JP5527130B2 - Lighting device and lighting fixture provided with the lighting device - Google Patents
Lighting device and lighting fixture provided with the lighting device Download PDFInfo
- Publication number
- JP5527130B2 JP5527130B2 JP2010209331A JP2010209331A JP5527130B2 JP 5527130 B2 JP5527130 B2 JP 5527130B2 JP 2010209331 A JP2010209331 A JP 2010209331A JP 2010209331 A JP2010209331 A JP 2010209331A JP 5527130 B2 JP5527130 B2 JP 5527130B2
- Authority
- JP
- Japan
- Prior art keywords
- dimming
- voltage
- power factor
- circuit
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 claims description 26
- 238000009499 grossing Methods 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 25
- 239000003990 capacitor Substances 0.000 description 19
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Landscapes
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Description
本発明は、発光ダイオードや放電ランプなどの光源を調光点灯させる点灯装置に関するものである。 The present invention relates to a lighting device for dimming and lighting a light source such as a light emitting diode or a discharge lamp.
昇圧チョッパを主体とする力率改善回路を用いる場合、ある程度の範囲の負荷に対して適切な制御動作を行うので、調光可能であるが、深い調光になって負荷が極めて軽くなったときに、制御動作異常が発生して間欠発振が生じて出力が変動してしまう。昇圧チョッパの後段にさらに直流コンバータを備えている場合、当該直流コンバータが出力一定化制御を行うように動作させ得る状態であればよいが、その制御動作が電源変動すなわち力率改善回路の出力変動に追従できない場合には、発光ダイオードの光出力が変動してちらつきが発生してしまうという問題がある。
このような問題を解決するため、調光信号に応じて力率改善回路の出力を制御し、発光ダイオードの光出力が所定レベル以下に低下したとき、力率改善回路の動作を停止して発光ダイオードのちらつきを防止している(例えば、特許文献1。)。
When using a power factor correction circuit mainly composed of a boost chopper, appropriate control operation is performed over a certain range of load, so dimming is possible, but when the load becomes extremely light due to deep dimming In addition, an abnormal control operation occurs, intermittent oscillation occurs, and the output fluctuates. When a DC converter is further provided after the boost chopper, the DC converter may be in a state where it can be operated so as to perform output stabilization control. However, the control operation is a power supply fluctuation, that is, an output fluctuation of the power factor improvement circuit. If it is impossible to follow the above, there is a problem that the light output of the light emitting diode fluctuates and flickering occurs.
In order to solve such problems, the output of the power factor correction circuit is controlled according to the dimming signal, and when the light output of the light emitting diode falls below a predetermined level, the operation of the power factor correction circuit is stopped and light emission is performed. The flickering of the diode is prevented (for example, Patent Document 1).
しかしながら、従来の装置では、深い調光のときには力率改善回路の動作を完全に停止させてしまうので、コンデンサインプット形の整流回路と同じように入力電流は、電気角90度近傍の狭い期間だけに急峻に流れる波形となり、力率が低下したり、入力電流の高周波成分が増加してしまうという問題がある。 However, in the conventional apparatus, the operation of the power factor correction circuit is completely stopped at the time of deep dimming, so that the input current is limited to a narrow period of about 90 degrees electrical angle as in the case of the capacitor input type rectifier circuit. However, there is a problem that the power factor decreases and the high frequency component of the input current increases.
本発明は、上記のような課題を解決するためになされたものであり、調光が深くなって負荷が極めて軽くなったときでも、力率の低下、入力電流の高周波成分の増加を抑えた点灯装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and suppresses a decrease in power factor and an increase in high-frequency components of input current even when dimming is deepened and the load is extremely light. An object is to provide a lighting device.
本発明に係わる点灯装置は、交流電源を全波整流する整流回路の出力側に昇圧コンバータを含む力率改善回路を接続して、その出力電力を光源点灯部に供給し、負荷の光源である発光ダイオードや放電ランプを点灯する。さらに、調光信号を入力する手段を備え、光源点灯部は調光信号に応じて負荷の光源を調光点灯する。ここで、深い調光レベルの調光信号を調光度判別部に入力されたときは、昇圧コンバータ制御部が交流電源のゼロクロスに跨る所定期間、スイッチング素子の動作を停止するような駆動信号を生成し、力率改善回路の動作期間を制御することを特徴としている。 A lighting device according to the present invention is a load light source by connecting a power factor correction circuit including a boost converter to the output side of a rectifying circuit for full-wave rectification of an AC power supply and supplying the output power to a light source lighting unit. Turn on the light-emitting diode or discharge lamp. The light source lighting unit further includes a means for inputting a dimming signal, and the light source lighting unit performs dimming lighting of the light source of the load according to the dimming signal. Here, when a dimming signal with a deep dimming level is input to the dimming degree discriminating unit, the boost converter control unit generates a drive signal that stops the operation of the switching element for a predetermined period across the zero cross of the AC power supply. The operation period of the power factor correction circuit is controlled.
本発明に係わる点灯装置によれば、調光により調光度が所定レベル以下になったときに、交流電源のゼロクロスに跨る所定期間、力率改善回路を動作停止し、交流電源のゼロクロスに跨る所定期間以外では力率改善回路を動作させるので、深い調光になって負荷が極めて軽くなったときでも、力率の低下、入力電流の高周波成分の増加を抑えることができる。 According to the lighting device according to the present invention, when the dimming degree becomes equal to or lower than a predetermined level by dimming, the power factor correction circuit is stopped for a predetermined period over the zero cross of the AC power supply, and the predetermined over the zero cross of the AC power supply is performed. Since the power factor correction circuit is operated outside the period, even when the light is deeply dimmed and the load is extremely light, it is possible to suppress a decrease in the power factor and an increase in the high frequency component of the input current.
実施の形態1.
以下、本発明の実施の形態1の点灯装置を、図1ないし図12に基づいて説明する。
Embodiment 1 FIG.
Hereinafter, a lighting device according to Embodiment 1 of the present invention will be described with reference to FIGS.
図1は発光ダイオード接続時の点灯装置を示す回路図、図2は蛍光灯接続時の点灯装置を示す回路図、図3はPWM調光信号のオン、オフの周期を示す波形図、図4は整流電圧のしきい値と力率改善回路のオン、オフ期間を示す波形図、図5は整流電圧の二つのしきい値と力率改善回路のオン、オフ期間を示す波形図、図6は交流電源の電圧波形と力率改善回路のオン、オフ期間を説明する波形図、図7は交流電源の電圧波形と力率改善回路のオン、オフ期間を説明する図6とは別のパターンの波形図である。 1 is a circuit diagram showing a lighting device when a light-emitting diode is connected, FIG. 2 is a circuit diagram showing a lighting device when a fluorescent lamp is connected, FIG. 3 is a waveform diagram showing a cycle of turning on and off a PWM dimming signal, and FIG. Is a waveform diagram showing the threshold value of the rectified voltage and the on / off period of the power factor correction circuit, FIG. 5 is a waveform diagram showing the two threshold values of the rectified voltage and the on / off period of the power factor correction circuit, and FIG. Is a waveform diagram for explaining the on / off period of the AC power supply voltage waveform and the power factor correction circuit, and FIG. 7 is a pattern different from FIG. 6 for explaining the on / off period of the AC power supply voltage waveform and the power factor improvement circuit. FIG.
本実施の形態において、点灯装置は、図1ないし図2に示す回路図のような構成となる。
交流電源100に接続される整流回路200、整流電圧検出部300、力率改善回路400、光源点灯回路500、調光信号入力部600、調光度判別部700、整流電圧判別部800、負荷の光源である発光ダイオード910または放電ランプ920を備える。
In the present embodiment, the lighting device is configured as shown in the circuit diagrams of FIGS.
Rectification circuit 200, rectification voltage detection unit 300, power factor improvement circuit 400, light source lighting circuit 500, dimming signal input unit 600, dimming degree discrimination unit 700, rectification voltage discrimination unit 800, load light source connected to AC power supply 100 The light emitting diode 910 or the discharge lamp 920 is provided.
例として、負荷に発光ダイオード910を接続した場合の構成および回路動作に関して以下に説明する。 As an example, a configuration and circuit operation when a light emitting diode 910 is connected to a load will be described below.
整流回路200は、交流電圧入力側が交流電源100に並列接続されたダイオードブリッジで構成され、交流電源100から入力された交流電圧を非平滑直流電圧に変換し、整流電圧検出部300を通して力率改善回路400に出力する。 The rectifier circuit 200 includes a diode bridge whose AC voltage input side is connected in parallel to the AC power supply 100, converts the AC voltage input from the AC power supply 100 into a non-smooth DC voltage, and improves the power factor through the rectified voltage detection unit 300. Output to the circuit 400.
整流電圧検出部300は、整流回路200の直流出力端に接続されており、整流電圧を監視して検出した信号を整流電圧判別部800に出力する。 The rectified voltage detector 300 is connected to the DC output terminal of the rectifier circuit 200, and outputs a signal detected by monitoring the rectified voltage to the rectified voltage determiner 800.
整流電圧判別部800は、電圧しきい値検出部810、電圧周波数検出部820で構成されており、昇圧コンバータ制御部440に制御信号を出力する。 The rectified voltage determination unit 800 includes a voltage threshold value detection unit 810 and a voltage frequency detection unit 820, and outputs a control signal to the boost converter control unit 440.
力率改善回路400は、整流電圧検出部300の出力端に接続したコンデンサ410、インダクタ420およびスイッチング素子450の直列回路、スイッチング素子450に並列接続したダイオード430および出力コンデンサ470、ならびに昇圧コンバータ制御部440を備えた昇圧コンバータで構成されている。なお、スイッチング素子450はMOS FETなどの半導体素子で形成されている。 The power factor correction circuit 400 includes a capacitor 410 connected to the output terminal of the rectified voltage detector 300, a series circuit of an inductor 420 and a switching element 450, a diode 430 and an output capacitor 470 connected in parallel to the switching element 450, and a boost converter controller. It is comprised by the step-up converter provided with 440. The switching element 450 is formed of a semiconductor element such as a MOS FET.
昇圧コンバータ制御部440は、スイッチング素子450を高周波でスイッチングさせ、スイッチング素子450の電流ピーク値の包絡線は、交流電源100の正弦波とほぼ対応するような制御を行い、力率改善動作を行う。このような力率改善の動作原理を実現する信号の生成手段としては、力率改善用集積回路などが既知である。 Boost converter control unit 440 switches switching element 450 at a high frequency, performs control so that the envelope of the current peak value of switching element 450 substantially corresponds to the sine wave of AC power supply 100, and performs a power factor improvement operation. . As a signal generating means for realizing such an operation principle of power factor improvement, an integrated circuit for power factor improvement is known.
出力電圧検出抵抗461と出力電圧検出抵抗462は直列接続され、電圧分圧回路460を構成している。電圧分圧回路460は出力コンデンサ470に並列接続され、その両端に加わる電圧を分圧し、出力電圧検出抵抗462の端子電圧を昇圧コンバータ制御部440に出力する。 The output voltage detection resistor 461 and the output voltage detection resistor 462 are connected in series to constitute a voltage dividing circuit 460. The voltage dividing circuit 460 is connected in parallel to the output capacitor 470, divides the voltage applied to both ends thereof, and outputs the terminal voltage of the output voltage detection resistor 462 to the boost converter control unit 440.
光源点灯回路500は、発光ダイオード910を負荷とする場合、バックコンバータなどで負荷の電流制御を行うことで点灯し、かつ調光を実現できる。力率改善回路400の出力端の出力コンデンサ470の両端間に接続したスイッチング素子511およびダイオード513の直列回路、ダイオード513に並列接続したインダクタ512および平滑コンデンサ514の直列回路、ならびに発光ダイオード910に直列に接続された負荷検出抵抗515を備えていて、光源制御部520の制御によって直流電圧変換動作を行う。なお、スイッチング素子511はMOS FETなどの半導体素子で形成されている。 When the light emitting diode 910 is used as a load, the light source lighting circuit 500 is lit by performing current control of the load with a buck converter or the like and can realize dimming. A series circuit of a switching element 511 and a diode 513 connected between both ends of the output capacitor 470 at the output end of the power factor correction circuit 400, a series circuit of an inductor 512 and a smoothing capacitor 514 connected in parallel to the diode 513, and a series of the light emitting diode 910 , And a DC voltage conversion operation is performed under the control of the light source control unit 520. Note that the switching element 511 is formed of a semiconductor element such as a MOS FET.
光源制御部520は、バックコンバータのスイッチング素子511にパルス電圧からなる駆動信号を供給する。また、光源点灯回路500の負荷検出抵抗515から制御入力される負荷電流が一定になるように帰還制御するとともに、調光信号に応じて駆動信号をPWM制御する。 The light source control unit 520 supplies a drive signal composed of a pulse voltage to the switching element 511 of the buck converter. Further, feedback control is performed so that the load current controlled and input from the load detection resistor 515 of the light source lighting circuit 500 becomes constant, and the drive signal is PWM-controlled according to the dimming signal.
調光信号入力部600は、外部から調光信号を入力する配線等を接続され、入力された調光信号を調光度判別部700に出力する。 The dimming signal input unit 600 is connected to a wiring or the like for inputting a dimming signal from the outside, and outputs the input dimming signal to the dimming degree determination unit 700.
調光度判別部700は、調光信号入力部600から入力された調光信号を制御信号に変換し、力率改善回路400のスイッチング素子450と光源点灯回路500の光源制御部520に出力する。 The dimming degree determination unit 700 converts the dimming signal input from the dimming signal input unit 600 into a control signal, and outputs the control signal to the switching element 450 of the power factor correction circuit 400 and the light source control unit 520 of the light source lighting circuit 500.
発光ダイオード910は、複数が直列接続され、負荷検出抵抗515を経由して平滑コンデンサ514の両端に接続されている。 A plurality of light emitting diodes 910 are connected in series, and are connected to both ends of the smoothing capacitor 514 via a load detection resistor 515.
次に、本実施の形態の点灯装置の回路動作を説明する。 Next, the circuit operation of the lighting device of the present embodiment will be described.
整流回路200は、交流電源100から入力された交流電圧をダイオードブリッジで全波整流し、非平滑直流電圧に変換して整流電圧検出部300を通して力率改善回路400に出力する。 The rectifier circuit 200 performs full-wave rectification on the AC voltage input from the AC power supply 100 using a diode bridge, converts it to a non-smooth DC voltage, and outputs the non-smooth DC voltage to the power factor correction circuit 400 through the rectified voltage detector 300.
力率改善回路400の昇圧コンバータが動作することにより点灯装置の力率が改善され、かつ交流電源100の電圧より高くなるように昇圧され、力率改善回路400から出力コンデンサ470によって平滑された直流電圧が光源点灯回路500に出力される。 The power factor of the lighting device is improved by the operation of the boost converter of the power factor correction circuit 400 and is boosted so as to be higher than the voltage of the AC power supply 100, and the direct current smoothed by the output capacitor 470 from the power factor improvement circuit 400. The voltage is output to the light source lighting circuit 500.
光源点灯回路500は、降圧動作を行い、負荷の発光ダイオード910に対して所要値に調整された直流電圧を出力する。その結果、光源点灯回路500の出力側に負荷として接続された発光ダイオード910に直流電流が流れて、発光ダイオード910が点灯する。この点灯は、光源点灯回路500の負荷検出抵抗515と光源制御部520によって定電流制御下で行われる。 The light source lighting circuit 500 performs a step-down operation and outputs a DC voltage adjusted to a required value to the light emitting diode 910 of the load. As a result, a direct current flows through the light emitting diode 910 connected as a load to the output side of the light source lighting circuit 500, and the light emitting diode 910 is turned on. This lighting is performed under constant current control by the load detection resistor 515 and the light source controller 520 of the light source lighting circuit 500.
また、調光信号入力部600から出力された調光信号は、調光度判別部700に入力され、ここで調光信号が調光制御信号に変換され、光源制御部520に出力される。この光源制御部520は、入力された調光制御信号に対応するPWM制御された駆動信号を生成して、光源点灯回路500の負荷電力供給部510のスイッチング素子511に供給する。その結果、負荷電流の定電流制御の基準値が調光制御信号に応じて変更されるため、発光ダイオード910は、調光制御信号に対応する光出力の調光点灯を行う。 The dimming signal output from the dimming signal input unit 600 is input to the dimming degree determination unit 700, where the dimming signal is converted into a dimming control signal and output to the light source control unit 520. The light source control unit 520 generates a PWM-controlled drive signal corresponding to the input dimming control signal, and supplies the drive signal to the switching element 511 of the load power supply unit 510 of the light source lighting circuit 500. As a result, the reference value for constant current control of the load current is changed according to the dimming control signal, and thus the light emitting diode 910 performs dimming lighting of the light output corresponding to the dimming control signal.
また、調光度判別部700は、例えば図3のTa(ここでは所定レベルの調光度40%に相当する波形とする)で示す位相よりもH期間が長くなると、これを昇圧コンバータ制御部440に制御信号を出力する。このH期間が、Taを超えたか否かの判別は図示の調光信号(例えば1kHz周期信号)の立下りTeからの時間を計測することで実現する。あるいは、この直流信号を平滑した直流電圧にして、電圧値で調光度を判別する。調光度がTaより大きいとき、昇圧コンバータ制御部440は、整流電圧判別部800からの出力信号を有効な信号と判断せず、無視する「PFC動作モード」に移行し、力率改善回路400を常時動作させるように制御する。調光度がTa以下になったとき、調光度判別部700の出力信号が入力された昇圧コンバータ制御部440は、整流電圧判別部800からの出力信号を有効な信号と判断する「PFC部分停止モード」に移行し、力率改善回路400の動作を整流電圧判別部800からの出力信号によって制御するようになる。 Further, for example, when the H period becomes longer than the phase indicated by Ta in FIG. 3 (in this case, a waveform corresponding to a predetermined level of dimming 40%), the dimming degree discriminating unit 700 notifies the boost converter control unit 440 of this. Output a control signal. The determination of whether or not the H period exceeds Ta is realized by measuring the time from the falling Te of the illustrated dimming signal (for example, 1 kHz periodic signal). Alternatively, the DC signal is converted into a smoothed DC voltage, and the dimming degree is determined by the voltage value. When the dimming degree is larger than Ta, the boost converter control unit 440 does not determine that the output signal from the rectified voltage determination unit 800 is a valid signal, and shifts to the neglected “PFC operation mode”. Control to always operate. When the dimming degree becomes Ta or less, the boost converter control unit 440 to which the output signal of the dimming degree discriminating unit 700 is inputted determines that the output signal from the rectified voltage discriminating unit 800 is a valid signal “PFC partial stop mode” The operation of the power factor correction circuit 400 is controlled by an output signal from the rectified voltage determination unit 800.
「PFC部分停止モード」時における整流電圧検出部300と整流電圧判別部800の動作を二つの場合に分けて説明する。
まず、力率改善回路400の動作停止および動作開始を整流電圧のしきい値で判定する場合について説明する。
The operations of the rectified voltage detection unit 300 and the rectified voltage determination unit 800 in the “PFC partial stop mode” will be described separately in two cases.
First, the case where the operation stop and operation start of the power factor correction circuit 400 are determined based on the threshold value of the rectified voltage will be described.
整流電圧検出部300は、図4のように整流回路200で整流された整流電圧を監視し、整流電圧判別部800に出力する。電圧しきい値検出部810で整流電圧の立下りを監視し、整流電圧が所定のしきい値を下回った場合、整流電圧判別部800から力率改善回路400の昇圧コンバータ制御部440に動作停止信号を出力し、力率改善回路400の動作を停止させる。力率改善回路400が停止しているとき、電圧しきい値検出部810は整流電圧の立上りを監視し、整流電圧が所定のしきい値を上回った場合、昇圧コンバータ制御部440に動作開始信号を出力し、力率改善回路400の動作を開始させる。 The rectified voltage detector 300 monitors the rectified voltage rectified by the rectifier circuit 200 as shown in FIG. The voltage threshold detector 810 monitors the fall of the rectified voltage, and when the rectified voltage falls below a predetermined threshold, the rectified voltage discriminator 800 stops the operation of the boost converter controller 440 of the power factor correction circuit 400. A signal is output, and the operation of the power factor correction circuit 400 is stopped. When the power factor correction circuit 400 is stopped, the voltage threshold detection unit 810 monitors the rising of the rectified voltage, and when the rectified voltage exceeds a predetermined threshold, the boost converter control unit 440 receives an operation start signal. Is output, and the operation of the power factor correction circuit 400 is started.
図4において、前述の動作説明のように昇圧コンバータ制御部440が動作開始信号を入力されてから動作停止信号を入力されるまでが、力率改善回路400が動作している期間Tonである。同様に、昇圧コンバータ制御部440が動作停止信号を入力されてから動作開始信号を入力されるまでが、力率改善回路400が動作停止している期間Toffである。TonとToffの定義は、図5〜図7、図14および図15においても図4と同様である。 In FIG. 4, the period Ton during which the power factor correction circuit 400 is operating is from when the boost converter control unit 440 receives the operation start signal to when the operation stop signal is input as described above for the operation. Similarly, the period from when the boost converter control unit 440 receives the operation stop signal to when the operation start signal is input is the period Toff during which the power factor correction circuit 400 stops operating. The definitions of Ton and Toff are the same as those in FIG. 4 in FIGS. 5 to 7, 14, and 15.
次に、力率改善回路400の動作停止を整流電圧のしきい値1で、動作開始を整流電圧のしきい値2で判定する場合について説明する。 Next, the case where the operation stop of the power factor correction circuit 400 is determined by the threshold value 1 of the rectified voltage and the operation start is determined by the threshold value 2 of the rectified voltage will be described.
整流電圧検出部300は、図5のように整流回路200で整流された整流電圧を監視し、整流電圧判別部800に出力する。電圧しきい値検出部810で整流電圧の立下りを監視し、整流電圧が力率改善回路400の動作停止させるためのしきい値1を下回った場合、整流電圧判別部800から力率改善回路400の昇圧コンバータ制御部440に動作停止信号を出力し、力率改善回路400の動作を停止させる。力率改善回路400が停止しているとき、電圧しきい値検出部810は整流電圧の立上りを監視し、整流電圧が力率改善回路400の動作開始させるためのしきい値2を上回った場合、昇圧コンバータ440に動作開始信号を出力し、力率改善回路400の動作を開始させる。 The rectified voltage detector 300 monitors the rectified voltage rectified by the rectifier circuit 200 as shown in FIG. The voltage threshold detector 810 monitors the fall of the rectified voltage, and when the rectified voltage falls below the threshold 1 for stopping the operation of the power factor correction circuit 400, the rectifier voltage determination unit 800 starts the power factor correction circuit. An operation stop signal is output to the boost converter control unit 440 of 400 to stop the operation of the power factor correction circuit 400. When the power factor correction circuit 400 is stopped, the voltage threshold value detection unit 810 monitors the rising of the rectified voltage, and the rectified voltage exceeds the threshold value 2 for starting the operation of the power factor correction circuit 400. Then, an operation start signal is output to the boost converter 440, and the operation of the power factor correction circuit 400 is started.
このように力率改善回路400の動作停止と動作開始を判定する整流電圧のしきい値を別の値にする場合、動作停止と動作開始のしきい値を同じにする前述の条件と比べて整流電圧検出部300の構成が複雑になってしまう。しかし、整流電圧のしきい値2をしきい値1に比べて低く設定し、できるだけ交流電源100の電圧値が低いとき(ゼロクロスに近いとき)に、力率改善回路400が動作開始するようにできる。それにより、力率改善回路400の動作開始時に流れるラッシュ電流を抑えることができるので、回路を構成する部品にかかるストレスが軽減される効果が得られる。 In this way, when the threshold value of the rectified voltage for determining the operation stop and operation start of the power factor correction circuit 400 is set to a different value, compared with the above-described conditions in which the operation stop threshold value and the operation start threshold value are made the same. The configuration of the rectified voltage detection unit 300 becomes complicated. However, the threshold value 2 of the rectified voltage is set lower than the threshold value 1, and the power factor correction circuit 400 starts operating when the voltage value of the AC power supply 100 is as low as possible (close to the zero cross). it can. As a result, the rush current flowing at the start of the operation of the power factor correction circuit 400 can be suppressed, so that the effect of reducing the stress applied to the components constituting the circuit can be obtained.
前述の整流電圧判別部800から出力される力率改善回路400の動作停止信号および動作開始信号は、昇圧コンバータ制御部440に調光度判別部700から調光度が所定レベルTa(図3参照)以下であることを示す出力信号が入力された「PFC部分停止モード」時のみ有効になる。なお、動作開始信号は、調光度によってしきい値を変更する設定にしていなければ、調光度に係わらず有効になるように設定してもよい。なぜなら、この条件であれば調光度がどのレベルであっても整流電圧がしきい値以上であれば必ず力率改善回路400が動作していなければならないからである。これにより、回路の簡略化やマイコン等を使用している場合はプログラムの簡略化の効果が得られる。 The operation stop signal and the operation start signal of the power factor correction circuit 400 output from the rectified voltage determination unit 800 described above are not more than a predetermined level Ta (see FIG. 3) from the dimming degree determination unit 700 to the boost converter control unit 440. This is valid only in the “PFC partial stop mode” when an output signal indicating that the Note that the operation start signal may be set to be effective regardless of the dimming degree unless the threshold is changed according to the dimming degree. This is because, under this condition, the power factor correction circuit 400 must be in operation if the rectified voltage is equal to or greater than the threshold value regardless of the dimming level. As a result, when the circuit is simplified or a microcomputer is used, the effect of simplifying the program can be obtained.
昇圧コンバータ制御部440は、調光度判別部700、整流電圧判別部800および光源制御部520とは別のマイコンにより、昇圧コンバータと組み合わせて構成することができ、昇圧コンバータからなる力率改善回路400のスイッチング素子450にパルス電圧からなる駆動信号を供給する。また、出力電圧検出抵抗461と出力電圧検出抵抗462で構成される電圧分圧回路460から、入力される出力電圧が所定値になるように帰還制御して駆動信号のデューティを制御する。 The step-up converter control unit 440 can be configured in combination with the step-up converter by a microcomputer different from the dimming degree determination unit 700, the rectified voltage determination unit 800, and the light source control unit 520, and the power factor improvement circuit 400 including the step-up converter. A driving signal composed of a pulse voltage is supplied to the switching element 450. In addition, the duty of the drive signal is controlled by performing feedback control so that the output voltage input from the voltage voltage dividing circuit 460 including the output voltage detection resistor 461 and the output voltage detection resistor 462 becomes a predetermined value.
例えば、昇圧コンバータ制御部440が、正弦波の入力電圧波形を用いるアナログ乗算器を有する力率改善用集積回路であれば、例えばTon以外の期間では、この正弦波電圧を削除した電圧を信号として供給することで、Ton期間のみスイッチング素子450を駆動することができる。このようにして、調光度が40%以下になったとすると、この調光度判別部700の出力信号と前述の整流電圧判別部800の出力信号により、昇圧コンバータのスイッチング素子450は、図6のようにToffの期間は動作を停止する。 For example, if the boost converter control unit 440 is a power factor correction integrated circuit having an analog multiplier using a sine wave input voltage waveform, for example, in a period other than Ton, a voltage obtained by deleting the sine wave voltage is used as a signal. By supplying, the switching element 450 can be driven only during the Ton period. If the dimming degree is 40% or less in this way, the switching element 450 of the boost converter can be obtained as shown in FIG. 6 based on the output signal of the dimming degree discriminating unit 700 and the output signal of the rectified voltage discriminating unit 800 described above. During the period Toff, the operation is stopped.
昇圧コンバータ制御部440による力率改善回路400の動作停止、動作開始の制御は、調光度が所定レベルTa以下になった「PFC部分停止モード」時のみ実施されるので、整流電圧判別部800の出力信号よりも調光度判別部700の出力信号の方が優先される。つまり、調光度が所定レベルTaより大きければ、整流電圧判別部800が動作停止信号を出力しても、力率改善回路400は停止しないように昇圧コンバータ制御部440はスイッチング素子450を制御する。 Control of the operation stop and operation start of the power factor correction circuit 400 by the boost converter control unit 440 is performed only in the “PFC partial stop mode” in which the dimming level is equal to or lower than the predetermined level Ta. The output signal of the dimming degree discriminating unit 700 has priority over the output signal. That is, if the dimming degree is larger than the predetermined level Ta, the boost converter control unit 440 controls the switching element 450 so that the power factor correction circuit 400 does not stop even if the rectified voltage determination unit 800 outputs an operation stop signal.
なお、Toffの期間は、ゼロクロスの点を中心に対称にする必要はないので、例えば図7のように図6に比べ、ゼロクロスの後の力率改善回路400の動作停止期間を短くし、力率改善回路400の動作開始を早めてもよい。これは前述したように、力率改善回路400の動作開始時に流れるラッシュ電流を抑制する効果がある。 Since it is not necessary to make the Toff period symmetrical about the zero cross point, for example, as shown in FIG. 7, the operation stop period of the power factor correction circuit 400 after the zero cross is shortened compared to FIG. The operation start of the rate improvement circuit 400 may be advanced. As described above, this has the effect of suppressing the rush current that flows when the operation of the power factor correction circuit 400 starts.
このように深い調光すなわち軽負荷のときは、昇圧コンバータはToffの期間は動作を停止する。また、Toffの期間内にも力率改善回路400からは、コンデンサインプット形の動作による出力電圧が連続的に供給されるので、負荷が軽いことから生じる昇圧コンバータの不要な間欠動作を防止できる。 In this way, in the case of deep dimming, that is, light load, the boost converter stops operating during the Toff period. Further, since the output voltage due to the capacitor input type operation is continuously supplied from the power factor correction circuit 400 even during the period of Toff, unnecessary intermittent operation of the boost converter due to light load can be prevented.
また、負荷が放電ランプ920であれば、ハーフブリッジインバータでその出力周波数を変化させることでランプ電流を制御し、負荷が発光ダイオード910の場合と同様に調光できる。負荷が放電ランプ920である場合の回路図は図2に示す通りである。このとき、放電ランプにはコンデンサ921が接続される。 If the load is a discharge lamp 920, the lamp current is controlled by changing the output frequency with a half-bridge inverter, and the light can be dimmed in the same manner as in the case of the light-emitting diode 910. A circuit diagram when the load is the discharge lamp 920 is as shown in FIG. At this time, a capacitor 921 is connected to the discharge lamp.
発光ダイオード910、放電ランプ920のいずれの負荷においても、複数灯でも1灯(LED1列分)でも適宜応用可能である。 In any load of the light emitting diode 910 and the discharge lamp 920, a plurality of lamps or one lamp (for one LED row) can be appropriately applied.
以上より、深い調光度でも力率改善回路400を動作させることができ、力率の低下や入力電流の高周波成分の増加を抑えた点灯装置を提供することができる。 As described above, the power factor correction circuit 400 can be operated even with a deep dimming degree, and it is possible to provide a lighting device that suppresses a decrease in power factor and an increase in high-frequency components of input current.
以下、本発明を適用する調光度の範囲について説明する。
図8は、実施の形態1の光源出力(調光度)と力率改善回路の出力電圧の特性図である。
Hereinafter, the range of the light control degree to which the present invention is applied will be described.
FIG. 8 is a characteristic diagram of the light source output (dimming degree) and the output voltage of the power factor correction circuit according to the first embodiment.
図8において、横軸は光源の出力(調光度)(%)を示し、縦軸は力率改善回路の出力電圧(%)を示す。破線が理想的な特性である比例関係の直線を示しているが、実際の特性は実線の通りとなる。その理由は、負荷が放電ランプの場合はもちろん、発光ダイオードの場合でも、負荷の出力電圧と力率改善回路の出力電力は同じ比率で変化せず、出力が低い場合には相対的な回路損失の増加などにより、力率改善回路からの電力が増加する傾向になるためである。 In FIG. 8, the horizontal axis indicates the output (dimming degree) (%) of the light source, and the vertical axis indicates the output voltage (%) of the power factor correction circuit. The broken line indicates a straight line having a proportional relationship, which is an ideal characteristic, but the actual characteristic is as shown by the solid line. The reason is that the load output voltage and the output power of the power factor correction circuit do not change at the same ratio, not only when the load is a discharge lamp but also when it is a light emitting diode. This is because the power from the power factor correction circuit tends to increase due to the increase in power.
例えば負荷の出力が40%(調光度40%)程度を超えるとき、入力電力は40%を超えており、力率改善回路に特別な動作停止期間を設けなくても、正常な動作を行える場合がほとんどである。 For example, when the output of the load exceeds 40% (dimming degree 40%), the input power exceeds 40%, and normal operation can be performed without providing a special operation stop period in the power factor correction circuit. Is almost.
また、従来と本発明の光源の調光度と力率改善回路の動作安定性の関係は、図9の通りとなる。従来の点灯装置では、調光度40%以下で力率改善回路の動作が不安定になり始める。 Moreover, the relationship between the light control degree of the light source of the present invention and this invention and the operation stability of the power factor correction circuit is as shown in FIG. In the conventional lighting device, the operation of the power factor correction circuit starts to become unstable when the dimming degree is 40% or less.
したがって、本発明は少なくとも負荷の光源の出力が40%以下の場合に適用すれば適切である。 Therefore, the present invention is appropriate if it is applied at least when the output of the load light source is 40% or less.
また、調光信号入力部600に入力された調光信号の調光度が100%のときは、力率改善回路400の動作を停止させず、調光度が低くなるに従い、力率改善回路400の動作時間Ton(図6参照)を長くしていくように、調光度判別部700から昇圧コンバータ制御部440に制御信号を出力する方法でもよい。この方法を用いると、例えば調光率40%のときは、調光率10%のときよりも力率改善回路400の動作期間を長くできるので力率を高くすることができる。 Further, when the dimming degree of the dimming signal input to the dimming signal input unit 600 is 100%, the operation of the power factor correction circuit 400 is not stopped and the power factor improvement circuit 400 of the power factor improvement circuit 400 decreases as the dimming degree decreases. A method of outputting a control signal from the dimming degree determination unit 700 to the boost converter control unit 440 so as to increase the operation time Ton (see FIG. 6) may be used. When this method is used, for example, when the dimming rate is 40%, the operation period of the power factor correction circuit 400 can be made longer than when the dimming rate is 10%, so that the power factor can be increased.
以下、力率改善回路の動作期間と力率の関係について説明する。
図10は調光時の電気角と力率の特性図、図11は力率改善回路停止時の交流電源電圧と入力電流の波形図である。
Hereinafter, the relationship between the operation period of the power factor correction circuit and the power factor will be described.
FIG. 10 is a characteristic diagram of the electrical angle and power factor during dimming, and FIG. 11 is a waveform diagram of the AC power supply voltage and input current when the power factor correction circuit is stopped.
力率改善回路400が、交流電源100の各サイクルのゼロクロス近傍で動作停止する期間を設けた場合、動作期間Ton(図6参照)の長さにより、力率が変化する。 When the power factor correction circuit 400 provides a period in which operation is stopped near the zero cross of each cycle of the AC power supply 100, the power factor changes depending on the length of the operation period Ton (see FIG. 6).
図10において横軸は、Tonの期間を電気角であらわし、縦軸は力率を示す。 In FIG. 10, the horizontal axis represents the Ton period in electrical angle, and the vertical axis represents the power factor.
図10の特性は、力率改善回路400の性能と電源状態により、力率は多少変化するものではあるが、力率改善回路400を作動させないで、コンデンサインプット形の整流回路と等価な状態になった場合と比較する。 Although the power factor slightly changes depending on the performance of the power factor correction circuit 400 and the power supply state, the characteristic of FIG. 10 is equivalent to the capacitor input type rectifier circuit without operating the power factor correction circuit 400. Compare with the case.
コンデンサインプット形の動作になると、図11のように、入力電流は電源電圧の正弦波のピーク付近の狭い期間Tだけ流れる。この電流の流入期間(電流波形の幅)は、回路のコンデンサ容量などにも依存するが、電気角で30〜40度程度である。 In the capacitor input type operation, as shown in FIG. 11, the input current flows for a narrow period T near the peak of the sine wave of the power supply voltage. The current inflow period (the width of the current waveform) depends on the capacitor capacity of the circuit, but is about 30 to 40 degrees in electrical angle.
本発明の装置では、力率改善回路400の作用により、たとえToffの期間を設けてもTonの期間が、電気角で45度以上(すなわち各半サイクル中のToffの期間の合計が電気角で135度未満)であれば、このコンデンサインプット形での力率(一般的には50〜60%程度)より高い70%近い力率とすることができ、有効である。 In the apparatus of the present invention, even if a Toff period is provided, the Ton period is 45 degrees or more in electrical angle (that is, the total of Toff periods in each half cycle is an electrical angle by the action of the power factor correction circuit 400. If it is less than 135 degrees, it is possible to make the power factor close to 70% higher than the power factor (generally about 50 to 60%) in this capacitor input type, which is effective.
JIS規格等で高力率と定められている力率85%以上にするためには、Tonの期間を電気角で75度以上(すなわち各半サイクル中のToffの期間の合計が電気角で105度未満)にすればよい。 In order to achieve a power factor of 85% or more, which is defined as a high power factor in JIS standards, etc., the Ton period is 75 degrees or more in electrical angle (that is, the total of Toff periods in each half cycle is 105 in electrical angle. Less).
図12は、Tonの期間をゼロクロスを中心に対称に設けた場合の電気角の好適設定例を示す表である。調光度が低くなるに従い、Tonの期間を短く、Toffの期間を長く、つまり力率改善回路400の動作停止期間を長くしていく方が、安定的な回路動作を期待できることを示している。また、Tonの期間を固定して使用する場合は、電気角を約90度に設定するとよい。これは力率が約90%を実現できるにもかかわらず、Toffの期間を比較的長くでき、様々な調光度に対して力率改善回路400の安定的な動作を期待できるからである。 FIG. 12 is a table showing a preferred setting example of the electrical angle when the Ton period is provided symmetrically around the zero cross. It shows that stable circuit operation can be expected by decreasing the Ton period and increasing the Toff period, that is, increasing the operation stop period of the power factor correction circuit 400 as the dimming degree decreases. When the Ton period is fixed, the electrical angle may be set to about 90 degrees. This is because the Toff period can be made relatively long despite the power factor of about 90%, and stable operation of the power factor correction circuit 400 can be expected for various dimming levels.
実施の形態2.
以下、本発明の実施の形態2の点灯装置を、図13ないし図15に基づいて説明する。
Embodiment 2. FIG.
Hereinafter, the lighting device according to the second embodiment of the present invention will be described with reference to FIGS.
図13は、整流電圧の周波数としきい値の関係を示す波形図である。2つの波がそれぞれ、交流電源の周波数が50Hzと60Hzのときに整流回路200が出力する整流電圧波形を示しており、T1が60Hzの電圧波形がしきい値以下になってから再度しきい値以上になるまでの時間、T2が50Hzの電圧波形がしきい値以下になってから再度しきい値以上になるまでの時間を示している。なお、T2>T1となる。 FIG. 13 is a waveform diagram showing the relationship between the frequency of the rectified voltage and the threshold value. Each of the two waves, the frequency of the AC power source indicates the rectified voltage waveform rectifier circuit 200 is output when the 50Hz and 60Hz, again the threshold from the voltage waveform of T 1 is 60Hz falls below the threshold time until more than a value, T 2 is the voltage waveform of 50Hz indicates the time until again above the threshold value from becoming below a threshold. Note that T 2 > T 1 .
また、コンデンサインプット形の電源回路動作の場合、交流電源100の周波数が50Hzのときよりも60Hzのときの方が、入力電流が少ない傾向があるのでT1を長く、T2を短くしてもよい。 In the case of the capacitor input type power supply circuit operation, since the input current tends to be less when the frequency of the AC power supply 100 is 60 Hz than when the frequency of the AC power supply 100 is 50 Hz, even if T 1 is lengthened and T 2 is shortened. Good.
図14は、整流電圧のしきい値と動作停止信号から動作開始信号出力までの時間を示す波形図である。整流電圧波形は、電源周波数50Hzまたは60Hzである。図14に基づいて交流電源100の電源周波数と電圧のしきい値を用いて、「PFC部分停止モード」時の力率改善回路400の制御方法について説明する。 FIG. 14 is a waveform diagram showing the threshold value of the rectified voltage and the time from the operation stop signal to the operation start signal output. The rectified voltage waveform has a power supply frequency of 50 Hz or 60 Hz. Based on FIG. 14, the control method of the power factor correction circuit 400 in the “PFC partial stop mode” will be described using the power supply frequency of the AC power supply 100 and the threshold voltage.
整流回路200が出力する整流電圧を整流電圧検出部300で検出し、整流電圧判別部800内にある電圧しきい値検出部810と電圧周波数検出部820に出力する。電圧周波数検出部820で交流電源100の周波数が50Hzか60Hzかを判別後、整流回路200が出力する整流電圧を電圧しきい値検出部810で監視し、整流電圧がしきい値を下回った場合、整流電圧判別部800は力率改善回路400に動作停止信号を出力する。力率改善回路400が動作停止してから、所定時間t1経過後に整流電圧判別部800が動作開始信号を入力し、力率改善回路400を動作開始させる。この場合、所定時間t1と力率改善回路400の動作停止時間Toffは同じ長さである。 The rectified voltage output from the rectifier circuit 200 is detected by the rectified voltage detector 300 and output to the voltage threshold detector 810 and the voltage frequency detector 820 in the rectified voltage discriminator 800. When the voltage frequency detector 820 determines whether the frequency of the AC power supply 100 is 50 Hz or 60 Hz, the rectified voltage output from the rectifier circuit 200 is monitored by the voltage threshold detector 810, and the rectified voltage falls below the threshold The rectified voltage discriminating unit 800 outputs an operation stop signal to the power factor correction circuit 400. The rectified voltage discriminating unit 800 inputs an operation start signal after a predetermined time t 1 after the operation of the power factor correction circuit 400 stops, and starts the operation of the power factor improvement circuit 400. In this case, the predetermined time t 1 and the operation stop time Toff of the power factor correction circuit 400 are the same length.
力率改善回路400の動作開始電圧は、力率改善回路400を動作停止させる整流電圧のしきい値と同じ電圧値でもよいが、しきい値の電圧値より低く設定してもよい。これは整流電圧のしきい値を二つ用いて、動作停止電圧と動作開始電圧を違う電圧値にした実施の形態1の場合と同様、力率改善回路400の動作開始時に流れるラッシュ電流を抑えるためである。この場合、所定時間t1を変更することで、所望の動作開始電圧値を得る。 The operation start voltage of the power factor correction circuit 400 may be the same voltage value as the threshold value of the rectified voltage that stops the power factor improvement circuit 400, or may be set lower than the threshold voltage value. This is to suppress the rush current flowing at the start of the operation of the power factor correction circuit 400, similarly to the case of the first embodiment in which two threshold values of the rectified voltage are used and the operation stop voltage and the operation start voltage are set to different voltage values. Because. In this case, by changing the predetermined time t 1, to obtain the desired operation start voltage value.
各調光度において最大の力率を維持するため、力率改善回路400の動作期間を調光度が低下するに従い、短くしていく制御を行う場合、昇圧コンバータ制御部440をマイコン等で、図12のような最適の電気角になるようにt1の長さを制御する。これは、実施の形態1で示した力率改善回路400の動作停止と動作開始で異なる二つのしきい値を用いて力率改善回路400の動作開始電圧を変更するのに比べ、制御回路を簡略化できる効果がある。 In order to maintain the maximum power factor in each dimming degree, when performing control to shorten the operation period of the power factor correction circuit 400 as the dimming degree decreases, the boost converter control unit 440 is configured with a microcomputer or the like. The length of t 1 is controlled so that the optimum electrical angle is as follows. This is because the control circuit is different from the case where the operation start voltage of the power factor improvement circuit 400 is changed using two different threshold values for the operation stop and operation start of the power factor improvement circuit 400 shown in the first embodiment. There is an effect that can be simplified.
図15は、整流電圧のしきい値とゼロクロスから信号出力までの時間を示す波形図である。整流電圧波形は、電源周波数50Hzまたは60Hzである。図15に基づいて交流電源100の電源周波数と電圧がゼロになってからの動作停止信号が出力されるまでの時間t2と動作開始信号が出力されるまでの時間t3を用いて、「PFC部分停止モード」時の力率改善回路400の制御方法について説明する。 FIG. 15 is a waveform diagram showing the threshold value of the rectified voltage and the time from the zero cross to the signal output. The rectified voltage waveform has a power supply frequency of 50 Hz or 60 Hz. Based on FIG. 15, the time t 2 until the operation stop signal is output after the power supply frequency and voltage of the AC power supply 100 become zero and the time t 3 until the operation start signal is output are used. A control method of the power factor correction circuit 400 in the “PFC partial stop mode” will be described.
整流回路200が出力する整流電圧を整流電圧検出部300で検出し、整流電圧判別部800内にある電圧しきい値検出部810と電圧周波数検出部820に出力する。電圧周波数検出部820で交流電源100の周波数が50Hzか60Hzかを判別後、整流回路200が出力する整流電圧を電圧しきい値検出部810で監視し、整流電圧がゼロになった時間から所定時間t2経過後に整流電圧判別部800が動作開始信号を力率改善回路400に入力して動作開始させる。同様に、整流電圧がゼロになった時間から所定時間t3経過後に整流電圧判別部800が動作停止信号を力率改善回路400に入力して動作停止させる。 The rectified voltage output from the rectifier circuit 200 is detected by the rectified voltage detector 300 and output to the voltage threshold detector 810 and the voltage frequency detector 820 in the rectified voltage discriminator 800. After the voltage frequency detection unit 820 determines whether the frequency of the AC power supply 100 is 50 Hz or 60 Hz, the rectified voltage output from the rectifier circuit 200 is monitored by the voltage threshold value detection unit 810, and predetermined from the time when the rectified voltage becomes zero. After time t 2 has elapsed, the rectified voltage determination unit 800 inputs an operation start signal to the power factor correction circuit 400 to start the operation. Similarly, after a predetermined time t 3 has elapsed from the time when the rectified voltage becomes zero, the rectified voltage determination unit 800 inputs an operation stop signal to the power factor correction circuit 400 to stop the operation.
本実施の形態によれば、整流電圧判別部800内に電圧周波数検出部820を設けなければならないが、整流電圧検出部300が検出する整流電圧のしきい値は一つで済むので、整流電圧検出部を簡略化でき、また力率改善回路400の動作停止時間と動作開始時間の設定を整流電圧のしきい値を二つ用いる場合に比べ、より簡単な回路で調光度の低下に従い、力率改善回路400の動作停止時間を長くする制御が実現できる。 According to the present embodiment, the voltage frequency detection unit 820 must be provided in the rectified voltage determination unit 800. However, since the threshold voltage of the rectified voltage detected by the rectified voltage detection unit 300 is only one, the rectified voltage The detection unit can be simplified, and the operation stop time and the operation start time of the power factor correction circuit 400 can be set more easily than when two threshold values of the rectified voltage are used. Control for extending the operation stop time of the rate improvement circuit 400 can be realized.
100 交流電源、200 整流回路、300 整流電圧検出部、400 力率改善回路、410 コンデンサ、420 インダクタ、430 ダイオード、440 昇圧コンバータ制御部、450 スイッチング素子、460 電圧分圧回路、461 出力電圧検出抵抗、462 出力電圧検出抵抗、470 出力コンデンサ、500 光源点灯回路、510 負荷電力供給部、511 スイッチング素子、512 インダクタ、513 ダイオード、514 平滑コンデンサ、515 負荷検出抵抗、520 光源制御部、600 調光信号入力部、700 調光度判別部、800 整流電圧判別部、810 電圧しきい値検出部、820 電圧周波数検出部、910 発光ダイオード、920 放電ランプ、921 コンデンサ。 100 AC power supply, 200 rectifier circuit, 300 rectified voltage detector, 400 power factor correction circuit, 410 capacitor, 420 inductor, 430 diode, 440 boost converter controller, 450 switching element, 460 voltage divider circuit, 461 output voltage detection resistor 462, output voltage detection resistor, 470 output capacitor, 500 light source lighting circuit, 510 load power supply unit, 511 switching element, 512 inductor, 513 diode, 514 smoothing capacitor, 515 load detection resistor, 520 light source control unit, 600 dimming signal Input unit, 700 dimming degree determining unit, 800 rectified voltage determining unit, 810 voltage threshold value detecting unit, 820 voltage frequency detecting unit, 910 light emitting diode, 920 discharge lamp, 921 capacitor.
Claims (7)
前記電源整流回路の出力が入力され、昇圧コンバータを含む力率改善回路と、
前記力率改善回路の出力を入力とする光源点灯回路と、
外部からの調光信号が入力される調光信号入力部と、
前記調光信号入力部に入力される前記調光信号の調光度を判別する調光度判別部と、
前記調光度判別部で検出した前記調光度が所定レベル以下であるとき、前記交流電源のゼロクロスに跨る所定期間、前記力率改善回路の動作を停止する制御手段と、
を備えることを特徴とする点灯装置。 A power rectifier circuit for rectifying an AC voltage input from an AC power source;
An output of the power supply rectifier circuit, and a power factor correction circuit including a boost converter;
A light source lighting circuit that receives the output of the power factor correction circuit as an input;
A dimming signal input unit to which an external dimming signal is input;
A dimming degree determining unit for determining a dimming degree of the dimming signal input to the dimming signal input unit;
Control means for stopping the operation of the power factor correction circuit for a predetermined period across the zero cross of the AC power supply when the dimming level detected by the dimming level determination unit is equal to or lower than a predetermined level;
A lighting device comprising:
前記電源整流回路の出力が入力され、昇圧コンバータを含む力率改善回路と、
前記力率改善回路の出力を入力とする光源点灯回路と、
外部からの調光信号が入力される調光信号入力部と、
前記調光信号入力部に入力される前記調光信号の調光度を判別する調光度判別部と、
前記電源整流回路の出力電圧を監視する整流電圧検出部と、
前記整流電圧検出部の出力が入力され、電圧しきい値検出部を有する整流電圧判別部と、
前記調光度判別部で検出した前記調光度が所定レベル以下で、前記電圧しきい値検出部で検出した整流電圧が第一のしきい値以下であるとき、前記整流電圧判別部から動作停止信号が入力されて前記力率改善回路が動作停止し、前記整流電圧が第二のしきい値以上になったとき動作開始信号を出力し、前記交流電源のゼロクロスに跨る所定期間、前記力率改善回路の動作を停止する制御手段と、
を備えることを特徴とする点灯装置。 A power rectifier circuit for rectifying an AC voltage input from an AC power source;
An output of the power supply rectifier circuit, and a power factor correction circuit including a boost converter;
A light source lighting circuit that receives the output of the power factor correction circuit as an input;
A dimming signal input unit to which an external dimming signal is input;
A dimming degree determining unit for determining a dimming degree of the dimming signal input to the dimming signal input unit;
A rectified voltage detector for monitoring the output voltage of the power rectifier circuit;
The output of the rectified voltage detector is input, and a rectified voltage discriminator having a voltage threshold detector;
When the dimming level detected by the dimming level determining unit is equal to or lower than a predetermined level and the rectified voltage detected by the voltage threshold level detecting unit is equal to or lower than a first threshold value, an operation stop signal is output from the rectified voltage determining unit. The power factor improvement circuit stops operating and outputs an operation start signal when the rectified voltage exceeds a second threshold value, and the power factor improvement is performed for a predetermined period across the zero cross of the AC power supply. Control means for stopping the operation of the circuit;
A lighting device comprising:
前記電源整流回路の出力が入力され、昇圧コンバータを含む力率改善回路と、
前記力率改善回路の出力を入力とする光源点灯回路と、
外部からの調光信号が入力される調光信号入力部と、
前記調光信号入力部に入力される前記調光信号の調光度を判別する調光度判別部と、
前記電源整流回路の出力電圧を監視する整流電圧検出部と、
前記整流電圧検出部の出力が入力され、電圧しきい値検出部を有する整流電圧判別部と、
前記調光度判別部で検出した前記調光度が所定レベル以下で、前記電圧しきい値検出部で検出した整流電圧がしきい値以下であるとき、前記整流電圧判別部から動作停止信号が入力されて前記力率改善回路が動作停止し、ゼロクロスの検出から所定時間が経過したとき動作開始信号を出力し、前記交流電源のゼロクロスに跨る所定期間、前記力率改善回路の動作を停止する制御手段と、
を備えることを特徴とする点灯装置。 A power rectifier circuit for rectifying an AC voltage input from an AC power source;
An output of the power supply rectifier circuit, and a power factor correction circuit including a boost converter;
A light source lighting circuit that receives the output of the power factor correction circuit as an input;
A dimming signal input unit to which an external dimming signal is input;
A dimming degree determining unit for determining a dimming degree of the dimming signal input to the dimming signal input unit;
A rectified voltage detector for monitoring the output voltage of the power rectifier circuit;
The output of the rectified voltage detector is input, and a rectified voltage discriminator having a voltage threshold detector;
When the dimming level detected by the dimming level determining unit is not more than a predetermined level and the rectified voltage detected by the voltage threshold level detecting unit is not more than a threshold value, an operation stop signal is input from the rectified voltage determining unit. Control means for outputting an operation start signal when a predetermined time has elapsed since the detection of the zero cross, and stopping the operation of the power factor improvement circuit for a predetermined period across the zero cross of the AC power supply. When,
A lighting device comprising:
前記電圧周波数検出部が前記整流電圧の周波数を監視し、前記調光度が所定レベル以下であり、かつ前記整流電圧がしきい値以下であることを検出したとき、前記力率改善回路を動作停止し、検出した前記整流電圧の周波数が50Hzまたは60Hzかで前記力率改善回路の動作開始時間が異なる制御手段と、
を備えることを特徴とする請求項3に記載の点灯装置。 A voltage frequency detection unit provided in the rectified voltage determination unit;
When the voltage frequency detector monitors the frequency of the rectified voltage and detects that the dimming level is equal to or lower than a predetermined level and the rectified voltage is equal to or lower than a threshold value, the power factor correction circuit is deactivated. And a control means having a different operation start time of the power factor correction circuit when the detected frequency of the rectified voltage is 50 Hz or 60 Hz,
The lighting device according to claim 3, further comprising:
前記点灯装置を固定する器具本体と、
を備えることを特徴とする照明器具。 A lighting device according to any one of claims 1 to 6,
An instrument body for fixing the lighting device;
A lighting apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010209331A JP5527130B2 (en) | 2010-09-17 | 2010-09-17 | Lighting device and lighting fixture provided with the lighting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010209331A JP5527130B2 (en) | 2010-09-17 | 2010-09-17 | Lighting device and lighting fixture provided with the lighting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012064503A JP2012064503A (en) | 2012-03-29 |
JP5527130B2 true JP5527130B2 (en) | 2014-06-18 |
Family
ID=46059994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010209331A Active JP5527130B2 (en) | 2010-09-17 | 2010-09-17 | Lighting device and lighting fixture provided with the lighting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5527130B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101410732B1 (en) | 2012-05-29 | 2014-06-24 | 한국전기연구원 | Converter for LED and method for controlling the same |
JP2014002867A (en) | 2012-06-15 | 2014-01-09 | Panasonic Corp | Lighting device and illuminating fixture |
JP5999326B2 (en) | 2012-07-05 | 2016-09-28 | パナソニックIpマネジメント株式会社 | LED lighting device and lighting apparatus |
JP6188309B2 (en) * | 2012-11-19 | 2017-08-30 | 三菱電機株式会社 | Emergency lighting equipment |
JP6058473B2 (en) * | 2013-06-05 | 2017-01-11 | 新電元工業株式会社 | Lighting power control circuit, semiconductor integrated circuit, lighting power supply and lighting fixture |
JP6277792B2 (en) * | 2014-03-13 | 2018-02-14 | 三菱電機株式会社 | Lighting device and lighting apparatus |
US9512356B2 (en) | 2014-05-01 | 2016-12-06 | General Electric Company | Process for preparing red-emitting phosphors |
US9546318B2 (en) | 2014-05-01 | 2017-01-17 | General Electric Company | Process for preparing red-emitting phosphors |
JP6533980B2 (en) * | 2018-01-17 | 2019-06-26 | 三菱電機株式会社 | lighting equipment |
JP6994686B2 (en) * | 2018-08-10 | 2022-01-14 | パナソニックIpマネジメント株式会社 | Power converter |
-
2010
- 2010-09-17 JP JP2010209331A patent/JP5527130B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012064503A (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5527130B2 (en) | Lighting device and lighting fixture provided with the lighting device | |
TWI420972B (en) | Circuits for driving light source, methods for controlling dimming of light source, driving systems, and controllers for regulating brightness of light source | |
US9220159B2 (en) | Electronic ballast | |
JP4199201B2 (en) | Power supply device and lighting device | |
JP6414676B2 (en) | Lighting device and lighting apparatus | |
JP5263503B2 (en) | Light emitting diode lighting device | |
US20130127356A1 (en) | Led driving power supply apparatus and led lighting apparatus | |
JP5828067B2 (en) | Semiconductor light-emitting element lighting device and lighting fixture using the same | |
KR20010098937A (en) | Light emitting diode driving apparatus | |
JP2011035112A (en) | Light-emitting diode driver circuit and lighting apparatus | |
JP2011108529A (en) | Power supply circuit for led | |
JP2010067564A (en) | Lighting device for discharge lamp, and illumination apparatus | |
JP2014517466A (en) | LED retrofit drive circuit and method for operating LED retrofit drive circuit | |
JPWO2015166559A1 (en) | Power supply device, light source lighting device, and battery charging device | |
JP5152501B2 (en) | Load control device and electrical equipment | |
US8004214B2 (en) | Fluorescent tube power supply and backlight | |
JP5691495B2 (en) | LED driving power supply device and LED lighting device | |
JP6135635B2 (en) | Lighting device and lighting apparatus | |
JP2014131420A (en) | Power-supply device | |
US8941321B2 (en) | Discharge lamp lighting device, and illumination apparatus and vehicle including same | |
JP4014576B2 (en) | Electrodeless discharge lamp power supply | |
JP5773786B2 (en) | Light source lighting device and lighting fixture | |
JP2009289664A (en) | Lighting device for discharge lamp, and illumination apparatus | |
JP6041532B2 (en) | Electronic load device | |
JP5404381B2 (en) | Discharge lamp lighting device and lighting fixture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140218 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140331 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5527130 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |