JP4012796B2 - Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same - Google Patents

Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same Download PDF

Info

Publication number
JP4012796B2
JP4012796B2 JP2002284636A JP2002284636A JP4012796B2 JP 4012796 B2 JP4012796 B2 JP 4012796B2 JP 2002284636 A JP2002284636 A JP 2002284636A JP 2002284636 A JP2002284636 A JP 2002284636A JP 4012796 B2 JP4012796 B2 JP 4012796B2
Authority
JP
Japan
Prior art keywords
conductor
layer
signal
frequency
signal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002284636A
Other languages
Japanese (ja)
Other versions
JP2004120659A (en
Inventor
宏行 田中
武宏 奥道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002284636A priority Critical patent/JP4012796B2/en
Priority to US10/603,256 priority patent/US6933450B2/en
Publication of JP2004120659A publication Critical patent/JP2004120659A/en
Application granted granted Critical
Publication of JP4012796B2 publication Critical patent/JP4012796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はマイクロ波帯やミリ波等の高周波に使用される高周波信号伝送用積層構造およびそれを用いた高周波半導体パッケージに関し、特に高周波伝送特性が良好となるように適用した高周波信号伝送用積層構造およびそれを用いた高周波半導体パッケージに関する。
【0002】
【従来の技術】
上記高周波信号伝送用積層構造として、従来、図10に示すような構造が知られている(例えば、特許文献1を参照)。図10に示す高周波信号伝送用積層構造において、1は誘電体層であり、これらを積層することで積層基板としている。11および21は信号配線導体であり、13および23の信号配線接続導体を介して、14および24の表層信号用貫通導体にそれぞれ接続している。また、15および25は表層接地用貫通導体であり、12および22の表面接地導体に接続している。表面接地導体12,22には16および26に示す矩形状の表面接地導体非形成領域が形成されている。内層には34の内層信号用貫通導体とそれらを接続する33の信号用貫通導体接続導体が形成され、表層信号用貫通導体14,24との間を接続しており、32の内層接地導体の内側には36に示す矩形状の内層接地導体非形成領域が形成され、内層接地導体非形成領域36の外周近傍に35に示す内層接地用貫通導体が形成されている。そして、表層信号用貫通導体14,24と内層信号用貫通導体34ならびに表面接地導体非形成領域16,26と内層接地導体非形成領域36とは中心を共有して重ねた、いわゆる同軸線路構造をなし、高周波信号伝送用積層構造としていた。
【0003】
【特許文献1】
特許第3008939号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来の高周波信号伝送用積層構造においては、前記信号配線接続導体の長さが長く、ここを伝搬する高周波信号から見てグランドまでの距離が遠いためにこの部分がインダクタンスとして働くこととなり、高周波伝送特性が劣化するという問題があった。
【0005】
例えば、前記高周波信号伝送用積層構造の全厚みを4mmとし、また前記最上層および最下層の信号配線導体の直下または直上の内層接地導体と重ならず、前記表層信号用貫通導体に至るまでの最上層および最下層の信号配線接続導体の長さ・幅をそれぞれL1=0.449mm・W1=0.150mm、L2=0.449mm・W2=0.150mmとし、また積層基板の比誘電率をεr=8、また表層信号用貫通導体と内層信号用貫通導体を円柱形とし、その直径をそれぞれ同じ0.104mm、また適用する特性インピーダンスをZ0=50Ωとしたとき、信号配線導体11・21の長さを0.500mmとして、この間の高周波伝送特性を電磁界シミュレーションにて抽出すると、図11に線図で示すような周波数特性の特性曲線が得られた。
【0006】
図11において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量を評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。図11における特性曲線は、周波数が高くなるにつれて反射係数が大きくなることを示しており、信号配線接続導体13・23のインダクタンスの影響が現れ、高周波信号の伝送に劣化を及ぼしていることがわかる。
【0007】
この例では、反射係数が23.3GHzで−10dBを超えて伝送特性が劣化しているが、前記高周波信号伝送用積層構造の全厚が変化した場合には、信号配線導体11・21の間の電気長が変化するために、定在波が生じる周波数が変化することとなるが、その定在波による反射量は信号配線接続導体13・23のインダクタンスを合成したインダクタンスによる反射量と等しくなり、すなわち、包絡線をたどることとなる。この包絡線は、上記の場合においては約20GHzで−10dBを超え、使用する周波数帯域の最高周波数が20GHz以上にある場合に問題となる。
【0008】
なお、上記高周波信号伝送用積層構造においては、使用する周波数帯域の最高周波数の管内波長の1/8以上の厚みを有していることから、積層基板の厚み方向の信号の伝搬は分布定数回路として振舞うので、高周波伝送線路として機能させる必要があるために、内層接地導体の内側に矩形状の内層接地導体非形成領域を形成し、内層接地導体非形成領域の外周近傍に内層接地用貫通導体が形成したことで、高周波伝送線路として構成した。
【0009】
本発明は、上記従来技術における問題点に鑑みてなされたものであり、前記インダクタンスを低減し、高周波伝送特性を改善するための条件を満たした高周波信号伝送用積層構造およびそれを用いた高周波半導体パッケージを提供することにある。
【0010】
【課題を解決するための手段】
本発明の請求項1に係る高周波信号伝送用積層構造は、複数の誘電体層を積層して成る積層基板の最上層および最下層のそれぞれに形成した信号配線導体が、互いに一端から逆方向に延びる関係にあり、これら各信号配線導体の一端と、前記最上層および前記最下層の誘電体層を上下に貫く表層信号用貫通導体とを、信号配線接続導体を介して接続し、前記最上層および前記最下層を除く内層の各層に、平面形状が2軸対称形状を成す内層接地導体非形成領域と、内層接地導体とを形成し、前記内層接地導体非形成領域には、前記内層の各層を上下に貫いて前記最上層および前記最下層にそれぞれ形成された前記表層信号用貫通導体に電気的に接続された内層信号用貫通導体に接続する信号用貫通導体接続導体を形成し、前記内層接地導体非形成領域の外周部に、前記内層の各層を上下に貫く内層接地用貫通導体を形成して前記内層接地導体間を接続して成るとともに、前記最上層および前記最下層のそれぞれに形成した信号配線接続導体が下記式を満足し、前記表層信号用貫通導体の直径を前記内層信号用貫通導体の直径よりも大きくすることによって、前記信号配線接続導体の長さを、前記表層信号用貫通導体の直径が前記内層信号用貫通導体の直径と同じ場合よりも短くしたことを特徴とする。
【0011】
【数2】

Figure 0004012796
【0012】
(ただし、L1:最上層に形成された信号配線接続導体おいて、その直下の内層接地導体と重ならない長さ、L2:最下層に形成された信号配線接続導体おいて、その直上の内層接地導体と重ならない長さ、W1:L1の範囲における信号配線接続導体の幅、W2:L2の範囲における信号配線接続導体の幅、εr:積層基板の比誘電率、fmax(単位:GHz):使用する周波数帯域の最高周波数、Z0:適用する特性インピーダンス)
【0013】
従来、信号配線接続導体の長さが長く、ここを伝搬する高周波信号から見てグランドまでの距離が遠いために、この部分がインダクタンスとして働くことにより高周波信号特性の劣化が生じる場合と比較して、条件式を満たすことにより、確実に信号配線接続導体のインダクタンスを小さくすることができるので、良好な高周波伝送特性とすることができる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0014】
上記条件式から明らかなように、L1/W1、L2/W2を小さくし、またεrを大きくすると、fmaxを高周波側に上げることができることがわかる。また、特定の特性インピーダンスで構造を成す場合において、比誘電率が小さいほど信号配線接続導体の長さは短くなるので、同様にfmaxを高周波側に上げることができる。また、内層信号用貫通導体の径を小さくするほど、適用する特性インピーダンスを得るための内層接地導体非形成領域は小さくなり、信号配線接続導体の長さが短くなるので、同様にfmaxを高周波側に上げることができる。
【0015】
請求項2の高周波信号伝送用積層構造によれば、前記積層基板の上面および/または下面に表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体の全体を前記信号配線接続導体における前記信号配線導体とは反対側の端よりも前記信号配線導体の側に配置することを特徴とする。
【0016】
これにより、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を少なくすることができる構造となる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0017】
請求項3の高周波信号伝送用積層構造によれば、前記積層基板の上面および/または下面に表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体が前記信号配線導体を取囲むことを特徴とする。
【0018】
これにより、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を少なくすることができる構造となる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0019】
請求項4の高周波パッケージによれば、請求項1に記載の高周波信号伝送用積層構造を備えた前記積層基板の上面に形成した信号配線導体に、高周波半導体素子を接続させて成ることを特徴とする。例えば、積層基板の上面に高周波半導体素子を収容するように枠体および蓋体を形成し、積層基板の下面の信号配線導体の信号配線接続導体と反対側に外部との信号入出力のための入出力信号配線接続導体を形成したことにより、高周波伝送特性が良好な高周波半導体パッケージとなる。
【0020】
【発明の実施の形態】
以下、模式的に示した図面に基づいて本発明を詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の主旨を逸脱しない範囲で変更・改良を施すことは何ら差し支えない。
【0021】
図1は参考例に係る、第1の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA―A’断面図である。第1の高周波信号伝送用積層構造は、複数の誘電体層を積層して成る積層基板が使用する周波数帯域の最高周波数の管内波長の1/8以上の厚みを有し、前記積層基板の最上層と最下層を除いた内層の各誘電体層は使用する最高周波数の管内波長の半分より小さい厚みとして成し、積層基板の上面および下面に互いに逆方向に延びる信号配線導体を形成し、信号配線導体の一端は誘電体層の最上層と最下層に設けられた各層を上下に貫く表層信号用貫通導体との間をそれぞれ信号配線接続導体を介して接続し、積層基板の上面および下面に表層信号用貫通導体および信号配線接続導体を取囲む状態で信号配線導体の両側の所定幅を除いて略全面に表面接地導体を形成し、内層の各層には内層接地導体を矩形状や円形状や楕円形状等の2軸対称形状に設けた内層接地導体非形成領域を除いて略全面に形成し、これらの内層接地導体非形成領域は互いに上下に重なり合うように配置し、内層接地導体非形成領域の内側には誘電体層の内層の各層を上下に貫く内層信号用貫通導体のそれぞれを接続する信号用貫通導体接続導体を形成するとともに、使用する最高周波数の管内波長の半分よりも短い間隔をあけて内層接地導体非形成領域の外周近傍に内層の各層を上下に貫く複数の内層接地用貫通導体ならびに表面接地導体と内層接地導体との間を上下に貫く複数の表面接地用貫通導体を配設して内層接地導体間ならびに表面接地導体と内層接地導体との間をそれぞれ接続することにより内層部に電磁遮蔽空間を形成し、表層信号用貫通導体と内層信号用貫通導体との間を信号用貫通導体接続導体を介して接続することにより積層基板の上下面の間を電気的に接続する積層構造において、前記最上層および最下層の信号配線導体の直下または直上の内層接地導体と重ならず、前記表層信号用貫通導体に至るまでの最上層および最下層の信号配線接続導体の長さ・幅をそれぞれL1・W1、L2・W2とし、また、積層基板の比誘電率をεrとし、前記積層基板また使用する周波数帯域の最高周波数をfmax(単位:GHz)とし、また適用する特性インピーダンスをZ0としたとき、使用するfmaxに応じて、下記条件式に当てはめた(条件を満たすように、L1・W1、L2・W2、εrを設定した)。
【0022】
【数3】
Figure 0004012796
【0023】
(ただし、L1:最上層に形成された信号配線接続導体おいて、その直下の内層接地導体と重ならない長さ、L2:最下層に形成された信号配線接続導体おいて、その直上の内層接地導体と重ならない長さ、W1:L1の範囲における信号配線接続導体の幅、W2:L2の範囲における信号配線接続導体の幅、εr:積層基板の比誘電率、fmax(単位:GHz):使用する周波数帯域の最高周波数、Z0:適用する特性インピーダンス)
【0024】
すなわち、図1において、1は誘電体層でありそれぞれを積層することで積層板としている。11および21は信号配線導体であり13ならびに23の信号配線接続導体を介して14ならびに24の表層信号用貫通導体にそれぞれ接続している。また、15および25は表層接地用貫通導体であり12ならびに22の表面接地導体に接続している。表面接地導体12・22には16ならびに26に示す矩形状の表面接地導体非形成領域が形成されている。内層には34の内層信号用貫通導体とそれらを接続する33の信号用貫通導体接続導体が形成され、表層信号用貫通導体14・24との間を接続しており、32の内層接地導体の内側には36に示す矩形状の内層接地導体非形成領域が形成され、内層接地導体非形成領域36の外周近傍に35に示す内層接地用貫通導体が形成されている。そして、表面接地導体非形成領域16・26と内層接地導体非形成領域36とはそれぞれ上下に重ねて配置しており、表層信号用貫通導体14・24の間を内層信号用貫通導体34および信号用貫通導体接続導体33により接続するように配置する。
【0025】
これにより、従来、信号配線接続導体の長さが長く、ここを伝搬する高周波信号から見てグランドまでの距離が遠いためにこの部分がインダクタンスとして働くことにより高周波信号特性の劣化が生じる場合と比較して、上記条件式を満たすことにより、確実に信号配線接続導体のインダクタンスを小さくすることができるために、良好な高周波伝送特性とすることができる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0026】
ところで、上記条件式については、以下に述べる方法で良好な一致を得ることを確認した。まず、図1に示す高周波信号伝送用積層構造において、L=L1=L2、W=W1=W2、εrの値を変化させて、電磁界シュミレーションにより、片側の信号配線接続導体部のインダクタンスを算出し、図6に示した。図6において、菱形点は電磁界シュミレーションにより算出された各L・W・εrとインダクタンスの関係を示しており、またこの関係に良好に一致する特性曲線を得た。ここで、インダクタンスは最上層と最下層の信号配線接続導体部の両個所に存在するので、それぞれのインダクタンスをLu・Ldとしたときに、高周波信号伝送用積層構造としてのリアクタンスはω(Lu+Ld)(ωは角周波数)となることから、良好な高周波特性を維持するためには、ω(Lu+Ld)≦2Z0/3(Z0は適用する特性インピーダンス)とすればよい。
【0027】
次に、図2は他の参考例に係る、第2の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA―A’断面図である。第2の高周波信号伝送用積層構造は、上記第1の高周波信号伝送用積層構造において、前記積層基板の上面および/または下面に表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体の全体を前記信号配線接続導体における前記信号配線導体とは反対側の端よりも前記信号配線導体の側に配置した。
【0028】
図2において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11・21は信号配線導体、13・23は信号配線接続導体、14・24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、図2は、誘電体層1の上面および下面において、表層接地導体非形成領域16・26と信号配線導体11・21に対し所定間隔を有する表層接地導体12・22を形成するとともに、表層接地導体12・22の全体を信号配線接続導体13・23における信号配線導体11・21とは反対側の端よりも信号配線導体11・21の側に配置した様子を示している。
【0029】
これにより、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を少なくすることができる構造となる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0030】
次に、図3は他の参考例に係る、第3の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA―A’断面図である。第3の高周波信号伝送用積層構造は、上記第1乃至第2の高周波信号伝送用積層構造において、前記積層基板の上面および/または下面に表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体が前記信号配線導体を取囲む構造とした。
【0031】
図3において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11・21は信号配線導体、13・23は信号配線接続導体、14・24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、図3は、誘電体層1の上面および下面において、表層接地導体非形成領域16・26と信号配線導体11・21に対し所定間隔を有する表層接地導体12・22を形成するとともに、表層接地導体12・22が信号配線導体11・21を取囲む構造とした。
【0032】
これにより、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を少なくすることができる構造となる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0033】
また、上記高周波伝送用積層構造を高周波半導体パッケージに適用が可能である。すなわち、上記積層基板の上面に高周波半導体素子を収容するように枠体および蓋体を形成し、積層基板の下面の信号配線導体の信号配線接続導体と反対側に外部との信号入出力のための入出力信号配線接続導体を形成することにより、高周波の伝送特性が良好な高周波半導体パッケージとなる。
【0034】
このような周波半導体パッケージにおいて、誘電体基板としては、例えばアルミナやムライト、窒化アルミ等のセラミックス材料、いわゆるガラセラ(ガラス+セラミック)材料が広く用いられ、信号配線導体や接地導体といった導体パターンは、高周波配線導体用の金属材料、例えば、Cuなどの単体金属やMoMn+Ni+Au、W+Ni+Au、Cr+Cu、Cr+Cu+Ni+Au、Ta +NiCr+Au、Ti+Pd+Au、NiCr+Pd+Auなどの合金を用いて厚膜印刷法あるいは各種の薄膜形成方法やメッキ処理法などにより形成される。また、その厚みや幅も伝送される高周波信号の周波数や使用する特性インピーダンスなどに応じて誘電体の誘電率や厚みとともに設定される。また、枠体や蓋体に金属を用いる場合には、Fe−Ni−CoやFe−Ni42アロイ等のFe−Ni合金・無酸素銅・アルミニウム・ステンレス・Cu−W合金・Cu−Mo合金などから成る材料を用い、金属構造物間の接合には、ハンダ・AuSnロウやAuGeロウ等の高融点金属ロウ・シームウェルド(溶接)等により取着することによって気密封止し、また、誘電体基板と金属構造物とは、AgCuロウ・AuSnロウ・AuGeロウ等の高融点金属ロウにより接合することによって、半導体素子を収容することで良好な伝送特性を有する高周波半導体パッケージを提供できる。
【0035】
【実施例】
次に、本発明の高周波信号伝送用積層構造およびそれを用いた高周波半導体パッケージについて具体例を説明する。
【0036】
〔例1〕
まず、参考例に係る第3の高周波信号伝送用積層構造を示す図3と略同様の構成にて、比誘電率が8で厚みが0.2mmの誘電体層を最上層と最下層に、そして他は0.6mmの誘電体層を6層積層して積層板とし、信号配線導体11・21の幅を0.176mmで表面接地導体12・22と0.1mmの間隔をあけて形成し、信号配線接続導体13・23の幅を0.15mmで信号配線導体11・21と表面信号用貫通導体14・24までの距離を0.265mmにて形成し、表層信号用貫通導体14・24および内層信号用貫通導体34を直径0.07mmの円形状に形成し、信号用貫通導体接続導体を直径0.13mmの円形状とし、表面接地導体非形成領域16・26および内層接地導体非形成領域36は長辺が1mmで短辺が0.6mmの矩形状に、表層接地用貫通導体15・25および内層接地用貫通導体35は直径0.1mmの円形状にて表層接地導体非形成領域16・26ならびに内層接地導体非形成領域36の外周より中心が0.08mmだけ離れた位置の外周上に8箇所に配置することで構成し、そして、8層間の表層信号用貫通導体14・24および内層信号用貫通導体34を一直線に接続することにより、周波信号伝送用積層構造の試料Aを得た。
【0037】
また、比較例として、高周波信号伝送用積層構造を示す図10と略同様の構成にて、比誘電率が8で厚みが0.2mmの誘電体層を最上層と最下層に、そして他は0.6mmの誘電体層を6層積層して積層板とし、信号配線導体11・21の幅を0.176mmで表面接地導体12・22と0.1mmの間隔をあけて形成し、信号配線接続導体13・23の幅を0.15mmで信号配線導体11・21と表面信号用貫通導体14・24までの距離を0.449mmにて形成し、表層信号用貫通導体14・24および内層信号用貫通導体34を直径0.102mmの円形状に形成し、信号用貫通導体接続導体を直径0.162mmの円形状とし、表面接地導体非形成領域16・26および内層接地導体非形成領域36は一辺が1mmの正方形状に、表層接地用貫通導体15・25および内層接地用貫通導体35は直径0.1mmの円形状にて表層接地導体非形成領域16・26ならびに内層接地導体非形成領域36の外周より中心が0.08mmだけ離れた位置の外周上に8箇所に配置することで構成し、そして、8層間の表層信号用貫通導体14・24および内層信号用貫通導体34を一直線に接続することにより、従来例の高周波信号伝送用積層構造の試料Zを得た。
【0038】
そして、これらの試料A・Zについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図7に線図で示すような周波数特性の特性曲線が得られた。図7において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量を評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したA・Zは各々試料A・Zの特性曲線であることを示している。
【0039】
この結果から、料Aは、従来例の試料Zに比べ、より高周波において反射が小さく、良好な電気的特性を有する高周波伝送用積層構造であることが分かる。なぜなら、条件式に、試料Aと試料Zの値をそれぞれ代入し、fmaxの値を求めると、試料Aについては35GHz、試料Zについては21.5GHzとなり、適用可能な周波数に試料Aの方が高いためである。
【0040】
〔例2〕
まず、他の参考例に係る第3の高周波信号伝送用積層構造を示す図4と略同様の構成にて、比誘電率が8で厚みが0.2mmの誘電体層を最上層と最下層に、そして他は0.6mmの誘電体層を6層積層して積層板とし、信号配線導体11・21の幅を0.176mmで表面接地導体12・22と0.1mmの間隔をあけて形成し、信号配線接続導体13・23の幅を0.25mmで信号配線導体11・21と表面信号用貫通導体14・24までの距離を0.449mmにて形成し、表層信号用貫通導体14・24および内層信号用貫通導体34を直径0.102mmの円形状に形成し、信号用貫通導体接続導体を直径0.162mmの円形状とし、表面接地導体非形成領域16・26および内層接地導体非形成領域36は一辺が1mmの正方形状に、表層接地用貫通導体15・25および内層接地用貫通導体35は直径0.1mmの円形状にて表層接地導体非形成領域16・26ならびに内層接地導体非形成領域36の外周より中心が0.08mmだけ離れた位置の外周上に8箇所に配置することで構成し、そして、8層間の表層信号用貫通導体14・24および内層信号用貫通導体34を一直線に接続することにより、周波信号伝送用積層構造の試料Bを得た。
【0041】
そして、この試料Bと〔例1〕で示した試料Zについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図8に線図で示すような周波数特性の特性曲線が得られた。図8において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量を評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したB・Zは各々試料B・Zの特性曲線であることを示している。
【0042】
この結果から、料Bは、従来例の試料Zに比べ、より高周波において反射が小さく、良好な電気的特性を有する高周波伝送用積層構造であることが分かる。なぜなら、上記条件式に、試料と試料Zの値をそれぞれ代入し、fmaxの値を求めると、試料Bについては34.3GHz、試料Zについては21.5GHzとなり、適用可能な周波数に試料Bの方が高いためである。
【0043】
〔例3〕
まず、本発明の請求項1乃至3に係る周波信号伝送用積層構造を示す図5と略同様の構成にて、比誘電率が8で厚みが0.2mmの誘電体層を最上層と最下層に、そして他は0.6mmの誘電体層を6層積層して積層板とし、信号配線導体11・21の幅を0.176mmで表面接地導体12・22と0.1mmの間隔をあけて形成し、信号配線接続導体13・23の幅を0.15mmで、表層信号用貫通導体14・24を直径0.240mmの円形状に形成し信号配線導体11・21と表面信号用貫通導体14・24までの距離を0.311mmとなる位置に表層信号用貫通導体14・24を配置し、内層信号用貫通導体34を直径0.102mmの円形状に形成し、信号用貫通導体接続導体を直径0.162mmの円形状とし、表面接地導体非形成領域16・26および内層接地導体非形成領域36は一辺が1mmの正方形状に、表層接地用貫通導体15・25および内層接地用貫通導体35は直径0.1mmの円形状にて表層接地導体非形成領域16・26ならびに内層接地導体非形成領域36の外周より中心が0.08mmだけ離れた位置の外周上に8箇所に配置することで構成し、そして、8層間の表層信号用貫通導体14・24および内層信号用貫通導体34を重なるように接続することにより、本発明の高周波信号伝送用積層構造の試料Cを得た。
【0044】
そして、この試料Cと〔例1〕で示した試料Zについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図9に線図で示すような周波数特性の特性曲線が得られた。図9において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量を評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したC・Zは各々試料C・Zの特性曲線であることを示している。
【0045】
この結果から、本発明の高周波信号伝送用積層構造である試料Cは、従来例の試料Zに比べ、より高周波において反射が小さく、良好な電気的特性を有する高周波伝送用積層構造であることが分かる。なぜなら、条件式に、試料Cと試料Zの値をそれぞれ代入し、fmaxの値を求めると、試料Cについては29.4GHz、試料Zについては21.5GHzとなり、適用可能な周波数に試料Cの方が高いためである。
【0046】
なお、以上はあくまで本発明の実施の形態の例示であって、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を加えることは何ら差し支えない。
【0047】
【発明の効果】
以上のように、本発明の請求項1に係る高周波信号伝送用積層構造によれば、複数の誘電体層を積層して成る積層基板の最上層および最下層のそれぞれに形成した信号配線導体が、互いに一端から逆方向に延びる関係にあり、これら各信号配線導体の一端と、前記最上層および前記最下層の誘電体層を上下に貫く表層信号用貫通導体とを、信号配線接続導体を介して接続し、前記最上層および前記最下層を除く内層の各層に、平面形状が2軸対称形状を成す内層接地導体非形成領域と、内層接地導体とを形成し、前記内層接地非形成領域には、前記内層の各層を上下に貫いて前記最上層および前記最下層にそれぞれ形成された前記表層信号用貫通導体に電気的に接続された内層信号用貫通導体に接続する信号用貫通導体接続導体を形成し、前記内層接地導体非形成領域の外周部に、前記内層の各層を上下に貫く内層接地用貫通導体を形成して前記内層接地導体間を接続した高周波信号伝送用積層構造において、前記最上層および最下層の信号配線導体の直下または直上の内層接地導体と重ならず、前記表層信号用貫通導体に至るまでの最上層および最下層の信号配線接続導体の長さ・幅をそれぞれL1・W1、L2・W2とし、また、積層基板の比誘電率をεrとし、前記積層基板また使用する周波数帯域の最高周波数をfmax(単位:GHz)とし、また適用する特性インピーダンスをZ0としたとき、所定の条件式を満たし、前記表層信号用貫通導体の直径を前記内層信号用貫通導体の直径よりも大きくすることによって、前記信号配線接続導体の長さを、前記表層信号用貫通導体の直径が前記内層信号用貫通導体の直径と同じ場合よりも短くしたことにより、従来、信号配線接続導体の長さが長く、ここを伝搬する高周波信号から見てグランドまでの距離が遠いためにこの部分がインダクタンスとして働くことにより高周波信号特性の劣化が生じる場合と比較して、前記条件式を満たすことにより、確実に信号配線接続導体部のインダクタンスを小さくすることができるために、良好な高周波伝送特性を有することから、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0048】
また、本発明の請求項2に係る高周波信号伝送用積層構造によれば、前記積層基板の上面および/または下面に表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体の全体を前記信号配線接続導体における前記信号配線導体とは反対側の端よりも前記信号配線導体の側に配置することにより、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を少なくすることができる構造となる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0049】
また、本発明の請求項3に係る高周波信号伝送用積層構造によれば、前記積層基板の上面および/または下面に表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体が前記信号配線導体を取囲むことにより、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を少なくすることができる構造となる。その結果、使用する周波数帯域の最高周波数までの伝送特性が良好な高周波信号伝送用積層構造となる。
【0050】
また、本発明の請求項4の高周波半導体パッケージによれば、請求項1乃至請求項3のいずれかに記載の高周波信号伝送用積層構造を有する積層基板の上面に高周波半導体素子を収容するように枠体および蓋体を形成し、積層基板の下面の信号配線導体の信号配線接続導体と反対側に外部との信号入出力のための入出力信号配線接続導体を形成したことにより、高周波の伝送特性が良好な高周波半導体パッケージとして提供できる。
【図面の簡単な説明】
【図1】 参考例に係る第1の高周波信号伝送用積層構造の例を模式的に示す図であり、(a)は平面図、(b)は(a)のA−A’線断面図である。
【図2】 他の参考例に係る第2の高周波信号伝送用積層構造の例を模式的に示す図であり、(a)は平面図、(b)は(a)のA−A’線断面図である。
【図3】 他の参考例に係る第3の高周波信号伝送用積層構造の第1の例を模式的に示す図であり、(a)は平面図、(b)は(a)のA−A’線断面図である。
【図4】 他の参考例に係る第3の高周波信号伝送用積層構造の第2の例を模式的に示す図であり、(a)は平面図、(b)は(a)のA−A’線断面図である。
【図5】 本発明に係る第3の高周波信号伝送用積層構造の第3の例を模式的に示す図であり、(a)は平面図、(b)は(a)のA−A’線断面図である。
【図6】 信号配線接続導体部を構成する線幅・長さ・比誘電率と信号配線接続導体部のインダクタンスとの関係を示す線図である。
【図7】 参考例に係る高周波信号伝送用積層構造の第1の例と従来例の高周波伝送特性を比較した線図である。
【図8】 他の参考例に係る高周波信号伝送用積層構造の第2の例と従来例の高周波伝送特性を比較した線図である。
【図9】 本発明に係る高周波信号伝送用積層構造の第3の例と従来例の高周波伝送特性を比較した線図である。
【図10】 従来の高周波信号伝送用積層構造の例を示す模式図であり、(a)は平面図、(b)は(a)のA−A’線断面図である。
【図11】 従来の高周波信号伝送用積層構造の例の高周波伝送特性を比較した線図である。
【符号の説明】
1:誘電体層
11,21:信号配線導体
12,22:表面接地導体
13,23:信号配線接続導体
14,24:表層信号用貫通導体
15,25:表層接地用貫通導体
16,26:表面接地導体非形成領域
32:内層接地導体
33:信号用貫通導体接続導体
34:内層信号用貫通導体
35:内層接地用貫通導体
36:内層接地導体非形成領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated structure for high-frequency signal transmission used for high-frequency waves such as microwave bands and millimeter waves, and a high-frequency semiconductor package using the same, and more particularly to a laminated structure for high-frequency signal transmission applied so as to have good high-frequency transmission characteristics. And a high-frequency semiconductor package using the same.
[0002]
[Prior art]
As the above-described laminated structure for high-frequency signal transmission, a structure as shown in FIG. In the laminated structure for high-frequency signal transmission shown in FIG. 10, reference numeral 1 denotes a dielectric layer, which is laminated to form a laminated substrate. Reference numerals 11 and 21 denote signal wiring conductors, which are connected to the surface signal through conductors 14 and 24 through the signal wiring connecting conductors 13 and 23, respectively. Further, 15 and 25 are surface layer through conductors, which are connected to the surface ground conductors 12 and 22. The surface ground conductors 12 and 22 are formed with rectangular surface ground conductor non-formation regions 16 and 26. In the inner layer, 34 inner layer signal through conductors and 33 signal through conductor connecting conductors connecting them are formed and connected between the surface layer signal through conductors 14, 24, and 32 inner layer ground conductors are connected. A rectangular inner layer ground conductor non-formation region indicated by 36 is formed inside, and an inner layer grounding through conductor indicated by 35 is formed near the outer periphery of the inner layer ground conductor non-formation region. The surface layer signal through conductors 14, 24, the inner layer signal through conductors 34, and the surface ground conductor non-formation regions 16, 26 and the inner layer ground conductor non-formation region 36 overlap each other in a so-called coaxial line structure. None, a laminated structure for high-frequency signal transmission.
[0003]
[Patent Document 1]
Japanese Patent No. 3008939
[0004]
[Problems to be solved by the invention]
However, in the conventional laminated structure for high-frequency signal transmission, the length of the signal wiring connecting conductor is long, and the distance from the high-frequency signal propagating here is far from the ground, so this part works as an inductance. Thus, there is a problem that the high-frequency transmission characteristics deteriorate.
[0005]
For example, the total thickness of the laminated structure for high-frequency signal transmission is 4 mm, and does not overlap with the inner-layer ground conductor immediately below or directly above the uppermost and lowermost signal wiring conductors, and reaches the surface layer signal through conductor. The length and width of the uppermost and lowermost signal wiring connecting conductors are L1= 0.449mm ・ W1= 0.150 mm, L2= 0.449mm ・ W2= 0.150 mm, and the relative dielectric constant of the laminated substrate is εr= 8, and the surface layer signal through conductor and the inner layer signal through conductor are cylindrical, the diameter of each is the same 0.104 mm, and the applied characteristic impedance is Z0= 50Ω, when the length of the signal wiring conductors 11 and 21 is 0.500 mm, and the high-frequency transmission characteristics are extracted by electromagnetic field simulation, the characteristic curve of frequency characteristics as shown in the diagram of FIG. 11 is obtained. Obtained.
[0006]
In FIG. 11, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) using the reflected amount of the input signal as an evaluation index, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. The characteristic curve in FIG. 11 shows that the reflection coefficient increases as the frequency increases. It can be seen that the influence of the inductance of the signal wiring connecting conductors 13 and 23 appears and the transmission of the high-frequency signal is deteriorated. .
[0007]
In this example, the reflection coefficient exceeds 2 dB at 23.3 GHz and the transmission characteristics are deteriorated. However, when the total thickness of the laminated structure for high-frequency signal transmission is changed, the signal wiring conductors 11 and 21 are separated. However, the amount of reflection due to the standing wave is equal to the amount of reflection due to the combined inductance of the signal wiring connection conductors 13 and 23. That is, it follows the envelope. In the above case, this envelope exceeds -10 dB at about 20 GHz, and becomes a problem when the maximum frequency of the frequency band to be used is 20 GHz or more.
[0008]
In addition, since the laminated structure for high-frequency signal transmission has a thickness of 1/8 or more of the maximum guide wavelength in the frequency band to be used, signal propagation in the thickness direction of the laminated substrate is a distributed constant circuit. In order to function as a high-frequency transmission line, a rectangular inner layer ground conductor non-forming region is formed inside the inner layer ground conductor, and the inner layer grounding through conductor is located near the outer periphery of the inner layer ground conductor non-forming region. It formed as a high frequency transmission line.
[0009]
The present invention has been made in view of the above problems in the prior art, and a high-frequency signal transmission laminated structure that satisfies the conditions for reducing the inductance and improving high-frequency transmission characteristics, and a high-frequency semiconductor using the same To provide a package.
[0010]
[Means for Solving the Problems]
  The laminated structure for high-frequency signal transmission according to claim 1 of the present invention is formed by laminating a plurality of dielectric layers.Laminated boardThe signal wiring conductors formed on each of the uppermost layer and the lowermost layer have a relationship extending in the opposite direction from one end, and vertically penetrate one end of each of the signal wiring conductors and the uppermost layer and the lowermost dielectric layer. With the surface signal through conductor,Signal wiring connection conductorAn inner-layer ground conductor non-forming region having a plane shape biaxially symmetric and an inner-layer ground conductor are formed in each of the inner layers excluding the uppermost layer and the lowermost layer. In the formation area, each of the inner layers penetrates up and down.And electrically connected to the surface signal through conductors formed in the uppermost layer and the lowermost layer, respectively.A signal through conductor connecting conductor connected to the inner layer signal through conductor is formed, and an inner layer grounding through conductor is formed in the outer peripheral portion of the inner layer ground conductor non-forming region so as to vertically penetrate each layer of the inner layer. The signal wiring connecting conductors formed on the uppermost layer and the lowermost layer satisfy the following formula, and the diameter of the surface signal through conductor is determined from the diameter of the inner layer signal through conductor. The length of the signal wiring connecting conductor is made shorter than that when the diameter of the surface signal through conductor is the same as the diameter of the inner layer signal through conductor.
[0011]
[Expression 2]
Figure 0004012796
[0012]
(However, L1: The length of the signal wiring connecting conductor formed in the uppermost layer that does not overlap with the inner-layer grounding conductor directly below it, L2: The length of the signal wiring connecting conductor formed in the lowermost layer that does not overlap with the inner layer ground conductor directly above it, W1: L1Of signal wiring connecting conductor in the range of W, W2: L2Width of the signal wiring connecting conductor in the range ofr: Relative dielectric constant of laminated substrate, fmax(Unit: GHz): Maximum frequency in the frequency band to be used, Z0: Applicable characteristic impedance)
[0013]
Conventionally, the length of the signal wiring connection conductor is long, and the distance to the ground is long when viewed from the high-frequency signal propagating here. Compared with the case where the high-frequency signal characteristics deteriorate due to this part acting as an inductance. By satisfying the conditional expression, the inductance of the signal wiring connecting conductor can be surely reduced, so that a good high-frequency transmission characteristic can be obtained. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0014]
As is clear from the above conditional expression, L1/ W1, L2/ W2And εrIf f is increased, fmaxIt can be seen that can be increased to the high frequency side. In the case where the structure is formed with a specific characteristic impedance, the length of the signal wiring connecting conductor is shortened as the relative dielectric constant is small.maxCan be raised to the high frequency side. Further, as the diameter of the inner layer signal through conductor is reduced, the inner layer ground conductor non-formation region for obtaining the applied characteristic impedance is reduced, and the length of the signal wiring connecting conductor is shortened.maxCan be raised to the high frequency side.
[0015]
According to the multilayer structure for high-frequency signal transmission according to claim 2, the surface layer ground conductor is formed on the upper surface and / or the lower surface of the multilayer substrate, and the surface layer ground conductor having a predetermined interval with respect to the signal wiring conductor is formed. The entire surface ground conductor is disposed on the signal wiring conductor side of the signal wiring connecting conductor on the side opposite to the signal wiring conductor.
[0016]
Thereby, by configuring as a coplanar line as the input / output line, when the external wiring is a coplanar line, it becomes a structure that can reduce impedance discontinuity in connection with the external wiring. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0017]
According to the multilayer structure for high-frequency signal transmission according to claim 3, the surface layer ground conductor is formed on the upper surface and / or the lower surface of the multilayer substrate, and the surface layer ground conductor having a predetermined interval with respect to the signal wiring conductor is formed. A surface layer ground conductor surrounds the signal wiring conductor.
[0018]
Thereby, by configuring as a coplanar line as the input / output line, when the external wiring is a coplanar line, it becomes a structure that can reduce impedance discontinuity in connection with the external wiring. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0019]
According to a high frequency package of a fourth aspect, a high frequency semiconductor element is connected to a signal wiring conductor formed on the upper surface of the multilayer substrate having the multilayer structure for high frequency signal transmission according to the first aspect. To do. For example, a frame and a lid are formed on the upper surface of the multilayer substrate so as to accommodate the high-frequency semiconductor element, and the signal wiring conductor on the lower surface of the multilayer substrate is opposite to the signal wiring connection conductor for signal input / output with the outside. By forming the input / output signal wiring connection conductor, a high-frequency semiconductor package with good high-frequency transmission characteristics is obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings schematically shown. In addition, this invention is not limited to the following examples, It does not interfere at all in the range which does not deviate from the main point of this invention.
[0021]
  Figure 1Reference example2A and 2B are diagrams illustrating an example of a first laminated structure for high-frequency signal transmission, wherein FIG. 3A is a plan view and FIG. The first laminated structure for high-frequency signal transmission has a thickness that is at least 1/8 of the guide wavelength of the highest frequency in the frequency band used by the laminated substrate formed by laminating a plurality of dielectric layers. Each dielectric layer of the inner layer excluding the upper layer and the lowermost layer is formed to have a thickness smaller than half of the highest frequency in-tube wavelength used, and signal wiring conductors extending in opposite directions are formed on the upper surface and the lower surface of the multilayer substrate. One end of the wiring conductor is connected to the top layer of the dielectric layer and the surface signal through conductor that penetrates each layer provided in the bottom layer via the signal wiring connection conductor, and is connected to the upper and lower surfaces of the multilayer substrate. Surface grounding conductors are formed on almost the entire surface except for the predetermined width on both sides of the signal wiring conductor in a state surrounding the surface signal through conductors and signal wiring connection conductors, and the inner layer grounding conductors are rectangular or circular on each inner layer. And biaxial symmetry such as elliptical shape The inner layer ground conductor non-formation region is formed on substantially the entire surface, and these inner layer ground conductor non-formation regions are arranged so as to overlap each other, and a dielectric layer is placed inside the inner layer ground conductor non-formation region. A signal through conductor connecting conductor that connects each of the inner layer signal through conductors vertically passing through each inner layer of the inner layer is formed, and an inner layer ground conductor is not formed at an interval shorter than half of the maximum frequency in the tube to be used Between the inner layer ground conductors, a plurality of inner layer grounding through conductors that vertically penetrate each layer of the inner layer and a plurality of surface grounding through conductors that vertically penetrate between the surface ground conductor and the inner layer ground conductor are arranged near the outer periphery of the region. In addition, an electromagnetic shielding space is formed in the inner layer by connecting the surface ground conductor and the inner layer ground conductor, respectively, and the signal through conductor connection is formed between the surface layer signal through conductor and the inner layer signal through conductor. In the laminated structure in which the upper and lower surfaces of the laminated substrate are electrically connected by connecting via a conductor, the surface layer does not overlap with the inner layer ground conductor immediately below or directly above the uppermost layer and the lowermost signal wiring conductor. The length and width of the signal wiring connecting conductors in the uppermost layer and the lowermost layer leading to the signal through conductor are L1, W1, and L2 and W2, respectively, and the relative dielectric constant of the laminated substrate is εr, and the laminated substrate or When the maximum frequency of the frequency band to be used is fmax (unit: GHz) and the characteristic impedance to be applied is Z0, the following conditional expression is applied according to fmax to be used (L1 · W1 L2, W2, and εr were set).
[0022]
[Equation 3]
Figure 0004012796
[0023]
(However, L1: The length of the signal wiring connecting conductor formed in the uppermost layer that does not overlap with the inner-layer grounding conductor directly below it, L2: The length of the signal wiring connecting conductor formed in the lowermost layer that does not overlap with the inner layer ground conductor directly above it, W1: L1Of signal wiring connecting conductor in the range of W, W2: L2Width of the signal wiring connecting conductor in the range ofr: Relative dielectric constant of laminated substrate, fmax(Unit: GHz): Maximum frequency in the frequency band to be used, Z0: Applicable characteristic impedance)
[0024]
That is, in FIG. 1, reference numeral 1 denotes a dielectric layer which is laminated to form a laminated plate. The signal wiring conductors 11 and 21 are connected to the surface signal through conductors 14 and 24 through the signal wiring connecting conductors 13 and 23, respectively. 15 and 25 are surface layer grounding through conductors connected to the surface ground conductors 12 and 22. In the surface ground conductors 12 and 22, rectangular surface ground conductor non-formation regions 16 and 26 are formed. In the inner layer, 34 inner layer signal through conductors and 33 signal through conductor connecting conductors connecting them are formed and connected between the surface layer signal through conductors 14, 24, and 32 inner layer ground conductors are connected. A rectangular inner layer ground conductor non-formation region indicated by 36 is formed inside, and an inner layer grounding through conductor indicated by 35 is formed near the outer periphery of the inner layer ground conductor non-formation region. The surface ground conductor non-formation regions 16 and 26 and the inner layer ground conductor non-formation region 36 are arranged so as to overlap each other, and between the surface signal through conductors 14 and 24, the inner layer signal through conductor 34 and the signal It arrange | positions so that it may connect with the penetration conductor connection conductor 33 for use.
[0025]
Compared to the conventional case where the length of the signal wiring connecting conductor is long and the distance from the high-frequency signal propagating here is far from the ground, so that this part acts as an inductance, causing deterioration of the high-frequency signal characteristics. And by satisfy | filling the said conditional expression, since the inductance of a signal wiring connection conductor can be made small reliably, it can be set as a favorable high frequency transmission characteristic. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0026]
By the way, about the said conditional expression, it confirmed that good agreement was obtained by the method described below. First, in the laminated structure for high frequency signal transmission shown in FIG.1= L2, W = W1= W2, ΕrThe inductance of the signal wiring connecting conductor portion on one side was calculated by electromagnetic field simulation by changing the value of, and is shown in FIG. In FIG. 6, the rhombus points are L · W · ε calculated by electromagnetic field simulation.rAnd a characteristic curve that agrees well with this relationship. Here, since the inductance exists in both portions of the signal wiring connecting conductors in the uppermost layer and the lowermost layer, the respective inductances are set to Lu・ LdThe reactance as a laminated structure for high-frequency signal transmission is ω (Lu+ Ld) (Ω is an angular frequency), in order to maintain good high frequency characteristics, ω (Lu+ Ld) ≦ 2Z0/ 3 (Z0Is a characteristic impedance to be applied).
[0027]
  Next, FIG.Other reference examplesFIG. 4 is a diagram illustrating an example of a second laminated structure for high-frequency signal transmission according to FIG. 4A, FIG. 5A is a plan view, and FIG. The second laminated structure for high-frequency signal transmission in the first laminated structure for high-frequency signal transmission has a predetermined interval on the upper surface and / or the lower surface of the laminated substrate with respect to the surface layer ground conductor non-forming region and the signal wiring conductor. A surface ground conductor was formed, and the entire surface ground conductor was disposed closer to the signal wiring conductor than an end of the signal wiring connection conductor opposite to the signal wiring conductor.
[0028]
2, the same reference numerals are given to the same parts as in FIG. 1, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 13 and 23 are signal wiring connection conductors, and 14 and 24 are surface layers. The signal through conductor, 32 is an inner layer ground conductor, 33 is a signal through conductor connecting conductor, 34 is an inner layer signal through conductor, 35 is an inner layer ground through conductor, and 36 is an inner layer ground conductor non-forming region. 2 shows the formation of surface layer ground conductors 12 and 22 having a predetermined distance from the surface layer ground conductor non-formation regions 16 and 26 and the signal wiring conductors 11 and 21 on the upper and lower surfaces of the dielectric layer 1. The entire grounding conductors 12 and 22 are arranged closer to the signal wiring conductors 11 and 21 than the ends of the signal wiring connection conductors 13 and 23 opposite to the signal wiring conductors 11 and 21.
[0029]
Thereby, by configuring as a coplanar line as the input / output line, when the external wiring is a coplanar line, it becomes a structure that can reduce impedance discontinuity in connection with the external wiring. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0030]
  Next, FIG.Other reference examplesFIG. 6 is a diagram illustrating an example of a third laminated structure for high-frequency signal transmission according to FIG. 4A, FIG. 4A is a plan view, and FIG. The third laminated structure for high-frequency signal transmission is the same as the first to second laminated structures for high-frequency signal transmission, with respect to the upper surface and / or the lower surface of the laminated substrate with respect to the surface layer ground conductor non-forming region and the signal wiring conductor. A surface layer ground conductor having a gap is formed, and the surface layer ground conductor surrounds the signal wiring conductor.
[0031]
In FIG. 3, the same reference numerals are given to the same parts as in FIG. 1, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 13 and 23 are signal wiring connection conductors, and 14 and 24 are surface layers. The signal through conductor, 32 is an inner layer ground conductor, 33 is a signal through conductor connecting conductor, 34 is an inner layer signal through conductor, 35 is an inner layer ground through conductor, and 36 is an inner layer ground conductor non-forming region. 3 shows the formation of surface layer ground conductors 12 and 22 having a predetermined distance from the surface layer ground conductor non-forming regions 16 and 26 and the signal wiring conductors 11 and 21 on the upper and lower surfaces of the dielectric layer 1. The ground conductors 12 and 22 surround the signal wiring conductors 11 and 21.
[0032]
Thereby, by configuring as a coplanar line as the input / output line, when the external wiring is a coplanar line, it becomes a structure that can reduce impedance discontinuity in connection with the external wiring. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0033]
Further, the above-described laminated structure for high frequency transmission can be applied to a high frequency semiconductor package. That is, a frame and a lid are formed on the upper surface of the multilayer substrate so as to accommodate the high-frequency semiconductor element, and signal input / output with the outside is performed on the opposite side of the signal wiring conductor of the signal wiring conductor on the lower surface of the multilayer substrate. By forming the input / output signal wiring connection conductor, a high-frequency semiconductor package with good high-frequency transmission characteristics is obtained.
[0034]
  like thisHighIn a frequency semiconductor package, ceramic materials such as alumina, mullite, and aluminum nitride, so-called glass-ceramic (glass + ceramic) materials, are widely used as dielectric substrates, and conductor patterns such as signal wiring conductors and grounding conductors are high-frequency wiring conductors. Metal materials, for example, single metals such as Cu, MoMn + Ni + Au, W + Ni + Au, Cr + Cu, Cr + Cu + Ni + Au,Ta 2 NIt is formed by a thick film printing method or various thin film forming methods or plating methods using an alloy such as + NiCr + Au, Ti + Pd + Au, NiCr + Pd + Au. Further, the thickness and width are set together with the dielectric constant and thickness of the dielectric according to the frequency of the transmitted high-frequency signal, the characteristic impedance used, and the like. Moreover, when using a metal for a frame or a lid, Fe-Ni alloy such as Fe-Ni-Co and Fe-Ni42 alloy, oxygen-free copper, aluminum, stainless steel, Cu-W alloy, Cu-Mo alloy, etc. It is hermetically sealed by bonding with a high melting point metal solder such as solder, AuSn solder, AuGe solder, or seam weld (welding) for joining between metal structures. The substrate and the metal structure are joined by a high melting point metal brazing such as AgCu solder, AuSn solder, or AuGe solder, so that a high frequency semiconductor package having good transmission characteristics can be provided by accommodating a semiconductor element.
[0035]
【Example】
Next, specific examples of the laminated structure for high frequency signal transmission of the present invention and the high frequency semiconductor package using the same will be described.
[0036]
[Example 1]
  First,Reference example3 having the same configuration as that of FIG. 3 showing the third laminated structure for high-frequency signal transmission according to the above, a dielectric layer having a relative dielectric constant of 8 and a thickness of 0.2 mm is formed on the uppermost layer and the lowermost layer, and the others are 0. .6 dielectric layers are laminated to form a laminated board, and the signal wiring conductors 11 and 21 are formed with a width of 0.176 mm and an interval of 0.1 mm between the surface ground conductors 12 and 22 and signal wiring connection The conductors 13 and 23 are formed with a width of 0.15 mm and the distance between the signal wiring conductors 11 and 21 and the surface signal through conductors 14 and 24 is 0.265 mm, and the surface signal through conductors 14 and 24 and the inner layer signal are used. The through conductor 34 is formed in a circular shape having a diameter of 0.07 mm, the signal through conductor connecting conductor is formed in a circular shape having a diameter of 0.13 mm, and the surface ground conductor non-forming regions 16 and 26 and the inner layer ground conductor non-forming region 36 are long. A rectangle with a side of 1 mm and a short side of 0.6 mm Further, the surface layer grounding through conductors 15 and 25 and the inner layer grounding through conductor 35 are circular with a diameter of 0.1 mm, and the center is 0 from the outer periphery of the surface layer grounding conductor non-forming regions 16 and 26 and the inner layer grounding conductor non-forming region 36. .8 by disposing at eight locations on the outer periphery at a position separated by .08 mm, and connecting the surface signal through conductors 14 and 24 and the inner layer signal through conductors 34 between the eight layers in a straight line,HighA sample A having a laminated structure for frequency signal transmission was obtained.
[0037]
Further, as a comparative example, a dielectric layer having a relative dielectric constant of 8 and a thickness of 0.2 mm is formed on the uppermost layer and the lowermost layer with the same configuration as that of FIG. 10 showing the laminated structure for high-frequency signal transmission. 6 layers of 0.6 mm dielectric layers are laminated to form a laminated board, and the signal wiring conductors 11 and 21 are formed with a width of 0.176 mm and a distance of 0.1 mm between the surface ground conductors 12 and 22 and signal wiring. The width of the connecting conductors 13 and 23 is 0.15 mm, and the distance between the signal wiring conductors 11 and 21 and the surface signal through conductors 14 and 24 is 0.449 mm, and the surface signal through conductors 14 and 24 and the inner layer signal are formed. The through-hole conductor 34 is formed in a circular shape with a diameter of 0.102 mm, the signal through-conductor connecting conductor is formed into a circular shape with a diameter of 0.162 mm, and the surface ground conductor non-forming regions 16 and 26 and the inner-layer ground conductor non-forming region 36 are In the shape of a square with a side of 1mm, through conductors for surface grounding 15 and 25 and for inner layer grounding The conductor 35 has a circular shape with a diameter of 0.1 mm, and is arranged at eight locations on the outer periphery where the center is separated by 0.08 mm from the outer periphery of the surface ground conductor non-forming regions 16 and 26 and the inner layer ground conductor non-forming region 36. Then, the surface layer signal through conductors 14 and 24 and the inner layer signal through conductors 34 between the eight layers were connected in a straight line to obtain a sample Z of the multilayer structure for high frequency signal transmission of the conventional example.
[0038]
Then, when the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface are extracted by electromagnetic field simulation for these samples A and Z, as shown by a diagram in FIG. A characteristic curve of frequency characteristics was obtained. In FIG. 7, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) using the reflected amount of the input signal as an evaluation index, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, A and Z added to the characteristic curve indicate that they are characteristic curves of the samples A and Z, respectively.
[0039]
  from this result,TrialIt can be seen that the material A is a laminated structure for high-frequency transmission having lower reflection at a higher frequency and better electrical characteristics than the sample Z of the conventional example. This is because when the values of sample A and sample Z are substituted into the conditional expression and the value of fmax is obtained, it is 35 GHz for sample A and 21.5 GHz for sample Z, and sample A has the applicable frequency. This is because it is expensive.
[0040]
[Example 2]
  First,Other reference examples4 showing a third laminated structure for high-frequency signal transmission according to the above, a dielectric layer having a relative dielectric constant of 8 and a thickness of 0.2 mm is formed on the uppermost layer and the lowermost layer, and the others are 0. .6 dielectric layers are laminated to form a laminated board, and the signal wiring conductors 11 and 21 are formed with a width of 0.176 mm and an interval of 0.1 mm between the surface ground conductors 12 and 22 and signal wiring connection The width of the conductors 13 and 23 is 0.25 mm, and the distance between the signal wiring conductors 11 and 21 and the surface signal through conductors 14 and 24 is 0.449 mm, and the surface signal through conductors 14 and 24 and the inner layer signal are formed. The through conductor 34 is formed in a circular shape having a diameter of 0.102 mm, the signal through conductor connecting conductor is formed in a circular shape having a diameter of 0.162 mm, and the surface ground conductor non-forming regions 16 and 26 and the inner layer ground conductor non-forming region 36 are on one side. Is a 1mm square shape, surface contact The through-conductors 15 and 25 and the inner-layer grounding through-conductor 35 are circular with a diameter of 0.1 mm, and the center is separated by 0.08 mm from the outer periphery of the surface-layer grounding conductor non-forming regions 16 and 26 and the inner-layer grounding conductor non-forming region 36. By arranging the surface signal through conductors 14 and 24 and the inner layer signal through conductors 34 between the eight layers in a straight line,HighA sample B having a laminated structure for frequency signal transmission was obtained.
[0041]
When the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface are extracted by electromagnetic field simulation for the sample B and the sample Z shown in [Example 1], FIG. A characteristic curve of frequency characteristics as shown by a diagram in FIG. 8 was obtained. In FIG. 8, the horizontal axis indicates the frequency (unit: GHz), and the vertical axis indicates the reflection coefficient (unit: dB) using the reflected amount of the input signal as an evaluation index, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, B and Z added to the characteristic curve indicate that they are characteristic curves of the samples B and Z, respectively.
[0042]
  from this result,TrialIt can be seen that the material B is a laminated structure for high-frequency transmission having a lower reflection at a higher frequency and better electrical characteristics than the sample Z of the conventional example. Because the sampleBAnd the value of sample Z are substituted, and the value of fmax is obtained, it is 34.3 GHz for sample B and 21.5 GHz for sample Z, which is because sample B has a higher applicable frequency.
[0043]
[Example 3]
  First, according to claims 1 to 3 of the present inventionHigh5 having a structure substantially similar to that shown in FIG. 5 showing the laminated structure for frequency signal transmission, a dielectric layer having a relative dielectric constant of 8 and a thickness of 0.2 mm as a top layer and a bottom layer, and the other being a dielectric material of 0.6 mm 6 layers are laminated to form a laminated plate, the signal wiring conductors 11 and 21 are formed with a width of 0.176 mm and an interval of 0.1 mm between the surface ground conductors 12 and 22 and the signal wiring connection conductors 13 and 23. The surface signal through conductors 14 and 24 are formed in a circular shape having a width of 0.15 mm and a diameter of 0.240 mm, and the distance between the signal wiring conductors 11 and 21 and the surface signal through conductors 14 and 24 is 0.311 mm. The surface signal through conductors 14 and 24 are arranged at positions, the inner layer signal through conductor 34 is formed in a circular shape with a diameter of 0.102 mm, the signal through conductor connecting conductor is formed into a circular shape with a diameter of 0.162 mm, and surface grounding Conductor non-forming regions 16, 26 and inner layer The ground conductor non-forming region 36 has a square shape with a side of 1 mm, the surface layer grounding through conductors 15 and 25 and the inner layer grounding through conductor 35 have a circular shape with a diameter of 0.1 mm, and the surface layer grounding conductor non-forming regions 16 and 26 and The inner layer ground conductor non-formation region 36 is arranged at eight positions on the outer periphery at a position separated by 0.08 mm from the outer periphery, and the surface signal penetration conductors 14 and 24 between the eight layers and the inner layer signal By connecting the through conductors 34 so as to overlap each other, a sample C having a laminated structure for high frequency signal transmission according to the present invention was obtained.
[0044]
When the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface are extracted by electromagnetic field simulation for the sample C and the sample Z shown in [Example 1], FIG. A characteristic curve of frequency characteristics as shown by the diagram in FIG. 9 was obtained. In FIG. 9, the horizontal axis indicates the frequency (unit: GHz), and the vertical axis indicates the reflection coefficient (unit: dB) using the reflected amount of the input signal as an evaluation index, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, C · Z added to the characteristic curve indicates that it is a characteristic curve of the sample C · Z.
[0045]
From this result, it can be seen that Sample C, which is a laminated structure for high-frequency signal transmission according to the present invention, is a laminated structure for high-frequency transmission having less electrical reflection and higher electrical characteristics than the sample Z of the conventional example. I understand. This is because the values of sample C and sample Z are substituted into the conditional expression, and fmaxThis is because the sample C is 29.4 GHz, the sample Z is 21.5 GHz, and the sample C has a higher applicable frequency.
[0046]
Note that the above are merely examples of the embodiments of the present invention, and the present invention is not limited to these embodiments, and various modifications and improvements may be added without departing from the scope of the present invention. .
[0047]
【The invention's effect】
  As described above, according to the laminated structure for high-frequency signal transmission according to claim 1 of the present invention, a plurality of dielectric layers are laminated.Laminated boardThe signal wiring conductors formed on each of the uppermost layer and the lowermost layer have a relationship extending in the opposite direction from one end, and vertically penetrate one end of each of the signal wiring conductors and the uppermost layer and the lowermost dielectric layer. An inner layer ground conductor non-formation region in which a planar shape forms a biaxial symmetry is formed in each layer of the inner layer excluding the uppermost layer and the lowermost layer, and the inner layer ground conductor is not formed on the inner layer except for the uppermost layer and the lowermost layer. A ground conductor is formed, and the inner layer ground non-forming region penetrates each layer of the inner layer vertically.And electrically connected to the surface signal through conductors formed in the uppermost layer and the lowermost layer, respectively.A signal through conductor connecting conductor connected to the inner layer signal through conductor is formed, and an inner layer grounding through conductor is formed in the outer peripheral portion of the inner layer ground conductor non-forming region so as to vertically penetrate each layer of the inner layer. In the laminated structure for high-frequency signal transmission in which conductors are connected, the uppermost layer and the lowermost layer up to the surface signal through conductor do not overlap with the inner layer ground conductor immediately below or directly above the uppermost and lowermost signal wiring conductors. The length and width of the signal wiring connecting conductors in the lower layer are L1 · W1 and L2 · W2, respectively, the relative dielectric constant of the multilayer substrate is εr, and the maximum frequency of the frequency band used by the multilayer substrate is fmax (unit: GHz) and when the applied characteristic impedance is Z0, a predetermined conditional expression is satisfied, and the diameter of the surface signal through conductor is made larger than the diameter of the inner layer signal through conductor. Thus, the length of the signal wiring connecting conductor is shorter than the case where the diameter of the surface signal through conductor is the same as the diameter of the inner layer signal through conductor. Compared to the case where the high frequency signal propagating here is far away from the ground when viewed from the high frequency signal propagating here and this part acts as an inductance, the high frequency signal characteristic is deteriorated. Since the inductance of the signal wiring connecting conductor portion can be reduced, it has good high-frequency transmission characteristics, so that a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency in the frequency band to be used is obtained.
[0048]
According to the multilayer structure for high-frequency signal transmission according to claim 2 of the present invention, a surface layer ground conductor having a surface layer ground conductor non-forming region on the upper surface and / or the lower surface of the multilayer substrate and a predetermined distance from the signal wiring conductor. The entire surface layer ground conductor is disposed on the signal wiring conductor side of the signal wiring connecting conductor on the side opposite to the signal wiring conductor, thereby forming a coplanar line as an input / output line. Thus, when the external wiring is a coplanar line, the impedance discontinuity in connection with the external wiring can be reduced. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0049]
According to the multilayer structure for high-frequency signal transmission according to claim 3 of the present invention, a surface layer ground conductor having a surface layer ground conductor non-formation region on the upper surface and / or the lower surface of the multilayer substrate and a predetermined distance from the signal wiring conductor. And the surface ground conductor surrounds the signal wiring conductor, so that the input / output line is configured as a coplanar line. The structure can reduce continuity. As a result, a laminated structure for high-frequency signal transmission with good transmission characteristics up to the highest frequency of the frequency band to be used is obtained.
[0050]
  According to a high frequency semiconductor package of claim 4 of the present invention, the high frequency semiconductor element is accommodated on the upper surface of the multilayer substrate having the multilayer structure for high frequency signal transmission according to any one of claims 1 to 3. By forming the frame and lid, and forming the input / output signal wiring connection conductor for signal input / output with the outside on the opposite side of the signal wiring conductor of the signal wiring conductor on the lower surface of the multilayer substrate, high frequency transmission It can be provided as a high-frequency semiconductor package with good characteristics.
[Brief description of the drawings]
[Figure 1]Reference exampleIt is a figure which shows typically the example of the laminated structure for the 1st high frequency signal transmission which concerns on this, (a) is a top view, (b) is the sectional view on the A-A 'line of (a).
[Figure 2]Other reference examplesIt is a figure which shows typically the example of the 2nd laminated structure for high frequency signal transmission which concerns on this, (a) is a top view, (b) is the sectional view on the A-A 'line of (a).
[Fig. 3]Other reference examplesIt is a figure which shows typically the 1st example of the 3rd laminated structure for high frequency signal transmission which concerns on this, (a) is a top view, (b) is the sectional view on the A-A 'line of (a).
[Fig. 4]Other reference examplesIt is a figure which shows typically the 2nd example of the laminated structure for 3rd high frequency signal transmission which concerns on this, (a) is a top view, (b) is the sectional view on the A-A 'line of (a).
FIGS. 5A and 5B are diagrams schematically showing a third example of the third laminated structure for high-frequency signal transmission according to the present invention, in which FIG. 5A is a plan view, and FIG. It is line sectional drawing.
FIG. 6 is a diagram showing the relationship between the line width / length / dielectric constant constituting the signal line connecting conductor and the inductance of the signal line connecting conductor.
[Fig. 7]According to reference examplesIt is the diagram which compared the 1st example of the laminated structure for high frequency signal transmission, and the high frequency transmission characteristic of a prior art example.
[Fig. 8]According to other reference examplesIt is the diagram which compared the 2nd example of the laminated structure for high frequency signal transmission, and the high frequency transmission characteristic of a prior art example.
FIG. 9Pertaining toIt is the diagram which compared the 3rd example of the laminated structure for high frequency signal transmission, and the high frequency transmission characteristic of a prior art example.
10A and 10B are schematic views showing an example of a conventional laminated structure for high-frequency signal transmission, where FIG. 10A is a plan view and FIG. 10B is a cross-sectional view taken along line A-A ′ of FIG.
FIG. 11 is a diagram comparing high-frequency transmission characteristics of an example of a conventional laminated structure for high-frequency signal transmission.
[Explanation of symbols]
1: Dielectric layer
11, 21: Signal wiring conductor
12, 22: Surface grounding conductor
13, 23: Signal wiring connection conductor
14, 24: Surface layer signal through conductor
15 and 25: Surface layer ground through conductor
16, 26: Surface ground conductor non-formation region
32: Inner layer ground conductor
33: Signal through conductor connecting conductor
34: Through conductor for inner layer signal
35: Through conductor for inner layer grounding
36: Inner layer ground conductor non-forming region

Claims (4)

複数の誘電体層を積層して成る積層基板の最上層および最下層のそれぞれに形成した信号配線導体が、互いに一端から逆方向に延びる関係にあり、これら各信号配線導体の一端と、前記最上層および前記最下層の誘電体層を上下に貫く表層信号用貫通導体とを、信号配線接続導体を介して接続し、前記最上層および前記最下層を除く内層の各層に、平面形状が2軸対称形状を成す内層接地導体非形成領域と、内層接地導体とを形成し、前記内層接地導体非形成領域には、前記内層の各層を上下に貫いて前記最上層および前記最下層にそれぞれ形成された前記表層信号用貫通導体に電気的に接続された内層信号用貫通導体に接続する信号用貫通導体接続導体を形成し、前記内層接地導体非形成領域の外周部に、前記内層の各層を上下に貫く内層接地用貫通導体を形成して前記内層接地導体間を接続して成るとともに、前記最上層および前記最下層のそれぞれに形成した信号配線接続導体が下記式を満足し、前記表層信号用貫通導体の直径を前記内層信号用貫通導体の直径よりも大きくすることによって、前記信号配線接続導体の長さを、前記表層信号用貫通導体の直径が前記内層信号用貫通導体の直径と同じ場合よりも短くしたことを特徴とする高周波信号伝送用積層構造。
Figure 0004012796
(ただし、L1:最上層に形成された信号配線接続導体おいて、その直下の内層接地導体と重ならない長さ、L2:最下層に形成された信号配線接続導体おいて、その直上の内層接地導体と重ならない長さ、W1:L1の範囲における信号配線接続導体の幅、W2:L2の範囲における信号配線接続導体の幅、εr:積層基板の比誘電率、fmax(単位:GHz):使用する周波数帯域の最高周波数、Z0:適用する特性インピーダンス)
The signal wiring conductors formed on each of the uppermost layer and the lowermost layer of the multilayer substrate formed by laminating a plurality of dielectric layers are in a relationship extending in the opposite direction from one end. A signal layer connecting conductor is connected to the upper layer and the lower layer dielectric layer vertically through the signal layer connecting conductor , and each of the inner layers excluding the uppermost layer and the lowermost layer has a biaxial planar shape. the inner layer ground conductor non-formation areas symmetrical shape, to form an inner layer ground conductor, the inner layer ground conductor non-formation regions, respectively are formed the at the uppermost layer and the lowermost layer to have transmural each layer of the inner layer in the vertical A signal through conductor connecting conductor connected to the inner layer signal through conductor electrically connected to the surface layer signal through conductor is formed, and each layer of the inner layer is moved up and down at an outer peripheral portion of the inner layer ground conductor non-forming region. Inner layer A ground through conductor is formed to connect the inner ground conductors, and signal wiring connecting conductors formed on the uppermost layer and the lowermost layer satisfy the following formulas, By making the diameter larger than the diameter of the inner layer signal through conductor, the length of the signal wiring connecting conductor is made shorter than when the diameter of the surface layer signal through conductor is the same as the diameter of the inner layer signal through conductor. A laminated structure for high-frequency signal transmission, characterized in that
Figure 0004012796
(However, L1: The length of the signal wiring connection conductor formed in the uppermost layer does not overlap with the inner layer grounding conductor immediately below it, L2: The signal wiring connection conductor formed in the lowermost layer, and the inner layer grounding immediately above it. Length that does not overlap with the conductor, W1: width of the signal wiring connection conductor in the range of L1, W2: width of the signal wiring connection conductor in the range of L2, εr: relative dielectric constant of the laminated substrate, fmax (unit: GHz): use The highest frequency of the frequency band to be used, Z0: applied characteristic impedance)
前記積層基板の上面および/または下面に、表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体の全体を前記信号配線接続導体における前記信号配線導体とは反対側の端よりも前記信号配線導体の側に配置してなる請求項1に記載の高周波信号伝送用積層構造。  On the upper surface and / or the lower surface of the multilayer substrate, a surface layer ground conductor having a predetermined interval with respect to the surface layer ground conductor non-forming region and the signal wiring conductor is formed, and the entire surface layer ground conductor is The multilayer structure for high-frequency signal transmission according to claim 1, wherein the laminated structure is disposed on the side of the signal wiring conductor from the end opposite to the signal wiring conductor. 前記積層基板の上面および/または下面に表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記表層接地導体が前記信号配線導体を取囲むことを特徴とする請求項1または請求項2に記載の高周波信号伝送用積層構造。  A surface layer ground conductor is formed on a top surface and / or a bottom surface of the multilayer substrate, and a surface layer ground conductor having a predetermined distance from the signal wiring conductor is formed, and the surface ground conductor surrounds the signal wiring conductor. The laminated structure for high-frequency signal transmission according to claim 1 or 2. 請求項1乃至請求項3のいずれかに記載の高周波信号伝送用積層構造を備えた前記積層基板の上面に枠体および蓋体を設けることにより、高周波半導体素子を収容する構造としたことを特徴とする高周波半導体パッケージ。  A structure is provided in which a high-frequency semiconductor element is accommodated by providing a frame body and a lid on the upper surface of the multilayer substrate including the multilayer structure for high-frequency signal transmission according to any one of claims 1 to 3. High frequency semiconductor package.
JP2002284636A 2002-06-27 2002-09-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same Expired - Fee Related JP4012796B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002284636A JP4012796B2 (en) 2002-09-30 2002-09-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
US10/603,256 US6933450B2 (en) 2002-06-27 2003-06-25 High-frequency signal transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284636A JP4012796B2 (en) 2002-09-30 2002-09-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same

Publications (2)

Publication Number Publication Date
JP2004120659A JP2004120659A (en) 2004-04-15
JP4012796B2 true JP4012796B2 (en) 2007-11-21

Family

ID=32278125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284636A Expired - Fee Related JP4012796B2 (en) 2002-06-27 2002-09-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same

Country Status (1)

Country Link
JP (1) JP4012796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597658A (en) * 2011-07-04 2014-02-19 华为技术有限公司 Module and coupling arrangement

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035992B2 (en) 2005-10-18 2011-10-11 Nec Corporation Vertical transitions, printed circuit boards therewith and semiconductor packages with the printed circuit boards and semiconductor chip
JP4620576B2 (en) * 2005-12-02 2011-01-26 パナソニック株式会社 Wireless device
WO2010073410A1 (en) * 2008-12-25 2010-07-01 Nec Corporation Filter based on a combined via structure
US8994480B2 (en) * 2009-07-21 2015-03-31 Nec Corporation Resonant elements designed vertically in a multilayer board and filters based on these elements
JP2011217278A (en) * 2010-04-01 2011-10-27 Sumitomo Electric Ind Ltd Signal transmission line
CN116093022B (en) * 2023-04-10 2024-05-10 北京华封集芯电子有限公司 Chip and chip design method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597658A (en) * 2011-07-04 2014-02-19 华为技术有限公司 Module and coupling arrangement
US9172126B2 (en) 2011-07-04 2015-10-27 Huawei Technologies Co., Ltd. Module and coupling arrangement

Also Published As

Publication number Publication date
JP2004120659A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US6365961B1 (en) High-frequency input/output feedthrough and package for housing high-frequency semiconductor element using same
JP3937433B2 (en) Planar circuit-waveguide connection structure
JP4012796B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
EP1460711A1 (en) Electronic chip component
JP3667274B2 (en) High frequency package
US6936921B2 (en) High-frequency package
JP2004153415A (en) High frequency line-waveguide converter
JP3878895B2 (en) Laminated structure for high-frequency signal transmission
JP2003297967A (en) Multilayer structure for transmitting high frequency signal and high frequency semiconductor package employing it
JP3924527B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
US20120274526A1 (en) Line Conversion Structure and Antenna Using the Same
JP3935082B2 (en) High frequency package
JP3618046B2 (en) High frequency circuit package
JP3725983B2 (en) High frequency circuit package
JP4042338B2 (en) Flip chip mounting board
JP3898616B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
JP4413234B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
JP4009217B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
JP4454144B2 (en) High frequency circuit package
JP2002185201A (en) Wiring board for high frequency
JP4462782B2 (en) High frequency wiring board
JP4522010B2 (en) I / O terminal and semiconductor element storage package and semiconductor device
JP2002043460A (en) Package for high frequency
JP7431351B2 (en) Semiconductor packages and semiconductor electronic devices
JP3996330B2 (en) High frequency package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees