JP4014412B2 - Organohalogen decomposition catalyst and process for producing the same - Google Patents

Organohalogen decomposition catalyst and process for producing the same Download PDF

Info

Publication number
JP4014412B2
JP4014412B2 JP2002018401A JP2002018401A JP4014412B2 JP 4014412 B2 JP4014412 B2 JP 4014412B2 JP 2002018401 A JP2002018401 A JP 2002018401A JP 2002018401 A JP2002018401 A JP 2002018401A JP 4014412 B2 JP4014412 B2 JP 4014412B2
Authority
JP
Japan
Prior art keywords
catalyst
decomposition catalyst
organic halogen
producing
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002018401A
Other languages
Japanese (ja)
Other versions
JP2003210983A (en
Inventor
正勝 平岡
勝浩 徳倉
和徹 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002018401A priority Critical patent/JP4014412B2/en
Publication of JP2003210983A publication Critical patent/JP2003210983A/en
Application granted granted Critical
Publication of JP4014412B2 publication Critical patent/JP4014412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として焼却炉の排ガス処理に使用される有機ハロゲン分解触媒及びその製造方法に関するものである。
【0002】
【従来の技術】
都市ごみや産業廃棄物の焼却炉から発生する有機ハロゲン化合物の低減対策には、燃焼条件の改善と排ガス処理の高度化とがある。一般に有機ハロゲン化合物のような有機物質の完全酸化分解を燃焼プロセスで行なうには、1000℃以上の高温維持が必要とされる。しかし、炉壁の損傷を避けるために焼却炉の燃焼温度は800〜900℃とされるのが普通であり、燃焼条件の改善によって有機ハロゲン化合物の完全酸化分解を行なうことは容易でない。
【0003】
また、炉内に局所的な低温部すなわち不完全燃焼部が発生しやすいストーカ炉では、有機ハロゲン化合物の完全酸化分解を行なわせるためには再燃焼部を設ける必要があるが、排ガス総量の増加や再燃焼用燃料によるランニングコストの増加という問題がある。
【0004】
近年、廃棄物の焼却工程や排ガス処理工程で生じるダイオキシン類や臭素化ダイオキシン類などの有機ハロゲン化合物が人の健康に及ぼす影響や、その発生過程に関する研究が活発化しており、これらの物質は燃焼過程で生成されるのみならず、完全燃焼せずに残留した未燃炭素や、ベンゼン環を持った前駆物質から200〜500℃前後の広い低温度域で再合成されることが明らかになっている。
【0005】
したがって、仮に燃焼プロセスにおいてダイオキシン類や臭素化ダイオキシン類などの有機ハロゲン化合物の低減を図っても、その後の段階でこれらの物質が再合成される可能性があり、排ガス中の有機ハロゲン化合物を安定的に低濃度に維持するためには、排ガス処理による有機ハロゲン化合物の除去が必要となる。
【0006】
排ガス処理による有機ハロゲン化合物の除去処理方法としては、活性炭による吸着法と、触媒による分解法とが挙げられる。このうち吸着法は有機ハロゲン化合物の除去処理方法の主流を占めているが、コスト高であるうえ有機ハロゲン化合物を吸着させた活性炭が二次廃棄物となり、その後の処理が問題となっている。このため、二次廃棄物が発生しない有機ハロゲン分解触媒による触媒分解法が注目されている。
【0007】
有機ハロゲン分解触媒としては、V25-TiO2系やV25-WO-TiO2系の脱硝触媒に代表される卑金属触媒が主流である。しかしこれらの触媒は集塵機の後段で250〜350℃の温度域で使用する必要があるため、排ガスの再加熱を必要とする。そこで近年、Pt/TiO2系やPd/TiO2系等の貴金属系触媒に関する研究が進められている。PtやPdは最も活性の高い貴金属であり、250℃以下の低温度域でも活性を発揮することができる。
【0008】
Pt/TiO2系やPd/TiO2系の有機ハロゲン分解触媒を製造するために考えられる従来の一般的な方法は、TiO2粉末またはその燒結体に、Pt及び/またはPdの塩の水溶液をコーティングまたは含浸させ、加熱分解してPt及び/またはPdを析出させ、最終的に還元処理を行って活性を生じさせる方法である。この場合、触媒形状としてはハニカム型やペレット型が代表的であるが、その形状強度を保つために有機バインダー、有機チタン化合物、有機貴金属化合物等を助剤として原料中に混合させることが多い。
【0009】
また還元処理の方法としては、水蒸気や水素による方法、NaBH4のような還元剤を用いる方法が考えられるが、前者は爆発の危険性があり、後者は残留するNaが触媒活性を低下させるため好ましくない。このため実用的には、ポリエチレン化合物などの有機物を使用した還元処理が行なわれる。
【0010】
このように、従来法で製造された有機ハロゲン分解触媒は、有機物を大量に含む原料や助剤を使用したり、有機物を使用した還元処理を施すことによって残留炭素が触媒表面に析出する。ところが本発明者等の研究によれば、これらの残留炭素は触媒の表面を覆って活性を低下させるのみならず、これらの残留炭素が未燃炭素と同様の効果を生じ、ダイオキシン類や臭素化ダイオキシン類などの有機ハロゲン化合物を再合成して逆に増加させてしまう可能性があることが判明した。
【0011】
【発明が解決しようとする課題】
本発明は上記した問題点を解決し、250℃以下の低温度域でも有機ハロゲン化合物を分解処理することができ、しかもダイオキシン類や臭素化ダイオキシン類などの有機ハロゲン化合物を再合成するおそれのない有機ハロゲン分解触媒及びその製造方法を提供するためになされたものである。
【0012】
【課題を解決するための手段】
上記の課題を解決するためになされた請求項1の有機ハロゲン分解触媒は、アナターゼ型TiO2粉末に、Pt及び/またはPdを担持させた触媒であって、触媒中の炭素含有量を0.1重量%以下としたことを特徴とするものである。また請求項2の有機ハロゲン分解触媒は、セラミック基材の表面に、アナターゼ型TiO2粉末と、Pt及び/またはPdをコーティングした触媒であって、セラミック基材及び触媒中の炭素含有量を0.1重量%以下としたことを特徴とするものである。
【0013】
また請求項3の有機ハロゲン分解触媒の製造方法は、請求項1記載の有機ハロゲン分解触媒を製造する方法であって、アナターゼ型TiO2粉末を成形した後、その成形体の表面にPt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物を担持させ、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とするものである。また請求項4の有機ハロゲン分解触媒の製造方法は、請求項1記載の有機ハロゲン分解触媒を製造する方法であって、アナターゼ型TiO2粉末と、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物とを混合した後、成形し、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とするものである。触媒成形助剤として、TiO2ゾルを用いることが好ましい。
【0014】
さらに請求項5の有機ハロゲン分解触媒の製造方法は、請求項2記載の有機ハロゲン分解触媒を製造する方法であって、セラミック基材の表面に、アナターゼ型TiO2粉末をコーティングした後、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物を担持させ、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とするものである。また請求項6の有機ハロゲン分解触媒の製造方法は、請求項2記載の有機ハロゲン分解触媒を製造する方法であって、アナターゼ型TiO2粉末と、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物とを混合した後、セラミック基材の表面にコーティングし、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とするものである。触媒コーティング助剤として、TiO2ゾルを用いることが好ましい。
【0015】
本発明の有機ハロゲン分解触媒は、比表面積の大きいアナターゼ型TiO2粉末に活性の高いPt及び/またはPdを担持させたものであるから、250℃以下(好ましくは200℃以上)の低温度域でも有機ハロゲン化合物を分解処理することができる。また触媒中の炭素含有量を0.1重量%以下としたので、触媒活性が低下することがないうえ、残留炭素によってダイオキシン類や臭素化ダイオキシン類などの有機ハロゲン化合物が再合成されることもない。また本発明の製造方法によれば、有機物を含まない原料や助剤を用い、還元を行なうことなく触媒活性を発揮させるようにしたため、炭素含有量を0.1重量%以下とした有機ハロゲン分解触媒を製造することができる。
以下に本発明の好ましい実施形態を示す。
【0016】
【発明の実施の形態】
(第1の実施形態:表面担持)
第1と第2の実施形態は、請求項1の有機ハロゲン分解触媒の製造に関するものである。第1の実施形態では、図1に示すように有機分を含まないアナターゼ型TiO2粉末に、触媒成形助剤として有機分を含まない無機増強剤であるTiO2ゾルを添加して所定形状に成形する。アナターゼ型TiO2粉末を用いるのは比表面積が大きく処理対象となる排ガスとの接触面積が広くなるためであり、その粒径は1〜100μm程度とすることが好ましい。またTiO2ゾルの混合量は、5〜15%程度とすることが好ましい。成形形状は任意であるが、例えばハニカム状、粒状等とすることができる。
【0017】
次にその成形体の表面に、Pt及び/またはPdの塩、あるいはPt及び/またはPdのアミン化合物を担持させる。Ptの塩としては例えば、塩化白金酸、塩化白金酸6水和物を用いることができる。Pdの塩としては例えば、塩化パラジウム、硝酸パラジウムを用いることができる。Ptのアミン化合物としては例えばジニトロジアミン白金(II)、テトラアンミンジクロロ白金、塩化白金酸アンモニウムを用いることができる。Pdのアミン化合物としては例えばジニトロジアンミンパラジウム(II)、ジクロロジアンミンパラジウム、テトラアンミンパラジウム(II)ジクロライドを用いることができる。
【0018】
成形体の表面に上記の塩やアミン化合物を担持させる方法としては、例えば、上記の塩やアミン化合物の溶液に成形体を含浸させ乾燥させる方法、もしくは、単位体積の成形体表面に、所定量の貴金属を含んだ塩やアミン化合物の溶液を流下させ乾燥させる方法を採用することができる。
【0019】
上記のようにして成形体の表面にPt/Pdの塩、あるいはPt/Pdのアミン化合物を担持させたうえ、従来のような還元を行なわず、空中などの酸化雰囲気中で300℃程度に加熱する。この結果、触媒中の炭素含有量を0.1重量%以下とした有機ハロゲン分解触媒を得ることができる。しかもこの有機ハロゲン分解触媒は酸化雰囲気で使用するため、還元を行わなくてもCOやダイオキシン類に対して十分な力を発揮することが確認されている。なお後記する実施例に示すように、触媒中の炭素含有量が0.1重量%を越えるとダイオキシン類等を再合成する可能性が生ずるので好ましくない。
【0020】
(第2の実施形態:プレドープ)
第2の実施形態では図2に示されるように、上記したと同じアナターゼ型TiO2粉末と、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物とを予め均一に混合した後、所定形状に成形する。この場合にも触媒成形助剤として有機分を含まない無機増強剤であるTiO2ゾルを添加し、形状強度を保持させることが好ましい。その後、酸化雰囲気中で加熱することによってPt/Pdの活性を発揮させる。この結果、触媒中の炭素含有量を0.1重量%以下とした有機ハロゲン分解触媒を得ることができる。
【0021】
(第3の実施形態:表面担持)
第3と第4の実施形態は、請求項2の有機ハロゲン分解触媒の製造に関するものである。第3の実施形態では図3に示すように、先ずセラミック基材の表面に、前記したアナターゼ型TiO2粉末をコーティングする。このとき触媒コーティング助剤として、TiO2ゾルを5〜15重量%程度混合することが好ましい。セラミック基材の種類は特に限定されるものではないが、例えば1000℃以上焼成したムライトやコージェライトを用いることができる。
【0022】
その後、第1の実施形態と同様にPt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物を担持させ、酸化雰囲気中で加熱することによって活性を発揮させる。この結果、セラミック表面にコーティングされ、かつ触媒中の炭素含有量を0.1重量%以下とした有機ハロゲン分解触媒を得ることができる。
【0023】
(第4の実施形態:プレドープ)
第4の実施形態では図4に示すように、アナターゼ型TiO2粉末と、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物とを予め混合した後、セラミック基材の表面にコーティングし、酸化雰囲気中で加熱することによって活性を発揮させる。この場合にもTiO2ゾルを5〜15重量%程度混合することにより、コーティング強度を高めることが好ましい。この結果、セラミック表面にコーティングされ、かつ触媒中の炭素含有量を0.1重量%以下としたプレドープ型の有機ハロゲン分解触媒を得ることができる。
【0024】
上記の各実施形態の方法により製造された本発明の有機ハロゲン分解触媒は、250℃以下の低温度域でも活性を発揮することができ、焼却炉の排ガス処理に使用する場合にも、排ガスを加熱する必要がない。また触媒中の炭素含有量を0.1重量%以下としたので、ダイオキシン類などの有機ハロゲンを再合成するおそれがない。さらに還元処理を行わないので、還元用の有機物が残留炭素となって触媒の表面を覆うこともなく、触媒活性の低下が防止される。
【0025】
【実施例】
(実施例1)
実施形態1に記載の方法で製造したPt系の有機ハロゲン分解触媒を直列に接続された8本のガラス管内に充填し、全体を250℃に維持した。この流路内に、その量が微量であるにもかかわらず、比較的毒性の高い化合物として代表的な有機ハロゲン化合物であるダイオキシン類を含有させた試験用ガスを流し、入口、中間(4本目と5本目の間)、出口の3箇所でガスを同時にサンプリングしてダイオキシン類濃度を測定した。SVは触媒中間で4000(h-1)、出口で2000(h-1)になるように流量を設定した。また比較のために、従来法により製造されたPt系の有機ハロゲン分解触媒を用いて同じ条件で実験を行なった。なお、触媒中の炭素含有量は本発明の触媒では0.055重量%であり、従来法により製造された触媒中では0.13%であった。
【0026】
その結果、従来法により製造されたPt系の有機ハロゲン分解触媒を用いたときには、入口で1.86(ngTEQ/m3N)であったダイオキシン類濃度は中間で9.73(ngTEQ/m3N)、出口で13.54(ngTEQ/m3N)であり、有機ハロゲン分解触媒を通すことにより却って増加する傾向が見られた。これは有機ハロゲン分解触媒によりダイオキシン類の再合成が行なわれたことを示している。
【0027】
これに対して、本発明のPt系の有機ハロゲン分解触媒を用いたときには、入口で2.24(ngTEQ/m3N)であったダイオキシン類濃度は中間で1.24(ngTEQ/m3N)、出口で0.15(ngTEQ/m3N)となり、有機ハロゲン分解触媒を通すことによりダイオキシン類が確実に分解処理されたことが確認された。
【0028】
(実施例2)
実施形態2に記載の方法で製造したPd系の有機ハロゲン分解触媒を直列に接続された8本のガラス管内に充填し、他の条件は実施例1と同一として実験を行なった。その結果、従来法により製造されたPd系の有機ハロゲン分解触媒を用いたときには、入口で0.93(ngTEQ/m3N)であったダイオキシン類濃度は中間で2.64(ngTEQ/m3N)、出口で2.48(ngTEQ/m3N)であり、有機ハロゲン分解触媒を通すことによりダイオキシン類の再合成が行なわれる傾向が見られた。
【0029】
これに対して、本発明のPd系の有機ハロゲン分解触媒を用いたときには、入口で1.19(ngTEQ/m3N)であったダイオキシン類濃度は中間で0.16(ngTEQ/m3N)、出口で0.07(ngTEQ/m3N)となり、有機ハロゲン分解触媒を通すことによりダイオキシン類が確実に分解処理されたことが確認された。
【0030】
【発明の効果】
以上に説明したように、本発明の有機ハロゲン分解触媒及びその製造方法によれば、250℃以下の低温度域でも有機ハロゲン化合物を確実に分解処理することができ、しかも有機ハロゲン化合物の中でも、ダイオキシン類を再合成するおそれのない触媒を得ることができる。この触媒は焼却炉の排ガス中のダイオキシン類処理に、好適なものであるが、その他の用途にも適用できることはいうまでもない。
【図面の簡単な説明】
【図1】第1の実施形態を示すブロック図である。
【図2】第2の実施形態を示すブロック図である。
【図3】第3の実施形態を示すブロック図である。
【図4】第4の実施形態を示すブロック図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic halogen decomposition catalyst mainly used for exhaust gas treatment of an incinerator and a method for producing the same.
[0002]
[Prior art]
Measures to reduce organic halogen compounds generated from incinerators for municipal waste and industrial waste include improved combustion conditions and advanced exhaust gas treatment. In general, in order to perform complete oxidative decomposition of an organic substance such as an organic halogen compound by a combustion process, it is necessary to maintain a high temperature of 1000 ° C. or higher. However, in order to avoid damage to the furnace wall, the combustion temperature of the incinerator is usually set to 800 to 900 ° C., and it is not easy to perform complete oxidative decomposition of the organic halogen compound by improving the combustion conditions.
[0003]
In addition, in a stoker furnace where local low-temperature parts, that is, incomplete combustion parts are likely to occur in the furnace, it is necessary to provide a re-combustion part in order to perform complete oxidative decomposition of organic halogen compounds, but this increases the total amount of exhaust gas. In addition, there is a problem of increased running costs due to fuel for reburning.
[0004]
In recent years, research on the effects of organic halogen compounds such as dioxins and brominated dioxins generated in waste incineration and exhaust gas treatment processes on human health and the process of their generation has become active. It is not only generated in the process, but also recombined from unburned carbon remaining without complete combustion and precursors with benzene rings in a wide low temperature range around 200-500 ° C. Yes.
[0005]
Therefore, even if organic halogen compounds such as dioxins and brominated dioxins are reduced in the combustion process, these substances may be re-synthesized at a later stage, which stabilizes the organic halogen compounds in the exhaust gas. In order to maintain a low concentration, it is necessary to remove the organic halogen compound by exhaust gas treatment.
[0006]
Examples of the organic halogen compound removal treatment method by exhaust gas treatment include an adsorption method using activated carbon and a decomposition method using a catalyst. Of these, the adsorption method occupies the mainstream of the organic halogen compound removal treatment method. However, the cost is high and activated carbon on which the organic halogen compound is adsorbed becomes secondary waste, and the subsequent treatment becomes a problem. For this reason, a catalytic decomposition method using an organic halogen decomposition catalyst that does not generate secondary waste is attracting attention.
[0007]
As the organic halogen decomposition catalyst, a base metal catalyst typified by a V 2 O 5 —TiO 2 -based or V 2 O 5 —WO—TiO 2 -based denitration catalyst is mainly used. However, since these catalysts need to be used in the temperature range of 250 to 350 ° C. after the dust collector, it is necessary to reheat the exhaust gas. In recent years, research on noble metal catalysts such as Pt / TiO 2 and Pd / TiO 2 has been conducted. Pt and Pd are the most active noble metals and can exhibit activity even in a low temperature range of 250 ° C. or lower.
[0008]
A conventional general method that can be considered for producing a Pt / TiO 2 -based or Pd / TiO 2 -based organic halogen decomposition catalyst is that an aqueous solution of a salt of Pt and / or Pd is added to TiO 2 powder or a sintered body thereof. In this method, coating or impregnation is performed, thermal decomposition is performed to precipitate Pt and / or Pd, and finally reduction treatment is performed to generate activity. In this case, the catalyst shape is typically a honeycomb type or a pellet type, but in order to maintain the shape strength, an organic binder, an organic titanium compound, an organic noble metal compound, or the like is often mixed into the raw material as an auxiliary agent.
[0009]
Further, as a method of the reduction treatment, a method using water vapor or hydrogen and a method using a reducing agent such as NaBH 4 are conceivable, but the former has a risk of explosion, and the latter is because residual Na lowers the catalytic activity. It is not preferable. For this reason, reduction treatment using an organic substance such as a polyethylene compound is practically performed.
[0010]
Thus, the organic halogen decomposition catalyst manufactured by the conventional method uses the raw material and auxiliary agent which contain organic substance in large quantities, or residual carbon precipitates on the catalyst surface by performing the reduction process using organic substance. However, according to the study by the present inventors, these residual carbons not only cover the surface of the catalyst and reduce the activity, but these residual carbons produce the same effect as unburned carbon, dioxins and bromination It was found that organic halogen compounds such as dioxins could be re-synthesized and increased in reverse.
[0011]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems, can decompose organic halogen compounds even in a low temperature range of 250 ° C. or lower, and does not cause the possibility of re-synthesizing organic halogen compounds such as dioxins and brominated dioxins. The present invention has been made to provide an organic halogen decomposition catalyst and a method for producing the same.
[0012]
[Means for Solving the Problems]
The organohalogen decomposition catalyst according to claim 1, which has been made to solve the above-mentioned problems, is a catalyst in which Pt and / or Pd is supported on anatase TiO 2 powder, and the carbon content in the catalyst is reduced to 0.5. It is characterized by being 1% by weight or less. The organohalogen decomposition catalyst according to claim 2 is a catalyst in which the surface of a ceramic base material is coated with anatase TiO 2 powder and Pt and / or Pd, and the carbon content in the ceramic base material and the catalyst is reduced to 0. .1% by weight or less.
[0013]
The method for producing an organic halogen decomposition catalyst according to claim 3 is a method for producing the organic halogen decomposition catalyst according to claim 1, wherein after anatase-type TiO 2 powder is formed, Pt and / or Alternatively, a salt of Pd or an amine compound of Pt and / or Pd is supported, and the activity is exhibited by heating in an oxidizing atmosphere. The method for producing an organic halogen decomposition catalyst according to claim 4 is a method for producing the organic halogen decomposition catalyst according to claim 1, wherein the anatase TiO 2 powder and a salt of Pt and / or Pd or Pt and / or After mixing with an amine compound of Pd, it is molded, and the activity is exhibited by heating in an oxidizing atmosphere. It is preferable to use a TiO 2 sol as a catalyst forming aid.
[0014]
Furthermore, the method for producing an organohalogen decomposition catalyst according to claim 5 is a method for producing the organohalogen decomposition catalyst according to claim 2, wherein the surface of the ceramic base material is coated with anatase TiO 2 powder, Pt and It is characterized by supporting activity by supporting a salt of Pd or / or an amine compound of Pt and / or Pd and heating in an oxidizing atmosphere. The method for producing an organic halogen decomposition catalyst according to claim 6 is a method for producing the organic halogen decomposition catalyst according to claim 2, wherein the anatase TiO 2 powder and a salt of Pt and / or Pd or Pt and / or After mixing with an amine compound of Pd, the surface of the ceramic base material is coated, and the activity is exhibited by heating in an oxidizing atmosphere. It is preferable to use a TiO 2 sol as a catalyst coating aid.
[0015]
The organohalogen decomposition catalyst of the present invention is such that anatase-type TiO 2 powder having a large specific surface area is loaded with highly active Pt and / or Pd, and therefore a low temperature range of 250 ° C. or lower (preferably 200 ° C. or higher). However, the organic halogen compound can be decomposed. In addition, since the carbon content in the catalyst is 0.1% by weight or less, the catalytic activity does not decrease, and organic halogen compounds such as dioxins and brominated dioxins may be re-synthesized by residual carbon. Absent. Further, according to the production method of the present invention, since the catalytic activity is exhibited without reduction using raw materials and auxiliaries that do not contain organic substances, the organic halogen decomposition with a carbon content of 0.1% by weight or less is performed. A catalyst can be produced.
Preferred embodiments of the present invention are shown below.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment: surface support)
The first and second embodiments relate to the production of the organic halogen decomposition catalyst according to claim 1. In the first embodiment, as shown in FIG. 1, a TiO 2 sol, which is an inorganic enhancer that does not contain an organic component, is added to an anatase-type TiO 2 powder that does not contain an organic component as a catalyst molding aid to obtain a predetermined shape. Mold. The anatase TiO 2 powder is used because the specific surface area is large and the contact area with the exhaust gas to be treated is widened, and the particle size is preferably about 1 to 100 μm. The amount of TiO 2 sol mixed is preferably about 5 to 15%. The forming shape is arbitrary, but may be, for example, a honeycomb shape or a granular shape.
[0017]
Next, a Pt and / or Pd salt or an amine compound of Pt and / or Pd is supported on the surface of the molded body. As the salt of Pt, for example, chloroplatinic acid or chloroplatinic acid hexahydrate can be used. As the salt of Pd, for example, palladium chloride or palladium nitrate can be used. As the amine compound of Pt, for example, dinitrodiamineplatinum (II), tetraamminedichloroplatinum, or ammonium chloroplatinate can be used. As the amine compound of Pd, for example, dinitrodiammine palladium (II), dichlorodiammine palladium, tetraammine palladium (II) dichloride can be used.
[0018]
Examples of the method of supporting the salt or amine compound on the surface of the molded body include, for example, a method of impregnating the molded body in a solution of the salt or amine compound and drying, or a predetermined amount on the surface of the molded body of unit volume. A method of allowing a salt or amine compound solution containing noble metal to flow down and drying can be employed.
[0019]
As described above, a Pt / Pd salt or a Pt / Pd amine compound is supported on the surface of the molded body and heated to about 300 ° C. in an oxidizing atmosphere such as in the air without performing conventional reduction. To do. As a result, an organic halogen decomposition catalyst having a carbon content of 0.1% by weight or less can be obtained. Moreover, since this organohalogen decomposition catalyst is used in an oxidizing atmosphere, it has been confirmed that it exerts sufficient power against CO and dioxins without performing reduction. As shown in the examples described later, if the carbon content in the catalyst exceeds 0.1% by weight, the possibility of re-synthesizing dioxins and the like is not preferable.
[0020]
(Second embodiment: pre-dope)
In the second embodiment, as shown in FIG. 2, the same anatase-type TiO 2 powder as described above and a salt of Pt and / or Pd or an amine compound of Pt and / or Pd are mixed in advance, Mold into a predetermined shape. In this case as well, it is preferable to add a TiO 2 sol, which is an inorganic enhancer that does not contain an organic component, as a catalyst forming aid to maintain the shape strength. Thereafter, the Pt / Pd activity is exhibited by heating in an oxidizing atmosphere. As a result, an organic halogen decomposition catalyst having a carbon content of 0.1% by weight or less can be obtained.
[0021]
(Third embodiment: surface support)
The third and fourth embodiments relate to the production of the organic halogen decomposition catalyst according to claim 2. In the third embodiment, as shown in FIG. 3, the surface of the ceramic substrate is first coated with the anatase TiO 2 powder. At this time, it is preferable to mix about 5 to 15% by weight of TiO 2 sol as a catalyst coating aid. Although the kind of ceramic base material is not specifically limited, For example, mullite and cordierite fired at 1000 ° C. or more can be used.
[0022]
Thereafter, the Pt and / or Pd salt or the amine compound of Pt and / or Pd is supported as in the first embodiment, and the activity is exhibited by heating in an oxidizing atmosphere. As a result, an organic halogen decomposition catalyst coated on the ceramic surface and having a carbon content in the catalyst of 0.1% by weight or less can be obtained.
[0023]
(Fourth embodiment: pre-dope)
In the fourth embodiment, as shown in FIG. 4, after anatase type TiO 2 powder and a salt of Pt and / or Pd or an amine compound of Pt and / or Pd are mixed in advance, the surface of the ceramic substrate is coated. Then, the activity is exhibited by heating in an oxidizing atmosphere. Also in this case, it is preferable to increase the coating strength by mixing about 5 to 15% by weight of TiO 2 sol. As a result, it is possible to obtain a pre-doped type organic halogen decomposition catalyst which is coated on the ceramic surface and has a carbon content in the catalyst of 0.1% by weight or less.
[0024]
The organohalogen decomposition catalyst of the present invention produced by the method of each of the above embodiments can exhibit activity even in a low temperature range of 250 ° C. or lower, and even when used for exhaust gas treatment of an incinerator, There is no need to heat. In addition, since the carbon content in the catalyst is 0.1% by weight or less, there is no possibility of re-synthesizing organic halogens such as dioxins. Further, since the reduction treatment is not performed, the organic substance for reduction becomes residual carbon and does not cover the surface of the catalyst, thereby preventing a decrease in catalyst activity.
[0025]
【Example】
Example 1
The Pt-based organohalogen decomposition catalyst produced by the method described in Embodiment 1 was filled in eight glass tubes connected in series, and the whole was maintained at 250 ° C. A test gas containing dioxins, which are typical organic halogen compounds as a relatively highly toxic compound, is allowed to flow into this flow path, although the amount is very small. The gas was sampled at three outlets at the same time, and the dioxins concentration was measured. The flow rate of SV was set to 4000 (h -1 ) in the middle of the catalyst and 2000 (h -1 ) at the outlet. For comparison, an experiment was performed under the same conditions using a Pt-based organic halogen decomposition catalyst produced by a conventional method. The carbon content in the catalyst was 0.055% by weight in the catalyst of the present invention, and 0.13% in the catalyst produced by the conventional method.
[0026]
As a result, when the Pt-based organohalogen decomposition catalyst produced by the conventional method was used, the dioxin concentration which was 1.86 (ngTEQ / m 3 N) at the inlet was 9.73 (ngTEQ / m 3 ) in the middle. N) and 13.54 (ngTEQ / m 3 N) at the outlet, and a tendency to increase by passing through an organic halogen decomposition catalyst was observed. This indicates that dioxins were re-synthesized with an organic halogen decomposition catalyst.
[0027]
In contrast, when using the Pt-based organic halogen decomposition catalyst of the present invention, the inlet at 2.24 (ngTEQ / m 3 N) in a dioxins concentration in the middle 1.24 (ngTEQ / m 3 N ) And 0.15 (ngTEQ / m 3 N) at the outlet, and it was confirmed that the dioxins were reliably decomposed by passing the organic halogen decomposition catalyst.
[0028]
(Example 2)
The experiment was conducted under the same conditions as in Example 1 except that the Pd-based organic halogen decomposition catalyst produced by the method described in Embodiment 2 was filled in eight glass tubes connected in series. As a result, when the Pd-based organohalogen decomposition catalyst produced by the conventional method was used, the dioxin concentration which was 0.93 (ngTEQ / m 3 N) at the inlet was 2.64 (ngTEQ / m 3 ) in the middle. N) and 2.48 (ngTEQ / m 3 N) at the outlet, and dioxins tended to be re-synthesized by passing through an organic halogen decomposition catalyst.
[0029]
In contrast, when the Pd-based organohalogen decomposition catalyst of the present invention was used, the dioxin concentration that was 1.19 (ngTEQ / m 3 N) at the inlet was 0.16 (ngTEQ / m 3 N) in the middle. ) And 0.07 (ngTEQ / m 3 N) at the outlet, and it was confirmed that the dioxins were reliably decomposed by passing the organic halogen decomposition catalyst.
[0030]
【The invention's effect】
As described above, according to the organic halogen decomposition catalyst and the production method thereof of the present invention, the organic halogen compound can be reliably decomposed even in a low temperature range of 250 ° C. or lower, and among the organic halogen compounds, A catalyst that does not have the risk of re-synthesizing dioxins can be obtained. This catalyst is suitable for treating dioxins in exhaust gas from an incinerator, but it goes without saying that it can be applied to other applications.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a first embodiment.
FIG. 2 is a block diagram showing a second embodiment.
FIG. 3 is a block diagram showing a third embodiment.
FIG. 4 is a block diagram showing a fourth embodiment.

Claims (8)

アナターゼ型TiO2粉末に、Pt及び/またはPdを担持させた触媒であって、触媒中の炭素含有量を0.1重量%以下としたことを特徴とする有機ハロゲン分解触媒。An organic halogen decomposition catalyst, which is a catalyst in which Pt and / or Pd is supported on anatase-type TiO 2 powder, wherein the carbon content in the catalyst is 0.1% by weight or less. セラミック基材の表面に、アナターゼ型TiO2粉末と、Pt及び/またはPdをコーティングした触媒であって、セラミック基材及び触媒中の炭素含有量を0.1重量%以下としたことを特徴とする有機ハロゲン分解触媒。A catalyst in which the surface of a ceramic base material is coated with anatase TiO 2 powder and Pt and / or Pd, wherein the carbon content in the ceramic base material and the catalyst is 0.1% by weight or less. Organohalogen decomposition catalyst. 請求項1記載の有機ハロゲン分解触媒を製造する方法であって、アナターゼ型TiO2粉末を成形した後、その成形体の表面にPt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物を担持させ、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とする有機ハロゲン分解触媒の製造方法。The method for producing an organohalogen decomposition catalyst according to claim 1, wherein after anatase-type TiO 2 powder is molded, a salt of Pt and / or Pd or an amine compound of Pt and / or Pd is formed on the surface of the molded body. A method for producing an organic halogen decomposition catalyst, which is supported and heated in an oxidizing atmosphere to exhibit its activity. 請求項1記載の有機ハロゲン分解触媒を製造する方法であって、アナターゼ型TiO2粉末と、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物とを混合した後、成形し、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とする有機ハロゲン分解触媒の製造方法。A method for producing an organohalogen decomposition catalyst according to claim 1, wherein anatase-type TiO 2 powder and a salt of Pt and / or Pd or an amine compound of Pt and / or Pd are mixed, molded, and oxidized. A method for producing an organic halogen decomposition catalyst, wherein the activity is exhibited by heating in an atmosphere. 請求項2記載の有機ハロゲン分解触媒を製造する方法であって、セラミック基材の表面に、アナターゼ型TiO2粉末をコーティングした後、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物を担持させ、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とする有機ハロゲン分解触媒の製造方法。A method for producing an organohalogen decomposition catalyst according to claim 2, wherein the surface of the ceramic substrate is coated with anatase TiO 2 powder, and then a salt of Pt and / or Pd or an amine compound of Pt and / or Pd. A method for producing an organic halogen decomposition catalyst, wherein the catalyst is supported and heated in an oxidizing atmosphere to exhibit its activity. 請求項2記載の有機ハロゲン分解触媒を製造する方法であって、アナターゼ型TiO2粉末と、Pt及び/またはPdの塩あるいはPt及び/またはPdのアミン化合物とを混合した後、セラミック基材の表面にコーティングし、酸化雰囲気中で加熱することによって活性を発揮させることを特徴とする有機ハロゲン分解触媒の製造方法。A method for producing an organohalogen decomposition catalyst according to claim 2, wherein the anatase-type TiO 2 powder is mixed with a Pt and / or Pd salt or a Pt and / or Pd amine compound, A method for producing an organic halogen decomposition catalyst, wherein the surface is coated and heated in an oxidizing atmosphere to exhibit its activity. 触媒成形助剤として、TiO2ゾルを用いる請求項3または4記載の有機ハロゲン分解触媒の製造方法。The method for producing an organic halogen decomposition catalyst according to claim 3 or 4, wherein a TiO 2 sol is used as a catalyst forming aid. 触媒コーティング助剤として、TiO2ゾルを用いる請求項5または6記載の有機ハロゲン分解触媒の製造方法。The method for producing an organic halogen decomposition catalyst according to claim 5 or 6, wherein TiO 2 sol is used as a catalyst coating aid.
JP2002018401A 2002-01-28 2002-01-28 Organohalogen decomposition catalyst and process for producing the same Expired - Lifetime JP4014412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018401A JP4014412B2 (en) 2002-01-28 2002-01-28 Organohalogen decomposition catalyst and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018401A JP4014412B2 (en) 2002-01-28 2002-01-28 Organohalogen decomposition catalyst and process for producing the same

Publications (2)

Publication Number Publication Date
JP2003210983A JP2003210983A (en) 2003-07-29
JP4014412B2 true JP4014412B2 (en) 2007-11-28

Family

ID=27653766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018401A Expired - Lifetime JP4014412B2 (en) 2002-01-28 2002-01-28 Organohalogen decomposition catalyst and process for producing the same

Country Status (1)

Country Link
JP (1) JP4014412B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857847A (en) * 2015-05-27 2015-08-26 成都虹华环保科技股份有限公司 Organic waste gas treatment system based on photocatalysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104857847A (en) * 2015-05-27 2015-08-26 成都虹华环保科技股份有限公司 Organic waste gas treatment system based on photocatalysis

Also Published As

Publication number Publication date
JP2003210983A (en) 2003-07-29

Similar Documents

Publication Publication Date Title
KR100686381B1 (en) Vanadium/titania-based catalysts comprising of nmo(natural manganese ore) for removing nitrogen oxides and dioxine at wide operation temperature region, and using thereof
KR20110033045A (en) Process and catalyst system for scr of nox
JP2009045586A (en) Catalyst and system for treating exhaust gas
JPH09507656A (en) Catalyst for reducing nitrogen oxides in fluidized medium and method for producing the same
JPH04118027A (en) Treatment of waste gas
US20180250665A1 (en) Method for preparing a catalyst-containing ceramic filter for off-gas or exhaust gas cleaning
JP2001293480A (en) Waste water treating method and waste water treating device using the same
CN1165374C (en) Adsorbent having capability of decomposing organic halogen compound and method for producing the same
WO1996020786A1 (en) Catalyst for purifying fumigation exhaust gas and purification method of fumigation exhaust gas
JP3793283B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JPH05146634A (en) Ammonia decomposing catalyst having denitration function and purification of exhaust gas
JP4014412B2 (en) Organohalogen decomposition catalyst and process for producing the same
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
CN1152742C (en) Method for preparing decomposition catalyst for organic halide and method for manufacturing filter for use in decomposing organic halide
KR101329828B1 (en) A tungsten/titania-based catalyst and a method of preparing the same
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
WO2004096436A1 (en) Catalyst material comprising transition metal oxide
JP2003265927A (en) METHOD OF TREATING EXHAUST GAS AND CATALYST BODY USEFUL FOR DECOMPOSING PAHs
JP4012456B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP4508459B2 (en) Method for producing organohalogen compound decomposition catalyst and method for producing organohalogen compound decomposition filter
JPH07213908A (en) Catalyst for purifying exhaust gas and method therefor
KR100862272B1 (en) Catalyst for Removal of Carbon Monoxide and Preparation Method Thereof
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH0671187A (en) Method for producing exhaust gas purifying catalyst and for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4014412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term