回転胴3は下端側に位置する円錐部2の頂部に小径開口5を有し、上端側に大径開口6を有しており、小径開口5に接続した排出部7を軸受8を介して可動台4で保持し、排出部7に設けたスプロケット9をチェーン10を介して回転駆動するモータ11を可動台4に設けている。可動台4は前側部を回転軸12を介して固定台13で揺動自在に軸支し、後側部をシリンダー装置14で昇降自在に保持しており、シリンダー装置14の駆動により傾動して回転胴3を水平に対して所定角度に傾斜する姿勢に保持している。
【0016】
回転胴3は、図3に示すように、内周面3aに一条もしくは多条の螺旋溝15を有しており、螺旋溝15は胴内で沈降した分離物を回転軸心回りの回転に伴って小径開口5へ向けて送り出すものである。回転胴3の内部には円板状をなす複数の堰板16を回転軸心方向に沿って適当間隔で平行に配置しており、図6に示すように、堰板16は外周縁16aと回転胴3の内周面3aとの間に分離物の通路をなす所定間隙を空けて配置し、外周縁16aの複数箇所において回転胴3の内周面3aに固定している。
【0017】
回転胴3の内部には希釈水を供給する手段をなす希釈水供給管17を挿入しており、希釈水供給管17に連通する噴出部18を堰板16で区画した回転胴3の各部ごとに配置している。また、大径開口6の付近には散水管19を挿入しており、回転胴3の大径開口6の下側外部には排出ホッパー3bを設けている。
【0018】
分離対象物投入部20は上端側の大径開口6から回転胴3の内部に挿入し、先端開口21が円錐部2の頂部に対向しており、回転胴3の軸心に対して同心もしくは回転胴3の軸心より大きな所定角度に傾斜する姿勢に配置する。分離対象物投入部20はシュート部22が、図8に示すように、内部の流路と直交する断面形状において下部から上部に向けて流路断面が増加する構造を有しており、シュート部22の上端側にホッパー部23を設けている。シュート部22の断面形状は本実施の形態に限るものではなく、真円、楕円等の種々の形状がある。
【0019】
分離対象物投入部20の先端開口21と円錐部2の小径開口5との間には水流調整手段として、分離対象物投入部20の先端開口21に向けて拡径して開口する網等の通水性を有するケーシング24を配置するとともに、ケーシング24の内部に所定比重、所定形状の複数の流動性を有する抵抗体25を保持してなり、抵抗体25としては球、多角形、格子状等の種々のものがある。
【0020】
排出部7は内管26と外管27の二重管構造をなし、内管26および外管27にはそれぞれ別途に分離作用水を供給する手段をなす給水管28、29をバルブ30、31を介して接続している。給水管28、29は回転胴3の内部へ所定流速、所定水量の分離作用水を供給する。外管27はロータリージョイント27aを介して回転胴3に接続し、途中に透明管27bを配置している。排出部7は二重管構造に限らず、単管構造とすることも可能である。外管27には分離物を排出する手段をなす分離物排出管32を第1バルブ33aを介して接続し、分離物排出管32の下端側に第2バルブ33bを設けている。分離物排出管32は第1バルブ33a、第2バルブ33bの間が貯留部32aをなし、貯留部32aに第3バルブ33cを介して水補給管34を接続している。
【0021】
上記した構成において運転時には、モータ11による駆動によってチェーン10およびスプロケット9を介して回転胴3を回転軸心回りに回転駆動する。バルブ30、31を適当開度に開栓して給水管28、29から分離作用水を供給する。給水管28の分離作用水は内管26を通して直接に回転胴3の内部へ流入、給水管29の分離作用水は後述する分離物に対抗しながら外管27を通して回転胴3の内部へ流入し、円錐部2の小径開口5で合わさってケーシング24に向けて噴出する。
【0022】
分離対象物である篩113の後の破砕スラグを搬送水とともに分離対象物投入部20のホッパー部23からシュート部22に供給する。
図8に示すように、シュート部22では搬送水の流速はシュート部22の内面に近い程に摩擦抵抗で遅くなり、内面から遠い流路の中心側および流路断面積の大きい上部側程に速くなる速度勾配が存在するので、比重の小さいガラス質の破砕スラグ(製品砂)118ほど水流の付勢力の影響を大きく受けて上方を流れ、比重の大きい金属成分の破砕スラグ116ほど水流の付勢力の影響が小さくて下方に沈降して流れ、シュート部22において分離対象物が上下に大まかに分離される。
【0023】
図9に示すように、シュート部22から円錐部2のケーシング24に流入したガラス質の破砕スラグ(製品砂)118、金属成分の破砕スラグ116は抵抗体25およびケーシング24に受け止められてシュート部22の軸心方向に沿った速度がなくなり、分離作用水の水流の付勢力を受け全体が上方へ持ち上げられる。このとき、バルブ30、31の制御および抵抗体25の存在によって所定流速に調整された分離作用水の水流により、比重の小さいガラス質の破砕スラグ(製品砂)118が上方へ持ち上げられ、比重の大きい金属成分の破砕スラグ116が沈降して分離される。分離された比重の大きい金属成分の破砕スラグ116はケーシング24の網目を通って回転胴3の内周面に沈降し、回転胴3の回転に伴って螺旋溝15が回転軸心周りに旋回することで小径開口5へ向けて搬送され、小径開口5から排出部7へ流入する。
【0024】
分離作用水は円錐部2の小径開口5から大径開口6に向けて流れ、回転胴3の内周面に近い程に摩擦抵抗で遅くなり、内周面から遠い上部側程に速くなる速度勾配が存在する。このため、分離作用水の流れに乗って移動する分離対象物であるガラス質の破砕スラグ(製品砂)118、金属成分の破砕スラグ116は、比重の小さいガラス質の破砕スラグ(製品砂)118ほど水流の付勢力の影響を大きく受けて上方を流れ、比重の大きい金属成分の破砕スラグ116ほど水流の付勢力の影響が小さくて早期に沈降し、所定高さの堰板16に阻止されて沈降する。
【0025】
沈降した比重の大きい金属成分の破砕スラグ116は回転胴3の回転に伴って螺旋溝15が回転軸心周りに旋回することで小径開口5へ向けて搬送され、小径開口5から排出部7へ流入する。比重の小さいガラス質の破砕スラグ(製品砂)118は分離作用水で搬送されて大径開口6から排出ホッパー3bへ流れ出る。大径開口6へ達する前に沈降した比重の小さいガラス質の破砕スラグ(製品砂)118は回転胴3の回転に伴って上方へ持ち上げられ、再び分離作用水の流れに乗って大径開口6へ向けて移動する。比重の大きな金属成分の破砕スラグ116は回転胴3の回転に伴って上方へ持ち上げられても早期に沈降し、堰板16を超えることがない。
【0026】
希釈水供給管17を通して供給する希釈水は噴出部18から堰板16によって区画された各領域に流入し、各区画領域において分離作用水中の分離対象物の濃度を希釈し、分離対象物の流動性を高めて分離性能を高くする。また、散水管19からの散水は大径開口6付近において分離作用水中の分離対象物の濃度を希釈し、分離対象物の流動性を高めて分離性能を高くする。
【0027】
図10に示すように、排出部7では外管27を流れる分離作用水の流速に対して比重の大きなものがその流れに抗して流下し、比重の小さいものが分離作用水に持ち上げられて排出部7から円錐部2に戻されることで分離精度が向上する。
【0028】
分離物排出管32は通常時には第1バルブ33aを開栓し、第2バルブ33bおよび第3バルブ33cを閉栓した状態にあり、回転胴3から外管27に流下する比重の大きなものは分離物排出管32に流下して貯留部32aに滞留する。分離物の排出時にはバルブ31を操作して給水管29から外管27に供給する分離作用水の流量および流速を増して回転胴3から排出部7へ分離物が流入することを抑制する状態で第1バルブ33aを閉栓し、第2バルブ33bを開栓して貯留部32aに滞留する分離物を排出する。その後に第2バルブ33bを閉栓し、第3バルブ33cを開栓して水補給管34から貯留部32aに水を充満させる。そして第3バルブ33cを閉栓し、第1バルブ33aを開栓し、バルブ31を操作して給水管29から外管27に供給する分離作用水の流量および流速を通常状態に戻す。
【0029】
【発明の効果】
以上述べたように本発明によれば、アルミをその延展性によって大径化して鉄、銅、SUS等の他の金属粒子と粒径において差別化し、ガラス質のスラグ粒子をその脆弱性によって小径化することで篩によるアルミの除去が可能となる。このアルミの除去によって残った破砕スラグの中で小径化したガラス質のスラグ粒子の比重が最も小さくなるので、ガラス質のスラグ粒子と鉄、銅、SUS等の金属粒子とをその比重差によって分離することが可能となり、廃棄物溶融スラグから高品質の製砂を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態における製砂システムを示すフローシート図である。
【図2】同製砂システムにおける比重分離装置を示す全体断面図である。
【図3】同比重分離装置の要部拡大図である。
【図4】同比重分離装置の側面図である。
【図5】同比重分離装置の要部拡大図である。
【図6】図2のA-A矢視断面図である。
【図7】図2のB-B矢視断面図である。
【図8】シュート部の断面図である。
【図9】同比重分離装置の作用を示す説明図である。
【図10】同比重分離装置の作用を示す説明図である。
【図11】従来の製砂システムを示すフローシート図である。
【符号の説明】
1 比重分離装置
2 円錐部
3 回転胴
3a 内周面
3b 排出ホッパー
4 可動台
4a ローラ
5 小径開口
6 大径開口
7 排出部
8 軸受
9 スプロケット
10 チェーン
11 モータ
12 回転軸
13 固定台
14 シリンダー装置
15 螺旋溝
16 堰板
16a 外周縁
17 希釈水供給管
18 噴出部
19 散水管
20 分離対象物投入部
21 先端開口
22 シュート部
23 ホッパー部
24 ケーシング
25 抵抗体
26 内管
27 外管
27a ロータリージョイント
27b 透明管
28、29 給水管
30、31 バルブ
32 分離物排出管
32a 貯留部
33a 第1バルブ
33b 第2バルブ
33c 第3バルブ
34 水補給管
111 原料スラグ
112 スラグ破砕機
113 篩
114 アルミ質の破砕スラグ
115 比重分離装置
116 金属成分の破砕スラグ
117 水−スラグ分離機
118 製品砂
119 水処理設備
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sand making system, and relates to a technique for producing sand from waste molten slag made from municipal solid waste incinerated ash, shredder dust, landfills, and other general waste and industrial waste.
[0002]
[Prior art]
Conventionally, waste such as municipal waste incineration ash was finally landfilled, but it was damaged by the destruction of the environment due to the construction of the landfill site and the leaching of harmful substances into the leachate at the landfill site. It is difficult to secure a new landfill site because of concerns about material leakage. For this purpose, waste is melted in a melting furnace to form waste melt slag, thereby reducing the volume of waste and fixing harmful components.
[0003]
In addition, for the purpose of recycling waste molten slag, attempts have been made to crush waste molten slag and use it as an aggregate for civil engineering construction or as a raw material for ceramics. By the way, waste molten slag made from municipal waste incineration ash, shredder dust, industrial waste landfills, and the like contains metal substances such as aluminum, iron, and copper. This metal is present as an impurity when the crushed waste slag is recycled as an aggregate for civil engineering construction or as a raw material for ceramics, but the metal itself is useful, so the metal is removed from the waste molten slag. If separation and recovery can be performed, more effective recycling of waste molten slag can be achieved.
[0004]
Known techniques of this type include those described in, for example, Japanese Patent Laid-Open Nos. 10-156329, 2000-272938, and 2000-202321. For example, in the configuration shown in FIG. 11, the granulated slag 101 that melts the raw material waste and later discharges from the melting furnace is crushed by the slag crusher 102 to form a crushed slag in which metal particles and slag particles are mixed. The metal particles excellent in spreadability such as aluminum are rolled into thin pieces having a predetermined diameter, and the crushed slag is classified by the sieve 103 to separate the thin metal pieces 104 such as aluminum from other crushed slags. The crushed slag after the sieve 103 is magnetically sorted by the magnetic separator 105 to separate and collect the iron metal particles 106 from the crushed slag, and the crushed slag after the magnetic sorting is solid-liquid by the water-slag separator 107. Separated to obtain crushed slag as product sand 108. The recovered separated water is returned to the slag crusher 102 after use by the water treatment facility 109 and used.
[0005]
[Problems to be solved by the invention]
However, waste molten slag includes those that are difficult to be magnetically sorted, such as copper and SUS. When these components are used to recycle crushed waste molten slag as aggregates for civil engineering or as raw materials for ceramics, In addition, it is a factor that degrades quality.
[0006]
The present invention solves the above-mentioned problems, and recovers useful metals from crushed slag of waste molten slag that uses shredder dust, industrial waste, etc. as a raw material, and is suitable for aggregates for civil engineering construction and raw materials for ceramic industry. An object is to provide a sand making system capable of obtaining crushed slag.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, the sand making system according to the first aspect of the present invention is configured by crushing waste molten slag containing metal to crush slag in which metal particles and slag particles are mixed, and by rolling treatment. Metal particles with excellent spreadability such as aluminum are formed into thin pieces with a diameter larger than that of slag particles, and the metal of this thin piece is separated and collected by classification with a sieve, and the crushed slag after the sieve is subjected to specific gravity separation treatment In a sandmaking system that separates and collects other metal particles and uses the remaining crushed slag as product sand, a specific gravity separator that performs specific gravity separation rotates around a rotation axis inclined at a predetermined angle with respect to the horizontal. A rotating drum having a cylindrical body having a conical portion, a discharge portion connected to a small-diameter opening formed at the top of the conical portion located on the lower end side of the rotating drum, and a large-diameter opening on the upper end side of the rotating drum. Insert into the tip opening Separation object throwing part facing the top of the cone part, water flow adjusting means arranged between the tip opening of the separation object throwing part and the small diameter opening of the conical part, the rotary drum is separated in the cylinder A spiral groove is provided on the inner peripheral surface for sending an object to the small-diameter opening side in accordance with the rotation around the rotation axis, and the discharge part is a water supply means for supplying separation working water with a predetermined flow rate and a predetermined amount of water into the rotary drum, and discharge The separator discharge means for discharging the separated substance flowing into the section is connected, and the water flow adjusting means expands toward the opening of the tip of the separation object input section and has a predetermined specific gravity and a predetermined density in a casing having water permeability. It is characterized by holding a resistor that has a shape and adjusts the water flow of the separation working water to a predetermined flow velocity.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the waste molten slag of the raw material slag 111 is water-cooled slag or slow-cooled slag derived from industrial waste such as shredder dust and various sludges, water-cooled slag or slow-cooled derived from industrial landfills. Water-cooled slag or slow-cooled slag derived from general waste such as slag, municipal waste, water-cooled slag or slow-cooled slag derived from incineration ash of the above-mentioned general waste, It is at least one of slowly cooled slag, and is used in an appropriate combination.
[0012]
This raw material slag 111 is subjected to crushing and rolling processes many times by a slag crusher 112. In the slag crusher 112, a plurality of movable bodies are housed together with granulated slag and water as a buffer fluid in a body that rotates around a horizontal rotation axis, and approaches and separates from each other as the body rotates. The raw material slag 111 is crushed and rolled between the movable bodies that fit. The raw material slag 111 contains a plurality of kinds of substances therein, and becomes a crushed slag containing metal particles such as glassy slag particles, aluminum, iron, etc. as the crushing progresses. Since the metal particles have spreadability and the vitreous slag particles have brittleness, the pressing force by the movable body crushes the vitreous slag particles and exerts a rolling action on the metal particles.
[0013]
For this reason, metal particles excellent in spreadability such as aluminum become larger in diameter and become flakes, differentiated in particle size from other metal particles such as iron, copper, SUS, etc. Reduce diameter. The crushed slag is classified by a sieve 113, and the flake aluminum 114 is separated and collected from other particles of the crushed slag.
[0014]
The crushed slag after the sieve 113 is separated by a specific gravity separation device 115 to separate and collect other metal particles 116 such as iron, copper, and SUS. The crushed slag of vitreous slag particles remaining after the specific gravity separation is solid-liquid separated in a water-slag separator 117 to produce product sand 118, and the separated water is returned to the slag crusher 112 via the water treatment facility 119 and recycled. .
[0015]
Various devices can be applied as the specific gravity separation device 115. The specific gravity separation device 115 in the present embodiment will be described below.
2 to 10, the specific gravity separation device 115 has a rotating drum 3 that forms a cylinder having a conical portion 2, and the rotating drum 3 is placed on a movable table 4 around a rotation axis via a roller 4 a. Holds freely. The rotary drum 3 has a small-diameter opening 5 at the top of the conical portion 2 located on the lower end side, a large-diameter opening 6 on the upper end side, and a discharge portion 7 connected to the small-diameter opening 5 via a bearing 8. The movable table 4 is provided with a motor 11 that is held by the movable table 4 and that rotationally drives the sprocket 9 provided in the discharge unit 7 via a chain 10. The movable base 4 is pivotally supported by a fixed base 13 through a rotating shaft 12 so as to be swingable, and a rear side part is held up and down by a cylinder device 14 and tilted by driving of the cylinder device 14. The rotary drum 3 is held in a posture inclined at a predetermined angle with respect to the horizontal.
[0016]
As shown in FIG. 3, the rotary drum 3 has a single or multiple spiral groove 15 on the inner peripheral surface 3 a, and the spiral groove 15 is used to rotate separated matter settled in the drum around the rotation axis. Along with this, it is sent out toward the small-diameter opening 5. A plurality of disk-shaped dam plates 16 are arranged in parallel at appropriate intervals along the rotation axis direction inside the rotary drum 3, and as shown in FIG. A predetermined gap is formed between the inner peripheral surface 3a of the rotating drum 3 and a passage for a separated material, and is fixed to the inner peripheral surface 3a of the rotating drum 3 at a plurality of locations on the outer peripheral edge 16a.
[0017]
A diluting water supply pipe 17 serving as means for supplying diluting water is inserted inside the rotating drum 3, and each part of the rotating drum 3 in which the ejection portion 18 communicating with the diluting water supplying tube 17 is partitioned by the weir plate 16. Is arranged. A water spray pipe 19 is inserted in the vicinity of the large-diameter opening 6, and a discharge hopper 3 b is provided outside the large-diameter opening 6 of the rotary drum 3.
[0018]
The separation object throwing portion 20 is inserted into the rotary drum 3 through the large-diameter opening 6 on the upper end side, and the tip opening 21 is opposed to the top of the conical portion 2 and is concentric with the axis of the rotary drum 3 or It arrange | positions in the attitude | position which inclines to the predetermined angle larger than the axial center of the rotating drum 3. As shown in FIG. 8, the separation object throwing unit 20 has a structure in which the chute 22 has a structure in which the cross section of the channel increases from the lower part toward the upper part in a cross-sectional shape orthogonal to the internal channel. A hopper portion 23 is provided on the upper end side of 22. The cross-sectional shape of the chute 22 is not limited to the present embodiment, and there are various shapes such as a perfect circle and an ellipse.
[0019]
Between the tip opening 21 of the separation object throwing portion 20 and the small diameter opening 5 of the conical portion 2, as a water flow adjusting means, a net or the like that expands toward the tip opening 21 of the separation subject throwing portion 20 opens A casing 24 having water permeability is arranged, and a resistor 25 having a plurality of fluidities having a predetermined specific gravity and a predetermined shape is held inside the casing 24. The resistor 25 is a sphere, a polygon, a lattice, or the like. There are various things.
[0020]
The discharge part 7 has a double pipe structure of an inner pipe 26 and an outer pipe 27, and water supply pipes 28 and 29, which are means for supplying separate working water to the inner pipe 26 and the outer pipe 27, respectively, are provided with valves 30, 31. Connected through. The water supply pipes 28 and 29 supply separation working water having a predetermined flow rate and a predetermined amount of water to the inside of the rotary drum 3. The outer tube 27 is connected to the rotary drum 3 via a rotary joint 27a, and a transparent tube 27b is disposed in the middle. The discharge part 7 is not limited to a double-pipe structure, but may be a single-pipe structure. The outer tube 27 is connected to a separated product discharge pipe 32 serving as a means for discharging the separated product via a first valve 33 a, and a second valve 33 b is provided on the lower end side of the separated product discharge pipe 32. In the separated product discharge pipe 32, a reservoir 32a is formed between the first valve 33a and the second valve 33b, and a water supply pipe 34 is connected to the reservoir 32a via a third valve 33c.
[0021]
In the above-described configuration, during operation, the rotary drum 3 is rotationally driven around the rotation axis through the chain 10 and the sprocket 9 by driving by the motor 11. The valves 30 and 31 are opened to an appropriate opening degree, and the separation working water is supplied from the water supply pipes 28 and 29. The separation working water in the water supply pipe 28 flows directly into the rotary drum 3 through the inner pipe 26, and the separation working water in the water supply pipe 29 flows into the rotary drum 3 through the outer pipe 27 against the separated matter described later. The small diameter opening 5 of the conical portion 2 is combined and ejected toward the casing 24.
[0022]
The crushed slag after the sieve 113, which is the separation target, is supplied to the chute 22 from the hopper 23 of the separation target input unit 20 together with the conveyance water.
As shown in FIG. 8, in the chute 22, the flow rate of the transport water becomes slower with frictional resistance as it is closer to the inner surface of the chute 22, and is closer to the center side of the channel farther from the inner surface and the upper side where the channel cross-sectional area is larger. Since there is a speed gradient that increases, glassy crushed slag (product sand) 118 having a smaller specific gravity is more influenced by the urging force of the water flow and flows upward, and a metal component crushed slag 116 having a higher specific gravity is attached to the water flow. The influence of the power is small and flows downward and flows, and the separation object is roughly separated vertically in the chute portion 22.
[0023]
As shown in FIG. 9, the glassy crushed slag (product sand) 118 and the metal component crushed slag 116 that have flowed into the casing 24 of the cone portion 2 from the chute 22 are received by the resistor 25 and the casing 24, The speed along the axial direction of 22 disappears, and the whole is lifted upward by the urging force of the water flow of the separation working water. At this time, the glassy crushing slag (product sand) 118 having a small specific gravity is lifted upward by the water flow of the separation working water adjusted to a predetermined flow rate by the control of the valves 30 and 31 and the presence of the resistor 25, and the specific gravity is increased. Large metallic component slag 116 settles and separates. The separated metal component crushing slag 116 having a large specific gravity passes through the mesh of the casing 24 and settles on the inner peripheral surface of the rotary drum 3, and the spiral groove 15 turns around the rotation axis as the rotary drum 3 rotates. By this, it is conveyed toward the small diameter opening 5 and flows into the discharge portion 7 from the small diameter opening 5.
[0024]
The separation water flows from the small-diameter opening 5 to the large-diameter opening 6 of the conical portion 2, and is slowed down by the frictional resistance as it is closer to the inner peripheral surface of the rotating drum 3, and becomes faster toward the upper side far from the inner peripheral surface. There is a gradient. For this reason, the glassy crushing slag (product sand) 118 and the metal component crushing slag 116, which are separation objects that move on the flow of separation action water, are a glassy crushing slag (product sand) 118 having a small specific gravity. As the slag 116 of the metal component having a larger specific gravity is affected by the urging force of the water flow, the slag 116 having a larger specific gravity is less affected by the urging force of the water flow and settles earlier, and is blocked by the dam plate 16 having a predetermined height. Settling.
[0025]
The crushing slag 116 of the metal component having a large specific gravity that has settled is conveyed toward the small-diameter opening 5 by the spiral groove 15 turning around the rotation axis along with the rotation of the rotary drum 3, and is transferred from the small-diameter opening 5 to the discharge unit 7. Inflow. A glassy crushed slag (product sand) 118 having a small specific gravity is conveyed by the separation action water and flows out from the large-diameter opening 6 to the discharge hopper 3b. The small-specific gravity vitreous slag (product sand) 118 that has settled before reaching the large-diameter opening 6 is lifted upward along with the rotation of the rotary drum 3, and again rides on the flow of separation action water to cause the large-diameter opening 6 to flow. Move towards Even if the crushing slag 116 of a metal component having a large specific gravity is lifted upward with the rotation of the rotating drum 3, the crushing slag 116 does not exceed the weir plate 16.
[0026]
The diluting water supplied through the diluting water supply pipe 17 flows into the respective regions partitioned by the dam plate 16 from the ejection part 18, dilutes the concentration of the separation object in the separation working water in each partition region, and flows the separation object. To improve the separation performance. Further, the water spray from the water spray pipe 19 dilutes the concentration of the separation object in the separation action water in the vicinity of the large-diameter opening 6 to enhance the fluidity of the separation object and increase the separation performance.
[0027]
As shown in FIG. 10, in the discharge section 7, a material having a large specific gravity with respect to the flow velocity of the separation working water flowing through the outer pipe 27 flows down against the flow, and a member having a small specific gravity is lifted by the separation working water. By returning to the conical part 2 from the discharge part 7, the separation accuracy is improved.
[0028]
The separated discharge pipe 32 normally has the first valve 33a opened and the second valve 33b and the third valve 33c closed, and a large specific gravity flowing down from the rotary drum 3 to the outer pipe 27 is separated. It flows down to the discharge pipe 32 and stays in the storage part 32a. When discharging the separated matter, the valve 31 is operated to increase the flow rate and flow velocity of the separation working water supplied from the water supply pipe 29 to the outer pipe 27 to prevent the separated matter from flowing into the discharge portion 7 from the rotary drum 3. The first valve 33a is closed, the second valve 33b is opened, and the separated matter staying in the storage portion 32a is discharged. Thereafter, the second valve 33b is closed, the third valve 33c is opened, and the reservoir 32a is filled with water from the water supply pipe 34. Then, the third valve 33c is closed, the first valve 33a is opened, and the valve 31 is operated to return the flow rate and flow velocity of the separation working water supplied from the water supply pipe 29 to the outer pipe 27 to the normal state.
[0029]
【The invention's effect】
As described above, according to the present invention, the diameter of aluminum is increased by its extensibility and differentiated in particle diameter from other metal particles such as iron, copper, SUS, etc., and the vitreous slag particles are reduced in diameter by their weakness. It becomes possible to remove aluminum with a sieve. The specific gravity of the vitreous slag particles reduced in diameter among the crushed slag remaining after the removal of aluminum is the smallest, so the vitreous slag particles and metal particles such as iron, copper, and SUS are separated by the difference in specific gravity. This makes it possible to produce high-quality sand from waste molten slag.
[Brief description of the drawings]
FIG. 1 is a flow sheet diagram showing a sand making system in an embodiment of the present invention.
FIG. 2 is an overall cross-sectional view showing a specific gravity separator in the sand making system.
FIG. 3 is an enlarged view of a main part of the specific gravity separator.
FIG. 4 is a side view of the specific gravity separator.
FIG. 5 is an enlarged view of a main part of the specific gravity separator.
6 is a cross-sectional view taken along the line AA in FIG. 2;
7 is a cross-sectional view taken along the line BB in FIG.
FIG. 8 is a cross-sectional view of a chute portion.
FIG. 9 is an explanatory view showing the operation of the specific gravity separator.
FIG. 10 is an explanatory view showing the operation of the specific gravity separator.
FIG. 11 is a flow sheet diagram showing a conventional sand making system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Specific gravity separation apparatus 2 Conical part 3 Rotating trunk | drum 3a Inner peripheral surface 3b Discharge hopper 4 Movable base 4a Roller 5 Small diameter opening 6 Large diameter opening 7 Discharge part 8 Bearing 9 Sprocket 10 Chain 11 Motor 12 Rotating shaft 13 Fixed base 14 Cylinder apparatus 15 Spiral groove 16 Dam plate 16a Outer peripheral edge 17 Diluted water supply pipe 18 Spouting part 19 Sprinkling pipe 20 Separation target input part 21 Tip opening 22 Chute part 23 Hopper part 24 Casing 25 Resistor 26 Inner pipe 27 Outer pipe 27a Rotary joint 27b Transparent Pipes 28 and 29 Water supply pipes 30 and 31 Valve 32 Separator discharge pipe 32a Storage part 33a First valve 33b Second valve 33c Third valve 34 Water supply pipe 111 Raw material slag 112 Slag crusher 113 Sieve 114 Aluminum crushing slag 115 Specific gravity separator 116 Metal component crushing slag 117 Water-slag Away machine 118 product sand 119 water treatment facilities

Claims (1)

金属を含む廃棄物溶融スラグを破砕処理して金属粒子とスラグ粒子が混在する破砕スラグとなし、圧延処理によってアルミ等の延展性に優れた金属粒子をスラグ粒子に比べて大きな径の薄片に形成し、この薄片の金属を篩による分級によって分離して回収し、篩後の破砕スラグを比重分離処理して他の金属粒子を分離して回収し、残った破砕スラグを製品砂とする製砂システムにおいて、
比重分離処理を行う比重分離装置が、水平に対して所定角度に傾斜した回転軸心回りに回転し、円錐部を有する筒体をなす回転胴と、回転胴の下端側に位置する円錐部の頂部に形成した小径開口に接続する排出部と、回転胴の上端側の大径開口から回転胴内に挿入し、先端開口が円錐部の頂部に対向する分離対象物投入部と、分離対象物投入部の先端開口と円錐部の小径開口との間に配置する水流調整手段とを備え、
回転胴は胴内で沈降した分離物を回転軸心回りの回転に伴って小径開口側へ送り出す螺旋溝を内周面に有し、排出部は回転胴内へ所定流速、所定水量の分離作用水を供給する給水手段と、排出部に流入する分離物を排出する分離物排出手段とが接続し、水流調整手段は分離対象物投入部の先端開口に向けて拡径して開口した通水性を有するケーシング内に所定比重、所定形状をなして分離作用水の水流を所定流速に調整する抵抗体を保持してなることを特徴とする製砂システム。
Crushing waste molten slag containing metal to form crushed slag in which metal particles and slag particles are mixed, and forming metal particles with excellent extensibility such as aluminum into thin pieces with a larger diameter than slag particles by rolling treatment Then, the metal of the flakes is separated and collected by classification with a sieve, and the crushed slag after the sieve is separated and collected by separating the other metal particles, and the remaining crushed slag is used as product sand. In the system,
A specific gravity separation device that performs a specific gravity separation process rotates around a rotation axis inclined at a predetermined angle with respect to the horizontal, and forms a cylindrical body having a conical portion, and a conical portion positioned on a lower end side of the rotary drum. A discharge part connected to a small-diameter opening formed at the top, a separation object inserting part inserted into the rotary cylinder from a large-diameter opening on the upper end side of the rotary cylinder, and a tip opening facing the top of the conical part, and a separation object A water flow adjusting means disposed between the leading end opening of the charging portion and the small diameter opening of the conical portion;
The rotary drum has a spiral groove on the inner peripheral surface that feeds the sediment settled in the drum to the small-diameter opening side with the rotation around the rotation axis, and the discharge part separates the rotary drum into the rotary drum with a predetermined flow rate and a predetermined amount of water. A water supply means for supplying water and a separator discharge means for discharging the separated substance flowing into the discharge section are connected, and the water flow adjusting means has a water permeability that expands and opens toward the tip opening of the separation object input section. A sand making system comprising: a casing having a specific gravity and a predetermined shape, and a resistor that adjusts the flow of the separation working water to a predetermined flow velocity.
JP2002010921A 2002-01-21 2002-01-21 Sand making system Expired - Lifetime JP4017403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010921A JP4017403B2 (en) 2002-01-21 2002-01-21 Sand making system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010921A JP4017403B2 (en) 2002-01-21 2002-01-21 Sand making system

Publications (2)

Publication Number Publication Date
JP2003211141A JP2003211141A (en) 2003-07-29
JP4017403B2 true JP4017403B2 (en) 2007-12-05

Family

ID=27648521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010921A Expired - Lifetime JP4017403B2 (en) 2002-01-21 2002-01-21 Sand making system

Country Status (1)

Country Link
JP (1) JP4017403B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095810A (en) * 2003-09-26 2005-04-14 Dowa Mining Co Ltd Method for separating granular mixture
KR100616231B1 (en) 2004-09-17 2006-08-25 주식회사 포스코 Method for treat slag of stainless steel making process
KR100723245B1 (en) * 2005-12-23 2007-05-29 주식회사 포스코 Manufacturing method of fine aggregate for concrete from electrical arc furnace slag
CN101264464B (en) * 2007-03-15 2012-12-12 鞍山钢铁集团公司 Purification technique of steel scoria magnetic separation product
JP4894648B2 (en) * 2007-06-18 2012-03-14 住友金属工業株式会社 Method and apparatus for separating and sorting slag and metal
JP4454671B2 (en) * 2008-06-02 2010-04-21 高周波熱錬株式会社 Fine particle classification method and classification apparatus
CN105855026B (en) * 2016-05-04 2018-07-20 枣庄鑫金山智能机械股份有限公司 Building formula sand system
CN105833978B (en) * 2016-05-04 2018-06-05 枣庄鑫金山智能机械股份有限公司 Staged sand system
CN108499717A (en) * 2018-03-28 2018-09-07 合肥欣畅源光电科技有限公司 Building waste aggregate method for separating
CN114273375A (en) * 2021-04-14 2022-04-05 新环能(晋江)再生资源有限公司 Waste incineration slag treatment process
CN114294967A (en) * 2021-12-17 2022-04-08 何聪聪 Metallurgical device convenient to waste heat recovery
CN114716126B (en) * 2022-03-29 2023-09-29 黄道驰 Environment-friendly purification comprehensive utilization and mineral recovery process for sand making tail mud
CN114887701B (en) * 2022-04-29 2022-12-20 恒玥桂森环境科技(临海)有限公司 Environment-friendly intelligent type waste incinerator slag sorting and sand making device and sorting process

Also Published As

Publication number Publication date
JP2003211141A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
JP4017403B2 (en) Sand making system
US4747547A (en) Process for the treatment of slag generated in an ironworks
US6402064B1 (en) Method and system for carrying out treatment of granular substances with pollutants adhered
JP4001194B2 (en) Construction mixed waste sorting facility
US5671688A (en) Process for treating slag from refuse incineration plants
EP0785028B1 (en) Apparatus for solidifying and processing a molten material
JP4776211B2 (en) Method and apparatus for removing foreign matter in slag
JP4894648B2 (en) Method and apparatus for separating and sorting slag and metal
JP3732429B2 (en) Pretreatment equipment and pretreatment method for ash melting furnace
JP2006088087A (en) Sand manufacturing apparatus
JP2959899B2 (en) Crushing and drying equipment for wet ash
JP3734373B2 (en) Metal recovery method and apparatus
JP2016064326A (en) Vertical type roller mill
JP4939729B2 (en) Magnetic / non-magnetic material separation method, magnetic / non-magnetic material separation device and waste melting treatment equipment
JP4017404B2 (en) Specific gravity separator
JP3564035B2 (en) Method and apparatus for separating and recovering metal and slag from metal-containing raw materials
JP3222076B2 (en) Metal recovery method from waste molten slag
JPH08259285A (en) Production of pavement material and the like by using molten slag of incineration ash
JP3827976B2 (en) Pretreatment method and pretreatment apparatus for ash melting furnace
JP2005125133A (en) Wet treatment apparatus of waste
JP2005155974A (en) Method and system of treating incinerated ash prior to melting
JP2001017883A (en) Metal recovering apparatus
JPS62172107A (en) Method and device of discharging residue in waste melting disposing furnace
JP2005144390A5 (en)
JP2000197879A (en) Apparatus for treating particulate material to which pollutant is adhered

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4017403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140928

Year of fee payment: 7

EXPY Cancellation because of completion of term