JP4413234B2 - Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same - Google Patents

Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same Download PDF

Info

Publication number
JP4413234B2
JP4413234B2 JP2007019280A JP2007019280A JP4413234B2 JP 4413234 B2 JP4413234 B2 JP 4413234B2 JP 2007019280 A JP2007019280 A JP 2007019280A JP 2007019280 A JP2007019280 A JP 2007019280A JP 4413234 B2 JP4413234 B2 JP 4413234B2
Authority
JP
Japan
Prior art keywords
conductor
signal
conductors
layer
signal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007019280A
Other languages
Japanese (ja)
Other versions
JP2007201479A (en
Inventor
武宏 奥道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007019280A priority Critical patent/JP4413234B2/en
Publication of JP2007201479A publication Critical patent/JP2007201479A/en
Application granted granted Critical
Publication of JP4413234B2 publication Critical patent/JP4413234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Waveguide Connection Structure (AREA)

Description

本発明はマイクロ波帯・ミリ波帯といった高周波において使用される積層構造および半導体素子を収容する高周波半導体パッケージに関し、特に高周波の伝送特性が良好な高周波信号伝送積層構造およびそれを用いた高周波半導体パッケージに関する。   The present invention relates to a laminated structure used at high frequencies such as a microwave band and a millimeter wave band, and a high-frequency semiconductor package containing a semiconductor element, and particularly to a high-frequency signal transmission laminated structure having good high-frequency transmission characteristics and a high-frequency semiconductor package using the same. About.

上記高周波伝送積層構造として、従来、図17に示したような構造がある。   Conventionally, there is a structure as shown in FIG.

図17において、1は誘電体層であり、これらを積層することで積層板としている。11および21は信号配線導体であり、13および23の信号配線接続導体を介して、14および24の表層信号用貫通導体にそれぞれ接続している。内層には34の内層信号用貫通導体とそれらを接続する33の信号用貫通導体接続導体が形成され、表層信号用貫通導体14,24との間を接続しており、32の内層接地導体の内側には36に示す円形状の内層接地導体非形成領域が形成され、内層接地導体非形成領域36の外周近傍に35に示す内層接地用貫通導体が形成されている。そして、表層信号用貫通導体14,24と内層信号用貫通導体34ならびに表面接地導体非形成領域16,26と内層接地導体非形成領域36とは中心を共有して重ねた、いわゆる同軸線路構造をなし、高周波信号伝送用積層構造としていた。
特開2002−100901号公報
In FIG. 17, reference numeral 1 denotes a dielectric layer, which is laminated to form a laminated plate. Reference numerals 11 and 21 denote signal wiring conductors, which are connected to the surface signal through conductors 14 and 24 through the signal wiring connecting conductors 13 and 23, respectively. In the inner layer, 34 inner layer signal through conductors and 33 signal through conductor connecting conductors connecting them are formed and connected between the surface layer signal through conductors 14, 24, and 32 inner layer ground conductors are connected. A circular inner layer ground conductor non-formation region indicated by 36 is formed inside, and an inner layer grounding through conductor indicated by 35 is formed in the vicinity of the outer periphery of the inner layer ground conductor non-formation region. The surface layer signal through conductors 14, 24, the inner layer signal through conductors 34, and the surface ground conductor non-formation regions 16, 26 and the inner layer ground conductor non-formation region 36 overlap each other in a so-called coaxial line structure. None, a laminated structure for high-frequency signal transmission.
JP 2002-100901 A

しかしながら、上記の従来の高周波信号伝送用積層構造においては、信号配線接続導体13,23の長さが長く、ここを伝搬する高周波信号から見てグランドまでの距離が遠いためにこの部分がインダクタンスとして働くこととなり、高周波伝送特性が劣化するという問題があった。   However, in the above-described conventional laminated structure for high-frequency signal transmission, the length of the signal wiring connecting conductors 13 and 23 is long, and the distance from the high-frequency signal propagating here is far from the ground. There was a problem that the high-frequency transmission characteristics deteriorated.

本発明者等は、例えば、図17の構造をなす従来の高周波信号伝送用積層構造として、比誘電率が9.2で厚みが0.2mmの誘電体層1を9層積層し積層板とし、信号配線導体11の幅を0.21mmで形成し、信号配線接続導体13の幅を0.21mmにて形成し、表層信号用貫通導体14,24および内層信号用貫通導体34を直径0.1mmの円形状に形成し、信号用貫通導体接続導体を直径0.16mmの円形状とし、表面接地導体非形成領域16,26および内層接地内層接地導体非形成領域36は直径1.24mmの円形状に、内層接地用貫通導体は直径0.1mmの円形状にて、直径1.40mmの円周上における正八角形の頂点を中心として配置することで構成した。そして、表層信号配線導体11,21の信号配線接続導体13,23と反対側の端部間を上方から見て2.0mmとして、この間の高周波特性を電磁界シミュレーションにて抽出すると、図19に線図で示すような周波数特性の特性曲線が得られた。図19において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。   For example, as a conventional laminated structure for high-frequency signal transmission having the structure shown in FIG. 17, the present inventors laminated nine dielectric layers 1 having a relative dielectric constant of 9.2 and a thickness of 0.2 mm to form a laminated board, The conductor 11 is formed with a width of 0.21 mm, the signal wiring connecting conductor 13 is formed with a width of 0.21 mm, and the surface layer signal through conductors 14 and 24 and the inner layer signal through conductor 34 are formed in a circular shape with a diameter of 0.1 mm. The signal through conductor connecting conductor has a circular shape with a diameter of 0.16 mm, and the surface ground conductor non-forming regions 16 and 26 and the inner layer grounding inner layer grounding conductor non-forming region 36 have a circular shape with a diameter of 1.24 mm. Is a circular shape with a diameter of 0.1 mm, and is arranged around the apex of a regular octagon on the circumference with a diameter of 1.40 mm. Then, when the distance between the ends of the surface signal wiring conductors 11 and 21 opposite to the signal wiring connecting conductors 13 and 23 is 2.0 mm when viewed from above, and the high frequency characteristics therebetween are extracted by electromagnetic field simulation, the line in FIG. A characteristic curve of frequency characteristics as shown in the figure was obtained. In FIG. 19, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown.

図19における特性曲線は、周波数が高くなるにつれて反射が大きくなっていることを示しており、特に高周波では信号配線接続導体13,23のインダクタンスの影響が強く現れ反射が増大しており、高周波信号の伝送に劣化を及ぼしていることが判明した。   The characteristic curve in FIG. 19 shows that the reflection increases as the frequency increases. In particular, the influence of the inductance of the signal wiring connecting conductors 13 and 23 appears strongly at high frequencies, and the reflection increases, and the high frequency signal It has been found that the transmission is degraded.

なお、図17の例と同様の構成として、ただし、内層接地用貫通導体35を取り除いたことが異なる場合の例として、図18に示すような構造の場合についても、上記と同一の設計値にて電磁界シミュレーションで高周波特性を抽出すると、図20に示すような特性曲線が得られた。図20(a)は入射した高周波信号のうち反射されて戻ってきた信号の割合を示す反射係数(単位:dB)の周波数特性を、図20(b)は入射した高周波信号のうち透過されて伝送された信号の割合を示す透過係数(単位:dB)の周波数特性をそれぞれ示している。図20から、内層接地用貫通導体35を取り除いたことにより、高周波における反射は多少小さくなっているが、透過されて伝送される信号が非常に少なく、内層接地導体32の間を通じて放射されてしまっていることがわかる。このように、内層接地用貫通導体35を適切に配置しない場合には内層部に電磁遮蔽空間を設けることができないために、高周波信号の漏れが生じて放射損失の増大を招くこととなり、高周波伝送特性の劣化を及ぼすこととなる。   In addition, as a configuration similar to the example of FIG. 17, except that the inner-layer grounding through conductor 35 is removed, the structure shown in FIG. When high frequency characteristics were extracted by electromagnetic field simulation, a characteristic curve as shown in FIG. 20 was obtained. FIG. 20 (a) shows the frequency characteristic of the reflection coefficient (unit: dB) indicating the proportion of the reflected signal returned from the incident high-frequency signal, and FIG. 20 (b) shows that the incident high-frequency signal is transmitted. The frequency characteristics of the transmission coefficient (unit: dB) indicating the ratio of the transmitted signal are shown. From FIG. 20, by removing the inner-layer grounding through conductor 35, reflection at high frequencies is somewhat reduced, but there are very few signals transmitted through and transmitted through the inner-layer grounding conductor 32. You can see that As described above, if the inner-layer grounding through conductor 35 is not properly disposed, an electromagnetic shielding space cannot be provided in the inner layer portion. Therefore, leakage of a high-frequency signal occurs, resulting in an increase in radiation loss. It will deteriorate the characteristics.

そこで本発明は、上記従来技術における問題点に鑑みてなされたものであり、その目的は、高周波伝送特性が良好な高周波信号伝送用積層構造およびそれを用いた高周波半導体パッケージを提供することにある。   Accordingly, the present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a laminated structure for high-frequency signal transmission with good high-frequency transmission characteristics and a high-frequency semiconductor package using the same. .

本発明の請求項1に係る高周波信号伝送用積層構造は、4層以上の誘電体層を積層して成る積層基板の最上層および最下層のそれぞれに形成した信号配線導体が、互いに一端から逆方向に延びる関係にあり、これら各信号配線導体の一端と、前記最上層および前記最下層の誘電体層を上下に貫く表層信号用貫通導体とを、信号配線接続導体を介して接続し、前記最上層および前記最下層を除く内層の各層に、平面形状が円形状、矩形、楕円形状または偶多角形状を成す内層接地導体非形成領域と、内層接地導体とを形成し、前記内層接地導体非形成領域には、前記内層の各層を上下に貫く内層信号用貫通導体に接続する信号用貫通導体接続導体を形成し、前記内層接地導体非形成領域の外周の外側に、前記内層の各層を上下に貫く内層接地用貫通導体を形成した高周波信号伝送用積層構造であって、前記表層信号用貫通導体を、直下もしくは直上の前記内層接地導体と重ならない前記信号配線接続導体が前記信号配線導体を延長するように形成されるとともに、前記信号配線導体の端に近接するように、直上または直下の前記内層接地導体非形成領域の外周の内側に配置し、前記内層信号用貫通導体は、前記表層信号用貫通導体間で上下なめらかに接続するように順次ずらして配置されているとともに、上下方向の中央に近づくにしたがってずれが小さいことを特徴とする。 In the laminated structure for high-frequency signal transmission according to claim 1 of the present invention, the signal wiring conductors formed on the uppermost layer and the lowermost layer of the laminated substrate formed by laminating four or more dielectric layers are reversed from one end. The signal wiring conductor is connected to one end of each of the signal wiring conductors, and the surface layer signal through conductors vertically passing through the uppermost layer and the lowermost dielectric layer via the signal wiring connection conductors, An inner layer ground conductor non-forming region having a circular shape, a rectangular shape, an elliptical shape, or an even polygonal shape and an inner layer ground conductor are formed on each of the inner layer excluding the uppermost layer and the lowermost layer. In the formation region, a signal through conductor connecting conductor is formed to connect to an inner layer signal through conductor that vertically penetrates each inner layer, and each inner layer is vertically moved outside the outer periphery of the inner layer ground conductor non-forming region. For inner layer grounding A high-frequency signal transmission layered structure formed of Tsushirube body, so that the surface layer signal through conductors, the signal lines connecting conductor which does not overlap with the inner layer ground conductor immediately below or immediately above to extend the signal wiring conductors The inner layer signal through conductor is formed inside the outer periphery of the inner layer ground conductor non-formation region immediately above or immediately below the signal wiring conductor, and the inner layer signal through conductor is the surface layer signal through conductor. They are arranged so as to be smoothly connected so as to be connected smoothly in the vertical direction, and the shift is small as they approach the center in the vertical direction.

また、請求項5の高周波半導体パッケージによれば、前記高周波信号伝送用積層構造を備えた前記積層基板の上面に枠体および蓋体を設けることにより、高周波半導体素子を収容する構造としたことを特徴とする。   According to the high-frequency semiconductor package of claim 5, a structure is provided in which a high-frequency semiconductor element is accommodated by providing a frame body and a lid on the upper surface of the multi-layer substrate provided with the multi-layer structure for high-frequency signal transmission. Features.

ここで、本発明の高周波信号伝送用積層構造においては、特に、内層の誘電体層の厚みおよび内層接地用貫通導体の間隔を、使用する最高周波数の管内波長の半分よりも小さく設定するのが望ましい。この理由は、従来の例で示したように、内層に電磁遮蔽空間を形成しない場合に内層において電磁波が漏れてしまい、放射損失となってしまうことを防止するためである。すなわち、内層の上下の接地導体と接地用貫通導体がなす矩形を矩形導波管として捉えると、矩形導波管の最低次の伝送モード(基本モード)はTE10モードであり、このモードの遮断波長は矩形の長辺の2倍の実効長に等しい。したがって、使用する周波数帯域内において内層部に電磁遮蔽空間を形成するためには、内層の誘電体層の厚みおよび内層接地用貫通導体の間隔は使用する最高周波数の管内波長の半分よりも小さくすることが必要であり、より好適には4分の1波長以下に設定するのが望ましい。したがって、製造上の困難が生じない範囲で上記範囲を満たすことも重要である。   Here, in the laminated structure for high-frequency signal transmission of the present invention, in particular, the thickness of the inner dielectric layer and the interval between the inner-layer grounding through conductors are set to be smaller than half of the maximum guide wavelength used. desirable. The reason for this is to prevent electromagnetic waves from leaking and causing radiation loss in the inner layer when the electromagnetic shielding space is not formed in the inner layer as shown in the conventional example. In other words, if the rectangle formed by the upper and lower ground conductors on the inner layer and the grounding through conductor is regarded as a rectangular waveguide, the lowest transmission mode (basic mode) of the rectangular waveguide is the TE10 mode. Is equal to the effective length of twice the long side of the rectangle. Therefore, in order to form an electromagnetic shielding space in the inner layer portion within the frequency band to be used, the thickness of the inner dielectric layer and the interval between the inner layer grounding through conductors should be smaller than half of the highest frequency of the guide wavelength used. It is necessary to set it to 1/4 wavelength or less. Therefore, it is also important to satisfy the above range within a range where manufacturing difficulties do not occur.

以上のように、請求項1の高周波信号伝送用積層構造によれば、4層以上の誘電体層を積層して成る積層基板の最上層および最下層のそれぞれに形成した信号配線導体が、互いに一端から逆方向に延びる関係にあり、これら各信号配線導体の一端と、前記最上層および前記最下層の誘電体層を上下に貫く表層信号用貫通導体とを、信号配線接続導体を介して接続し、前記最上層および前記最下層を除く内層の各層に、平面形状が円形状、矩形、楕円形状または偶多角形状を成す内層接地導体非形成領域と、内層接地導体とを形成し、前記内層接地導体非形成領域には、前記内層の各層を上下に貫く内層信号用貫通導体に接続する信号用貫通導体接続導体を形成し、前記内層接地導体非形成領域の外周の外側に、前記内層の各層を上下に貫く内層接地用貫通導体を形成した高周波信号伝送用積層構造であって、前記表層信号用貫通導体を、直下もしくは直上の前記内層接地導体と重ならない前記信号配線接続導体が前記信号配線導体を延長するように形成されるとともに、前記信号配線導体の端に近接するように、直上または直下の前記内層接地導体非形成領域の外周の内側に配置し、前記内層信号用貫通導体は、前記表層信号用貫通導体間で上下なめらかに接続するように順次ずらして配置されているとともに、上下方向の中央に近づくにしたがってずれが小さいことから、信号配線接続導体の長さを短くすることができ、この部分のインダクタンスが小さくなることにより高周波伝送特性を向上することが可能となるので、その結果、高周波において反射が増大するという問題点を解決することができる。 As described above, according to the laminated structure for high-frequency signal transmission according to claim 1, the signal wiring conductors formed on the uppermost layer and the lowermost layer of the laminated substrate formed by laminating four or more dielectric layers are mutually connected. Connects one end of each signal wiring conductor to the uppermost layer and the lowermost dielectric layer through the signal wiring connecting conductor, extending in the opposite direction from one end. An inner layer ground conductor non-formation region in which the planar shape is circular, rectangular, elliptical or even polygonal , and an inner layer ground conductor are formed on each of the inner layers excluding the uppermost layer and the lowermost layer, and the inner layer In the ground conductor non-forming region, a signal through conductor connecting conductor connected to an inner layer signal through conductor penetrating each layer of the inner layer is formed, and outside the outer periphery of the inner layer ground conductor non-forming region, Inside each layer up and down A high-frequency signal transmission layered structure forming the ground through conductors, the surface layer signal through conductors, the signal lines connecting conductor which does not overlap with the inner layer ground conductor immediately below or immediately above to extend the signal wiring conductors The inner layer signal through conductor is disposed on the outer periphery of the inner layer ground conductor non-formation region immediately above or immediately below the signal wiring conductor, and the inner layer signal through conductor is used for the surface layer signal. Since it is sequentially shifted so as to connect smoothly between the through conductors, and the deviation is small as it approaches the center in the vertical direction, the length of the signal wiring connecting conductor can be shortened. Since the high-frequency transmission characteristics can be improved by reducing the inductance, the problem is that reflection increases at high frequencies. It can be solved.

また、請求項1の高周波信号伝送用積層構造によれば、表層信号用貫通導体の間を内層信号貫通導体および信号用貫通導体接続導体によりなめらかに接続するよう順次ずらして配置したことから、高周波信号伝送用積層構造を成す領域(寸法)を、内層接地導体非形成領域の形状を変化させて配置する場合よりもインピーダンス変化を小さくすることができるのでインピーダンスの整合性が良好となる。   According to the laminated structure for high-frequency signal transmission according to claim 1, the surface layer signal through conductors are sequentially shifted so as to be smoothly connected by the inner layer signal through conductor and the signal through conductor connecting conductor. Since the impedance change can be made smaller than the case where the region (dimension) forming the signal transmission laminated structure is arranged by changing the shape of the inner-layer ground conductor non-formation region, impedance matching is improved.

また、請求項1の高周波信号伝送用積層構造によれば、内層信号用貫通導体は内層接地導体非形成領域の中心に近づくにしたがってずれが小さくなっていることから、表層と内層との間の高周波信号の伝搬におけるインピーダンスの不連続性を小さくすることができ、さらに良好な高周波伝送特性とすることができる。   Further, according to the laminated structure for high-frequency signal transmission according to claim 1, since the deviation of the inner layer signal through conductor becomes smaller toward the center of the inner layer ground conductor non-formation region, the gap between the surface layer and the inner layer is reduced. Impedance discontinuity in high-frequency signal propagation can be reduced, and better high-frequency transmission characteristics can be obtained.

また、本発明の請求項2の高周波信号伝送用積層構造によれば、請求項1の高周波信号伝送用積層構造において、信号配線接続導体の幅は信号配線導体の幅よりも広くなっていることから、信号配線接続導体の幅が広がることでこの部分のインダクタンスがより小さくなり、インピーダンスの整合性が良好となる。   Further, according to the multilayer structure for high frequency signal transmission according to claim 2 of the present invention, in the multilayer structure for high frequency signal transmission according to claim 1, the width of the signal wiring connecting conductor is wider than the width of the signal wiring conductor. As a result, the width of the signal wiring connecting conductor is increased, whereby the inductance of this portion is further reduced, and the impedance matching is improved.

また、請求項3の高周波信号電波用積層構造によれば、前記積層基板の上下面のいずれかに表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記信号配線接続導体の長さが短くなるように前記信号配線導体を前記表層接地導体非形成領域の外周の外側に配置し、且つ、前記表層接地導体領域が前記信号配線導体を取り囲むことから、従来、信号配線接続導体の長さが長く、ここを伝搬する高周波信号から見てグランドまでの距離が遠いためにこの部分がインダクタンスとして働くことにより高周波伝送特性の劣化が生じる場合と比較して、信号配線接続導体のインダクタンスを小さくすることができ、さらに、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を小さくすることができる構造となるために、良好な高周波伝送特性とすることができる。その結果、高周波の伝送特性が良好な高周波信号伝送用積層構造となる。 According to the multilayer structure for high-frequency signal radio waves according to claim 3, the surface ground conductor is formed on either one of the upper and lower surfaces of the multilayer substrate, and the surface ground conductor having a predetermined distance from the signal wiring conductor is formed. The signal wiring conductor is disposed outside the outer periphery of the surface ground conductor non-formation region so that the length of the signal wiring connection conductor is shortened, and the surface ground conductor region surrounds the signal wiring conductor. Compared to the conventional case where the length of the signal wiring connecting conductor is long and the distance from the high-frequency signal propagating here is far from the ground, so that this part acts as an inductance and the high-frequency transmission characteristics deteriorate. In addition, the inductance of the signal wiring connecting conductor can be reduced, and further, the external wiring can be connected to the coplanar by configuring it as a coplanar line as an input / output line. If the road to become a structure that can reduce impedance discontinuities in connection with the external wiring can be a good high-frequency transmission characteristics. As a result, a laminated structure for high frequency signal transmission with good high frequency transmission characteristics is obtained.

また、請求項4の高周波信号伝送用積層構造によれば、前記積層基板の上下面のいずれかに表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体とを形成するとともに、前記信号配線接続導体の長さが短くなるように前記信号配線導体を前記表層接地導体非形成領域の外周の外側に配置し、且つ、前記表層接地導体の全体を前記信号配線接続導体における前記信号配線導体とは反対側の端よりも前記信号配線導体の側に配置したことから、表層接地導体を信号配線導体の両脇のみに設けたので、表層から内層へ(もしくは内層から表層へ)向かう電磁波の直進性に対して伝搬モードを安定に維持したままに伝搬方向を変えることが安定してできるので、反射が生じにくく、インピーダンス整合が良好に行なえる高周信号波伝送用積層構造となる。 According to the multilayer structure for high-frequency signal transmission according to claim 4, the surface layer ground conductor non-formation region and the surface layer ground conductor having a predetermined interval with respect to the signal wiring conductor are formed on either the upper or lower surface of the multilayer substrate. In addition, the signal wiring conductor is disposed outside the outer periphery of the surface layer ground conductor non-formation region so that the length of the signal wiring connection conductor is shortened, and the entire surface layer ground conductor is disposed in the signal wiring connection conductor. Since the surface wiring conductor is provided only on both sides of the signal wiring conductor from the end opposite to the signal wiring conductor, the surface layer ground conductor is provided only on both sides of the signal wiring conductor (or from the inner layer to the surface layer). ) Because the propagation direction can be changed stably while keeping the propagation mode stable with respect to the straightness of the electromagnetic wave going to the surface, reflection is less likely to occur and impedance matching can be performed well. A signal wave transmitting laminated structure.

さらに、請求項5の高周波半導体パッケージによれば、例えば請求項1乃至4のいずれかの高周波信号伝送用積層構造を有する積層基板の上面に高周波半導体素子を収容するように枠体および蓋体を形成し、積層基板の下面の信号配線導体の信号配線接続導体と反対側に外部との信号入出力のための入出力信号配線接続導体を形成したことにより、高周波の伝送特性が良好な高周波半導体パッケージとして提供できる。   Furthermore, according to the high-frequency semiconductor package of claim 5, the frame body and the lid are arranged so as to accommodate the high-frequency semiconductor element on the upper surface of the laminated substrate having the laminated structure for high-frequency signal transmission according to any one of claims 1 to 4, for example. A high-frequency semiconductor with good high-frequency transmission characteristics by forming an input / output signal wiring connection conductor for signal input / output with the outside on the opposite side of the signal wiring connection conductor of the signal wiring conductor on the bottom surface of the multilayer substrate Can be provided as a package.

以下、模式的に示した図面に基づいて本発明を詳細に説明する。なお、本発明は以下の例に限定されるものではなく、本発明の主旨を逸脱しない範囲で変更・改良を施すことは何ら差し支えない。   Hereinafter, the present invention will be described in detail with reference to the drawings schematically shown. In addition, this invention is not limited to the following examples, It does not interfere at all in the range which does not deviate from the main point of this invention.

図1は参考例に係る、第1の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。図1において、1は誘電体層でありそれぞれを積層することで積層板としている。11および21は信号配線導体であり13ならびに23の信号配線接続導体を介して14ならびに24の表層信号用貫通導体にそれぞれ接続している。なお、本発明において信号配線接続導体とは直下もしくは直上の内層接地導体32と重ならない信号導体をいう。内層には34の内層信号用貫通導体とそれらを接続する33の信号用貫通導体接続導体が形成され、表層信号用貫通導体14,24との間を接続しており、32の内層接地導体の内側には36の楕円形状の内層接地導体非形成領域が形成され、内層接地導体非形成領域36の外周近傍に35の内層接地用貫通導体が形成されている。そして、内層接地導体非形成領域36はそれぞれ上下に重ねて配置しており、表層信号用貫通導体14,24の間を内層信号用貫通導体34および信号用貫通導体接続導体33によりなめらかに接続するように順次ずらして配置する。   1A and 1B are diagrams showing an example of a first laminated structure for high-frequency signal transmission according to a reference example. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG. In FIG. 1, reference numeral 1 denotes a dielectric layer, which is laminated to form a laminated plate. The signal wiring conductors 11 and 21 are connected to the surface signal through conductors 14 and 24 through the signal wiring connecting conductors 13 and 23, respectively. In the present invention, the signal wiring connecting conductor refers to a signal conductor that does not overlap with the inner-layer ground conductor 32 directly below or directly above. In the inner layer, 34 inner layer signal through conductors and 33 signal through conductor connecting conductors connecting them are formed and connected between the surface layer signal through conductors 14, 24, and 32 inner layer ground conductors are connected. On the inside, 36 elliptical inner-layer ground conductor non-forming regions are formed, and 35 inner-layer grounding through conductors are formed in the vicinity of the outer periphery of the inner-layer ground conductor non-forming region 36. The inner-layer ground conductor non-forming regions 36 are arranged so as to overlap each other, and the surface layer signal through conductors 14 and 24 are smoothly connected by the inner layer signal through conductor 34 and the signal through conductor connecting conductor 33. As shown in FIG.

さらに、表層信号用貫通導体14、24を直上または直下の前記内層接地導体非形成領域36の外周部に配置し、前記信号配線接続導体33の長さが短くなるようにしている。   Further, the surface layer signal through conductors 14 and 24 are arranged at the outer periphery of the inner layer ground conductor non-forming region 36 immediately above or directly below, so that the length of the signal wiring connecting conductor 33 is shortened.

これにより、従来、信号配線接続導体の長さが長く、ここを伝搬する高周波信号から見て信号配線接続導体からグランドまでの距離が遠いためにこの部分がインダクタンスとして働くことにより高周波伝送特性の劣化が生じる場合と比較して、信号配線接続導体のインダクタンスを小さくすることができるために、良好な高周波伝送特性とすることができる。その結果、高周波の伝送特性が良好な高周波信号伝送用積層構造となる。特に表層信号用貫通導体14,24の間を内層信号用貫通導体34および信号用貫通導体接続導体33によりなめらかに接続するように順次ずらして配置した場合、高周波信号伝送用積層構造を成す領域(寸法)を、内層接地導体非形成領域を順次ずらして配置する場合よりも小さくでき、さらに、内層接地導体非形成領域の形状を順次変化させて配置する場合よりもインピーダンス変化を小さくすることができるためにインピーダンスの整合性が良好となるという作用・効果がある。   As a result, the length of the signal wiring connection conductor is long, and the distance from the signal wiring connection conductor to the ground is long when viewed from the high frequency signal propagating here. Since the inductance of the signal wiring connecting conductor can be reduced as compared with the case where this occurs, it is possible to achieve good high-frequency transmission characteristics. As a result, a laminated structure for high frequency signal transmission with good high frequency transmission characteristics is obtained. In particular, in the case where the surface layer signal through conductors 14 and 24 are sequentially shifted so as to be smoothly connected by the inner layer signal through conductors 34 and the signal through conductor connecting conductors 33, the regions forming the laminated structure for high frequency signal transmission ( Dimension) can be made smaller than the case where the inner-layer ground conductor non-formation region is sequentially shifted and arranged, and furthermore, the impedance change can be made smaller than when the inner-layer ground conductor non-formation region is arranged in sequence. Therefore, there is an operation and effect that impedance matching is improved.

次に、図2は本発明の請求項1に係る、第2の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   Next, FIG. 2 is a figure which shows the example of the 2nd laminated structure for high frequency signal transmission based on Claim 1 of this invention, (a) is a top view, (b) is AA of (a). It is line sectional drawing.

図2において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、12および22は表層接地導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、内層信号用貫通導体34は上下方向の中央(積層された内層のうち真ん中の層)に近づくにしたがってずれが小さくなっている。   2, the same reference numerals are given to the same parts as in FIG. 1, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 12 and 22 are surface ground conductors, and 13 and 23 are signal wirings. Connecting conductors, 14 and 24 are surface layer signal through conductors, 32 are inner layer ground conductors, 33 are signal through conductor connection conductors, 34 are inner layer signal through conductors, 35 are inner layer ground through conductors, and 36 are not inner layer ground conductors. It is a formation area. The inner layer signal penetrating conductor 34 has a smaller deviation as it approaches the center in the vertical direction (the middle layer among the stacked inner layers).

これにより、表層から内層へ(もしくは内層から表層へ)向かう電磁波の直進性に対して伝搬モードを安定に維持したままに伝搬方向を変えることができるので、表層と内層との間の高周波信号の伝搬におけるインピーダンスの不連続性を小さくすることができることから、さらに良好な高周波伝送特性とすることができる。その結果、高周波の伝送特性が良好な高周波信号伝送用積層構造となる。   As a result, the propagation direction can be changed while maintaining the propagation mode stably with respect to the straightness of the electromagnetic wave traveling from the surface layer to the inner layer (or from the inner layer to the surface layer), so that the high-frequency signal between the surface layer and the inner layer can be changed. Since discontinuity of impedance in propagation can be reduced, even better high-frequency transmission characteristics can be obtained. As a result, a laminated structure for high frequency signal transmission with good high frequency transmission characteristics is obtained.

次に、図3は他の参考例に係る、第3の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   Next, FIG. 3 is a figure which shows the example of the 3rd laminated structure for high frequency signal transmission based on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). FIG.

すなわち、図3において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、12および22は表層接地導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、内層接地導体非形成領域36を上下になめらかに接続するよう順次ずらして配置している。   That is, in FIG. 3, the same reference numerals are assigned to the same parts as in FIG. 1, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 12 and 22 are surface ground conductors, and 13 and 23 are Signal wiring connection conductors, 14 and 24 are surface layer signal through conductors, 32 is an inner layer ground conductor, 33 is a signal through conductor connection conductor, 34 is an inner layer signal through conductor, 35 is an inner layer ground through conductor, and 36 is an inner layer ground. It is a conductor non-formation region. The inner-layer ground conductor non-formation regions 36 are sequentially shifted so as to be smoothly connected up and down.

これにより、内層接地導体非形成領域の形状を順次変化させて配置する場合よりもインピーダンス変化を小さくすることができるためにインピーダンスの整合性が良好となるという作用・効果がある。   As a result, the impedance change can be made smaller than in the case where the shape of the inner-layer ground conductor non-formation region is sequentially changed and disposed, so that the impedance matching is improved.

次に、図4は他の参考例に係る、第4の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   Next, FIG. 4 is a figure which shows the example of the 4th laminated structure for high frequency signal transmission based on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). FIG.

図4において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、12および22は表層接地導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、内層接地導体非形成領域36は上下方向の中央に近づくにしたがってずれが小さくなっている。   4, the same parts as those in FIG. 1 are denoted by the same reference numerals, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 12 and 22 are surface ground conductors, and 13 and 23 are signal wirings. Connecting conductors, 14 and 24 are surface layer signal through conductors, 32 are inner layer ground conductors, 33 are signal through conductor connection conductors, 34 are inner layer signal through conductors, 35 are inner layer ground through conductors, and 36 are not inner layer ground conductors. It is a formation area. The deviation of the inner-layer ground conductor non-forming region 36 becomes smaller as it approaches the center in the vertical direction.

これにより、表層と内層との間の高周波信号の伝搬におけるインピーダンスの不連続性を小さくすることができることから、さらに良好な高周波伝送特性とすることができる。その結果、高周波の伝送特性が良好な高周波信号伝送用積層構造となる。   As a result, the impedance discontinuity in the propagation of the high-frequency signal between the surface layer and the inner layer can be reduced, so that even better high-frequency transmission characteristics can be obtained. As a result, a laminated structure for high frequency signal transmission with good high frequency transmission characteristics is obtained.

次に、図5は他の参考例に係る、第5の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   Next, FIG. 5 is a diagram showing an example of a fifth laminated structure for high-frequency signal transmission according to another reference example, (a) is a plan view, and (b) is a cross-sectional view taken along line AA in (a). FIG.

図5において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、12および22は表層接地導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、内層接地導体非形成領域36を、上下なめらかに接続するように形状を変化させて配置している。   In FIG. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 12 and 22 are surface ground conductors, and 13 and 23 are signal wirings. Connecting conductors, 14 and 24 are surface layer signal through conductors, 32 are inner layer ground conductors, 33 are signal through conductor connection conductors, 34 are inner layer signal through conductors, 35 are inner layer ground through conductors, and 36 are not inner layer ground conductors. It is a formation area. The inner-layer ground conductor non-formation region 36 is arranged with its shape changed so as to be smoothly connected vertically.

これにより、高周波信号伝送用積層構造を成す領域(寸法)を、内層接地導体非形成領域を順次ずらして配置する場合よりも小さくできるという作用・効果がある。   Thereby, there exists an effect | action and effect that the area | region (dimension) which comprises the laminated structure for high frequency signal transmission can be made smaller than the case where the inner layer ground conductor non-formation area | region is shifted and arrange | positioned one by one.

次に、図6は他の参考例に係る、第6の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   Next, FIG. 6 is a figure which shows the example of the 6th laminated structure for high frequency signal transmission based on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). FIG.

図6において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、12および22は表層接地導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、内層接地導体非形成領域36は上下方向の中央に近づくにしたがって形状変化が小さくなっている。   In FIG. 6, the same parts as in FIG. 1 are denoted by the same reference numerals, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 12 and 22 are surface ground conductors, and 13 and 23 are signal wirings. Connecting conductors, 14 and 24 are surface layer signal through conductors, 32 are inner layer ground conductors, 33 are signal through conductor connection conductors, 34 are inner layer signal through conductors, 35 are inner layer ground through conductors, and 36 are not inner layer ground conductors. It is a formation area. The shape change of the inner-layer ground conductor non-formation region 36 becomes smaller as it approaches the center in the vertical direction.

これにより、表層と内層との間の高周波信号の伝搬におけるインピーダンスの不連続性を小さくすることができることから、さらに良好な高周波伝送特性とすることができる。その結果、高周波の伝送特性が良好な高周波信号伝送用積層構造となる。   As a result, the impedance discontinuity in the propagation of the high-frequency signal between the surface layer and the inner layer can be reduced, so that even better high-frequency transmission characteristics can be obtained. As a result, a laminated structure for high frequency signal transmission with good high frequency transmission characteristics is obtained.

次に、図7は他の参考例に係る、第7の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。図7において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、12および22は表層接地導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、表層信号用貫通導体14,24と内層信号用貫通導体34ならびに表層接地導体非形成領域16,26と内層接地導体非形成領域36とは中心を共有して重ねた、いわゆる同軸線路構造とし、表層接地導体非形成領域16を内層接地導体非形成領域36よりも小さくしている。   Next, FIG. 7 is a figure which shows the example of the 7th laminated structure for high frequency signal transmission based on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). FIG. 7, the same reference numerals are assigned to the same parts as in FIG. 1, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 12 and 22 are surface ground conductors, and 13 and 23 are signal wirings. Connecting conductors, 14 and 24 are surface layer signal through conductors, 32 are inner layer ground conductors, 33 are signal through conductor connection conductors, 34 are inner layer signal through conductors, 35 are inner layer ground through conductors, and 36 are not inner layer ground conductors. It is a formation area. The surface signal through conductors 14 and 24, the inner layer signal through conductor 34, and the surface ground conductor non-forming regions 16, 26 and the inner layer ground conductor non-forming region 36 have a so-called coaxial line structure in which the centers are overlapped. The surface layer ground conductor non-forming region 16 is made smaller than the inner layer ground conductor non-forming region.

これにより、高周波信号伝送用積層構造を成す領域(寸法)を、内層接地導体非形成領域を順次ずらして配置する場合よりも小さくできるという作用・効果がある。   Thereby, there exists an effect | action and effect that the area | region (dimension) which comprises the laminated structure for high frequency signal transmission can be made smaller than the case where the inner layer ground conductor non-formation area | region is shifted and arrange | positioned one by one.

次に、図8は本発明の請求項2に係る第8の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   Next, FIG. 8 is a view showing an example of an eighth laminated structure for high frequency signal transmission according to claim 2 of the present invention, wherein (a) is a plan view and (b) is an AA line of (a). It is sectional drawing.

図8において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、12および22は表層接地導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体、35は内層接地用貫通導体、36は内層接地導体非形成領域である。そして、信号配線接続導体13,23の幅は信号配線導体11,21の幅よりも広くなっている。   In FIG. 8, the same parts as in FIG. 1 are denoted by the same reference numerals, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 12 and 22 are surface ground conductors, and 13 and 23 are signal wirings. Connecting conductors, 14 and 24 are surface layer signal through conductors, 32 are inner layer ground conductors, 33 are signal through conductor connection conductors, 34 are inner layer signal through conductors, 35 are inner layer ground through conductors, and 36 are not inner layer ground conductors. It is a formation area. The signal wiring connection conductors 13 and 23 are wider than the signal wiring conductors 11 and 21.

これにより、信号配線接続導体13,23の幅は信号配線導体11,21の幅よりも広くなっていることにより、信号配線接続導体13,23のインダクタンスをさらに小さくすることができ、インピーダンスの整合性が良好となるという作用・効果がある。   As a result, the width of the signal wiring connection conductors 13 and 23 is wider than the width of the signal wiring conductors 11 and 21, thereby further reducing the inductance of the signal wiring connection conductors 13 and 23 and matching impedance. There is an action and an effect that the property becomes good.

ところで、本発明の高周波信号伝送用積層構造において、前記信号配線接続導体における前記表層信号配線導体から前記表層信号用貫通導体までの長さは、前記最上層または最下層の直上または直下の前記内層接地導体非形成領域の厚み以下であることが好ましい(第9の高周波信号伝送用積層構造)。これは、信号配線接続導体の長さが短いほどインダクタンスを小さくすることができることに基づくが、その長さが最上層または最下層の前記誘電体層の厚み以下とすることによってそのインダクタンスは極僅かに維持されることによる。   By the way, in the laminated structure for high-frequency signal transmission according to the present invention, the length from the surface signal wiring conductor to the surface signal through conductor in the signal wiring connecting conductor is the inner layer directly above or immediately below the uppermost layer or the lowermost layer. It is preferable that the thickness be equal to or smaller than the thickness of the ground conductor non-formation region (ninth laminated structure for high frequency signal transmission). This is based on the fact that the shorter the length of the signal wiring connecting conductor, the smaller the inductance can be. However, when the length is equal to or less than the thickness of the uppermost dielectric layer or the lowermost dielectric layer, the inductance is negligible. By being maintained.

次に、図9は本発明の請求項3に係る第10の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   Next, FIG. 9 is a diagram showing an example of a tenth laminated structure for high frequency signal transmission according to claim 3 of the present invention, wherein (a) is a plan view and (b) is an AA line of (a). It is sectional drawing.

図9において、図1と同様の箇所には同じ符号を付してあり、1は誘電体層であり、11および21は信号配線導体、13および23は信号配線接続導体、14および24は表層信号用貫通導体、32は内層接地導体、33は信号用貫通導体接続導体、34は内層信号用貫通導体である。そして、積層基板1の上面または下面には表層信号用貫通導体14および信号配線接続導体13を取囲む状態で、信号配線導体11に対し所定間隔をあけて12の表面接地導体を形成し、さらにこの表面接地導体12と内層接地導体32との間を上下に貫く15の表層接地用貫通導体により接続することで、従来、信号配線接続導体の長さが長く、ここを伝搬する高周波信号から見てグランドまでの距離が遠いためにこの部分がインダクタンスとして働くことにより高周波伝送特性の劣化が生じる場合と比較して、信号配線接続導体のインダクタンスを小さくすることができ、さらに、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を小さくすることができる構造となるために、良好な高周波伝送特性とすることができる。その結果、高周波の伝送特性が良好な高周波信号伝送用積層構造となる。   9, the same reference numerals are given to the same parts as in FIG. 1, 1 is a dielectric layer, 11 and 21 are signal wiring conductors, 13 and 23 are signal wiring connection conductors, and 14 and 24 are surface layers. The signal through conductor, 32 is an inner layer ground conductor, 33 is a signal through conductor connecting conductor, and 34 is an inner layer signal through conductor. Then, on the upper surface or the lower surface of the multilayer substrate 1, 12 surface ground conductors are formed at a predetermined interval with respect to the signal wiring conductor 11 in a state of surrounding the surface signal through conductors 14 and the signal wiring connecting conductors 13, By connecting the surface ground conductor 12 and the inner-layer ground conductor 32 with 15 surface ground through conductors extending vertically, the length of the signal wiring connection conductor is conventionally long, as viewed from the high-frequency signal propagating therethrough. Compared with the case where the high-frequency transmission characteristics deteriorate due to this part acting as an inductance because the distance to the ground is far, the inductance of the signal wiring connection conductor can be reduced, and the coplanar as an input / output line By configuring as a line, when the external wiring is a coplanar line, it is possible to reduce the impedance discontinuity in connection with the external wiring and In order, it can be a good high-frequency transmission characteristics. As a result, a laminated structure for high frequency signal transmission with good high frequency transmission characteristics is obtained.

図21は本発明の請求項4に係る、第11の高周波信号伝送用積層構造の例を示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。   FIG. 21 is a view showing an example of an eleventh laminated structure for high-frequency signal transmission according to claim 4 of the present invention, where (a) is a plan view and (b) is a cross-sectional view taken along line AA of (a). It is.

図21に示す高周波信号伝送用積層構造は、上下面のいずれかにおいて、前記表層接地導体12の全体を前記信号配線接続導体13における前記信号配線導体11とは反対側の端よりも前記信号配線導体11の側に配置したものである。この図21の構成によれば表層接地導体を信号配線導体の両脇のみに形成したことから、表層から内層へ(もしくは内層から表層へ)向かう電磁波の直進性に対して伝搬モードを安定に維持したままに伝搬方向を変えることが安定してできるので、反射が生じにくく、インピーダンス整合が良好に行なえる高周信号波伝送用積層構造となる。   The laminated structure for high-frequency signal transmission shown in FIG. 21 is such that the entire surface layer ground conductor 12 is connected to the signal wiring from the opposite end of the signal wiring connection conductor 13 to the signal wiring conductor 11 on either the upper or lower surface. It is arranged on the conductor 11 side. According to the configuration shown in FIG. 21, since the surface ground conductor is formed only on both sides of the signal wiring conductor, the propagation mode is stably maintained against the straightness of the electromagnetic wave traveling from the surface layer to the inner layer (or from the inner layer to the surface layer). Since the propagation direction can be stably changed as it is, a laminated structure for high frequency signal wave transmission is obtained in which reflection hardly occurs and impedance matching can be performed satisfactorily.

また、上記高周波信号伝送用積層構造を高周波半導体パッケージに適用が可能である。すなわち、上記積層構造の上面に高周波半導体素子を収容するように枠体および蓋体を形成し、積層構造の下面の信号配線導体の信号配線接続導体と反対側に外部との信号入出力のための入出力信号配線接続導体を形成することにより、高周波の伝送特性が良好な高周波半導体パッケージとなる。   Further, the laminated structure for high frequency signal transmission can be applied to a high frequency semiconductor package. That is, a frame body and a lid are formed on the upper surface of the laminated structure so as to accommodate the high-frequency semiconductor element, and signal input / output with the outside is performed on the opposite side of the signal wiring conductor of the signal wiring conductor on the lower surface of the laminated structure. By forming the input / output signal wiring connection conductor, a high-frequency semiconductor package with good high-frequency transmission characteristics is obtained.

図22はこのような高周波半導体パッケージを示し、第1の高周波信号伝送用積層構造の例に対して、41の枠体ならびに42の蓋体を設けることで高周波半導体パッケージとして構成している。   FIG. 22 shows such a high-frequency semiconductor package, which is configured as a high-frequency semiconductor package by providing 41 frames and 42 lids for the first example of the laminated structure for high-frequency signal transmission.

このような本発明の高周波信号伝送用積層構造またはそれを用いた高周波半導体パッケージにおいて、誘電材料としては、例えばアルミナやムライト、窒化アルミ等のセラミックス材料、いわゆるガラセラ(ガラス+セラミック)材料が広く用いられ、信号配線導体や接地導体といった導体パターンは、高周波配線導体用の金属材料、例えば、CuやMoMn+Ni+Au、W+Ni+Au、Cr+Cu、Cr+Cu+Ni+Au、Ta2N+NiCr+Au、Ti+Pd+Au、NiCr+Pd+Auなどを用いて厚膜印刷法あるいは各種の薄膜形成方法やメッキ処理法などにより形成される。また、その厚みや幅も伝送される高周波信号の周波数や使用する特性インピーダンスなどに応じて誘電体の誘電率や厚みとともに設定される。また、枠体や蓋体に金属を用いる場合には、Fe-Ni-CoやFe-Ni42アロイ等のFe-Ni合金・無酸素銅・アルミニウム・ステンレス・Cu-W合金・Cu-Mo合金などから成る材料を用い、金属構造物間の接合には、ハンダ・AuSnロウやAuGeロウ等の高融点金属ロウ・シームウェルド(溶接)等により取着することによって気密封止し、また、誘電体基板と金属構造物とは、AgCuロウ・AuSnロウ・AuGeロウ等の高融点金属ロウにより接合することによって、半導体素子を収容することで良好な伝送特性を有する高周波半導体パッケージを提供できる。 In such a laminated structure for high-frequency signal transmission according to the present invention or a high-frequency semiconductor package using the same, as a dielectric material, for example, ceramic materials such as alumina, mullite, aluminum nitride, so-called glassera (glass + ceramic) materials are widely used. Conductor patterns such as signal wiring conductors and grounding conductors are metal materials for high-frequency wiring conductors, such as Cu, MoMn + Ni + Au, W + Ni + Au, Cr + Cu, Cr + Cu + Ni + Au, Ta 2 N + NiCr + Au, Ti + Pd + Au, NiCr + Pd + Au, etc. are used for the thick film printing method or various thin film forming methods and plating methods. The thickness and width of the dielectric are set together with the dielectric constant and thickness of the dielectric according to the frequency of the transmitted high-frequency signal and the characteristic impedance used. When using metal for the frame and lid, Fe-Ni alloys such as Fe-Ni-Co and Fe-Ni42 alloys, oxygen-free copper, aluminum, stainless steel, Cu-W alloys, Cu-Mo alloys, etc. It is made of a material that is hermetically sealed for bonding between metal structures by soldering with high melting point metal solder such as solder, AuSn solder or AuGe solder, seam weld (welding), etc. The substrate and the metal structure are joined by a high melting point metal brazing such as AgCu brazing, AuSn brazing, or AuGe brazing to accommodate a semiconductor element, thereby providing a high frequency semiconductor package having good transmission characteristics.

次に、本発明の高周波信号伝送用積層構造について具体例を説明する。   Next, a specific example of the laminated structure for high frequency signal transmission according to the present invention will be described.

〔例1〕まず、参考例に係る第1の高周波信号伝送用積層構造を示す図1と同様の構成にて、比誘電率が9.2で厚みが0.2mmの誘電体層1を9層積層して積層板とし、信号配線導体11の幅を0.21mmで形成し、信号配線接続導体13,23の幅を0.21mmで信号配線導体11,21と表面信号用貫通導体14,24までの距離を0.13mmにて形成し、表層信号用貫通導体14,24および内層信号用貫通導体34を直径0.1mmの円形状に形成し、信号用貫通導体接続導体を幅0.16mmの矩形状とし、内層接地内層接地導体非形成領域36は直径が1.24mmの円形状に、内層接地用貫通導体35は直径0.1mmの円形状にて内層接地導体非形成領域36の外周より中心が0.08mmだけ離れた位置の円周上の8箇所に配置することで構成し、そして、表層信号用貫通導体14,24および内層信号用貫通導体34の9層間のずれを0.11mmずつずらし、表層信号配線導体11,21の信号配線接続導体13,23と反対側の端部間を上方から見て2.0mmとすることにより、参考例の高周波信号伝送用積層構造の試料Aを得た。   [Example 1] First, nine dielectric layers 1 having a relative dielectric constant of 9.2 and a thickness of 0.2 mm were laminated in the same configuration as in FIG. 1 showing the first laminated structure for high-frequency signal transmission according to the reference example. The width of the signal wiring conductor 11 is 0.21 mm, the width of the signal wiring connecting conductors 13 and 23 is 0.21 mm, and the distance between the signal wiring conductors 11 and 21 and the surface signal through conductors 14 and 24 is The surface signal through conductors 14 and 24 and the inner layer signal through conductor 34 are formed in a circular shape with a diameter of 0.1 mm, the signal through conductor connecting conductor is rectangular with a width of 0.16 mm, and the inner layer is grounded. The inner-layer ground conductor non-forming region 36 has a circular shape with a diameter of 1.24 mm, and the inner-layer grounding through conductor 35 has a circular shape with a diameter of 0.1 mm, and the center is separated from the outer periphery of the inner-layer ground conductor non-forming region 36 by 0.08 mm. The displacement between the nine layers of the surface signal through conductors 14 and 24 and the inner layer signal through conductor 34 is 0.11 mm each. By shifting the distance between the ends of the surface signal wiring conductors 11 and 21 opposite to the signal wiring connecting conductors 13 and 23 to 2.0 mm when viewed from above, the sample A of the laminated structure for high frequency signal transmission of the reference example is obtained. It was.

また、本発明の請求項1に係る第2の高周波信号伝送用積層構造を示す図2と同様の構成にて、上記の試料Aと同様に、ただし、表層信号用貫通導体14,24および内層信号用貫通導体34の9層間のずれを表面側から0.195mm, 0.115mm, 0.075mm, 0.055mm, 0.055mm, 0.075mm, 0.115mm, 0.195mmとすることにより、本発明の高周波信号伝送用積層構造の試料Bを得た。   Further, in the same configuration as in FIG. 2 showing the second laminated structure for high-frequency signal transmission according to claim 1 of the present invention, the same as the sample A, except that the surface signal through conductors 14 and 24 and the inner layer By making the deviation between the 9 layers of the signal through conductor 34 from the front side 0.195mm, 0.115mm, 0.075mm, 0.055mm, 0.055mm, 0.075mm, 0.115mm, 0.195mm A structural sample B was obtained.

そして、これらの試料A・Bについて下面の信号配線導体21の端部から上面の信号配線導体11の端部間の電気的特性を電磁界シミュレーションにより抽出すると、図10に線図で示すような周波数特性の特性曲線が得られた。図10において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したA・Bは各々試料A・Bの特性曲線であることを示している。   When the electrical characteristics between the ends of the signal wiring conductor 21 on the lower surface and the ends of the signal wiring conductor 11 on the upper surface of these samples A and B are extracted by electromagnetic field simulation, a diagram as shown in FIG. A characteristic curve of frequency characteristics was obtained. In FIG. 10, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, A and B added to the characteristic curve indicate that they are characteristic curves of the samples A and B, respectively.

この結果から、試料A・Bは、高周波においても反射が小さく、良好な電気的特性を有する高周波信号伝送用積層構造であることが分かる。特に、試料Bは、内層信号用貫通導体が内層接地導体非形成領域の中心に近づくにしたがってずれが小さくなっていることにより、インピーダンスの不連続性がより小さくなるために、さらに整合が良好に行なえる結果、反射が小さい良好な電気的特性を有する高周波信号伝送用積層構造として機能していることが分かる。   From this result, it can be seen that Samples A and B have a laminated structure for high-frequency signal transmission that has low reflection at high frequencies and good electrical characteristics. In particular, in the sample B, since the deviation becomes smaller as the inner layer signal through conductor approaches the center of the inner layer ground conductor non-formation region, the impedance discontinuity becomes smaller, and thus the matching is further improved. As a result, it can be seen that it functions as a laminated structure for high-frequency signal transmission having good electrical characteristics with low reflection.

〔例2〕まず、他の参考例に係る第3の高周波信号伝送用積層構造を示す図3と同様の構成にて、上記〔例1〕の試料Aと同様に、ただし、表層信号用貫通導体14,24および内層信号用貫通導体34を互いに上下に重ね、内層接地導体非形成領域36の8層間のずれを0.11mmずつずらすことにより、他の参考例の高周波信号伝送用積層構造の試料Cを得た。   [Example 2] First, in the same configuration as in FIG. 3 showing the third laminated structure for high frequency signal transmission according to another reference example, similar to the sample A in [Example 1], except that the surface layer signal penetration Samples of the laminated structure for high-frequency signal transmission of another reference example by superimposing the conductors 14 and 24 and the inner layer signal through conductors 34 on top of each other and shifting the shift between the eight layers of the inner layer ground conductor non-forming region 36 by 0.11 mm. C was obtained.

また、他の参考例に係る第4の高周波信号伝送用積層構造を示す図4と同様の構成にて、上記の試料Cと同様に、ただし、内層接地導体非形成領域36の8層間のずれを表面側から0.18mm, 0.14mm, 0.10mm, 0.04mm, 0.10mm, 0.14mm,0.18mmとすることにより、他の参考例の高周波信号伝送用積層構造の試料Dを得た。   Further, in the same configuration as in FIG. 4 showing the fourth high-frequency signal transmission laminated structure according to another reference example, the same as the sample C, except that the inner layer ground conductor non-forming region 36 is shifted between the eight layers. Was set to 0.18 mm, 0.14 mm, 0.10 mm, 0.04 mm, 0.10 mm, 0.14 mm, 0.18 mm from the surface side to obtain a sample D of a laminated structure for high-frequency signal transmission of another reference example.

そして、これらの試料C・Dについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図11に線図で示すような周波数特性の特性曲線が得られた。図11において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したC・Dは各々試料C・Dの特性曲線であることを示している。   When the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface are extracted by electromagnetic field simulation for these samples C and D, as shown in FIG. A characteristic curve of frequency characteristics was obtained. In FIG. 11, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, CD and D added to the characteristic curve indicate that they are characteristic curves of the samples C and D, respectively.

この結果から、試料C・Dは、高周波においても反射が小さく、良好な電気的特性を有する高周波信号伝送用積層構造であることが分かる。特に、試料Dは、内層接地導体非形成領域が内層接地導体非形成領域の中心が内層信号用貫通導体に近づくにしたがってずれが小さくなっていることにより、インピーダンスの不連続性がより小さくなるために、さらに整合が良好に行なえる結果、反射が小さい良好な電気的特性を有する高周波信号伝送用積層構造として機能していることが分かる。   From this result, it can be seen that Samples C and D have a laminated structure for high-frequency signal transmission that has low reflection at high frequencies and good electrical characteristics. In particular, in the sample D, the discontinuity of the impedance is further reduced in the region where the inner layer ground conductor is not formed because the shift becomes smaller as the center of the inner layer ground conductor non-formed region approaches the inner layer signal through conductor. In addition, as a result of further good matching, it can be seen that it functions as a laminated structure for high frequency signal transmission having good electrical characteristics with low reflection.

〔例3〕まず、他の参考例に係る第5の高周波信号伝送用積層構造を示す図5と同様の構成にて、上記〔例1〕の試料Aと同様に、ただし、表層信号用貫通導体14,24および内層信号用貫通導体34を互いに上下に重ね、内層接地導体非形成領域36は矩形に形成し、矩形の長辺の長さは1.16mmで短辺の長さを上面側から8層を順に0.76mm, 0.86mm, 0.96mm, 1.06mm, 1.06mm, 0.96mm, 0.86mm, 0.76mmとすることにより、他の参考例の高周波信号伝送用積層構造の試料Eを得た。   [Example 3] First, in the same configuration as FIG. 5 showing the fifth high-frequency signal transmission laminated structure according to another reference example, the same as sample A in [Example 1], except that the surface layer signal penetration The conductors 14 and 24 and the inner layer signal through conductors 34 are stacked on top of each other, the inner layer ground conductor non-forming region 36 is formed in a rectangular shape, the long side of the rectangle is 1.16 mm, and the short side is extended from the upper surface side. A sample E of a laminated structure for high-frequency signal transmission of another reference example was obtained by sequentially changing the eight layers to 0.76 mm, 0.86 mm, 0.96 mm, 1.06 mm, 1.06 mm, 0.96 mm, 0.86 mm, and 0.76 mm.

また、他の参考例に係る第6の高周波信号伝送用積層構造を示す図6と同様の構成にて、上記の試料Eと同様に、ただし、内層接地導体非形成領域36の矩形の短辺の長さを上面側から8層を順に0.76mm, 0.89mm, 1.00mm, 1.09mm, 1.09mm, 1.00mm, 0.89mm, 0.76mmとすることにより、他の参考例の高周波信号伝送用積層構造の試料Fを得た。   Further, in the same configuration as FIG. 6 showing the sixth high-frequency signal transmission laminated structure according to another reference example, the same as the sample E, except that the rectangular short side of the inner-layer ground conductor non-forming region 36 8 layers from the top side in order of 0.76mm, 0.89mm, 1.00mm, 1.09mm, 1.09mm, 1.00mm, 0.89mm, 0.76mm, so that the laminated structure for high frequency signal transmission of other reference examples Sample F was obtained.

そして、これらの試料E・Fについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図12に線図で示すような周波数特性の特性曲線が得られた。図12において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したE・Fは各々試料E・Fの特性曲線であることを示している。   Then, when the electrical characteristics between the ends of the signal wiring conductor 21 on the lower surface and the ends of the signal wiring conductor 11 on the upper surface are extracted by electromagnetic field simulation for these samples E and F, as shown in FIG. A characteristic curve of frequency characteristics was obtained. In FIG. 12, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, E and F added to the characteristic curve indicate that they are characteristic curves of the samples E and F, respectively.

この結果から、試料E・Fは、高周波においても反射が小さく、良好な電気的特性を有する高周波信号伝送用積層構造であることが分かる。特に、試料Fは、内層接地導体非形成領域がこの内層接地導体非形成領域の中心が内層信号用貫通導体に近づくにしたがって形状変化が小さくなっていることにより、インピーダンスの不連続性がより小さくなるために、さらに整合が良好に行なえる結果、反射が小さい良好な電気的特性を有する高周波信号伝送用積層構造として機能していることが分かる。   From this result, it can be seen that Samples E and F have a laminated structure for high-frequency signal transmission that has low reflection even at high frequencies and has good electrical characteristics. In particular, in the sample F, the change in shape of the inner-layer ground conductor non-forming region becomes smaller as the center of the inner-layer ground conductor non-forming region approaches the inner-layer signal through conductor, thereby reducing impedance discontinuity. Therefore, as a result of further good matching, it can be seen that it functions as a laminated structure for high-frequency signal transmission having good electrical characteristics with low reflection.

〔例4〕他の参考例を示す第7の高周波信号伝送用積層構造を示す図7と同様の構成にて、上記〔例1〕の試料Aと同様に、ただし、表層信号用貫通導体14,24および内層信号用貫通導体34ならびに円形状の内層接地導体非形成領域36を中心を同一に構成し、内層接地導体非形成領域36のうち、最上層および最下層の直径を0.46mmとし、その他の6層は直径1.24mmとして構成することにより、本発明の高周波信号伝送用積層構造の試料Gを得た。   [Example 4] The same structure as that of FIG. 7 showing the seventh laminated structure for high-frequency signal transmission showing another reference example, similar to Sample A of [Example 1], except that the surface signal through conductor 14 , 24 and the inner layer signal through conductor 34 and the circular inner layer ground conductor non-forming region 36 are configured to have the same center, and the inner layer ground conductor non-forming region 36 has a diameter of 0.46 mm at the uppermost layer and the lowermost layer, The other six layers were configured to have a diameter of 1.24 mm, thereby obtaining a sample G having a laminated structure for high-frequency signal transmission according to the present invention.

そして、この試料Gについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図13に線図で示すような周波数特性の特性曲線が得られた。図13において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したGは試料Gの特性曲線であることを示している。   When the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface of this sample G are extracted by electromagnetic field simulation, the frequency characteristics as shown in the diagram of FIG. A characteristic curve was obtained. In FIG. 13, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, G added to the characteristic curve indicates that it is a characteristic curve of the sample G.

この結果から、試料Gは、高周波においても反射が小さく、良好な電気的特性を有する高周波信号伝送用積層構造であることが分かる。   From this result, it can be seen that the sample G has a laminated structure for high-frequency signal transmission that has low reflection even at high frequencies and has good electrical characteristics.

〔例5〕本発明の請求項2に係る第8の高周波信号伝送用積層構造を示す図8と同様の構成にて、上記〔例1〕の試料Bと同様に、ただし、信号配線接続導体13,23の幅を0.30mmとすることにより、本発明の高周波信号伝送用積層構造の試料Hを得た。   [Example 5] The same structure as that of FIG. 8 showing the eighth laminated structure for high-frequency signal transmission according to claim 2 of the present invention, as in Sample B of [Example 1], except that the signal wiring connecting conductor By setting the width of 13,23 to 0.30 mm, a sample H having a laminated structure for high frequency signal transmission according to the present invention was obtained.

そして、この試料Hについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図14に線図で示すような周波数特性の特性曲線が得られた。図14において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したB・Hは各々〔例1〕で得た試料Bと試料Hの特性曲線であることを示している。   When the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface of this sample H are extracted by electromagnetic field simulation, the frequency characteristics as shown in the diagram of FIG. A characteristic curve was obtained. In FIG. 14, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, B and H added to the characteristic curve indicate the characteristic curves of the sample B and the sample H obtained in [Example 1], respectively.

この結果から、本発明の高周波信号伝送用積層構造である試料B・Hは、高周波においても反射が小さく、良好な電気的特性を有する高周波信号伝送用積層構造であることが分かる。特に、試料Hは、インピーダンスの不連続性がより小さくなるために、さらに整合が良好に行なえる結果、反射が小さい良好な電気的特性を有する高周波信号伝送用積層構造として機能していることが分かる。   From this result, it can be seen that Samples B and H, which are the laminated structure for high-frequency signal transmission according to the present invention, are a laminated structure for high-frequency signal transmission that has low reflection at high frequencies and good electrical characteristics. In particular, the sample H functions as a laminated structure for high-frequency signal transmission having good electrical characteristics with low reflection as a result of being able to perform better matching because impedance discontinuity becomes smaller. I understand.

〔例6〕まず、他の参考例に係る第9の高周波信号伝送用積層構造を示す図1と同様の構成にて、上記〔例1〕の試料Aと同様に、ただし、信号配線接続導体13,23の長さが0.20mmで、表層信号用貫通導体14,24および内層信号用貫通導体34の9層間のずれを0.0925mmずつずらすことにより、本発明の高周波信号伝送用積層構造の試料Iを得た。   [Example 6] First, in the same configuration as in FIG. 1 showing the ninth high-frequency signal transmission laminated structure according to another reference example, the same as Sample A in [Example 1], except that the signal wiring connecting conductor Samples of the laminated structure for high-frequency signal transmission according to the present invention are obtained by shifting the deviation between the nine layers of the surface signal through conductors 14 and 24 and the inner layer signal through conductor 34 by 0.0925 mm each having a length of 13 and 23 of 0.20 mm. I was obtained.

また、比較として試料Iと同様の構成にて、ただし、信号配線接続導体13,23の長さが0.29mmで、表層信号用貫通導体14,24および内層信号用貫通導体34の9層間のずれを0.07mmずつずらすことにより、比較の試料Jを得た。   For comparison, the configuration is the same as that of Sample I, except that the length of the signal wiring connecting conductors 13 and 23 is 0.29 mm, and the deviation between the nine layers of the surface signal through conductors 14 and 24 and the inner layer signal through conductor 34 is as follows. A sample J for comparison was obtained by shifting 0.07 mm.

そして、これらの試料I・Jについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図15に線図で示すような周波数特性の特性曲線が得られた。図15において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したA・I・Jは各々〔例1〕の試料Aおよび試料I・Jの特性曲線であることを示している。   Then, when the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface are extracted by electromagnetic field simulation for these samples I and J, as shown by a diagram in FIG. A characteristic curve of frequency characteristics was obtained. In FIG. 15, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, A, I, and J added to the characteristic curve indicate that they are characteristic curves of Sample A and Sample I and J of [Example 1], respectively.

この結果から、試料A・Iは、高周波においても反射が小さく、良好な電気的特性を有する高周波信号伝送用積層構造であることが分かる。一方、比較例として得た試料Jについては、信号配線接続導体の長さが長くなりすぎるためにインダクタンスとしての働きが強く現れるために高周波の反射が大きくなってしまう結果、電気的特性に劣化が生じることが分かる。したがって、信号配線接続導体における表面信号配線導体から表面信号用貫通導体までの長さを最上層または最下層の誘電体層の厚み以下とすることにより、信号配線接続導体のインダクタンスを確実に小さくすることができるために、さらに確実に良好な高周波伝送特性とすることができる。   From this result, it can be seen that Samples A and I have a laminated structure for high-frequency signal transmission that has low reflection even at high frequencies and has good electrical characteristics. On the other hand, as for the sample J obtained as a comparative example, since the length of the signal wiring connecting conductor becomes too long and the function as an inductance appears strongly, the reflection of high frequency becomes large, resulting in deterioration in electrical characteristics. You can see that it happens. Therefore, the length of the signal wiring connection conductor from the surface signal wiring conductor to the surface signal through conductor is made equal to or less than the thickness of the uppermost layer or the lowermost dielectric layer, thereby reliably reducing the inductance of the signal wiring connection conductor. Therefore, good high frequency transmission characteristics can be obtained with certainty.

〔例7〕まず、本発明の請求項3に係る第10の高周波信号伝送用積層構造を示す図9と同様の構成にて、上記〔例1〕の試料Bと同様に、ただし、積層基板1の上面には表層信号用貫通導体14および信号配線接続導体13を取囲む状態で内層接地導体非形成領域と形状を一致させて、信号配線導体11に対し0.10mmの間隔をあけて表面接地導体12を形成し、さらにこの表面接地導体12と内層接地導体32との間を上下に貫く直径0.1mmの表層接地用貫通導体15により接続することにより、本発明の高周波信号伝送用積層構造の試料Kを得た。   [Example 7] First, similar to FIG. 9 showing the tenth laminated structure for high-frequency signal transmission according to claim 3 of the present invention, like the sample B in [Example 1], except that the laminated substrate On the top surface of 1, the surface grounding conductor 14 and the signal wiring connecting conductor 13 are surrounded, and the shape is matched with the inner layer grounding conductor non-forming region, and the surface grounding is performed with a spacing of 0.10 mm from the signal wiring conductor 11 The conductor 12 is formed, and further, the surface ground conductor 12 and the inner layer ground conductor 32 are connected by the surface layer ground through conductor 15 having a diameter of 0.1 mm penetrating up and down. Sample K was obtained.

そして、この試料Kについて下面の信号配線導体21の端部から上面の信号配線導体11の端部の間の電気的特性を電磁界シミュレーションにより抽出すると、図16に線図で示すような周波数特性の特性曲線が得られた。図16において、横軸は周波数(単位:GHz)、縦軸は入力した信号のうちの反射された量の評価指標としての反射係数(単位:dB)を示しており、特性曲線は反射係数の周波数特性を示している。また、特性曲線に付記したKは試料Kの特性曲線であることを示している。   When the electrical characteristics between the end of the signal wiring conductor 21 on the lower surface and the end of the signal wiring conductor 11 on the upper surface are extracted by electromagnetic field simulation for this sample K, the frequency characteristics as shown in the diagram of FIG. A characteristic curve was obtained. In FIG. 16, the horizontal axis indicates the frequency (unit: GHz), the vertical axis indicates the reflection coefficient (unit: dB) as an evaluation index of the reflected amount of the input signal, and the characteristic curve indicates the reflection coefficient. The frequency characteristics are shown. Further, K added to the characteristic curve indicates that it is a characteristic curve of the sample K.

この結果から、本発明の高周波信号伝送用積層構造である試料Kは、高周波においても反射が小さく、良好な電気的特性を有し、さらに、入出力線路としてコプレナ線路として構成することで、外部配線がコプレナ線路の場合に、外部配線との接続におけるインピーダンスの不連続性を小さくすることができる構造となるために、良好な高周波伝送特性を有する高周波信号伝送用積層構造であることが分かる。   From this result, the sample K, which is the laminated structure for high-frequency signal transmission of the present invention, has low reflection even at high frequencies, has good electrical characteristics, and is configured as a coplanar line as an input / output line. It can be seen that when the wiring is a coplanar line, the impedance discontinuity in connection with the external wiring can be reduced, so that the laminated structure for high-frequency signal transmission has good high-frequency transmission characteristics.

なお、以上はあくまで本発明の実施形態の例示であって、本発明はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更や改良を加えることは何ら差し支えない。   In addition, the above is an illustration of embodiment of this invention to the last, This invention is not limited to these, A various change and improvement can be added in the range which does not deviate from the summary of this invention.

例えば、本発明の実施形態の例示では、表面接地導体非形成領域ならびに内層接地導体非形成領域の形状として、円形状・矩形を示したが、その他、楕円形状・偶多角形状等の2軸対称形状を用いることも可能である。   For example, in the embodiment of the present invention, the shape of the surface ground conductor non-forming region and the inner layer ground conductor non-forming region is shown as a circular shape or a rectangle, but other two-axis symmetry such as an elliptical shape or an even polygonal shape is used. It is also possible to use a shape.

また、積層基板の上面または下面に表面接地導体を設ける場合には、表面接地導体は信号配線導体の両側に所定幅をあけて形成することで高周波伝送線路として成すことが主たる目的であり、必ずしも信号配線接続導体を取り囲んでいなくとも高周波特性に優れるが、信号配線接続導体を取り囲んだ構造に近づけることでより好適な高周波伝送特性を有する構造となる。   In addition, when the surface ground conductor is provided on the upper surface or the lower surface of the multilayer substrate, the main purpose is to form the surface ground conductor as a high-frequency transmission line by forming a predetermined width on both sides of the signal wiring conductor. The high frequency characteristics are excellent even if the signal wiring connection conductor is not surrounded, but the structure having more preferable high frequency transmission characteristics can be obtained by being close to the structure surrounding the signal wiring connection conductor.

参考例に係る第1の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 1st laminated structure for high frequency signal transmission which concerns on a reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). 本発明に係る第2の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 2nd laminated structure for high frequency signal transmission which concerns on this invention, (a) is a top view, (b) is the sectional view on the AA line of (a). 他の参考例に係る第3の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 3rd laminated structure for high frequency signal transmission which concerns on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). 他の参考例に係る第4の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 4th laminated structure for high frequency signal transmission which concerns on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). 他の参考例に係る第5の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 5th laminated structure for high frequency signal transmission which concerns on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). 他の参考例に係る第6の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 6th laminated structure for high frequency signal transmission which concerns on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). 他の参考例に係る第7の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 7th laminated structure for high frequency signal transmission which concerns on another reference example, (a) is a top view, (b) is the sectional view on the AA line of (a). 本発明に係る第8の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 8th laminated structure for high frequency signal transmission which concerns on this invention, (a) is a top view, (b) is the sectional view on the AA line of (a). 本発明の第10の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 10th laminated structure for high frequency signal transmission of this invention, (a) is a top view, (b) is the sectional view on the AA line of (a). 第1および第2の高周波信号伝送用積層構造の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the laminated structure for 1st and 2nd high frequency signal transmission. 第3および第4の高周波信号伝送用積層構造の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the laminated structure for 3rd and 4th high frequency signal transmission. 第5および第6の高周波信号伝送用積層構造の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the laminated structure for 5th and 6th high frequency signal transmission. 第7の高周波信号伝送用積層構造の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the 7th laminated structure for high frequency signal transmission. 第8の高周波信号伝送用積層構造の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the laminated structure for 8th high frequency signal transmission. 第9の高周波信号伝送用積層構造の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the 9th laminated structure for high frequency signal transmission. 第10の高周波信号伝送用積層構造の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the laminated structure for 10th high frequency signal transmission. (a)(b)は、従来の高周波信号伝送用積層構造の例を示す平面図ならびに断面図である。(A) and (b) are the top views and sectional drawings which show the example of the conventional laminated structure for high frequency signal transmission. (a)(b)は、従来の高周波信号伝送用積層構造の他の例を示す平面図ならびに断面図である。(A) and (b) are the top views and sectional drawings which show other examples of the conventional laminated structure for high frequency signal transmission. 従来の高周波信号伝送用積層構造の例の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the example of the conventional laminated structure for high frequency signal transmission. 従来の高周波信号伝送用積層構造の他の例の高周波特性を示す線図である。It is a diagram which shows the high frequency characteristic of the other example of the conventional laminated structure for high frequency signal transmission. 本発明に係る第10の高周波信号伝送用積層構造の一例を模式的に示す図であり、(a)は平面図、(b)は(a)のA-A線断面図である。It is a figure which shows typically an example of the 10th laminated structure for high frequency signal transmission which concerns on this invention, (a) is a top view, (b) is the sectional view on the AA line of (a). 本発明に係る高周波信号伝送用積層構造を用いた高周波半導体パッケージの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the high frequency semiconductor package using the laminated structure for high frequency signal transmission which concerns on this invention.

符号の説明Explanation of symbols

1・・・・・誘電体層
11,21・・・・・信号配線導体
12,22・・・・・表層接地導体
13,23・・・・・信号配線接続導体
14,24・・・・・表層信号用貫通導体
15,25・・・・・表層接地用貫通導体
16,26・・・・・表層接地導体非形成領域
32・・・・・内層接地導体
33・・・・・信号用貫通導体接続導体
34・・・・・内層信号用貫通導体
35・・・・・内層接地用貫通導体
36・・・・・内層接地導体非形成領域
41・・・・・枠体
42・・・・・蓋
1 ... Dielectric layer
11,21 ・ ・ ・ ・ ・ Signal wiring conductor
12,22 ・ ・ ・ ・ ・ Surface ground conductor
13,23 ・ ・ ・ ・ ・ Signal connection conductor
14,24 ... Surface signal through conductor
15,25 ・ ・ ・ ・ ・ Through-surface grounding conductor
16,26 ・ ・ ・ ・ ・ surface ground conductor non-formation area
32 ・ ・ ・ ・ ・ Inner layer ground conductor
33 ・ ・ ・ ・ ・ Signal through conductor connection conductor
34 ・ ・ ・ ・ ・ Inner signal through-conductor
35 ・ ・ ・ ・ ・ Penetration conductor for inner layer grounding
36 ・ ・ ・ ・ ・ Inner layer ground conductor non-formation area
41 ・ ・ ・ ・ ・ Frame
42 ... Lid

Claims (5)

4層以上の誘電体層を積層して成る積層基板の最上層および最下層のそれぞれに形成した信号配線導体が、互いに一端から逆方向に延びる関係にあり、これら各信号配線導体の一端と、前記最上層および前記最下層の誘電体層を上下に貫く表層信号用貫通導体とを、信号配線接続導体を介して接続し、前記最上層および前記最下層を除く内層の各層に、平面形状が円形状、矩形、楕円形状または偶多角形状を成す内層接地導体非形成領域と、内層接地導体とを形成し、前記内層接地導体非形成領域には、前記内層の各層を上下に貫く内層信号用貫通導体に接続する信号用貫通導体接続導体を形成し、前記内層接地導体非形成領域の外周の外側に、前記内層の各層を上下に貫く内層接地用貫通導体を形成した高周波信号伝送用積層構造であって、前記表層信号用貫通導体を、直下もしくは直上の前記内層接地導体と重ならない前記信号配線接続導体が前記信号配線導体を延長するように形成されるとともに、前記信号配線導体の端に近接するように、直上または直下の前記内層接地導体非形成領域の外周の内側に配置し、前記内層信号用貫通導体は、前記表層信号用貫通導体間で上下なめらかに接続するように順次ずらして配置されているとともに、上下方向の中央に近づくにしたがってずれが小さいことを特徴とする高周波信号伝送用積層構造。 The signal wiring conductors formed on the uppermost layer and the lowermost layer of the multilayer substrate formed by laminating four or more dielectric layers are in a relationship extending in the opposite direction from one end, and one end of each of these signal wiring conductors, The top layer and the lower layer dielectric layer are vertically connected to each other through a signal wiring connecting conductor, and each of the inner layers excluding the uppermost layer and the lowermost layer has a planar shape. An inner-layer ground conductor non-formation area having a circular shape, a rectangular shape, an ellipse shape, or an even polygonal shape and an inner-layer ground conductor are formed, and in the inner-layer ground conductor non-formation area, an inner layer signal that penetrates each layer of the inner layer vertically forming a signal through conductor connection conductor connected to the through conductors, the outer periphery of the inner layer ground conductor non-formation region, the high-frequency signal transmission laminate forming the inner layer ground through conductors passing through each layer of the inner layer in the vertical Structure Said surface layer signal through conductor, together with the signal lines connecting conductor which does not overlap with the inner layer ground conductor immediately below or immediately above is formed so as to extend the signal wiring conductor, so as to approach the end of the signal wiring conductors The inner layer signal through conductors are arranged inside the outer periphery of the inner layer ground conductor non-formation region immediately above or directly below, and the inner layer signal through conductors are sequentially shifted so as to be connected smoothly between the surface layer signal through conductors. In addition, the laminated structure for high-frequency signal transmission, characterized in that the deviation is small as it approaches the center in the vertical direction. 前記信号配線接続導体の幅は前記信号配線導体の幅よりも広くなっていることを特徴とする請求項1記載の高周波信号伝送用積層構造。   The multilayer structure for high-frequency signal transmission according to claim 1, wherein the width of the signal wiring connection conductor is wider than the width of the signal wiring conductor. 前記積層基板の上下面のいずれかに表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体を形成するとともに、前記信号配線接続導体の長さが短くなるように前記信号配線導体を前記表層接地導体非形成領域の外周の外側に配置し、且つ、前記表層接地導体領域が前記信号配線導体を取り囲むことを特徴とする請求項1または2記載の高周波信号伝送用積層構造。 The surface layer ground conductor is not formed on either of the upper and lower surfaces of the multilayer substrate and a surface layer ground conductor having a predetermined distance from the signal wiring conductor is formed, and the length of the signal wiring connecting conductor is shortened. 3. The laminated structure for high-frequency signal transmission according to claim 1, wherein a wiring conductor is arranged outside an outer periphery of the surface layer ground conductor non-forming region, and the surface layer ground conductor region surrounds the signal wiring conductor. . 前記積層基板の上下面のいずれかに表層接地導体非形成領域と前記信号配線導体に対し所定間隔を有する表層接地導体とを形成するとともに、前記信号配線接続導体の長さが短くなるように前記信号配線導体を前記表層接地導体非形成領域の外周の外側に配置し、且つ、前記表層接地導体の全体を前記信号配線接続導体における前記信号配線導体とは反対側の端よりも前記信号配線導体の側に配置してなる請求項1または2記載の高周波信号伝送用積層構造。 A surface layer ground conductor non-formation region and a surface layer ground conductor having a predetermined interval with respect to the signal wiring conductor are formed on either of the upper and lower surfaces of the multilayer substrate, and the length of the signal wiring connection conductor is shortened. A signal wiring conductor is disposed outside the outer periphery of the surface layer ground conductor non-forming region, and the entire surface layer ground conductor is disposed on the signal wiring connection conductor from the end opposite to the signal wiring conductor. The laminated structure for high-frequency signal transmission according to claim 1 or 2 , wherein the laminated structure is disposed on the side of the substrate. 請求項1乃至請求項4のいずれか記載の高周波信号伝送用積層構造を備えた前記積層基板の上面に枠体および蓋体を設けることにより高周波半導体素子を収容する構造としたことを特徴とする高周波半導体パッケージ。   5. A structure in which a high-frequency semiconductor element is accommodated by providing a frame body and a lid on the upper surface of the multilayer substrate provided with the multilayer structure for high-frequency signal transmission according to any one of claims 1 to 4. High frequency semiconductor package.
JP2007019280A 2002-01-29 2007-01-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same Expired - Fee Related JP4413234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019280A JP4413234B2 (en) 2002-01-29 2007-01-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002020774 2002-01-29
JP2007019280A JP4413234B2 (en) 2002-01-29 2007-01-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002251967A Division JP2003297967A (en) 2002-01-29 2002-08-29 Multilayer structure for transmitting high frequency signal and high frequency semiconductor package employing it

Publications (2)

Publication Number Publication Date
JP2007201479A JP2007201479A (en) 2007-08-09
JP4413234B2 true JP4413234B2 (en) 2010-02-10

Family

ID=38455669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019280A Expired - Fee Related JP4413234B2 (en) 2002-01-29 2007-01-30 Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same

Country Status (1)

Country Link
JP (1) JP4413234B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117425273A (en) * 2022-09-27 2024-01-19 中兴智能科技南京有限公司 Printed circuit board via structure and printed circuit board

Also Published As

Publication number Publication date
JP2007201479A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP3937433B2 (en) Planar circuit-waveguide connection structure
US6365961B1 (en) High-frequency input/output feedthrough and package for housing high-frequency semiconductor element using same
US6674347B1 (en) Multi-layer substrate suppressing an unwanted transmission mode
US20050098348A1 (en) High-frequency signal transmitting device
JP2661568B2 (en) Waveguide-to-plane line converter
EP2428989B1 (en) High-frequency circuit package and high-frequency circuit device
WO2009128752A1 (en) A waveguide transition arrangement
JP3493301B2 (en) High frequency input / output terminals and high frequency semiconductor element storage package
JP3878895B2 (en) Laminated structure for high-frequency signal transmission
JP2003297967A (en) Multilayer structure for transmitting high frequency signal and high frequency semiconductor package employing it
JP4012796B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
JP3667274B2 (en) High frequency package
JP4413234B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
US11178762B2 (en) Connection structure for wiring substrate and flexible substrate and package for housing electronic components
JP6368342B2 (en) Antenna device and manufacturing method thereof
JP3924527B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
JP4009217B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
JP3898616B2 (en) Laminated structure for high-frequency signal transmission and high-frequency semiconductor package using the same
JP3618046B2 (en) High frequency circuit package
JP2002185201A (en) Wiring board for high frequency
JP4454144B2 (en) High frequency circuit package
JP3725983B2 (en) High frequency circuit package
JP2002043460A (en) Package for high frequency
JP7431351B2 (en) Semiconductor packages and semiconductor electronic devices
JP3996330B2 (en) High frequency package

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4413234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees