JP4012029B2 - Metal plate resistor and manufacturing method thereof - Google Patents

Metal plate resistor and manufacturing method thereof Download PDF

Info

Publication number
JP4012029B2
JP4012029B2 JP2002286269A JP2002286269A JP4012029B2 JP 4012029 B2 JP4012029 B2 JP 4012029B2 JP 2002286269 A JP2002286269 A JP 2002286269A JP 2002286269 A JP2002286269 A JP 2002286269A JP 4012029 B2 JP4012029 B2 JP 4012029B2
Authority
JP
Japan
Prior art keywords
resistor
metal plate
electrode
insulating layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002286269A
Other languages
Japanese (ja)
Other versions
JP2004128000A (en
Inventor
圭史 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2002286269A priority Critical patent/JP4012029B2/en
Publication of JP2004128000A publication Critical patent/JP2004128000A/en
Application granted granted Critical
Publication of JP4012029B2 publication Critical patent/JP4012029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属板抵抗器およびその製造方法に係り、特に、放熱性に優れて、数百mΩ以上の比較的高抵抗値に設定することができるコンパクトな構造の金属板抵抗器およびその製造方法に関する。
【0002】
【従来の技術】
従来より、板体状に形成した金属板を抵抗体とする抵抗器が知られている。このような金属板抵抗器としては、図6に示すように、長板形状の金属材料1を準備して中央部の一面側を切削することにより、その中央部を金属板からなる抵抗体部2とするとともに、その両端部を接続用の電極部3に形成するものがある(例えば、特許文献1参照)。
【0003】
また、図7に示すように、所望の抵抗値となる長板形状に作製された金属材料4を準備して、その金属材料4を「ブリッジ」形状に屈曲させることにより、その中央部を金属板からなる抵抗体部5とするとともに、その両端部を接続用の電極部6にすることも行われている。
【0004】
【特許文献1】
特開2001−118701号公報(「要約」、第2図)
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来の金属板抵抗器にあっては、中央部の抵抗体部2、5自体が自身を支える構造物として機能する必要があるため、一定以上の強度を有する厚さにしなければならない。このため、従来の金属板抵抗器では、抵抗体材料の固有抵抗値が低いため、例えば、100mΩ以上の高抵抗値に設定することが困難であるという問題があった。
【0006】
また、抵抗体部2、5を含めて金属材料から作製するので、抵抗体部2、5自体は熱伝導性に優れるが、その抵抗体部2、5自体は直接プリント基板などの実装基板に接していないことから、電極部3、6や空中への熱伝導のみが放熱経路となる。このため、従来の金属板抵抗器では、抵抗体部2、5自体から効率的に放熱させることが難しいという問題があった。
【0007】
本発明は、上述した事情に鑑みて為されたもので、放熱性に優れて、且つ数百mΩ以上の比較的高抵抗値に設定することができる金属板抵抗器およびその製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明の金属板抵抗器は、平板状の抵抗体部と、該抵抗体部の両端部にそれぞれ接続され前記抵抗体部の下側に互いに離隔して配置された一対の電極部とを備え、前記抵抗体部と前記電極部とを単一の金属材料により構成し、前記電極部は前記抵抗体部よりも厚みを有するブロック状であり、ブロック状とした前記電極部の一面を絶縁層を介して前記抵抗体部に固定したことを特徴とするものである。ここで、前記一対の電極部間に絶縁材料を介在させることが好ましい。
【0009】
この発明では、実装基板のランドなどに接続されるブロック状の電極部がその上に薄い絶縁層を介して薄肉平板状の抵抗体部を支持(固定)する。したがって、抵抗体部は自身の姿勢を支持するだけの強度を有する必要がなく、薄肉化して高抵抗値に設定することができる。また、抵抗体部で発生する熱は薄い絶縁層を介してブロック状の電極部から効率的に放熱することができる。また、電極部と抵抗体部とはコンパクトな積層構造になっていて、表面実装が可能なチップ型の構造とすることができる。
【0010】
ここで、本発明の金属板抵抗器は、前記電極部に高導電性の金属材料を積層して、当該電極部を積層構造に形成してもよい。
【0011】
本発明の金属板抵抗器の製造方法は、平板状の抵抗体部とこれに連続し前記抵抗体部よりも肉厚とした一対のブロック状の電極部を形成し、前記抵抗体部に絶縁層を形成し、前記抵抗体部の両端部を折り曲げることにより、前記抵抗体部に前記絶縁層を介して前記ブロック状の電極部の一面を当接させて固定することを特徴とするものである。また、断面が矩形の金属板体に水平方向および垂直方向の切削加工を施すことで、上面に平板状の金属抵抗体部とこれにその両端部で接続した一対のブロック状の金属電極部を前記抵抗体部の下側に形成し、前記切削加工により形成した空隙部に絶縁材料を充填して、製造することができる。
【0012】
この製造方法では、前記電極部に高導電性の金属材料を積層して、当該電極部を積層構造に形成する工程を含ませてもよい。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照して説明する。図1および図2は本発明に係る金属板抵抗器およびその製造方法の第1の実施形態を示す図である。
【0014】
まず、本発明の金属板抵抗器の構成を説明する。図1において、金属板抵抗器10は、薄肉平板状に形成されて所望の抵抗値になるように寸法が設定されている金属材料からなる抵抗体部11と、この抵抗体部11の両端部11a側に接続されその下側に位置するように配置された一対のブロック状の電極部12と、抵抗体部11および電極部12の間に介在するように挟み込まれている薄い絶縁層13と、一対の電極部12の間に介在するように挟み込まれた絶縁体ブロック14と、他部品との導通接触や外部環境などからの影響を保護する耐熱保護層15とを備えている。特に、薄肉平板状の抵抗体部11と、ブロック状の電極部12との間に薄い絶縁層13を挟み込み、薄肉平板状の抵抗体部11を絶縁層13を介してブロック状の電極部12で支持するコンパクトな構造に形成されている。
【0015】
この金属板抵抗器10は、銅−ニッケルやニッケル−クロムなどの抵抗金属材料からなる部材を加工することにより、抵抗体部11および電極部12が単一の部材により一体構成されている。
【0016】
そして、抵抗体部11は、薄肉平板状抵抗体の長さ・幅・肉厚で電極部12間の抵抗値が所望値になるように設計されている。この抵抗体部11の基本的な抵抗値Rは、用いる抵抗金属材料の固有抵抗率rを用いて、次の式により算出することができる。
抵抗値R=固有抵抗率r×長さL/断面積(幅W1×板厚t)
なお、抵抗体部11にトリミングカットを設け、実質的に電流経路を延長し、高抵抗値化することができ、例えば、板厚tを50μm程度とすることで、500mΩ以上の高抵抗値に設定することができる。
【0017】
これら抵抗体部11および電極部12は、抵抗体部11の両端部11aで接続する電流経路が折り曲げられた構造になっており、電極部12がその両端部11aの内方で絶縁層13を介在させて抵抗体部11を支持(固定)している。なお、一対の電極部12は絶縁体ブロック14によりその間隔を強固に支持(固定)されている。
【0018】
電極部12は、抵抗器として設計されたチップ部品寸法の高さになるようにブロック状に形成されていて、抵抗体部11に対する背面側(図1における下面側)の実装基板への接合面12aが、その抵抗体部11の面積の略半分以上となる大面積に形成されている。このブロック状の電極部12の構成により、薄肉平板状の抵抗体部11を安定に支持すると共に良好な放熱性を確保している。
【0019】
なお、抵抗金属材料を用いて抵抗体部11と電極部12とを一体的に形成する場合、電極部12における抵抗値を下げる必要がある。そこで、電極部12の厚みを抵抗体部11の板厚tに比べて厚くすることにより、電極部12の抵抗値を下げることができ、電極として機能させることができる。電極部12の必要な厚みは、用いる抵抗金属材料によって異なるが、抵抗体部11の板厚tの10倍程度以上の厚みとすることが望ましい。後述する、電極部に高導電性材料片を接合する場合(図4参照)は電極部12の厚みを考慮する必要は無い。
【0020】
また、電極部12は、十分な体積を有するブロック状に形成されているので、内部に大きな電位差を発生させることなく電流を流すことができ、抵抗体部11の抵抗値精度を高めることができる。
【0021】
したがって、金属板抵抗器10は、抵抗体部11のみにより抵抗値を高精度に設定することができる。また、両端部11aよりも内方に配置された電極部12に抵抗体部11を支持させる積層構造にしているので、抵抗体部11は自身の形状・姿勢を維持するだけの強度を要求されることがなく、例えば、50μmなどに金属箔状に薄肉化して数百mΩ以上の高抵抗値にすることができ、また、実装基板などへの実装面積を小さくして、コンパクトなチップ部品構造にすることができる。
【0022】
なお、この金属板抵抗器10は、絶縁層13が抵抗体部11および電極部12の間に介在するとともに、絶縁体ブロック14が一対の電極部12の間に介在することにより、絶縁性を確保するとともに、抵抗体部11および電極部12が変形するのを制限してその形状を強固に維持している。
【0023】
次に、金属板抵抗器10の製造手順(方法)の一例を図2を用いて説明する。まず、作製する金属板抵抗器10(抵抗体部11)の幅W1の幅、抵抗体部11の長さLおよびその長手方向の電極部12の幅W2を加算した長さ(L+2W2)、電極部12の高さHの高さ、を有する抵抗金属材料21を準備する((a)参照)。なお、幅W1方向には複数個の抵抗器が得られるように連続した材料を用い、後の工程で幅W1毎に切断するようにしてもよい。
【0024】
次いで、この抵抗金属材料21の一面側(図における下面側)中央部の長さLの部分を所望の板厚t(t≪H)が残るように切削加工などにより、両端側にブロック状の電極部12が連続する抵抗体部11を形成する((b)参照)。ここで、抵抗金属材料21の加工は、切削加工に限らず、エッチング加工でもよく、また、射出成形や圧延加工(製箔加工)で直接、抵抗体部11と電極部12が連続する形状に作製してもよいことは言うまでもない。
【0025】
次いで、抵抗金属材料21の一面側(図における上面側)に、ポリイミイドやエポキシなどの絶縁性樹脂を必要な厚さ、例えば、50μm〜150μmの厚さになるように塗布して絶縁層13を形成するとともに、作製した抵抗体部11の他面側(図における下面側)一面に、チッ化ホウ素などの絶縁性および耐熱性を有する無機ペーストを必要な厚さになるように塗布して耐熱保護層(絶縁層)15を形成する((c)参照)。そして、抵抗体部11の両端部11aを軸として、電極部12を互いに近接する方向(図示の矢印方向)に180°回動させて、折り曲げる(屈曲させる)ことにより、抵抗体部11と電極部12との間に絶縁層13を挟み込む積層構造にする((d)参照)。このとき、図における電極部12上面の絶縁層13と抵抗体部11上面の絶縁層13が密着することになる。なお、(d)は(c)を上下方向にひっくり返した状態を示している。
【0026】
次いで、電極部12間に絶縁体ブロック14を嵌め込んで、電極部12間を融着等により固定することで金属板抵抗器10が完成する((e)参照)。ここで、抵抗体部11の抵抗値を高精度に調整する場合には、抵抗金属材料21の一面側中央部に薄肉の抵抗体部11を作製した後に、プレス加工、エッチング加工、レーザーカット加工などによりトリミングすることで行える。
【0027】
このように本実施形態においては、実装基板上に接合・固定する一対の電極部12とその間の絶縁体ブロック14に絶縁層13を介して抵抗体部11を支持させるので、抵抗体部11を低強度の金属箔まで薄肉化して高抵抗値化することができる。この抵抗体部11に電流が流れることにより発生する熱は、絶縁層13を介して電極部12に放熱して実装基板側に効果的に逃がすことができる。また、電極部12の間隔を絶縁体ブロック14で維持して、この電極部12と抵抗体部11の間に絶縁層13を挟み込むコンパクトなチップ型の積層構造にすることができる。
【0028】
そして、この金属板抵抗器10は、抵抗体部11の両端部11aで電極部12を回動させて屈曲させるだけの簡易かつ容易な工程により安価に作製することができる。
【0029】
本実施形態の他の態様としては、図3に示すように、上記実施形態とは逆に、作製した抵抗体部11の一面側(図における下面側)に絶縁層13を形成するとともに、抵抗金属材料21の他面側(図における上面側)の折り返し面を除いて耐熱保護層15を形成する。そして、抵抗体部11の両端部11aを軸に、電極部12を互いに近接する方向(内方)に屈曲させて、絶縁層13に密着させるように90°回動させることにより、その抵抗体部11と電極部12との間に絶縁層13を挟み込む積層構造にしてもよい。このとき、図における電極部12の側面が絶縁層13に密着することになる。また、耐熱保護層15は、折り返し面が除かれているので、クラック等が入ってしまうことがない。
【0030】
また、さらに他の態様としては、図4に示すように、例えばCu等の高導電性材料片32を電極部12の下面に接合することにより積層構造の電極部12cを形成するようにしてもよい。すなわち、例えば図2(b)の状態で、高導電性材料片32を電極部12の下面に接合して積層電極部12cを形成する。絶縁層13と耐熱保護層15を塗布・形成した後に、積層電極部12cを回動させて抵抗体部11の両端部11aを軸として180°折曲・屈曲させて、金属板抵抗器30を作製することができる。ここで、金属板抵抗器としては、本実施形態のように積層構造の電極部12cとした方が、導電性や放熱性に優れていて好適である。
【0031】
さらに、他の態様としては、図5に示す工程によっても金属板抵抗器40を作製することができる。すなわち、まず、作製する金属板抵抗器40の外形と略一致する形状に抵抗金属材料41を作製する((a)参照)。次に、その抵抗金属材料41の一面側(図における下面側)中央に、例えば切削工具42の鉛直面内で回転する回転刃42aを鉛直に切り込ませることにより、抵抗金属材料41の一面側に所望の板厚tを残す鉛直溝43を形成する((b)参照)。次いで、例えば水平面内で回転刃44aを回転させる切削工具44の回転軸44bをその鉛直溝43内に案内させて水平の切込を入れることにより、抵抗金属材料41の両側面側を残す水平溝45を形成して、抵抗体部46と電極部47を作製する((c)参照)。この後に、形成した鉛直溝43と水平溝45の内部に絶縁性樹脂を充填してT字形状の絶縁層48を形成するとともに、抵抗金属材料41の他面側(図における上面側)に無機ペーストを塗布して耐熱保護層49を形成して((d)参照)、金属板抵抗器40が完成する。これにより、抵抗金属材料41を切削加工して樹脂材料などを充填などするだけで、金属板抵抗器40を作製することができる。なお、鉛直溝43および水平溝45内への絶縁性樹脂の充填は、溶融樹脂の射出による充填の他に、固体樹脂の嵌入による充填などを行ってもよい。また、この工程においても、電極部47としては図4に示すように抵抗金属材料とCu等の高導電性材料との積層構造としても勿論よい。
【0032】
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【0033】
【発明の効果】
本発明によれば、従来の金属板抵抗器では困難であった、数百mΩ以上の高抵抗値に設定することができる、コンパクトなチップ型構造の金属板抵抗器を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る金属板抵抗器の第1の実施形態を示す斜視図である。
【図2】本発明に係る金属板抵抗器の製造方法の第1の実施形態を示す工程図である。
【図3】第1の実施形態の変形例を示す斜視図である。
【図4】金属板抵抗器の第2の実施形態を示す斜視図である。
【図5】金属板抵抗器の製造方法の第2の実施形態を示す工程図である。
【図6】従来技術の金属板抵抗器を示す斜視図である。
【図7】他の従来技術の金属板抵抗器を示す斜視図である。
【符号の説明】
10、30、40 金属板抵抗器
11、46 抵抗体部
11a 両端部
12、12c、47 電極部
13、48 絶縁層
14 絶縁体ブロック
15、49 耐熱保護層
21、41 抵抗金属材料
32 導電性片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal plate resistor and a method for manufacturing the metal plate resistor, and in particular, a metal plate resistor having a compact structure that is excellent in heat dissipation and can be set to a relatively high resistance value of several hundred mΩ or more. Regarding the method.
[0002]
[Prior art]
Conventionally, a resistor using a metal plate formed in a plate shape as a resistor is known. As such a metal plate resistor, as shown in FIG. 6, by preparing a long plate-shaped metal material 1 and cutting one surface side of the central portion, the central portion is a resistor portion made of a metal plate. 2 and both end portions thereof are formed on the connecting electrode portion 3 (see, for example, Patent Document 1).
[0003]
Further, as shown in FIG. 7, a metal material 4 made in a long plate shape having a desired resistance value is prepared, and the metal material 4 is bent into a “bridge” shape so that the central portion is made of metal. While making it the resistor part 5 which consists of a board, making the both ends into the electrode part 6 for a connection is also performed.
[0004]
[Patent Document 1]
JP 2001-118701 (“Summary”, FIG. 2)
[0005]
[Problems to be solved by the invention]
However, in such a conventional metal plate resistor, it is necessary that the resistor portions 2 and 5 in the central portion themselves function as a structure that supports itself, and therefore the thickness must be a certain level or more. I must. For this reason, the conventional metal plate resistor has a problem that it is difficult to set a high resistance value of, for example, 100 mΩ or more because the specific resistance value of the resistor material is low.
[0006]
Since the resistor parts 2 and 5 are made of a metal material, the resistor parts 2 and 5 themselves are excellent in thermal conductivity, but the resistor parts 2 and 5 themselves are directly mounted on a mounting board such as a printed circuit board. Since they are not in contact with each other, only the heat conduction to the electrode portions 3 and 6 and the air becomes a heat dissipation path. For this reason, the conventional metal plate resistor has a problem that it is difficult to efficiently dissipate heat from the resistor portions 2 and 5 themselves.
[0007]
The present invention has been made in view of the above-described circumstances, and provides a metal plate resistor that is excellent in heat dissipation and can be set to a relatively high resistance value of several hundred mΩ or more, and a method for manufacturing the same. For the purpose.
[0008]
[Means for Solving the Problems]
To solve the above problems, the metal plate resistor of the present invention includes a flat plate-shaped resistance body, it is connected to both ends of the resistive element antibodies portion are spaced apart from each other on the lower side of the resistor portion The resistor part and the electrode part are made of a single metal material, and the electrode part is in a block shape having a thickness larger than that of the resistor part. it is characterized in that fixing the one surface of the electrode portion before Symbol resistor portion via the insulating layer. Here, it is preferable to interpose an insulating material between the pair of electrode portions.
[0009]
In this invention, the block-shaped electrode portion connected to the land of the mounting substrate supports (fixes) the thin flat plate-like resistor portion via the thin insulating layer thereon. Therefore, the resistor portion does not need to have a strength sufficient to support its own posture, and can be thinned and set to a high resistance value. Further, the heat generated in the resistor portion can be efficiently radiated from the block-shaped electrode portion through the thin insulating layer. Further, the electrode portion and the resistor portion have a compact laminated structure, and a chip-type structure capable of surface mounting can be obtained.
[0010]
Here, the metal plate resistor of this invention may laminate | stack a highly conductive metal material on the said electrode part, and may form the said electrode part in a laminated structure.
[0011]
Method for producing a metal plate resistor of the present invention includes a flat plate-shaped resistance body, which in succession to form a pair of block-shaped electrode portions which is thicker than the resistor unit, the resistor portion An insulating layer is formed, and both ends of the resistor portion are bent so that one surface of the block-shaped electrode portion is brought into contact with and fixed to the resistor portion via the insulating layer. It is. In addition, by performing horizontal and vertical cutting on a metal plate having a rectangular cross section, a flat metal resistor portion on the upper surface and a pair of block-shaped metal electrode portions connected to both ends thereof It is possible to manufacture by filling an insulating material in a void formed by the cutting process and formed below the resistor.
[0012]
In this manufacturing method, a step of laminating a highly conductive metal material on the electrode portion and forming the electrode portion in a laminated structure may be included.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 and 2 are views showing a first embodiment of a metal plate resistor and a manufacturing method thereof according to the present invention.
[0014]
First, the configuration of the metal plate resistor of the present invention will be described. In FIG. 1, a metal plate resistor 10 includes a resistor portion 11 made of a metal material that is formed in a thin flat plate shape and has a dimension set to have a desired resistance value, and both ends of the resistor portion 11. A pair of block-like electrode portions 12 which are connected to and located on the lower side of the 11a side, and a thin insulating layer 13 sandwiched so as to be interposed between the resistor portion 11 and the electrode portion 12; And an insulator block 14 sandwiched between the pair of electrode portions 12 and a heat-resistant protective layer 15 that protects the influence of electrical contact with other components and the external environment. In particular, the thin insulating layer 13 is sandwiched between the thin flat plate-like resistor portion 11 and the block-like electrode portion 12, and the thin flat plate-like resistor portion 11 is interposed via the insulating layer 13 into the block-like electrode portion 12. It is formed in a compact structure that supports it.
[0015]
In this metal plate resistor 10, by processing a member made of a resistance metal material such as copper-nickel or nickel-chromium, the resistor portion 11 and the electrode portion 12 are integrally configured by a single member.
[0016]
The resistor portion 11 is designed so that the resistance value between the electrode portions 12 becomes a desired value by the length, width, and thickness of the thin flat plate resistor. The basic resistance value R of the resistor portion 11 can be calculated by the following equation using the specific resistivity r of the resistance metal material to be used.
Resistance value R = specific resistivity r × length L / cross-sectional area (width W1 × sheet thickness t)
Note that a trimming cut can be provided in the resistor portion 11 to substantially extend the current path and increase the resistance value. For example, by setting the plate thickness t to about 50 μm, the resistance value can be increased to 500 mΩ or more. Can be set.
[0017]
The resistor part 11 and the electrode part 12 have a structure in which a current path connected at both ends 11a of the resistor part 11 is bent, and the electrode part 12 has an insulating layer 13 inside the both ends 11a. The resistor 11 is supported (fixed) by interposing. The pair of electrode portions 12 are firmly supported (fixed) by the insulator block 14 at intervals.
[0018]
The electrode portion 12 is formed in a block shape so as to have a height of a chip part dimension designed as a resistor, and a bonding surface to the mounting substrate on the back surface side (lower surface side in FIG. 1) with respect to the resistor portion 11. 12a is formed in a large area that is approximately half or more of the area of the resistor portion 11. With the configuration of the block-shaped electrode portion 12, the thin flat plate-shaped resistor portion 11 is stably supported and good heat dissipation is ensured.
[0019]
In addition, when the resistor part 11 and the electrode part 12 are integrally formed using a resistance metal material, it is necessary to reduce the resistance value in the electrode part 12. Therefore, by increasing the thickness of the electrode portion 12 as compared with the plate thickness t of the resistor portion 11, the resistance value of the electrode portion 12 can be lowered and can function as an electrode. The required thickness of the electrode portion 12 varies depending on the resistance metal material to be used, but it is desirable that the thickness be about 10 times the plate thickness t of the resistor portion 11. In the case where a highly conductive material piece is joined to the electrode portion, which will be described later (see FIG. 4), it is not necessary to consider the thickness of the electrode portion 12.
[0020]
Moreover, since the electrode part 12 is formed in the block shape which has sufficient volume, an electric current can be sent without generating a big potential difference inside, and the resistance value precision of the resistor part 11 can be improved. .
[0021]
Therefore, the metal plate resistor 10 can set the resistance value with high accuracy only by the resistor portion 11. In addition, since the resistor portion 11 is supported by the electrode portion 12 disposed inward of the both end portions 11a, the resistor portion 11 is required to have strength sufficient to maintain its shape and posture. For example, it can be reduced to a high resistance value of several hundred mΩ or more by thinning it into a metal foil of 50 μm, etc. Also, the mounting area on the mounting board etc. can be reduced, and a compact chip component structure Can be.
[0022]
The metal plate resistor 10 has an insulating layer 13 interposed between the resistor portion 11 and the electrode portion 12 and an insulator block 14 interposed between the pair of electrode portions 12, thereby providing insulation. In addition to ensuring, the deformation of the resistor portion 11 and the electrode portion 12 is restricted and the shape thereof is firmly maintained.
[0023]
Next, an example of a manufacturing procedure (method) of the metal plate resistor 10 will be described with reference to FIG. First, a length (L + 2W2) obtained by adding the width W1 of the metal plate resistor 10 (resistor portion 11) to be produced, the length L of the resistor portion 11 and the width W2 of the electrode portion 12 in the longitudinal direction, and the electrode A resistance metal material 21 having a height H of the portion 12 is prepared (see (a)). It should be noted that a continuous material may be used in the width W1 direction so that a plurality of resistors are obtained, and the width W1 may be cut in a later process.
[0024]
Next, a block-like shape is formed on both end sides of the resistance metal material 21 by cutting or the like so that a desired plate thickness t (t << H) remains in the central portion of the length L of the one surface side (the lower surface side in the drawing). The resistor part 11 in which the electrode part 12 continues is formed (see (b)). Here, the process of the resistance metal material 21 is not limited to the cutting process, and may be an etching process, or the resistor part 11 and the electrode part 12 are directly formed by injection molding or rolling process (foil making process). Needless to say, it may be produced.
[0025]
Next, an insulating resin such as polyimide or epoxy is applied to one surface side (the upper surface side in the figure) of the resistive metal material 21 to a required thickness, for example, 50 μm to 150 μm, and the insulating layer 13 is applied. At the same time, an inorganic paste having insulating properties and heat resistance such as boron nitride is applied to the other surface side (lower surface side in the figure) of the manufactured resistor portion 11 so as to have a necessary thickness. A protective layer (insulating layer) 15 is formed (see (c)). Then, the resistor unit 11 and the electrode are formed by turning and bending (bending) the electrode unit 12 by 180 ° in directions close to each other (in the direction of the arrow in the drawing) around both ends 11a of the resistor unit 11. A laminated structure in which the insulating layer 13 is sandwiched between the portions 12 is formed (see (d)). At this time, the insulating layer 13 on the upper surface of the electrode portion 12 and the insulating layer 13 on the upper surface of the resistor portion 11 in FIG. In addition, (d) has shown the state which turned (c) upside down.
[0026]
Next, the metal block resistor 10 is completed by fitting the insulator block 14 between the electrode parts 12 and fixing the electrode parts 12 by fusion or the like (see (e)). Here, in the case of adjusting the resistance value of the resistor portion 11 with high accuracy, after the thin resistor portion 11 is formed at the central portion on the one surface side of the resistance metal material 21, press processing, etching processing, laser cutting processing is performed. This can be done by trimming.
[0027]
As described above, in this embodiment, the resistor unit 11 is supported by the pair of electrode units 12 to be bonded / fixed on the mounting substrate and the insulator block 14 therebetween via the insulating layer 13. Thin metal foil with low strength can be thinned to increase resistance. The heat generated by the current flowing through the resistor portion 11 can be radiated to the electrode portion 12 through the insulating layer 13 and effectively released to the mounting substrate side. Moreover, the space | interval of the electrode part 12 is maintained by the insulator block 14, and it can be set as the compact chip-type laminated structure which inserts the insulating layer 13 between this electrode part 12 and the resistor part 11. FIG.
[0028]
The metal plate resistor 10 can be manufactured at low cost by a simple and easy process in which the electrode portion 12 is rotated and bent at both ends 11a of the resistor portion 11.
[0029]
As another aspect of the present embodiment, as shown in FIG. 3, contrary to the above-described embodiment, the insulating layer 13 is formed on one surface side (lower surface side in the drawing) of the manufactured resistor portion 11, and resistance is increased. The heat-resistant protective layer 15 is formed except for the folded surface on the other surface side (upper surface side in the drawing) of the metal material 21. Then, with the both end portions 11a of the resistor portion 11 as an axis, the electrode portion 12 is bent in a direction (inward) close to each other and rotated by 90 ° so as to be in close contact with the insulating layer 13, thereby the resistor body. A laminated structure in which the insulating layer 13 is sandwiched between the part 11 and the electrode part 12 may be adopted. At this time, the side surface of the electrode part 12 in the drawing is in close contact with the insulating layer 13. Further, since the folded surface is removed from the heat-resistant protective layer 15, cracks and the like do not occur.
[0030]
Further, as another embodiment, as shown in FIG. 4, for example, a highly conductive material piece 32 such as Cu is bonded to the lower surface of the electrode portion 12 to form the electrode portion 12 c having a laminated structure. Good. That is, for example, in the state of FIG. 2B, the highly conductive material piece 32 is bonded to the lower surface of the electrode portion 12 to form the laminated electrode portion 12 c. After the insulating layer 13 and the heat-resistant protective layer 15 are applied and formed, the laminated electrode portion 12c is rotated to bend and bend 180 degrees about the both end portions 11a of the resistor portion 11 so that the metal plate resistor 30 is formed. Can be produced. Here, as the metal plate resistor, it is preferable that the electrode portion 12c has a laminated structure as in the present embodiment because it is excellent in conductivity and heat dissipation.
[0031]
Furthermore, as another aspect, the metal plate resistor 40 can be manufactured also by the process shown in FIG. That is, first, the resistance metal material 41 is manufactured in a shape that substantially matches the outer shape of the metal plate resistor 40 to be manufactured (see (a)). Next, one surface side of the resistance metal material 41 is formed by vertically cutting, for example, a rotary blade 42a that rotates in the vertical surface of the cutting tool 42 at the center of the one surface side (lower surface side in the drawing) of the resistance metal material 41. A vertical groove 43 is formed to leave a desired thickness t (see (b)). Next, for example, a horizontal groove that leaves both sides of the resistance metal material 41 by guiding a rotation shaft 44b of a cutting tool 44 that rotates the rotary blade 44a in a horizontal plane into the vertical groove 43 and making horizontal cuts. 45 is formed, and the resistor portion 46 and the electrode portion 47 are produced (see (c)). Thereafter, an insulating resin is filled into the formed vertical grooves 43 and horizontal grooves 45 to form a T-shaped insulating layer 48 and inorganic on the other surface side (upper surface side in the drawing) of the resistance metal material 41. The paste is applied to form the heat-resistant protective layer 49 (see (d)), and the metal plate resistor 40 is completed. Thereby, the metal plate resistor 40 can be produced simply by cutting the resistance metal material 41 and filling the resin material or the like. The filling of the insulating resin into the vertical grooves 43 and the horizontal grooves 45 may be performed by filling solid resin in addition to filling by injection of molten resin. Also in this step, as a matter of course, the electrode portion 47 may have a laminated structure of a resistance metal material and a highly conductive material such as Cu as shown in FIG.
[0032]
Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the metal plate resistor of the compact chip type structure which can be set to the high resistance value of several hundred m (ohm) or more which was difficult with the conventional metal plate resistor can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment of a metal plate resistor according to the present invention.
FIG. 2 is a process diagram showing a first embodiment of a method for producing a metal plate resistor according to the present invention.
FIG. 3 is a perspective view showing a modification of the first embodiment.
FIG. 4 is a perspective view showing a second embodiment of the metal plate resistor.
FIG. 5 is a process diagram showing a second embodiment of a method for manufacturing a metal plate resistor.
FIG. 6 is a perspective view showing a conventional metal plate resistor.
FIG. 7 is a perspective view showing another conventional metal plate resistor.
[Explanation of symbols]
10, 30, 40 Metal plate resistor 11, 46 Resistor portion 11a Both ends 12, 12c, 47 Electrode portion 13, 48 Insulating layer 14 Insulator block 15, 49 Heat-resistant protective layer 21, 41 Resistance metal material 32 Conductive piece

Claims (6)

平板状の抵抗体部と、
該抵抗体部の両端部にそれぞれ接続され前記抵抗体部の下側に互いに離隔して配置された一対の電極部とを備え、
前記抵抗体部と前記電極部とを単一の金属材料により構成し、
前記電極部は前記抵抗体部よりも厚みを有するブロック状であり、ブロック状とした前記電極部の一面を絶縁層を介して前記抵抗体部に固定したことを特徴とする金属板抵抗器。
A flat resistor part;
Is connected to both ends of the resistive element antibodies portion, and a pair of electrode portions that are spaced apart from each other on the lower side of the resistor unit,
The resistor part and the electrode part are made of a single metal material,
The electrode portion has a block shape having thickness than the resistor unit, a metal plate resistor, characterized in that fixed to the front Symbol resistor section one side of the electrode portion was blocky through an insulating layer .
前記一対の電極部間に絶縁材料を介在させたことを特徴とする請求項1に記載の金属板抵抗器。  The metal plate resistor according to claim 1, wherein an insulating material is interposed between the pair of electrode portions. 前記電極部の下面に高導電性の金属材料を積層したことを特徴とする請求項1または2に記載の金属板抵抗器。The metal plate resistor according to claim 1, wherein a highly conductive metal material is laminated on a lower surface of the electrode portion. 平板状の抵抗体部とこれに連続し前記抵抗体部よりも肉厚とした一対のブロック状の電極部を形成し、
前記抵抗体部に絶縁層を形成し、前記抵抗体部の両端部を折り曲げることにより、前記抵抗体部に前記絶縁層を介して前記ブロック状の電極部の一面を当接させて固定することを特徴とする金属板抵抗器の製造方法。
Forming a plate-shaped resistance body, a pair of block-shaped electrode portions which is thicker than the resistor portion contiguous thereto,
An insulating layer is formed on the resistor portion, and one end of the block-shaped electrode portion is brought into contact with and fixed to the resistor portion via the insulating layer by bending both ends of the resistor portion. A method of manufacturing a metal plate resistor.
断面が矩形の金属板体に水平方向および垂直方向の切削加工を施すことで、上面に平板状の金属抵抗体部とこれにその両端部で接続した一対のブロック状の金属電極部を前記抵抗体部の下側に形成し、前記切削加工により形成した空隙部に絶縁材料を充填することを特徴とする金属板抵抗器の製造方法。  By applying horizontal and vertical cutting to a metal plate having a rectangular cross section, a plate-shaped metal resistor portion on the upper surface and a pair of block-shaped metal electrode portions connected to both ends of the resistor are connected to the resistor. A method for manufacturing a metal plate resistor, comprising: forming an insulating material in a gap formed by a cutting process formed below a body part. 前記電極部の下面に高導電性の金属材料を積層する工程を含むことを特徴とする請求項4または5に記載の金属板抵抗器の製造方法。Method for producing a metal plate resistor of claim 4 or 5, characterized in that it comprises a step you product layer highly conductive metal material on a lower surface of the electrode portion.
JP2002286269A 2002-09-30 2002-09-30 Metal plate resistor and manufacturing method thereof Expired - Fee Related JP4012029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286269A JP4012029B2 (en) 2002-09-30 2002-09-30 Metal plate resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286269A JP4012029B2 (en) 2002-09-30 2002-09-30 Metal plate resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004128000A JP2004128000A (en) 2004-04-22
JP4012029B2 true JP4012029B2 (en) 2007-11-21

Family

ID=32279366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286269A Expired - Fee Related JP4012029B2 (en) 2002-09-30 2002-09-30 Metal plate resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4012029B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228978A (en) * 2005-02-17 2006-08-31 Rohm Co Ltd Low resistance chip resistor and its production process
JP4565556B2 (en) * 2005-02-17 2010-10-20 ローム株式会社 Low resistance chip resistor and manufacturing method thereof
US7190252B2 (en) * 2005-02-25 2007-03-13 Vishay Dale Electronics, Inc. Surface mount electrical resistor with thermally conductive, electrically insulative filler and method for using same
JP5143353B2 (en) * 2005-11-15 2013-02-13 パナソニック株式会社 Resistor manufacturing method
JP4887748B2 (en) * 2005-11-15 2012-02-29 パナソニック株式会社 Resistor
JP2007220714A (en) * 2006-02-14 2007-08-30 Matsushita Electric Ind Co Ltd Resistor and manufacturing method thereof
US10083781B2 (en) 2015-10-30 2018-09-25 Vishay Dale Electronics, Llc Surface mount resistors and methods of manufacturing same
WO2018131644A1 (en) 2017-01-16 2018-07-19 株式会社巴川製紙所 Resistor element
US10438729B2 (en) 2017-11-10 2019-10-08 Vishay Dale Electronics, Llc Resistor with upper surface heat dissipation
JP6573957B2 (en) 2017-12-12 2019-09-11 Koa株式会社 Resistor manufacturing method
JP6573956B2 (en) * 2017-12-12 2019-09-11 Koa株式会社 Resistor manufacturing method
US11011290B2 (en) 2017-12-12 2021-05-18 Koa Corporation Method for manufacturing resistor, and resistor
DE102018121902A1 (en) * 2018-09-07 2020-03-12 Isabellenhütte Heusler Gmbh & Co. Kg Manufacturing method for an electrical resistance element and corresponding resistance element
JP7446798B2 (en) 2019-12-05 2024-03-11 Koa株式会社 shunt resistance module

Also Published As

Publication number Publication date
JP2004128000A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4012029B2 (en) Metal plate resistor and manufacturing method thereof
EP0398811B1 (en) Manufacturing method for a PTC thermistor
JP5256544B2 (en) Resistor
TWI360823B (en) Power resistor, method of forming the same, electr
JP2009302494A (en) Chip resistor and method for manufacturing the same
EP1915037B1 (en) Process for producing a bending-type rigid printed wiring board
CN101484952B (en) Resistor, particularly SMD resistor, and associated production method
WO1999018584A1 (en) Resistor and method for manufacturing the same
KR20090088461A (en) Electrical devices and process for making such devices
US10102948B2 (en) Chip resistor and method for making the same
WO2004040592A1 (en) Chip resistor, process for producing the same, and frame for use therein
JP5201085B2 (en) Semiconductor device
TWI294129B (en) A chip resistor component and a manufacturing process thereof
TWI281372B (en) Circuit board
TWI438787B (en) Micro-resistive product having bonding layer and method for manufacturing the same
JP5464829B2 (en) Chip resistor and manufacturing method thereof
WO2014171087A1 (en) Resistor and manufacturing method for same
JP6500210B2 (en) Metal plate resistor
JP2004186541A (en) Chip resistor and its manufacturing method
JP2014060463A (en) Chip resistor and method for manufacturing the same
JP2009272476A (en) Chip resistor and method of manufacturing the same
JP6732996B2 (en) Chip resistor
JP2019160992A (en) Chip resistor, and manufacturing method of chip resistor
JP2004319874A (en) Chip resistor and its manufacturing method
JP2017050478A (en) Resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Ref document number: 4012029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees