JP4014576B2 - Electrodeless discharge lamp power supply - Google Patents

Electrodeless discharge lamp power supply Download PDF

Info

Publication number
JP4014576B2
JP4014576B2 JP2004096308A JP2004096308A JP4014576B2 JP 4014576 B2 JP4014576 B2 JP 4014576B2 JP 2004096308 A JP2004096308 A JP 2004096308A JP 2004096308 A JP2004096308 A JP 2004096308A JP 4014576 B2 JP4014576 B2 JP 4014576B2
Authority
JP
Japan
Prior art keywords
voltage
rectified
current
discharge lamp
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004096308A
Other languages
Japanese (ja)
Other versions
JP2005285483A (en
Inventor
元奎 崔
Original Assignee
株式会社フォースtoフォース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フォースtoフォース filed Critical 株式会社フォースtoフォース
Priority to JP2004096308A priority Critical patent/JP4014576B2/en
Priority to KR1020040098355A priority patent/KR100639483B1/en
Publication of JP2005285483A publication Critical patent/JP2005285483A/en
Application granted granted Critical
Publication of JP4014576B2 publication Critical patent/JP4014576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/24Circuit arrangements in which the lamp is fed by high frequency ac, or with separate oscillator frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Description

本発明は、高輝度の照明装置である無電極放電ランプの電源装置に関するものである。   The present invention relates to a power supply device for an electrodeless discharge lamp which is a high-luminance illumination device.

従来の照明灯には白熱電球や蛍光灯が使用されているが、高輝度で長寿命の性能を有する無電極放電ランプが省エネ・省資源や生活環境における照度の一層の向上などの社会的ニーズに適合するため急速に広まっている。この無電極放電ランプの点灯には高周波で高電圧の電源が必要となるため、商用電源を昇圧した高電圧を高周波信号でスイッチングする電源装置が使用されることが多い。この電源装置を安価、小形化するためには、商用電源を昇圧する大きな電源トランスを使用する替わりに、商用電源を整流後スイッチで断続して高電圧に昇圧後、その高電圧を高周波信号でチョッピングするインバータが適切であり、特許文献1にもその方法が紹介されている。
特開平9−237687号公報
Incandescent bulbs and fluorescent lamps are used in conventional lighting, but electrodeless discharge lamps with high brightness and long life performance are social needs such as energy saving, resource saving and further improvement of illuminance in living environment It is spreading rapidly to meet the requirements. Since the electrodeless discharge lamp is lit, a high-voltage and high-voltage power supply is required, and therefore, a power supply device that switches a high voltage obtained by boosting a commercial power supply with a high-frequency signal is often used. In order to reduce the size and size of this power supply device, instead of using a large power transformer that boosts the commercial power supply, the commercial power supply is intermittently boosted by a switch after rectification and boosted to a high voltage. A chopping inverter is appropriate, and Patent Document 1 also introduces the method.
JP-A-9-237687

しかしながら、このような電源装置では無電極放電ランプが高電圧の印加によって点灯した後、その放電現象に伴って無電極放電ランプのインピーダンスが変化したときに無電極放電ランプの明るさが変動したり、ちらついたりする問題があった。またスイッチングで昇圧したり、高周波でチョッピングするときに電磁誘導ノイズを発生して周囲の放送受信機やオフィス機器に影響を及ぼす等の問題を生じることもあった。   However, in such a power supply device, the brightness of the electrodeless discharge lamp fluctuates when the impedance of the electrodeless discharge lamp changes due to the discharge phenomenon after the electrodeless discharge lamp is lit by application of a high voltage. There was a problem of flickering. Further, when boosting by switching or chopping at a high frequency, electromagnetic induction noise is generated, which may cause problems such as affecting surrounding broadcast receivers and office equipment.

本発明の課題は、無電極放電ランプを高効率で点灯/駆動し、かつ照明の明るさが安定した低ノイズの無電極放電ランプ電源装置を提供することにある。   An object of the present invention is to provide a low-noise electrodeless discharge lamp power supply apparatus that can illuminate / drive an electrodeless discharge lamp with high efficiency and has stable illumination brightness.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の無電極放電ランプ電源装置は、励起コイルに高周波電流を供給し、その電磁誘導作用によって無電極放電ランプを励起するようにした無電極放電ランプの電源装置において、
励起コイルに高周波電流を供給し、その電磁誘導作用によって無電極放電ランプを励起するようにした無電極放電ランプの電源装置において、
交流電源を入力してその交流電圧に対応した整流電圧を発生する全波整流器と、
前記整流電圧を入力しパルス幅変調信号によりグランドに流れる接地電流を断続する半導体スイッチと、該半導体スイッチに接続され該接地電流の断続に伴う電磁誘導作用によって起電圧を発生する昇圧コイルと、該起電圧を電圧整流する整流ダイオードとを有し、該整流電圧を平滑することにより該パルス幅変調信号に対応した昇圧電圧を発生す昇圧回路と、
前記昇圧電圧を抵抗値の大きさに対応して分圧した分圧昇圧電圧と前記整流電圧を抵抗値の大きさに対応して分圧した分圧整流電圧との差分電圧を検出する減算回路と、断続する前記接地電流をモニタした断続電流モニタ電圧を、比較閾値として前記差分電圧と比較することにより前記半導体スイッチをオンオフするパルス幅変調信号を与える第1比較出力を発生する第1コンパレータと、前記昇圧コイルに発生した昇圧電圧に対応して該昇圧コイルを流れる整流電流を、該昇圧コイルの二次側コイルにてモニタした整流電流モニタ電圧と基準電圧とを比較して第2比較出力を発生する第2コンパレータと、前記第1比較出力と前記第2比較出力との論理積を取り、前記半導体スイッチに出力することにより、前記整流電流モニタ電圧が基準電圧を下回った場合には、前記パルス幅変調信号による前記半導体スイッチのオンオフ駆動を停止し、前記整流電流モニタ電圧が基準電圧を上回った場合に前記半導体スイッチのオンオフ駆動を再開させるAND回路とを備えた位相制御電圧安定化回路と、
前記昇圧電圧に対して直列に接続された2つの半導体スイッチを所定の周波数を有するスイッチ制御信号に基づいてその半周期毎に交互に導通、遮断させることによって高周波スイッチング電流を発生させ、該高周波スイチング電流を前記励起コイルに通電する高周波インバータと、を有したことを特徴とする。
The electrodeless discharge lamp power supply apparatus of the present invention is a power supply apparatus for an electrodeless discharge lamp that supplies a high-frequency current to an excitation coil and excites the electrodeless discharge lamp by its electromagnetic induction action.
In a power supply device for an electrodeless discharge lamp that supplies a high frequency current to an excitation coil and excites the electrodeless discharge lamp by its electromagnetic induction action,
A full-wave rectifier that inputs an AC power supply and generates a rectified voltage corresponding to the AC voltage;
A semiconductor switch that inputs the rectified voltage and interrupts a ground current flowing to the ground by a pulse width modulation signal; a booster coil that is connected to the semiconductor switch and generates an electromotive voltage by electromagnetic induction caused by the interruption of the ground current; A booster circuit that generates a boosted voltage corresponding to the pulse width modulation signal by smoothing the rectified voltage;
A subtracting circuit that detects a differential voltage between a divided boosted voltage obtained by dividing the boosted voltage in accordance with a resistance value and a divided rectified voltage obtained by dividing the rectified voltage in accordance with a resistance value. And a first comparator that generates a first comparison output that provides a pulse width modulation signal for turning on and off the semiconductor switch by comparing an intermittent current monitor voltage obtained by monitoring the intermittent ground current with the differential voltage as a comparison threshold. The rectified current flowing through the booster coil corresponding to the boosted voltage generated in the booster coil is compared with the reference voltage and the second comparison output by comparing the rectified current monitor voltage monitored by the secondary coil of the booster coil. a second comparator for generating said first takes a logical product of the comparison output and the second comparison output by outputting to the semiconductor switch, the rectified current monitor voltage reference If it falls below the pressure on and off the driving of the semiconductor switch by the pulse width modulated signal is stopped, and an AND circuit to resume-off driving of the semiconductor switch when the rectified current monitor voltage exceeds the reference voltage Phase control voltage stabilization circuit with
A high-frequency switching current is generated by alternately conducting and shutting off two semiconductor switches connected in series to the boosted voltage every half cycle based on a switch control signal having a predetermined frequency. And a high-frequency inverter that supplies current to the excitation coil.

このようにすると、交流電源の商用電圧が変動した場合にも、また無電極放電ランプがその放電現象に伴って内部インピーダンス等が変動したときにも、無電極放電ランプに印加される昇圧電圧が所定電圧に保持される。併せて整流電圧と整流電流の位相差を減少して、好ましくはゼロに近づけて、この電源装置の力率、即ち効率を最大にすることができる。その結果、電源装置は無電極放電ランプを安定に、かつ高効率で発光させることができる。   In this way, even when the commercial voltage of the AC power supply fluctuates, and when the internal impedance of the electrodeless discharge lamp fluctuates due to the discharge phenomenon, the boosted voltage applied to the electrodeless discharge lamp is reduced. It is held at a predetermined voltage. At the same time, the phase difference between the rectified voltage and the rectified current can be reduced, and preferably close to zero, to maximize the power factor, that is, the efficiency of the power supply. As a result, the power supply device can cause the electrodeless discharge lamp to emit light stably and with high efficiency.

また本発明の無電極放電ランプ電源装置は、交流電源を入力してその交流電圧に対応した整流電圧を発生する全波整流器と、
整流電圧を入力しパルス幅変調信号によりグランドに流れる接地電流を断続する半導体スイッチと、半導体スイッチに接続され接地電流の断続に伴う電磁誘導作用によって起電圧を発生する昇圧コイルと、起電圧を電圧整流する整流ダイオードとを有し、整流電圧を平滑することによりパルス幅変調信号に対応した昇圧電圧を発生す昇圧回路と、
昇圧電圧を分圧した分圧昇圧電圧と基準電圧との差分、および整流電圧と昇圧コイルを流れる整流電流との位相差に対応したパルスデューティを有するパルス幅変調信号を発生して、昇圧電圧を所定電圧に保持すると共に整流電流の位相を整流電圧の位相に近づける位相制御電圧安定化回路と、
昇圧電圧に対して直列に接続された2つの半導体スイッチを所定の周波数を有するスイッチ制御信号に基づいてその半周期毎に交互に導通、遮断させることによって高周波スイッチング電流を発生させ、高周波スイチング電流を励起コイルに通電する高周波インバータとを備えるように構成することができる。
Further, the electrodeless discharge lamp power supply device of the present invention is a full-wave rectifier that receives an AC power supply and generates a rectified voltage corresponding to the AC voltage;
A semiconductor switch that inputs a rectified voltage and interrupts the ground current flowing to the ground by a pulse width modulation signal, a booster coil that is connected to the semiconductor switch and generates an electromotive force due to electromagnetic induction caused by the interruption of the ground current, and an electromotive voltage A boosting circuit having a rectifying diode for rectifying, and generating a boosted voltage corresponding to the pulse width modulation signal by smoothing the rectified voltage;
Generate a pulse width modulation signal having a pulse duty corresponding to the difference between the divided boosted voltage obtained by dividing the boosted voltage and the reference voltage, and the phase difference between the rectified voltage and the rectified current flowing through the booster coil, and A phase control voltage stabilizing circuit that holds the predetermined voltage and brings the phase of the rectified current closer to the phase of the rectified voltage;
A high-frequency switching current is generated by alternately conducting and shutting off two semiconductor switches connected in series with the boosted voltage every half cycle based on a switch control signal having a predetermined frequency. A high-frequency inverter that energizes the excitation coil can be provided.

このようにすると、商用電源の交流電源が様々の要因で変動しても、また無電極放電ランプがその放電変化で駆動インピーダンス等が変動しても、パルス幅変調信号を使用して半導体スイッチをオンオフ制御することにより昇圧電圧を安定かつ精確に制御することができるので、無電極放電ランプの輝度を安定に保つことができる。さらにパルス幅変調信号を使用して半導体スイッチをオンオフ制御することにより、無電極放電ランプに供給される昇圧電圧の整流電圧と整流電流の位相差を高精度に一致させることが可能であり、その結果、高調波の発生を抑制して高周波電磁誘導ノイズの発生を低減することができる。   In this way, even if the AC power supply of the commercial power supply fluctuates due to various factors, and the drive impedance etc. fluctuate due to the discharge change of the electrodeless discharge lamp, the semiconductor switch can be switched using the pulse width modulation signal. Since the boosted voltage can be controlled stably and accurately by on / off control, the luminance of the electrodeless discharge lamp can be kept stable. Furthermore, the phase difference between the rectified voltage and the rectified current of the boosted voltage supplied to the electrodeless discharge lamp can be matched with high accuracy by controlling the semiconductor switch on / off using the pulse width modulation signal. As a result, the generation of high frequency electromagnetic induction noise can be reduced by suppressing the generation of harmonics.

また本発明の本発明の無電極放電ランプ電源装置は、位相制御電圧安定化回路が、
昇圧電圧を抵抗値の大きさに対応して分圧した分圧昇圧電圧と整流電圧を抵抗値の大きさに対応して分圧した分圧整流電圧との差分電圧を検出する減算回路と、
断続する接地電流をモニタした断続電流モニタ電圧を、比較閾値として前記差分電圧と比較することにより第1比較出力を発生する第1コンパレータと、
昇圧コイルに発生した昇圧電圧に対応して昇圧コイルを流れる整流電流をモニタした整流電流モニタ電圧と基準電圧とを比較して第2比較出力を発生する第2コンパレータと、
第1比較出力と第2比較出力との論理積を取り、半導体スイッチをオンオフするパルス幅変調信号を発生するAND回路と、
を備えるように構成することが好ましい。
The electrodeless discharge lamp power supply device of the present invention of the present invention has a phase control voltage stabilization circuit,
A subtraction circuit that detects a differential voltage between a divided boosted voltage obtained by dividing the boosted voltage in accordance with the magnitude of the resistance value and a divided rectified voltage obtained by dividing the rectified voltage in accordance with the magnitude of the resistance value;
A first comparator that generates a first comparison output by comparing an intermittent current monitor voltage obtained by monitoring an intermittent ground current with the differential voltage as a comparison threshold;
A second comparator for comparing the rectified current monitor voltage obtained by monitoring the rectified current flowing through the booster coil corresponding to the boosted voltage generated in the booster coil and a reference voltage to generate a second comparison output;
An AND circuit that takes a logical product of the first comparison output and the second comparison output and generates a pulse width modulation signal for turning on and off the semiconductor switch;
It is preferable to comprise so that it may be provided.

このようにすると、位相制御電圧安定化回路が、PWM(Pulse Width Modulation:パルス幅変調)信号を使用して昇圧電圧の電圧安定化制御および整流電圧と整流電流との位相制御を、同時にかつ高精度におこなうことができる。また、この位相制御電圧安定化回路は半導体スイッチを含めてオールデジタル化できるのでIC化すること等により小形化、低コスト化することも可能である。   In this way, the phase control voltage stabilization circuit uses the PWM (Pulse Width Modulation) signal to perform voltage stabilization control of the boost voltage and phase control between the rectified voltage and the rectified current simultaneously and at a high level. Can be done with precision. In addition, since this phase control voltage stabilizing circuit can be all-digital including a semiconductor switch, it can be reduced in size and cost by making it an IC.

本発明の無電極放電ランプ電源装置は、充電時定数が放電時定数よりも小さい積分回路を位相制御電圧安定化回路に備え、分圧整流電圧を異なる充放電時定数で積分するように構成することもできる。   The electrodeless discharge lamp power supply apparatus of the present invention is configured to integrate an divided circuit with a different charge / discharge time constant, with an integration circuit having a charge time constant smaller than the discharge time constant in the phase control voltage stabilization circuit. You can also.

このようにすると、無電極放電ランプの起動時あるいは放電変化時等において昇圧電圧が急速に増加して、その点灯を安定かつ速やかに開始することができると共にまた放電変化によるチラツキ等の明るさの変動を防止することが出来る。点灯時における昇圧が急峻でないと無電極放電ランプの放電開始が不安定になって、放電の断続に伴う急峻な大電流が断続的に電源装置に流れ、強い高周波ノイズを発生させる恐れがある。   In this way, when the electrodeless discharge lamp is started up or when the discharge is changed, the boosted voltage is rapidly increased, so that the lighting can be started stably and quickly, and the brightness such as flicker due to the change in discharge is reduced. Variations can be prevented. If the voltage rise during lighting is not steep, the discharge start of the electrodeless discharge lamp becomes unstable, and a steep large current accompanying intermittent discharge may flow intermittently to the power supply device, generating strong high-frequency noise.

以下、添付の図面を参照しつつ本発明の無電極放電ランプ電源装置の最良形態について説明する。図1を使用して無電極放電ランプ電源装置の全体構成と機能について先ず説明する。商用電源CMPの交流電源はダイオード・ブリッジDBによって全波整流され、整流電圧Vdは昇圧制御部Aに供給される。整流電圧Vdはパルス幅変調信号PWMによってオンオフされる、NチャンネルMOS FET1を使用した半導体スイッチQ1によって断続される接地電流Isをグランドに流す。この断続する接地電流Isによる電磁誘導作用によって昇圧コイルXLに起電圧viが発生し、整流電圧Vdに重畳したこの起電圧viを整流ダイオードDrで整流し、平滑コンデンサCsで平滑することにより昇圧電圧VBが得られる。   Hereinafter, the best mode of an electrodeless discharge lamp power supply device of the present invention will be described with reference to the accompanying drawings. First, the overall configuration and function of the electrodeless discharge lamp power supply apparatus will be described with reference to FIG. The AC power supply of the commercial power supply CMP is full-wave rectified by the diode bridge DB, and the rectified voltage Vd is supplied to the boost control unit A. The rectified voltage Vd is turned on / off by the pulse width modulation signal PWM, and flows the ground current Is intermittently supplied by the semiconductor switch Q1 using the N-channel MOS FET 1 to the ground. An electromotive voltage vi is generated in the booster coil XL due to the electromagnetic induction action due to the intermittent ground current Is, and this electromotive voltage vi superimposed on the rectified voltage Vd is rectified by the rectifier diode Dr and smoothed by the smoothing capacitor Cs. VB is obtained.

この昇圧電圧VBは高周波スイッチング部Bに入力される。周波数約2.5MHzでパルスデユーティ50%を有する方形波のゲート信号GSRF(スイッチ制御信号)でON/OFする半導体スイッチQ2(NチャンネルMOS FET2を使用)と、ゲート信号GSRFの極性を反転した極性反転ゲート信号Inv-GSRF(スイッチ制御信号)でON/OFFする半導体スイッチQ3(NチャンネルMOS FET3を使用)とは、交互に導通/遮断して昇圧電圧VBをチョッピングし、互いに逆向きに流れる高周波断続電流(高周波スイッチング電流)Is1/Is2を発生する。この高周波断続電流Is1/Is2は電流波形を方形波から正弦波に波形整形する波形整形コイルLwを介して、無電極放電ランプの励起コイルLDcoil(インダクタンスLoとコンデンサCoの共振回路で形成される)を駆動し、無電極放電ランプを励起して点灯(起動)させると共にその放電を制御して定常発光させる。この高周波スイッチング部Bは高周波信号でON/OFF制御されるので「高周波インバータ」ともいう。 The boosted voltage VB is input to the high frequency switching unit B. Semiconductor switch Q2 (using N-channel MOS FET2) that is turned on / off with a square-wave gate signal GS RF (switch control signal) with a pulse duty of 50% at a frequency of about 2.5 MHz, and the polarity of the gate signal GS RF is inverted. The semiconductor switch Q3 (using N-channel MOS FET3) that is turned ON / OFF by the inverted polarity inversion gate signal Inv-GS RF (switch control signal) alternately turns on and off to chop the boost voltage VB and reverse High-frequency intermittent current (high-frequency switching current) Is1 / Is2 flowing through The high-frequency intermittent current Is1 / Is2 via a waveform shaping coil Lw to the waveform shaping current waveform from a square wave to a sine wave, is formed in the resonant circuit of the excitation coil LD coil (inductance Lo and the capacitor Co of the electrodeless discharge lamp ) To drive the electrodeless discharge lamp to light up (start up) and control its discharge to emit steady light. This high-frequency switching unit B is also called “high-frequency inverter” because it is ON / OFF controlled by a high-frequency signal.

無電極放電ランプは点灯時等に放電状態の変化でその内部インピーダンスが大きく変動するのでそれに伴い昇圧電圧が変動して、無電極放電ランプの輝度(照明の明るさなど)が変動しないように昇圧電圧を一定に制御することが必要である。又昇圧電圧が一定に保たれると無電極放電ランプを定格電圧で駆動することになりその寿命を向上させることができる。さらに昇圧コイルXLを流れる整流電流IBrの位相を整流電圧Vdに近づけるとその力率が1に近づき、無電極放電ランプに供給される昇圧電圧VBの実効電力を最大にする(即ち電源効率を最適にする)ことが出来る。このため昇圧電圧VBを分圧した分圧昇圧電圧Vf、整流電圧Vdを分圧した分圧整流電圧Vpha、昇圧コイルXLを流れる整流電流IBrをモニタした整流電流モニタ電圧Idet、並びにパルス幅変調信号PWMでON/OFF制御される半導体スイッチQ1を断続的に流れる接地電流Isをモニタした断続電流モニタ電圧Isenを、位相制御電圧安定化回路VRphaseに入力して、昇圧電圧VBに対する電圧安定化制御と電流・電圧の位相制御が平行して行われる。 Since the internal impedance of an electrodeless discharge lamp varies greatly due to changes in the discharge state when it is lit, etc., the boosted voltage fluctuates accordingly, so that the brightness of the electrodeless discharge lamp (such as the brightness of the illumination) does not vary It is necessary to control the voltage to be constant. Further, if the boosted voltage is kept constant, the electrodeless discharge lamp is driven at the rated voltage, so that its life can be improved. Further, when the phase of the rectified current IBr flowing through the booster coil XL is brought close to the rectified voltage Vd, the power factor approaches 1, and the effective power of the boosted voltage VB supplied to the electrodeless discharge lamp is maximized (that is, the power supply efficiency is optimized). Can be). Therefore, a divided boosted voltage Vf obtained by dividing the boosted voltage VB, a divided rectified voltage Vpha obtained by dividing the rectified voltage Vd, a rectified current monitor voltage Idet that monitors the rectified current IBr flowing through the booster coil XL, and a pulse width modulation signal. Input the intermittent current monitor voltage Isen, which monitors the ground current Is flowing intermittently through the semiconductor switch Q1 that is ON / OFF controlled by PWM, to the phase control voltage stabilization circuit VR phase to control the voltage stabilization for the boost voltage VB And phase control of current and voltage are performed in parallel.

次に図2の回路図と図3のタイムチャートを使用して昇圧電圧VBに対する電圧安定化制御と電流/電圧の位相制御について具体的に説明する。整流電圧Vdを抵抗R1、R2で分圧した分圧整流電圧Vphaは位相制御電圧安定化回路VRphaseに入力され、最初に充放電の時定数の異なる積分回路10において積分され、充電すなわち立ち上がりの波形が、放電すなわち立下りの波形よりも速やかに且つ滑らかに変化する積分波形に変換される。それは充電時にはダイオードD11を通って素早くコンデンサ12に充電されるため充電時定数τcが小さく、放電時にはコンデンサ12の電圧が抵抗R11を通ってゆっくり放電されるため放電時定数τdが比較的に大きいことによる。積分における充放電の時定数を変えることは、無電極放電ランプを起動(点灯開始)するときに昇圧電圧VBを急速に上昇させて無電極放電ランプの放電開始閾値電圧VDthを瞬間的に越えるようにすることにより、無電極放電ランプの点灯が不安定になって輝度が変動して照明がチラツク、あるいは放電開始時に発生するRush Current (突入電流)が断続して電磁誘導ノイズを発生することを防ぐことが出来る。なお仔細ではあるが、コンデンサ12の容量をコンデンサ11の容量の50倍から150程度(例えば100倍)に選ぶと最良の充放電時定数が得られる。 Next, voltage stabilization control and current / voltage phase control for the boosted voltage VB will be described in detail with reference to the circuit diagram of FIG. 2 and the time chart of FIG. The divided rectified voltage Vpha obtained by dividing the rectified voltage Vd by the resistors R1 and R2 is input to the phase control voltage stabilization circuit VR phase , and is first integrated by the integration circuit 10 having different charge / discharge time constants, The waveform is converted into an integrated waveform that changes more quickly and smoothly than the discharge or falling waveform. The charging time constant τc is small because the capacitor 12 is quickly charged through the diode D11 during charging, and the discharging time constant τd is relatively large because the voltage of the capacitor 12 is slowly discharged through the resistor R11 during discharging. by. Changing the charge / discharge time constant in the integration is such that when the electrodeless discharge lamp is started (lighting starts), the boost voltage VB is rapidly increased to instantaneously exceed the discharge start threshold voltage VDth of the electrodeless discharge lamp. By doing so, the lighting of the electrodeless discharge lamp becomes unstable, the brightness fluctuates and the lighting flickers, or the Rush Current generated at the start of discharge is intermittent and electromagnetic induction noise is generated. Can be prevented. Although it is detailed, the best charge / discharge time constant can be obtained when the capacity of the capacitor 12 is selected to be about 50 to 150 (for example, 100 times) the capacity of the capacitor 11.

昇圧電圧VBを抵抗R3、R4で分圧した分圧昇圧電圧Vfと積分された分圧整流電圧Vphaとはアナログ減算器(OPアンプを使用した減算回路等で構成される)11に入力されて差分電圧Vmを発生する。パルス幅変調信号PWMでON/OFFされる半導体スイッチQ1を流れる断続的な接地電流Isを、そのソース側に挿入された微小抵抗Rsでモニタした断続電流モニタ電圧Isenはコンパレータ12に入力される。この断続電流モニタ電圧Isenは差分電圧Vmを閾値として比較され、断続電流モニタ電圧Isenが差分電圧Vmを下回っている期間にハイレベルとなる電圧制御パルス信号Vp(第1比較出力)を発生する。なお断続電流モニタ電圧Isenは断続的な接地電流Isを昇圧コイルXLの一次側インダクタンスLpと微小抵抗Rsで積分したものであるから三角波(あるいは鋸歯状波)の信号波形になる。   The divided boosted voltage Vf obtained by dividing the boosted voltage VB by the resistors R3 and R4 and the integrated divided rectified voltage Vpha are input to an analog subtractor (configured by a subtractor circuit using an OP amplifier) 11. A differential voltage Vm is generated. An intermittent current monitor voltage Isen obtained by monitoring the intermittent ground current Is flowing through the semiconductor switch Q1 that is turned ON / OFF by the pulse width modulation signal PWM with a minute resistance Rs inserted on the source side thereof is input to the comparator 12. The intermittent current monitor voltage Isen is compared using the differential voltage Vm as a threshold value, and a voltage control pulse signal Vp (first comparison output) that becomes a high level during the period when the intermittent current monitor voltage Isen is lower than the differential voltage Vm is generated. Since the intermittent current monitor voltage Isen is obtained by integrating the intermittent ground current Is with the primary side inductance Lp and the minute resistance Rs of the booster coil XL, it has a triangular (or sawtooth) waveform.

昇圧コイルXLを流れる昇圧電流を整流した整流電流IBrを昇圧コイルLXの2次側コイルLsでモニタ(検出)した整流電流モニタ電圧IdetはコイルLsと入力抵抗Riで積分されてその包絡線電圧Idet-Enを形成し、閾値の基準電圧Vrefと比較されて、包絡線電圧Idet-Enが基準電圧Vrefを下回っている期間にハイレベルとなる位相制御パルス信号Vq(第2比較出力)を発生する。電圧制御パルス信号Vpと位相制御パルス信号VqをAND回路14に入力して両者の論理積を取ると半導体スイッチQ1の導通/遮断を制御するパルス幅変調信号PWMが得られる。このパルス幅変調信号PWMによって昇圧電圧VBが一定値になるように、同時に整流電流IBrと整流電圧Vdとの位相差がゼロ(零)に近づくように、位相制御電圧安定化回路VRphaseにおいてフィードバックPWM制御が行われる。なお、図2ではクロック信号を使用しない回路構成で位相制御電圧安定化回路VRphaseの機能について説明したが、クロック信号を使用した場合にも同様の回路構成で適切な機能を達成できる。さらにパルス幅変調(PWM)制御に適したカスタムICあるいはCPU(Central Processing Unit)等のマイコンを使用しても同様な機能を達成できる。 The rectified current monitor voltage Idet obtained by monitoring (detecting) the rectified current IBr obtained by rectifying the boosted current flowing through the booster coil XL by the secondary coil Ls of the booster coil LX is integrated by the coil Ls and the input resistance Ri, and its envelope voltage Idet -En is generated, and compared with the reference voltage Vref of the threshold value, the phase control pulse signal Vq (second comparison output) that becomes high level during the period when the envelope voltage Idet-En is lower than the reference voltage Vref is generated. . When the voltage control pulse signal Vp and the phase control pulse signal Vq are input to the AND circuit 14 and the logical product of the two is obtained, a pulse width modulation signal PWM for controlling conduction / cutoff of the semiconductor switch Q1 is obtained. Feedback is performed in the phase control voltage stabilization circuit VR phase so that the phase difference between the rectified current IBr and the rectified voltage Vd approaches zero (zero) so that the boosted voltage VB becomes a constant value by the pulse width modulation signal PWM. PWM control is performed. In FIG. 2, the function of the phase control voltage stabilization circuit VR phase has been described with a circuit configuration that does not use a clock signal, but an appropriate function can be achieved with the same circuit configuration even when a clock signal is used. Furthermore, similar functions can be achieved by using a custom IC suitable for pulse width modulation (PWM) control or a microcomputer such as a CPU (Central Processing Unit).

その結果、商用電源の交流電源の電圧が様々な要因によって変動しても、また無電極放電ランプの放電現象の変化によってその内部インピーダンス(励起コイルLDcoilの等価インピーダンスのLo/Co/並列抵抗、等の変化となる)が変動したときにも、常に安定した昇圧電圧VBを発生するので定格電力に適合した安定な高周波駆動電源(高周波断続電流Is1/Is2)を得ることができる。これによって本発明の無電極放電ランプ電源装置は明るさが安定した高輝度の照明を達成することができる。また昇圧電圧VBにおける整流電圧Vdと整流電流IBrの位相が一致してその力率が1に近くなるように、すなわち高周波駆動電源の実効電力(「有効電力」ともいう)が最大になるように制御されるので高輝度でかつ省電力の照明装置を実現することができる。さらに、昇圧電圧VBにおける整流電圧Vdと整流電流IBrの位相が一致してその力率が1に近くなるということは、整流電流IBrに高調波を発生することが防止され、高周波電磁誘導ノイズの発生を大幅に低減することが可能である。 As a result, even if the voltage of the AC power supply of the commercial power supply fluctuates due to various factors, the internal impedance (Lo / Co / parallel resistance of the equivalent impedance of the excitation coil LD coil , Therefore, a stable boosted voltage VB is always generated, so that a stable high-frequency driving power source (high-frequency intermittent current Is1 / Is2) suitable for the rated power can be obtained. Thus, the electrodeless discharge lamp power supply device of the present invention can achieve high-luminance illumination with stable brightness. Further, the phase of the rectified voltage Vd and the rectified current IBr in the boosted voltage VB coincide with each other so that the power factor is close to 1, that is, the effective power (also referred to as “active power”) of the high-frequency drive power supply is maximized. Since it is controlled, a high-luminance and power-saving lighting device can be realized. Furthermore, the fact that the phase of the rectified voltage Vd and the rectified current IBr in the boosted voltage VB coincide and the power factor is close to 1 prevents harmonics from being generated in the rectified current IBr, and the high-frequency electromagnetic induction noise is reduced. It is possible to greatly reduce the occurrence.

本発明の無電極放電ランプ電源装置の全体構成を示す回路図。The circuit diagram which shows the whole structure of the electrodeless discharge lamp power supply device of this invention. 位相制御電圧安定化回路の回路構成を示す回路図。The circuit diagram which shows the circuit structure of a phase control voltage stabilization circuit. 位相制御電圧安定化回路の各部の信号波形を示すタイムチャートTime chart showing signal waveforms of each part of phase control voltage stabilization circuit

符号の説明Explanation of symbols

CMP 交流電源(商用電源)
A 昇圧制御部
B 高周波スイッチング部(高周波インバータ)
DB ダイオード・ブリッジ
XL 昇圧コイル(昇圧手段の一部)
Q1 半導体スイッチ(昇圧手段の一部)
Q2、Q3 半導体スイッチ(高周波チョピング、高周波スイッチング)
Dr 整流ダイオード
Vi 起電圧
Cs 平滑コンデンサ
Lw 波形整形コイル
LDcoil 励起コイル(無電極放電ランプ)
VRphase 位相制御電圧安定化回路(電圧安定化手段、位相制御手段)
GSRF ゲート信号(スイッチ制御信号)
Inv-GSRF 極性反転ゲート信号(スイッチ制御信号)
Is1、Is2 高周波断続電流(高周波スイッチング電流)
Vd 整流電圧
Vi 起電圧
IBr 整流電流
Is 断続的な接地電流
VB 昇圧電圧
PWM パルス幅変調信号
Vf 分圧昇圧電圧
Vpha 分圧整流電圧
Idet 整流電流モニタ電圧
Isen 断続電流モニタ電圧
Vm 差分電圧
10 積分回路
11 アナログ減算器(OPアンプ減算回路)
12 第1コンパレータ
13 第2コンパレータ
14 AND回路(論理積回路)
Vp 電圧制御パルス信号(第1比較出力)
Vq 位相制御パルス信号(第2比較出力)
CMP AC power (commercial power)
A Boost controller
B High-frequency switching unit (high-frequency inverter)
DB diode bridge
XL booster coil (part of booster)
Q1 Semiconductor switch (part of boosting means)
Q2, Q3 Semiconductor switch (high frequency chopping, high frequency switching)
Dr rectifier diode
Vi electromotive force
Cs smoothing capacitor
Lw waveform shaping coil
LD coil excitation coil (electrodeless discharge lamp)
VR phase phase control voltage stabilization circuit (voltage stabilization means, phase control means)
GS RF gate signal (switch control signal)
Inv-GS RF polarity inversion gate signal (switch control signal)
Is1, Is2 High-frequency intermittent current (high-frequency switching current)
Vd rectified voltage
Vi electromotive force
IBr rectified current
Is intermittent ground current
VB boost voltage
PWM pulse width modulation signal
Vf Divided boost voltage
Vpha voltage rectified voltage
Idet Rectified current monitor voltage
Isen Intermittent current monitor voltage
Vm Differential voltage
10 Integration circuit
11 Analog subtractor (OP amplifier subtraction circuit)
12 First comparator
13 Second comparator
14 AND circuit (logical product circuit)
Vp Voltage control pulse signal (first comparison output)
Vq Phase control pulse signal (second comparison output)

Claims (2)

励起コイルに高周波電流を供給し、その電磁誘導作用によって無電極放電ランプを励起するようにした無電極放電ランプの電源装置において、
交流電源を入力してその交流電圧に対応した整流電圧を発生する全波整流器と、
前記整流電圧を入力しパルス幅変調信号によりグランドに流れる接地電流を断続する半導体スイッチと、該半導体スイッチに接続され該接地電流の断続に伴う電磁誘導作用によって起電圧を発生する昇圧コイルと、該起電圧を電圧整流する整流ダイオードとを有し、該整流電圧を平滑することにより該パルス幅変調信号に対応した昇圧電圧を発生す昇圧回路と、
前記昇圧電圧を抵抗値の大きさに対応して分圧した分圧昇圧電圧と前記整流電圧を抵抗値の大きさに対応して分圧した分圧整流電圧との差分電圧を検出する減算回路と、断続する前記接地電流をモニタした断続電流モニタ電圧を、比較閾値として前記差分電圧と比較することにより前記半導体スイッチをオンオフするパルス幅変調信号を与える第1比較出力を発生する第1コンパレータと、前記昇圧コイルに発生した昇圧電圧に対応して該昇圧コイルを流れる整流電流を、該昇圧コイルの二次側コイルにてモニタした整流電流モニタ電圧と基準電圧とを比較して第2比較出力を発生する第2コンパレータと、前記第1比較出力と前記第2比較出力との論理積を取り、前記半導体スイッチに出力することにより、前記整流電流モニタ電圧が基準電圧を下回った場合には、前記パルス幅変調信号による前記半導体スイッチのオンオフ駆動を停止し、前記整流電流モニタ電圧が基準電圧を上回った場合に前記半導体スイッチのオンオフ駆動を再開させるAND回路とを備えた位相制御電圧安定化回路と、
前記昇圧電圧に対して直列に接続された2つの半導体スイッチを所定の周波数を有するスイッチ制御信号に基づいてその半周期毎に交互に導通、遮断させることによって高周波スイッチング電流を発生させ、該高周波スイチング電流を前記励起コイルに通電する高周波インバータとを有したことを特徴とする無電極放電ランプ電源装置。
In a power supply device for an electrodeless discharge lamp that supplies a high frequency current to an excitation coil and excites the electrodeless discharge lamp by its electromagnetic induction action,
A full-wave rectifier that inputs an AC power supply and generates a rectified voltage corresponding to the AC voltage;
A semiconductor switch that inputs the rectified voltage and interrupts a ground current flowing to the ground by a pulse width modulation signal; a booster coil that is connected to the semiconductor switch and generates an electromotive voltage by electromagnetic induction caused by the interruption of the ground current; A booster circuit that generates a boosted voltage corresponding to the pulse width modulation signal by smoothing the rectified voltage;
A subtracting circuit that detects a differential voltage between a divided boosted voltage obtained by dividing the boosted voltage in accordance with a resistance value and a divided rectified voltage obtained by dividing the rectified voltage in accordance with a resistance value. And a first comparator that generates a first comparison output that provides a pulse width modulation signal for turning on and off the semiconductor switch by comparing an intermittent current monitor voltage obtained by monitoring the intermittent ground current with the differential voltage as a comparison threshold. The rectified current flowing through the booster coil corresponding to the boosted voltage generated in the booster coil is compared with the reference voltage and the second comparison output by comparing the rectified current monitor voltage monitored by the secondary coil of the booster coil. a second comparator for generating said first takes a logical product of the comparison output and the second comparison output by outputting to the semiconductor switch, the rectified current monitor voltage reference If it falls below the pressure on and off the driving of the semiconductor switch by the pulse width modulated signal is stopped, and an AND circuit to resume-off driving of the semiconductor switch when the rectified current monitor voltage exceeds the reference voltage Phase control voltage stabilization circuit with
A high-frequency switching current is generated by alternately conducting and shutting off two semiconductor switches connected in series to the boosted voltage every half cycle based on a switch control signal having a predetermined frequency. An electrodeless discharge lamp power supply apparatus comprising: a high-frequency inverter that supplies current to the excitation coil.
充電時定数が放電時定数よりも小さい積分回路を前記位相制御電圧安定化回路に備え、前記分圧整流電圧を異なる充放電時定数で積分する請求項1に記載の無電極放電ランプ電源装置。   2. The electrodeless discharge lamp power supply device according to claim 1, wherein an integration circuit having a charging time constant smaller than a discharging time constant is provided in the phase control voltage stabilization circuit, and the divided rectified voltage is integrated with different charging / discharging time constants.
JP2004096308A 2004-03-29 2004-03-29 Electrodeless discharge lamp power supply Expired - Fee Related JP4014576B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004096308A JP4014576B2 (en) 2004-03-29 2004-03-29 Electrodeless discharge lamp power supply
KR1020040098355A KR100639483B1 (en) 2004-03-29 2004-11-27 electrodeless discharge lamp electric source apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096308A JP4014576B2 (en) 2004-03-29 2004-03-29 Electrodeless discharge lamp power supply

Publications (2)

Publication Number Publication Date
JP2005285483A JP2005285483A (en) 2005-10-13
JP4014576B2 true JP4014576B2 (en) 2007-11-28

Family

ID=35183642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096308A Expired - Fee Related JP4014576B2 (en) 2004-03-29 2004-03-29 Electrodeless discharge lamp power supply

Country Status (2)

Country Link
JP (1) JP4014576B2 (en)
KR (1) KR100639483B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4478111B2 (en) * 2006-01-16 2010-06-09 アドバンス・デザイン株式会社 High frequency power supply
KR100732851B1 (en) * 2006-06-05 2007-06-27 삼성에스디아이 주식회사 Dc/dc converter and organic light emitting display using the same
KR101878175B1 (en) * 2011-10-05 2018-08-08 엘지디스플레이 주식회사 Power converter and controlling method thereof, and display device using the same
WO2015174555A1 (en) * 2014-05-13 2015-11-19 비손메디칼 주식회사 Discharge starting voltage and holding current supply unit, and skin treatment multi-wavelength laser device including same
CN108882429B (en) * 2017-05-15 2022-03-15 松下知识产权经营株式会社 Lighting device and illumination system
CN110596443A (en) * 2019-10-23 2019-12-20 安徽理工大学 Electrode spacing adjustable integration aquatic high voltage pulse discharge device
JP7428881B2 (en) * 2020-01-24 2024-02-07 株式会社デンソーウェーブ Lighting circuit and optical information reading device

Also Published As

Publication number Publication date
KR100639483B1 (en) 2006-10-26
JP2005285483A (en) 2005-10-13
KR20050096825A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US6856102B1 (en) Three-stage electronic ballast for metal halide lamps
TWI566637B (en) A cascade boost and inverting buck converter with independent control
KR20010098937A (en) Light emitting diode driving apparatus
JP5527130B2 (en) Lighting device and lighting fixture provided with the lighting device
WO2003105541A1 (en) Electrodeless light bulb type fluorescent lamp and discharge lamp lighting device
JP2012084489A (en) Led lighting device and led illuminating device
JP2011034847A (en) Power supply device and lighting fixture
JP2011155747A (en) Power source device, and lighting fixture
TWI442826B (en) Driving circuit system for gas discharge lamp and the control method thereof
JP2006049127A (en) Lighting device for illuminating light source
JP5152501B2 (en) Load control device and electrical equipment
JP4014576B2 (en) Electrodeless discharge lamp power supply
JP2011155748A (en) Power source device, and lighting fixture
JP5196146B2 (en) Lighting device and lighting apparatus
JP4063625B2 (en) Discharge lamp lighting device
JP5563838B2 (en) Power supply device and lighting fixture
CN1937876A (en) High voltage discharge lamp lighting device and illumination apparatus
JP5163892B2 (en) Discharge lamp lighting device
JP2009289664A (en) Lighting device for discharge lamp, and illumination apparatus
JP4014577B2 (en) Electrodeless discharge lamp power supply
JP2003257689A (en) Lighting method for high pressure discharge lamp and electronic apparatus using it
JP3493943B2 (en) Power supply
JP2005086915A (en) Power supply device, discharge lamp lighting device, and lighting equipment
Shrivastava et al. Improved Power Quality Based Electronic Ballast for a Fluorescent Lamp with Constant DC Link Voltage
JP2002216988A (en) Electric discharge lamp lighting equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees