JP4011809B2 - Torque hinge structure and portable office equipment - Google Patents

Torque hinge structure and portable office equipment Download PDF

Info

Publication number
JP4011809B2
JP4011809B2 JP36802699A JP36802699A JP4011809B2 JP 4011809 B2 JP4011809 B2 JP 4011809B2 JP 36802699 A JP36802699 A JP 36802699A JP 36802699 A JP36802699 A JP 36802699A JP 4011809 B2 JP4011809 B2 JP 4011809B2
Authority
JP
Japan
Prior art keywords
shaft
torque
surface roughness
rotation
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36802699A
Other languages
Japanese (ja)
Other versions
JP2001182420A (en
Inventor
正人 釆女
高章 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Original Assignee
Chuo Hatsujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK filed Critical Chuo Hatsujo KK
Priority to JP36802699A priority Critical patent/JP4011809B2/en
Priority to US09/742,330 priority patent/US6634062B2/en
Publication of JP2001182420A publication Critical patent/JP2001182420A/en
Application granted granted Critical
Publication of JP4011809B2 publication Critical patent/JP4011809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1681Details related solely to hinges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05DHINGES OR SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS
    • E05D11/00Additional features or accessories of hinges
    • E05D11/08Friction devices between relatively-movable hinge parts
    • E05D11/082Friction devices between relatively-movable hinge parts with substantially radial friction, e.g. cylindrical friction surfaces
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/60Application of doors, windows, wings or fittings thereof for other use
    • E05Y2900/606Application of doors, windows, wings or fittings thereof for other use for electronic devices

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、ラップトップ型のノートパソコンなどの携帯用事務機器の開閉蓋やディスプレイを揺動支持するために用いられるヒンジを始め、その他、任意の開閉角度での途中停止を含む各種の蓋部材を開閉させるのに適したトルクヒンジ構造体に関する。
【0002】
【従来の技術】
従来、蓋部材等を任意の角度まで回転させて停止、固定するためのトルクヒンジにおける回転トルク抑制のための摩擦構造としては、金属製の回転軸を内包するように樹脂のモールド一体成形によって回動自在に支持するものがある。
こうしたものは、金属製の回転軸と樹脂とが面摩擦抵抗を持ちつつ相対回転自在とされることにより、回転軸が任意の角度に回転及び固定自在とされる。
【0003】
【発明が解決しようとする課題】
しかし、このような構造のトルクヒンジにおいては、回転軸とこれを内包する樹脂との界面の接触状況の関係が適切でないと、回転トルクのばらつきが大きく、また、回転中にスティックスリップが発生し異音が出たり、あるいは耐久性が低く摩耗によりトルクが保持できなくなるといった問題があった。
こうした問題を解決するために、従来より、回転軸の面粗度など表面加工に関する研究が行われているが、それらは、いずれも、金属製の回転軸の軸方向の面粗度に関する考察のみであり、回転軸の周方向に関しては、ほとんど研究が行われていなかった。
これは、回転軸等の回転体の製造では、切削、研磨などが回転加工によって日常的に行われているため、回転軸の真円度及びその周方向の面粗度に関する考察がほとんど行われていなかったものと見られる。
本願発明者は、金属製の回転軸とそれを内包する樹脂との関係について、研究を重ねた結果、トルクを長期間に亙って維持でき、トルクヒンジの耐久性を向上させるためには、これまで考察対象外であった回転軸の真円度及び回転軸の周方向と軸方向の面粗度の両者の値に適正な関係があることを見い出した。
【0004】
本発明は、蓋部材等を開閉した場合に、任意の角度で容易に固定させることができる安定した摩擦力を長期に亙って維持するトルクヒンジ構造体を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に係る本発明は、回動中心となる回転軸を有する金属製の軸部材と、該軸部材を前記回転軸で相対的に回動角自在に支持する軸回動支持部材とからなり、前記軸回動支持部材が前記軸部材の前記回転軸周りで相対的に回動自在に設けられ、前記回転軸を内包し、該回転軸の外側にモールド一体成形された樹脂製部材によって前記軸回動支持部材を構成し、前記樹脂製部材の成形収縮に基づく締め代による発生面圧を利用し、前記軸部材と前記軸回動支持部材との間で面摩擦抵抗を発生させるようにしたトルクヒンジ構造体において、JISB7451に規定された測定方法によって計測し、JISB0621に規定された真円度の定義に従った表現方法で表示するところの、前記回転軸の外周における基準中心円に対する遠心側最大変位位置と内側最大変位位置との差によって決まる値P−Pが、P−P<2.5μm、かつ前記軸回動支持部材と前記軸部材とのトルク保持率が初期トルクの80%以上であり、前記回転軸の外周面における周方向の面粗度をJISB0651に示す測定方法によって計測し、JISB0601に規定する定義に従った表現方法で示すところの面粗度Raとし、この面粗度Raが0.05μmを上回り、かつ0.20μm以下であるように設定し、前記回転軸の外周面における軸方向の面粗度Raを0.15〜0.30μmの範囲に設定したことを特徴とする。
【0007】
求項の携帯用事務機器では、請求項1に記載のトルクヒンジ構造体を利用して、ディスプレイ部を前記トルクヒンジ構造体に回動可能に支持させたことを特徴とする。
【0008】
【発明の作用・効果】
本発明では、回転軸を内包する軸回動支持部材は、樹脂製部材によって回転軸の外側に一体成形されることにより構成される。かかる一体成形の処理は、予め配置された軸部材が高温の金型内に置かれて、樹脂製部材を金型内に押し込むモールド一体成形により行われる。従って、一体成形後、軸部材及び樹脂製部材の温度が低下すると、樹脂製部材は収縮して締め代による応力が発生して軸部材に密着する。
成形収縮の締め代により軸部材に密着した軸回動支持部材は、軸部材の回転力に対して密着面で摩擦力を発生する。これにより、軸部材が軸回動支持部材との摩擦力に対して大きな力で外部より回転トルクを受けた場合には、軸部材が軸回動支持部材に対して相対的に回転し、摩擦力より小さな回転トルクに対しては回転せず、もって、軸部材は摩擦力により任意の回動角度に維持される。
この結果、軸部材と軸回動支持部材とが、モールド一体成形によって組み付けられるようになり、一体成形体として安価に製造することができる。
軸回動支持部材と軸部材とのトルク保持率を80%以上としたのは、軸回動支持部材における樹脂製部材の曲げ弾性率保持率を80%以上となることを意味し、高いトルク保持率を実現することができるからである。
また、回転軸の軸方向の面粗度Raを0.15〜0.30μmに設定して、周方向の面粗度Raよりも大きくして両者の間に差を与えている。これにより、回転軸(軸部材)と軸回動支持部材との間に必要な摩擦力を容易に設定することができ、回動中にスティックスリップに起因する異音の発生を防止できるとともに、回動に基づく摩擦を抑制することができるようになり、長期間に亙って、任意の回動角度で軸部材を停止維持させることができる。
しかも、回転軸の周方向の面粗度Raが0.05μmを上回り、かつ0.20μm以下であるようにしているため、回転軸の周面の滑らかさを確保しつつ、樹脂製部材との凝着を防止できて、回転軸の周面と樹脂製部材との当接面に適度の潤滑性を確保できるようになり、軸部材の回動時に異音などの発生をなくすことができる。尚、回転軸における周方向の面粗度を軸方向の面粗度に対して小さくすることは、軸部材の外周面の表面加工を各種研磨により行うことで実現可能である。
【0009】
回転軸の外周表面は、引き抜き加工や切削加工などによって、円筒形状に仕上げられるが、本願発明者の研究、考察により、その際、真円に対して内側最大変位位置の深さの値V、すなわち、真円に対する窪みが1μm以上であったり、回転軸の外周における基準中心円に対する遠心側最大変位位置と内側最大変位位置との差によって決まる真円度「P−P」が2.5μm以上であると、トルク保持率が急激に低下し耐久性が損なわれることが分かった。
請求項1では、回転軸の外周に関して、V<1μm、P−P<2.5μmと、真円度が高くなるように成形されることが要求されているため、品質管理において、この条件が維持できるように仕上げることによって、耐久性に優れたトルクヒンジ構造体を提供することができる。
【0011】
請求項では、携帯用事務機器において、回転軸(軸部材)と軸回動支持部材との間の摩耗が少なく安定したトルクでの保持が可能となるため、蓋部材等に搭載されるディスプレイを長期間に亙って任意の回動角度に保持することができる。
【0012】
【発明の実施の形態】
本発明のトルクヒンジ構造体1を、図に基づいて以下に説明する。
図1に示すトルクヒンジ構造体1は、携帯用事務機器としてのノート型パソコンなどにおいて、液晶ディスプレイが搭載された蓋の開閉用に用いられるもので、液晶ディスプレイの表示角度を調節するために、蓋を任意の開閉角度で固定するためのものである。
トルクヒンジ構造体1は、パソコンの蓋部材に取り付けられて、蓋部材とともに一体回動する軸部材10と、蓋部材を開閉させるために軸部材10をパソコンの本体側で回動自在に支持する軸回動支持部材20とからなる。この場合、軸部材10の軸回動支持部材20に対する回動変位は相対的であるので、軸回動支持部材20が軸部材10に対して回動可能に支持されるように構成することも可能である。
【0013】
軸部材10は、図2に示すとおり、SUS材(ステンレス)、鋼等の金属製の円柱形状の棒素材の中間部を径大部11(例えば、直径5mm)として、その両端側を径大部11より小径の径小部12、13(例えば、直径4mm)として成形し、さらに、一方の径小部13の先端に、蓋部材と嵌合するためのほぞ部14を形成したものである。
【0014】
軸回動支持部材20は、図3に示すように、軸部材10の径大部11の外側に覆い被さるようにして密着して形成された樹脂製部材で、軸部材10を予め金型内に配置しておき、樹脂材料を射出成形することによって軸部材10とともにモールド一体成形して形成されたものである。尚、ここでは、金型温度を165℃前後に設定して、モールド一体成形を行っている。
【0015】
このトルクヒンジ構造体1は、上述のとおり、蓋部材をパソコン本体に対して任意の角度に設定する必要があるため、軸回動支持部材20と軸部材10とに加わる相対的なトルクが所定トルク以下の場合には、その相対角度を維持し、所定トルク以上の場合には、円滑な回動を確保する必要がある。
具体的には、1〜20kgf・cm程度の安定した摩擦トルクを必要とし、耐久回数は、5万回程度が要求され、この耐久回数使用時に、トルク保持率は初期トルクの80%以上であることが条件となる。
尚、トルク保持率は、以下の式で定義される。
トルク保持率(%)=(熱劣化および耐久後トルク/初期トルク)×100
【0016】
上記条件を満足するための軸部材10の径大部11の軸方向の面粗度(表面粗さ)Raを見つけるべく、面粗度Raを変えて試験を行った結果を、図4に示す。
図4に示したとおり、所望の耐久回数使用時にトルク保持率が80%以上であるためには、面粗度Raが0.02〜0.08μmでは細かすぎて満足できないが、0.15〜0.30μmでは満足できる。また、面粗度Raが細かいと、トルクのばらつき自体が多くなるとともに、操作中(回転中)にスティックスリップが発生し、きしみ音のような異音が発生するという問題も明らかとなった。
この場合、面粗度RaはJISB0651に示す測定方法によって計測し、JISB0601に規定する定義に従った表示方法で示した。
【0017】
また、面粗度Raが図4に示すように0.35μm以上になると、回動初動時のひっかかりが大きく、またスティックスリップが大きいとともに、耐久回数1000回程度で樹脂製部材である軸回動支持部材20の摩耗が大きくなり、収縮により発生した締め代による発生応力を保持できなくなり、トルク保持率が著しく低下する。
上記の試験結果から、軸回動支持部材20によって回動支持される軸部材10の径大部11の軸方向の面粗度Raは、0.15〜0.30μmが適していることが明らかとなった。
【0018】
軸回動支持部材20としてPAR(ポリアリレート)樹脂を使用し、軸部材10の径大部11を直径5mm、径小部12を直径4mmとした場合の回動角度とトルクについて、軸部材10の径大部11の表面の軸方向の面粗度Raを0.18μmに仕上げた本実施例の場合を図5に示し、比較のため、図6には面粗度Raを本発明より大きい0.75μmに仕上げた場合について、図7には面粗度Raを本発明より小さい0.02μm、0.04μmに仕上げた場合についてそれぞれ示す。
【0019】
比較例のように軸方向の面粗度Raが0.75μmの場合には、図6のXで示すとおり、初動時のひっかかりが大きく、また、Yで示すとおり、スティックスリップが大きいのに対し、本発明のように面粗度Raが0.18μmの場合には、図5に示すとおりこれらをほとんど認識できない程度に小さくなっていることが分かる。
反対に、比較例のように面粗度Raを0.02、0.04μmにした場合は、図7のZに示すとおり、回動時のスティックスリップが大きくなっていることが分かる。
【0020】
表1に、軸方向の面粗度Raに対する回転に必要なトルク、スティックスリップ、初動時のひっかかりの値を整理して示す。
【表1】

Figure 0004011809
【0021】
以上は、軸部材10の径大部11の軸方向の面粗度Raとトルク保持率とに関する研究、考察であるが、さらに、本願発明者は軸部材10の径大部11の真円度及び周方向の面粗度Raに注目して、トルク保持率を長期間に亙って維持するための研究、考察を行った結果、以下に示すような事実が明らかになった。
【0022】
真円度とトルク保持率との関連を考察するに当たって、本願発明者は、軸部材10の径大部11の外周における真円S(例えば、目標軸径を有する真円)に対する内側最大変位位置、すなわち、真円Sに対する最大深さ(へこみ)Vと、基準中心円としての真円Sに対する遠心側最大変位位置値、すなわち、真円Sに対する最大高さPに注目した。研究、考察を行った結果、トルク保持率が長期間に亙って維持されるためには、最大深さVを、V<1μm、最大高さPと最大深さVとの差として表される真円度「P−P」を、P−P<2.5μmとすることで、長期間に亙って安定したトルク保持率が確保されることを見い出した。
【0023】
図8では、上記の研究結果を導き出すために用いた真円度の計測方法の模試図を(a)に、外周における真円に対する最大高さP及び最大深さVとの関係を(b)にそれぞれ示す。なお、測定にあたっては、JISB7451に規定された測定方法によって計測し、JISB0621に規定された真円度の定義に従った表現方法で表示した。
表2に、本発明を導き出すために用いた試料における各測定値を示す。
表2において、ヒンジ型Noは成形用金型の番号を示し、試料Noは各金型における試料番号を示すもので、3種類の金型について、計9種類の試料を成形したことを示している。
【表2】
Figure 0004011809
【0024】
図9に上記測定による各測定値とトルク保持率との関係を示す。
図9(a)では、最大高さPと最大深さVとの差として表される真円度「P−P」とトルク保持率との関係を示す。
図9(a)で明らかなように、用いた金型に関係なく、真円度「P−P」とトルク保持率との間には、真円度「P−P」の値が小さい場合には、トルク保持率の値が小さく、真円度「P−P」の値が大きいほど、トルク保持率が大きくなることが分かる。この結果から、最大高さPから最大深さVまでの差が小さく真円度が優れたものほど、トルク保持率が小さくできることが分かる。
【0025】
図9(b)では、最大高さPとトルク保持率との関係を示す。
図9(b)で示されるとおり、最大高さPの値とトルク保持率とには、相関は見られず、最大高さPを抑えるだけでは、トルク保持率を向上させることができないことが分かる。これは、軸部材10における最大高さPは、各加工工程においてチッピングとして生じたものであり、周方向の極く限られた部分のみに存在するもので、面摩擦抵抗に対して継続的に影響を及ぼすことがないためであると考えられる。
【0026】
図9(c)では、最大深さVとトルク保持率との関係を示す。
図9(c)で示されるとおり、最大深さVの値とトルク保持率とには、上記の(a)に示した真円度「P−P」とトルク保持率との相関よりも、更に明確な相関が見られ、外周における最大深さVとしてのくぼみの大きさが、トルク保持率に対して最も大きな影響を与えることが分かる。
特に、最大深さVが1μm以下である場合には、トルク保持率は著しく小さくなり、最大深さVを1μm以下にすることで優れた耐久性が確保されることが分かる。
これは、軸部材10の外周面におけるくぼみは、軸方向及び周方向にある程度の長さを有して存在するため、欠落容積が大きいからであると考えられる。
【0027】
表3に、上記真円度「P−P」、最大深さVを、軸部材10の径大部11の軸方向及び周方向の面粗度Raと合わせて、トルク保持率への影響を調べた結果を示す。
【0028】
【表3】
Figure 0004011809
表3から明らかなとおり、周方向の面粗度Raが0.17μm以下のものであっても、最大深さVが1μm以上であると、トルク保持率が急激に低下することが分かる(試料No1,2,4,5,9,10,13)。
また、試料No7のものは、最大深さVが1μm以下であるが、周方向の面粗度Raが0.05μm以下の小さい値であるため、軸回動支持部材20の樹脂と凝着しやすく、軸部材10の回動時に異音が発生するため適さない。
【0029】
次に、以上の真円度及び面粗度Raを確保するための、軸部材10の表面加工方法について説明する。
各種の加工法の違いによる軸部材10の仕上がり仕様を、軸方向と周方向の各面粗度Raについて、図10及び図11に示す。
ここでは、図10(a)にフィルム研磨、図10(b)にバレル研磨、図10(c)に化学研磨、図11(a)に化学研磨、図11(b)に転写転造、図11(c)に転造のみをそれぞれ示す。
図10、図11に示すとおり、表面加工を施すことで、いずれの加工方法を用いた場合でも、軸方向の面粗度Raに対して周方向の面粗度Raを0.1〜0.2μm程度小さくすることができる。
【0030】
特に、図10(a)に示したフィルム加工と、図11(b)に示した転写転造では、周方向の面粗度Raを軸方向の面粗度Raに対して明らかな差を生じさせることができる。このため、周方向の面粗度Ra0.05μmを上回り、かつ0.20μm以下に小さく仕上げることで、良好なトルク保持率となり、長期間に亙って安定したトルク保持率を確保することができる。これと同時に、軸方向の面粗度Raを周方向の面粗度Raより0.1〜0.2μm程度大きくすることによって、軸部材10と軸回動支持部材20との間に安定したトルクを確実に発生させることができる。
【0031】
次に、上記の表面加工を含め、軸部材10の成形加工について簡単に説明する。
加工方法としては、塑性加工と切削加工とがある。
[1]塑性加工
塑性加工を行う場合には、冷間鍛造、温間鍛造、熱間鍛造、鋳造法などの加工時に、真円度「P−P」が、P−P<6〜7μmとなるように引き抜き加工工程を行い、その後、2段以上の円筒研削及びセンタレス研磨を施す。
切削、研磨では、1段目に加工時のP−Pの2〜3倍を研磨する荒研削を施し、2、3段目には、真円度「P−P」、最大深さVを、P−P<2.5μm、V<1μmに仕上げるための上記各仕上げ研磨工程を施す。
【0032】
[2]切削加工
切削加工を行う場合には、切削加工により真円度「P−P」をP−P<3〜4μmを確保し、その後、センタレス研磨、円筒研削、フィルム研削などの表面加工によって真円度「P−P」を2.5μmに仕上げる。
【0033】
上記のように表面加工を施された軸部材10を回転摺動させる軸回動支持部材20に用いられる樹脂材料としては、軸部材10に対して安定した摩擦力を確保するために、トルクヒンジ構造体1を使用温度範囲(例えば、−20〜80℃)における曲げ弾性率(GPa)の変化の割合が小さい樹脂を用いている。
これは、種々の樹脂について、トルク保持率と曲げ弾性率保持率との関係を調べたところ、図12に示すとおり、トルク保持率が80%以上となる樹脂材料では、曲げ弾性率保持率が80%以上であることに基づくもので、曲げ弾性率保持率が高い(使用温度範囲内における曲げ弾性率の変化の割合が小さい)樹脂材料を用いることで、高いトルク保持率を実現できるからである。
【0034】
図13、図14に、周囲の環境温度と樹脂製部材の曲げ弾性率との関係を示す。
図13に示すPAR(ポリアリレート)では、実際に機器等が使用される周辺の環境温度範囲内では、曲げ弾性率が大きく変化しないため、軸回動支持部材20として適しているが、図14に示すような一般の結晶性樹脂では、使用温度範囲内で温度によって曲げ弾性率が大きく変化する。このため、こうした一般の結晶性樹脂では、使用温度が変化した場合に軸部材10に対して適切な摩擦力を与えることができず、軸回動支持部材20には適していないことが分かる。
【0035】
以上の観点から、軸回動支持部材20として用いるのに適した樹脂材料の具体例としては、PAR(ポリアリレート)、PC(ポリカーボネイト)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)などが挙げられる。
【0036】
次に第2実施例について説明する。
第2実施例では、軸回動支持部材20に用いられる樹脂材料として、上述のPAR(ポリアリレート)、PC(ポリカーボネイト)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)などの単一材料ではなく、これらにフッ素系樹脂、オレフィン系樹脂等の有機系の摺動剤を10wt%以内で添加して用いる。また、カーボン、カーボン繊維、二硫化モリブデン、チタン酸カリウムなどの無機系摺動剤を10wt%以内で添加してもよい。
樹脂材料にPTFEを3wt%添加した場合を図15に、添加しない場合を図16にそれぞれ示す。添加した場合には、初動時に滑らかに回動を開始することが分かる。
また、これによって、軸部材10と軸回動支持部材20との摩擦に伴って発生する摩擦粉を著しく低減させることができる。
図17に、これらの摺動剤を添加した場合の耐久性について、添加しないものと比較して示す。
図から明らかなとおり、摺動剤を添加した場合には、トルク保持率の低下の度合いが著しく小さくなっており、長寿命のヒンジとすることができる。
【0037】
次に、第3実施例について説明する。
第3実施例では、軸回動支持部材20の強度を向上させるために、ミネラル、カーボン繊維、ガラス繊維などを40wt%以内で添加する。
【0038】
以上のとおり、本発明では、軸部材10の軸方向の面粗度Raを、0.15〜0.30μmに仕上げているため、スティックスリップの発生や初動時のひっかかりがなく、軸部材10と軸回動支持部材20との間に安定した摩擦力を維持させることができる。
また、軸部材10の周方向の面粗度Raを軸方向の面粗度Raより0.1〜0.2μm程度小さくして0.05μmを上回り、かつ0.20μm以下であるように仕上げるとともに、真円度「P−P」及び最大深さVをそれぞれ2.5μm、1μm以下に設定して、表面加工を行っているため、良好なトルク保持率となり、長期間に亙って安定したトルクを確保することができる。
従って、蓋部材等(図示せず)の開閉において、蓋部材等を任意の開閉角度で容易に保持させることができる。
また、軸回動支持部材20を軸部材10とモールド一体成形によって組付けているため、製造コストの低減を図ることができる。
また、軸回動支持部材20として成形される樹脂製部材に、使用温度範囲における曲げ弾性変化率が小さい材料を用いている。このため、種々の使用環境においても、軸部材10と軸回動支持部材20との間に安定した摩擦力を維持することができるようになり、蓋部材等を備えた機器の使い勝手をよくすることができる。
【0039】
上記実施例では、面粗度Raを設定するために、表面加工を施した例を示したが、軸部材の加工時に表面加工ができる工程(一例、転造加工)を設け、軸部材の軸方向の面粗度Ra、及び周方向の面粗度Raを0.15〜0.30μm及び0.5〜0.20μmに直接仕上げてもよい。
上記実施例では、軸部材の表面処理を行わないものを示したが、防錆及び耐久性向上のための表面処理として、膜厚5〜15μmのNi−Pメッキ、或いは硬質Crメッキなどを施した後に、各研磨による表面加工を施してもよい。
上記実施例では、ノート型パソコンなどの蓋部材を例に挙げたが、開閉される蓋状の部材であれば、複写機の蓋、便器の蓋等他のものでもよい。
【図面の簡単な説明】
【図1】本発明のトルクヒンジ構造体を示す斜視図である。
【図2】実施例のトルクヒンジ構造体の軸部材を示す図で、(a)は正面図、(b)は側面図である。
【図3】実施例のトルクヒンジ構造体を示す図で、(a)は側面図、(b)は正面図である。
【図4】本発明の性能を説明するため軸部材の軸方向の面粗度と所定回数使用後におけるトルク保持率との関係を示す特性図である。
【図5】本実施例の軸部材の軸方向の面粗度が最適と考える場合の回動角度とトルクとの特性図である。
【図6】図5と比較するための軸部材の軸方向の面粗度が大きい場合の回動角度とトルクとの特性図である。
【図7】図5と比較するための軸部材の軸方向の面粗度が小さい場合の回動角度とトルクとの特性図である。
【図8】本発明における軸部材の真円度を測定方法を説明するための図で、(a)は測定方法を示す概略図、(b)は最大高さP、真円度「P−P」と最大深さVを示す軸部材の断面図である。
【図9】図8により測定した真円度の各測定値とトルク保持率との相関を示す相関図である。
【図10】各表面加工方法による軸部材の軸方向と周方向の各面粗度の測定結果を示す図で、(a)はフィルム研磨、(b)はバレル研磨、(c)は化学研磨の場合をそれぞれ示す。
【図11】各表面加工方法による軸部材の軸方向と周方向の各面粗度の測定結果を示す図で、(a)は化学研磨、(b)は転写転造、(c)は転造のみの場合をそれぞれ示す。
【図12】各種の樹脂材料における曲げ弾性率保持率とトルク保持率との関係を示す特性図である。
【図13】本実施例に用いた曲げ弾性率の変化が小さい樹脂材料における温度と曲げ弾性率との関係を示す特性図である。
【図14】図13と比較するための一般の結晶性樹脂における温度と曲げ弾性率との関係を示す特性図である。
【図15】第2実施例を説明するための図で、軸回動支持部材の樹脂材料に摺動剤を添加した場合の回動角度とトルクとの関係を示す特性図である。
【図16】図15と比較するための図で、軸回動支持部材の樹脂材料に摺動剤を添加しない場合の回動角度とトルクとの関係を示す特性図である。
【図17】第2実施例の軸回動支持部材の樹脂材料に摺動剤を添加した場合の耐久回数とトルクの変化との関係を、摺動剤を添加しない場合と合わせて示した図である。
【符号の説明】
1 トルクヒンジ構造体
10 軸部材
20 軸回動支持部材[0001]
BACKGROUND OF THE INVENTION
The present invention includes, for example, an opening / closing lid of a portable office device such as a laptop notebook computer and a hinge used for swinging and supporting a display, and various other types including an intermediate stop at an arbitrary opening / closing angle. The present invention relates to a torque hinge structure suitable for opening and closing a lid member.
[0002]
[Prior art]
Conventionally, as a friction structure for suppressing rotational torque in a torque hinge for rotating and stopping and fixing a lid member or the like to an arbitrary angle, a resin mold is integrally formed so as to include a metal rotating shaft. There is something that supports it freely.
In such a configuration, the rotation axis can be rotated and fixed at an arbitrary angle by making the metal rotation shaft and the resin relatively rotatable while having a surface frictional resistance.
[0003]
[Problems to be solved by the invention]
However, in a torque hinge having such a structure, if the relationship between the contact state of the interface between the rotating shaft and the resin containing the rotating shaft is not appropriate, the rotational torque varies greatly, and stick slip occurs during rotation. There is a problem that abnormal noise is generated, or the durability is low and the torque cannot be maintained due to wear.
In order to solve these problems, research on surface processing such as the surface roughness of the rotating shaft has been conducted conventionally, but all of these are only considerations regarding the surface roughness in the axial direction of the metal rotating shaft. However, little research has been conducted on the circumferential direction of the rotating shaft.
This is because, in the production of a rotating body such as a rotating shaft, cutting and polishing are routinely carried out by rotating processing, and therefore, considerations regarding the roundness of the rotating shaft and the surface roughness in the circumferential direction are mostly made. It seems that it was not.
The inventor of the present application, as a result of repeated research on the relationship between the metal rotating shaft and the resin containing it, can maintain the torque over a long period of time, and in order to improve the durability of the torque hinge, It has been found that there is an appropriate relationship between the roundness of the rotating shaft and the values of both the circumferential direction of the rotating shaft and the surface roughness in the axial direction, which have not been considered so far.
[0004]
An object of the present invention is to provide a torque hinge structure that maintains a stable frictional force that can be easily fixed at an arbitrary angle for a long period of time when a lid member or the like is opened and closed.
[0005]
[Means for Solving the Problems]
The present invention according to claim 1 includes a metal shaft member having a rotation shaft serving as a rotation center, and a shaft rotation support member that supports the shaft member with the rotation shaft so that the rotation angle is relatively rotatable. The shaft rotation support member is provided so as to be relatively rotatable around the rotation shaft of the shaft member, and includes a resin member that encloses the rotation shaft and is molded integrally with the outside of the rotation shaft. The shaft rotation support member is configured to generate a surface friction resistance between the shaft member and the shaft rotation support member using a surface pressure generated by a tightening margin based on molding shrinkage of the resin member. In the torque hinge structure, the measurement is performed by the measurement method defined in JISB7451 and displayed by the expression method according to the definition of roundness defined in JISB0621. Maximum centrifugal side The value PP determined by the difference between the position and the inner maximum displacement position is PP <2.5 μm, and the torque holding ratio between the shaft rotation support member and the shaft member is 80% or more of the initial torque. Yes, The surface roughness in the circumferential direction on the outer peripheral surface of the rotating shaft is measured by the measuring method shown in JIS B0601, and is set as the surface roughness Ra shown by the expression method according to the definition defined in JIS B0601, and the surface roughness Ra is 0. Set to be above 0.05 μm and below 0.20 μm, The surface roughness Ra in the axial direction on the outer peripheral surface of the rotating shaft is set in a range of 0.15 to 0.30 μm.
[0007]
Contract Claim 2 For portable office equipment, claims 1 Using the torque hinge structure described above, the display unit is rotatably supported by the torque hinge structure.
[0008]
[Operation and effect of the invention]
In the present invention, the shaft rotation support member including the rotation shaft is configured by being integrally formed on the outside of the rotation shaft by a resin member. The integral molding process is performed by integral molding in which a previously disposed shaft member is placed in a high temperature mold and a resin member is pushed into the mold. Therefore, after the integral molding, when the temperature of the shaft member and the resin member is lowered, the resin member contracts, and stress due to tightening is generated to closely contact the shaft member.
The shaft rotation support member that is in close contact with the shaft member due to the allowance for molding shrinkage generates a frictional force on the contact surface against the rotational force of the shaft member. As a result, when the shaft member receives a rotational torque from the outside with a large force with respect to the frictional force with the shaft rotation support member, the shaft member rotates relative to the shaft rotation support member and friction The shaft member does not rotate with respect to a rotational torque smaller than the force, and the shaft member is maintained at an arbitrary rotation angle by the frictional force.
As a result, the shaft member and the shaft rotation support member can be assembled by integral molding of the mold, and can be manufactured at a low cost as an integrally molded body.
The torque retention rate between the shaft rotation support member and the shaft member being 80% or more means that the bending elastic modulus retention rate of the resin member in the shaft rotation support member is 80% or more, and high torque. This is because the retention rate can be realized.
Further, the surface roughness Ra in the axial direction of the rotating shaft is set to 0.15 to 0.30 μm, which is larger than the surface roughness Ra in the circumferential direction to give a difference therebetween. Thereby, it is possible to easily set a necessary frictional force between the rotation shaft (shaft member) and the shaft rotation support member, and it is possible to prevent the generation of abnormal noise due to stick-slip during rotation, Friction based on rotation can be suppressed, and the shaft member can be stopped and maintained at an arbitrary rotation angle over a long period of time.
In addition, since the surface roughness Ra in the circumferential direction of the rotating shaft exceeds 0.05 μm and is 0.20 μm or less, the smoothness of the peripheral surface of the rotating shaft is ensured and the resin member Adhesion can be prevented, and appropriate lubricity can be secured on the contact surface between the peripheral surface of the rotating shaft and the resin member, and the generation of noise or the like can be eliminated when the shaft member rotates. Note that reducing the surface roughness in the circumferential direction of the rotating shaft relative to the surface roughness in the axial direction can be realized by performing various surface treatments on the outer circumferential surface of the shaft member.
[0009]
The outer peripheral surface of the rotating shaft is finished into a cylindrical shape by drawing or cutting. However, according to the research and consideration of the inventors of the present application, the depth value V of the inner maximum displacement position with respect to the perfect circle, That is, the depression with respect to the perfect circle is 1 μm or more, or the roundness “PP” determined by the difference between the centrifugal maximum displacement position and the inner maximum displacement position with respect to the reference center circle on the outer periphery of the rotating shaft is 2.5 μm or more. It was found that the torque retention rate was drastically decreased and the durability was impaired.
In the first aspect, the outer periphery of the rotating shaft is required to be molded such that V <1 μm and PP <2.5 μm and the roundness is high. By finishing so that it can be maintained, a torque hinge structure having excellent durability can be provided.
[0011]
Claim 2 In portable office equipment, since there is little wear between the rotating shaft (shaft member) and the shaft rotation support member and it is possible to hold it with a stable torque, a display mounted on a lid member or the like can be used for a long time. Therefore, it can be held at an arbitrary rotation angle.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The torque hinge structure 1 of the present invention will be described below with reference to the drawings.
A torque hinge structure 1 shown in FIG. 1 is used for opening and closing a lid on which a liquid crystal display is mounted in a notebook personal computer or the like as a portable office device. In order to adjust the display angle of the liquid crystal display, This is for fixing the lid at an arbitrary opening / closing angle.
The torque hinge structure 1 is attached to a lid member of a personal computer, and a shaft member 10 that rotates together with the lid member, and the shaft member 10 is rotatably supported on the main body side of the personal computer to open and close the lid member. It consists of a shaft rotation support member 20. In this case, since the rotational displacement of the shaft member 10 with respect to the shaft rotation support member 20 is relative, the shaft rotation support member 20 may be configured to be rotatably supported with respect to the shaft member 10. Is possible.
[0013]
As shown in FIG. 2, the shaft member 10 has a large diameter portion 11 (for example, a diameter of 5 mm) as a middle portion of a cylindrical rod material made of a metal such as SUS material (stainless steel) or steel, and both ends thereof are large The small diameter portions 12 and 13 (for example, 4 mm in diameter) having a smaller diameter than the portion 11 are formed, and further, a tenon portion 14 for fitting with the lid member is formed at the tip of one small diameter portion 13. .
[0014]
As shown in FIG. 3, the shaft rotation support member 20 is a resin member formed in close contact so as to cover the outside of the large diameter portion 11 of the shaft member 10. It is formed by molding integrally with the shaft member 10 by injection molding of a resin material. Here, the mold temperature is set to around 165 ° C., and the mold is integrally formed.
[0015]
Since the torque hinge structure 1 needs to set the lid member at an arbitrary angle with respect to the personal computer body as described above, the relative torque applied to the shaft rotation support member 20 and the shaft member 10 is predetermined. When the torque is equal to or lower than the torque, the relative angle is maintained. When the torque is equal to or higher than the predetermined torque, it is necessary to ensure smooth rotation.
Specifically, a stable friction torque of about 1 to 20 kgf · cm is required, and the durability is required to be about 50,000 times. When this durability is used, the torque retention is 80% or more of the initial torque. It is a condition.
The torque retention rate is defined by the following equation.
Torque retention ratio (%) = (Torque after degradation and torque / initial torque) × 100
[0016]
FIG. 4 shows the results of tests conducted by changing the surface roughness Ra in order to find the surface roughness (surface roughness) Ra in the axial direction of the large diameter portion 11 of the shaft member 10 for satisfying the above conditions. .
As shown in FIG. 4, when the desired durability is used, the torque retention rate is 80% or more, but when the surface roughness Ra is 0.02 to 0.08 μm, it is too fine to satisfy, but 0.15 to It is satisfactory at 0.30 μm. In addition, when the surface roughness Ra is fine, the torque variation itself increases, and stick slip occurs during operation (during rotation), and abnormal noise such as squeak noise is also clarified.
In this case, the surface roughness Ra was measured by the measurement method shown in JIS B0601, and was shown by a display method according to the definition prescribed in JIS B0601.
[0017]
Further, when the surface roughness Ra becomes 0.35 μm or more as shown in FIG. 4, the initial rotation is large, the stick slip is large, and the shaft rotation which is a resin member with a durability of about 1000 times. The wear of the support member 20 increases, and the generated stress due to the interference generated by the contraction cannot be maintained, and the torque retention rate is significantly reduced.
From the above test results, it is clear that the surface roughness Ra in the axial direction of the large-diameter portion 11 of the shaft member 10 supported by the shaft rotation support member 20 is suitably 0.15 to 0.30 μm. It became.
[0018]
Rotation angle and torque when the PAR (polyarylate) resin is used as the shaft rotation support member 20 and the large diameter portion 11 of the shaft member 10 is 5 mm in diameter and the small diameter portion 12 is 4 mm in diameter. FIG. 5 shows the case of the present embodiment in which the surface roughness Ra in the axial direction of the surface of the large diameter portion 11 is 0.18 μm. For comparison, FIG. 6 shows the surface roughness Ra larger than that of the present invention. FIG. 7 shows the case where the surface roughness Ra is finished to 0.02 μm and 0.04 μm, which are smaller than those of the present invention.
[0019]
When the surface roughness Ra in the axial direction is 0.75 μm as in the comparative example, as shown by X in FIG. 6, the initial movement is large, and as shown by Y, the stick slip is large. When the surface roughness Ra is 0.18 μm as in the present invention, it can be seen that these are so small that they are hardly recognized as shown in FIG.
On the other hand, when the surface roughness Ra is set to 0.02 and 0.04 μm as in the comparative example, it can be seen that the stick slip at the time of rotation increases as shown by Z in FIG.
[0020]
Table 1 summarizes the torque required for rotation, stick-slip, and the value of the catch at the time of initial movement with respect to the surface roughness Ra in the axial direction.
[Table 1]
Figure 0004011809
[0021]
The above is research and consideration regarding the axial surface roughness Ra and the torque retention ratio of the large-diameter portion 11 of the shaft member 10. Further, the inventor of the present application further describes the roundness of the large-diameter portion 11 of the shaft member 10. As a result of studies and considerations for maintaining the torque retention ratio over a long period of time focusing on the surface roughness Ra in the circumferential direction, the following facts have been clarified.
[0022]
In considering the relationship between the roundness and the torque retention rate, the inventor of the present application has determined that the inner maximum displacement position with respect to the perfect circle S (for example, a perfect circle having a target shaft diameter) on the outer periphery of the large diameter portion 11 of the shaft member 10. That is, the maximum depth (dent) V with respect to the perfect circle S and the centrifugal maximum displacement position value with respect to the true circle S as the reference center circle, that is, the maximum height P with respect to the true circle S were noted. As a result of research and consideration, in order to maintain the torque retention rate over a long period of time, the maximum depth V is expressed as the difference between V <1 μm and the maximum height P and the maximum depth V. It has been found that by setting the roundness “P−P” to P−P <2.5 μm, a stable torque retention rate can be secured over a long period of time.
[0023]
In FIG. 8, (a) is a schematic diagram of the roundness measurement method used for deriving the above research results, and (b) shows the relationship between the maximum height P and the maximum depth V with respect to a perfect circle on the outer periphery. Respectively. In the measurement, the measurement was performed by the measurement method defined in JISB7451 and displayed by an expression method in accordance with the definition of roundness defined in JISB0621.
Table 2 shows each measured value in the sample used to derive the present invention.
In Table 2, the hinge type No indicates the mold number, and the sample No indicates the sample number in each mold, indicating that a total of 9 types of samples were molded for 3 types of molds. Yes.
[Table 2]
Figure 0004011809
[0024]
FIG. 9 shows the relationship between each measured value obtained by the above measurement and the torque retention rate.
FIG. 9A shows the relationship between the roundness “PP” expressed as the difference between the maximum height P and the maximum depth V and the torque retention rate.
As apparent from FIG. 9 (a), when the value of the roundness “PP” is small between the roundness “PP” and the torque retention rate, regardless of the mold used. It can be seen that the torque retention rate increases as the value of the torque retention rate decreases and the value of the roundness “PP” increases. From this result, it can be seen that the torque holding ratio can be reduced as the difference from the maximum height P to the maximum depth V is small and the roundness is excellent.
[0025]
FIG. 9B shows the relationship between the maximum height P and the torque retention rate.
As shown in FIG. 9B, there is no correlation between the value of the maximum height P and the torque retention rate, and it is impossible to improve the torque retention rate simply by suppressing the maximum height P. I understand. This is because the maximum height P in the shaft member 10 is generated as chipping in each processing step, and is present only in a very limited portion in the circumferential direction. This is thought to be because there is no effect.
[0026]
FIG. 9C shows the relationship between the maximum depth V and the torque retention rate.
As shown in FIG. 9 (c), the value of the maximum depth V and the torque retention rate are larger than the correlation between the roundness “PP” and the torque retention rate shown in (a) above. Further, a clear correlation is seen, and it can be seen that the size of the recess as the maximum depth V on the outer periphery has the greatest influence on the torque retention rate.
In particular, when the maximum depth V is 1 μm or less, the torque retention rate is remarkably reduced, and it can be seen that excellent durability is ensured by setting the maximum depth V to 1 μm or less.
This is presumably because the indentation on the outer peripheral surface of the shaft member 10 has a certain length in the axial direction and the circumferential direction, and therefore has a large missing volume.
[0027]
In Table 3, the roundness “PP” and the maximum depth V are combined with the surface roughness Ra in the axial direction and the circumferential direction of the large-diameter portion 11 of the shaft member 10 to influence the torque retention rate. The results of the investigation are shown.
[0028]
[Table 3]
Figure 0004011809
As is apparent from Table 3, even when the surface roughness Ra in the circumferential direction is 0.17 μm or less, it can be seen that when the maximum depth V is 1 μm or more, the torque retention rate decreases rapidly (sample) No 1, 2, 4, 5, 9, 10, 13).
In the sample No. 7, the maximum depth V is 1 μm or less, but since the circumferential surface roughness Ra is a small value of 0.05 μm or less, it adheres to the resin of the shaft rotation support member 20. This is not suitable because abnormal noise is generated when the shaft member 10 is rotated.
[0029]
Next, the surface processing method of the shaft member 10 for ensuring the above roundness and surface roughness Ra will be described.
The finished specifications of the shaft member 10 due to differences in various processing methods are shown in FIGS. 10 and 11 for the surface roughness Ra in the axial direction and the circumferential direction.
Here, film polishing in FIG. 10 (a), barrel polishing in FIG. 10 (b), chemical polishing in FIG. 10 (c), chemical polishing in FIG. 11 (a), transfer rolling in FIG. Only rolling is shown in 11 (c).
As shown in FIGS. 10 and 11, by applying surface processing, the surface roughness Ra in the circumferential direction is 0.1 to 0. 0 with respect to the surface roughness Ra in the axial direction, regardless of which processing method is used. It can be reduced by about 2 μm.
[0030]
In particular, in the film processing shown in FIG. 10A and the transfer rolling shown in FIG. 11B, there is a clear difference between the surface roughness Ra in the circumferential direction and the surface roughness Ra in the axial direction. Can be The For this reason , Circumferential surface roughness Ra But 0.05 over μm and 0.20μm Less than By finishing it small, Good Torque retention rate Next 亙 for a long time What Stable torque retention can be secured . This and At the same time, the surface roughness Ra in the axial direction is greater than the surface roughness Ra in the circumferential direction. Also By enlarging about 0.1-0.2 μm, Between the shaft member 10 and the shaft rotation support member 20 A stable torque can be generated reliably.
[0031]
Next, the forming process of the shaft member 10 including the surface process will be briefly described.
As processing methods, there are plastic processing and cutting processing.
[1] Plastic working
When performing plastic working, it is drawn so that the roundness “PP” is P−P <6 to 7 μm during cold forging, warm forging, hot forging, casting, etc. The process is performed, and then two or more stages of cylindrical grinding and centerless polishing are performed.
In cutting and polishing, rough grinding is performed to polish 2 to 3 times PP at the first stage, and roundness “PP” and maximum depth V are set to the second and third stages. , P−P <2.5 μm and V <1 μm are applied to the above finish polishing steps.
[0032]
[2] Cutting
In the case of cutting, the roundness “PP” is ensured by cutting so that PP <3 to 4 μm, and then the roundness is obtained by surface processing such as centerless polishing, cylindrical grinding, and film grinding. “PP” is finished to 2.5 μm.
[0033]
As a resin material used for the shaft rotation support member 20 that rotates and slides the shaft member 10 that has been surface-treated as described above, a torque hinge is used in order to ensure a stable frictional force against the shaft member 10. The structure 1 is made of a resin having a small rate of change in flexural modulus (GPa) in the operating temperature range (for example, −20 to 80 ° C.).
As a result of examining the relationship between the torque retention rate and the flexural modulus retention rate for various resins, as shown in FIG. 12, the resin material having a torque retention rate of 80% or more has a flexural modulus retention rate. Because it is based on the fact that it is 80% or more, a high torque retention rate can be realized by using a resin material having a high flexural modulus retention rate (a small rate of change in flexural modulus within the operating temperature range). is there.
[0034]
13 and 14 show the relationship between the ambient environmental temperature and the flexural modulus of the resin member.
The PAR (polyarylate) shown in FIG. 13 is suitable as the shaft rotation support member 20 because the bending elastic modulus does not change greatly within the ambient temperature range around which the device or the like is actually used. In the general crystalline resin as shown in FIG. 1, the flexural modulus changes greatly depending on the temperature within the operating temperature range. For this reason, it can be seen that such a general crystalline resin cannot give an appropriate frictional force to the shaft member 10 when the use temperature changes, and is not suitable for the shaft rotation support member 20.
[0035]
From the above viewpoint, specific examples of resin materials suitable for use as the shaft rotation support member 20 include PAR (polyarylate), PC (polycarbonate), PPS (polyphenylene sulfide), PES (polyethersulfone), Examples include PEEK (polyetheretherketone).
[0036]
Next, a second embodiment will be described.
In the second embodiment, as the resin material used for the shaft rotation support member 20, the above-mentioned PAR (polyarylate), PC (polycarbonate), PPS (polyphenylene sulfide), PES (polyethersulfone), PEEK (polyether). Instead of a single material such as ether ketone), an organic sliding agent such as a fluorine-based resin or an olefin-based resin is added within 10 wt%. Moreover, you may add inorganic type sliding agents, such as carbon, carbon fiber, molybdenum disulfide, and potassium titanate, within 10 wt%.
FIG. 15 shows the case where 3 wt% of PTFE is added to the resin material, and FIG. 16 shows the case where PTFE is not added. When added, it turns out that rotation starts smoothly at the time of initial movement.
In addition, the friction powder generated due to the friction between the shaft member 10 and the shaft rotation support member 20 can be significantly reduced.
FIG. 17 shows the durability when these sliding agents are added in comparison with those not added.
As is apparent from the figure, when a sliding agent is added, the degree of decrease in the torque retention rate is remarkably reduced, and a long-life hinge can be obtained.
[0037]
Next, a third embodiment will be described.
In 3rd Example, in order to improve the intensity | strength of the shaft rotation support member 20, a mineral, carbon fiber, glass fiber, etc. are added within 40 wt%.
[0038]
As described above, in the present invention, since the surface roughness Ra in the axial direction of the shaft member 10 is finished to 0.15 to 0.30 μm, there is no occurrence of stick-slip or catching at the initial movement, Between the shaft member 10 and the shaft rotation support member 20 Maintains stable friction force Let Can.
Further, the surface roughness Ra in the circumferential direction of the shaft member 10 is greater than the surface roughness Ra in the axial direction. Also About 0.1 to 0.2 μm , 0.05 over μm and 0.20μm As below Finish And Since the roundness “PP” and the maximum depth V are set to 2.5 μm and 1 μm or less, respectively, and surface processing is performed, Good Torque retention rate Next For a long time Cheap A fixed torque can be secured.
Therefore, the lid member etc. (Not shown) When opening and closing the lid Etc. At the opening and closing angle Easy to hold be able to.
Moreover, since the shaft rotation support member 20 is assembled with the shaft member 10 by integral molding, the manufacturing cost can be reduced.
Also, the resin molded as the shaft rotation support member 20 For manufacturing parts Using a material with a small bending elastic change rate in the operating temperature range . this Therefore, even in various usage environments, Between the shaft member 10 and the shaft rotation support member 20 A stable friction force can be maintained. Like In addition, it is possible to improve the usability of the device including the lid member.
[0039]
In the above embodiment, an example in which surface processing is performed in order to set the surface roughness Ra is shown. However, a process (for example, rolling processing) that can perform surface processing at the time of processing the shaft member is provided, and the shaft of the shaft member The surface roughness Ra in the direction and the surface roughness Ra in the circumferential direction may be directly finished to 0.15 to 0.30 μm and 0.5 to 0.20 μm.
In the above embodiment, the shaft member is not subjected to the surface treatment. However, as a surface treatment for preventing rust and improving durability, Ni-P plating having a film thickness of 5 to 15 μm or hard Cr plating is applied. Then, surface processing by each polishing may be performed.
In the above embodiment, a lid member such as a notebook personal computer is taken as an example. However, as long as it is a lid-like member that can be opened and closed, other members such as a lid of a copying machine and a lid of a toilet bowl may be used.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a torque hinge structure according to the present invention.
2A and 2B are diagrams showing a shaft member of a torque hinge structure according to an embodiment, wherein FIG. 2A is a front view and FIG. 2B is a side view.
3A and 3B are diagrams showing a torque hinge structure according to an embodiment, wherein FIG. 3A is a side view and FIG. 3B is a front view.
FIG. 4 is a characteristic diagram showing the relationship between the axial surface roughness of the shaft member and the torque retention after a predetermined number of uses in order to explain the performance of the present invention.
FIG. 5 is a characteristic diagram of the rotation angle and torque when the axial surface roughness of the shaft member of the present embodiment is considered optimum.
6 is a characteristic diagram of a rotation angle and torque when the axial surface roughness of the shaft member is large for comparison with FIG. 5. FIG.
7 is a characteristic diagram of the rotation angle and torque when the axial surface roughness of the shaft member is small for comparison with FIG. 5. FIG.
8A and 8B are diagrams for explaining a method for measuring the roundness of a shaft member in the present invention, in which FIG. 8A is a schematic diagram illustrating the measurement method, and FIG. It is sectional drawing of the shaft member which shows P "and the maximum depth V. FIG.
FIG. 9 is a correlation diagram showing a correlation between each measured value of roundness measured in FIG. 8 and a torque retention rate.
FIGS. 10A and 10B are diagrams showing measurement results of the surface roughness in the axial direction and the circumferential direction of the shaft member by each surface processing method. FIG. 10A shows film polishing, FIG. 10B shows barrel polishing, and FIG. 10C shows chemical polishing. Each case is shown.
FIGS. 11A and 11B are diagrams showing the measurement results of the surface roughness in the axial direction and the circumferential direction of the shaft member by each surface processing method. FIG. 11A shows chemical polishing, FIG. 11B shows transfer rolling, and FIG. Each case shows only the structure.
FIG. 12 is a characteristic diagram showing the relationship between the flexural modulus retention rate and the torque retention rate of various resin materials.
FIG. 13 is a characteristic diagram showing a relationship between temperature and bending elastic modulus in a resin material having a small change in bending elastic modulus used in this example.
FIG. 14 is a characteristic diagram showing the relationship between temperature and flexural modulus in a general crystalline resin for comparison with FIG.
FIG. 15 is a diagram for explaining the second embodiment, and is a characteristic diagram showing a relationship between a rotation angle and a torque when a sliding agent is added to the resin material of the shaft rotation support member.
FIG. 16 is a characteristic diagram showing the relationship between the rotation angle and the torque when no sliding agent is added to the resin material of the shaft rotation support member for comparison with FIG. 15;
FIG. 17 is a diagram showing the relationship between the number of durability times and the change in torque when a sliding agent is added to the resin material of the shaft rotation support member of the second embodiment, together with the case where no sliding agent is added. It is.
[Explanation of symbols]
1 Torque hinge structure
10 Shaft member
20 axis rotation support member

Claims (2)

回動中心となる回転軸を有する金属製の軸部材と、
該軸部材を前記回転軸で相対的に回動角自在に支持する軸回動支持部材とからなり、
前記軸回動支持部材が前記軸部材の前記回転軸周りで相対的に回動自在に設けられ、前記回転軸を内包し、該回転軸の外側にモールド一体成形された樹脂製部材によって前記軸回動支持部材を構成し、前記樹脂製部材の成形収縮に基づく締め代による発生面圧を利用し、前記軸部材と前記軸回動支持部材との間で面摩擦抵抗を発生させるようにしたトルクヒンジ構造体において、
JISB7451に規定された測定方法によって計測し、JISB0621に規定された真円度の定義に従った表現方法で表示するところの、前記回転軸の外周における基準中心円に対する遠心側最大変位位置と内側最大変位位置との差によって決まる値P−Pが、P−P<2.5μm、かつ前記軸回動支持部材と前記軸部材とのトルク保持率が初期トルクの80%以上であり、
前記回転軸の外周面における周方向の面粗度をJISB0651に示す測定方法によって計測し、JISB0601に規定する定義に従った表現方法で示すところの面粗度Raとし、この面粗度Raが0.05μmを上回り、かつ0.20μm以下であるように設定し、
前記回転軸の外周面における軸方向の面粗度Raを0.15〜0.30μmの範囲に設定したことを特徴とするトルクヒンジ構造体。
A metal shaft member having a rotation shaft serving as a rotation center;
The shaft member includes a shaft rotation support member that supports the shaft member so as to be relatively rotatable at the rotation shaft.
The shaft rotation support member is provided so as to be relatively rotatable around the rotation axis of the shaft member, includes the rotation shaft, and is formed by a resin member molded integrally with the outer side of the rotation shaft. A rotation support member is configured, and a surface friction resistance is generated between the shaft member and the shaft rotation support member by utilizing a surface pressure generated by a tightening margin based on molding shrinkage of the resin member. In the torque hinge structure,
The maximum displacement position on the centrifugal side relative to the reference center circle on the outer circumference of the rotating shaft and the maximum inner side are measured by the measurement method defined in JISB7451 and displayed in an expression method according to the definition of roundness defined in JISB0621. The value PP determined by the difference from the displacement position is P−P <2.5 μm, and the torque holding ratio between the shaft rotation support member and the shaft member is 80% or more of the initial torque,
The surface roughness in the circumferential direction on the outer peripheral surface of the rotating shaft is measured by the measuring method shown in JIS B0601, and is set as the surface roughness Ra shown by the expression method according to the definition defined in JIS B0601, and the surface roughness Ra is 0. Set to be above 0.05 μm and below 0.20 μm,
A torque hinge structure characterized in that an axial surface roughness Ra on an outer peripheral surface of the rotating shaft is set in a range of 0.15 to 0.30 μm.
請求項1に記載のトルクヒンジ構造体を利用して、ディスプレイ部を前記トルクヒンジ構造体に回動可能に支持させたことを特徴とする携帯用事務機器A portable office device , wherein the torque hinge structure according to claim 1 is used to rotatably support a display unit on the torque hinge structure .
JP36802699A 1999-12-24 1999-12-24 Torque hinge structure and portable office equipment Expired - Fee Related JP4011809B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP36802699A JP4011809B2 (en) 1999-12-24 1999-12-24 Torque hinge structure and portable office equipment
US09/742,330 US6634062B2 (en) 1999-12-24 2000-12-22 Frictional hinge device and a portable business machine into which the frictional hinge device is incorporated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36802699A JP4011809B2 (en) 1999-12-24 1999-12-24 Torque hinge structure and portable office equipment

Publications (2)

Publication Number Publication Date
JP2001182420A JP2001182420A (en) 2001-07-06
JP4011809B2 true JP4011809B2 (en) 2007-11-21

Family

ID=18490794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36802699A Expired - Fee Related JP4011809B2 (en) 1999-12-24 1999-12-24 Torque hinge structure and portable office equipment

Country Status (2)

Country Link
US (1) US6634062B2 (en)
JP (1) JP4011809B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893159B1 (en) 2003-01-27 2005-05-17 Christopher Eugene Hosmer Lubrication free connection
JP2005030582A (en) * 2003-01-31 2005-02-03 Nsk Ltd Needle bearing, shaft, car cooler compressor, and planetary gear mechanism for automatic transmission
US20060272129A1 (en) * 2005-06-04 2006-12-07 Torqmaster, Inc. Friction hinge with viscous damping
TWI310906B (en) * 2006-09-27 2009-06-11 Asustek Comp Inc Image catching module and portable computer having the same
US20110173776A1 (en) * 2010-01-19 2011-07-21 Chung-Yu Lee Hinge
TWI597431B (en) * 2013-10-09 2017-09-01 緯創資通股份有限公司 Hinge structure and electronic device having the same
US9600034B2 (en) 2015-02-13 2017-03-21 Google Inc. Attaching computing device to mount by magnets

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489447A (en) * 1981-06-10 1984-12-25 Yozaburo Umehara Toilet bowl
JP2887680B2 (en) * 1989-06-14 1999-04-26 日本発条株式会社 Hinge device
US5038746A (en) * 1990-04-09 1991-08-13 Vermont Rebuild, Inc. Precision grinding wheel dresser with molded bearing and method of making same
JPH0747580Y2 (en) * 1990-08-01 1995-11-01 日本発条株式会社 Friction lock device
US5206790A (en) * 1991-07-11 1993-04-27 Zeos International, Ltd. Pivot and swivel mechanism for lap top display
JPH06193636A (en) * 1992-12-22 1994-07-15 Matsushita Electric Works Ltd Bearing device for reciprocating motion
US5509176A (en) * 1993-02-22 1996-04-23 Texas Instruments Incorporated Torque hinge
JPH0726825A (en) * 1993-07-06 1995-01-27 Kato Spring Seisakusho:Kk Shaft lock device and manufacturing method thereof
US5406678A (en) * 1993-07-22 1995-04-18 General Clutch Corporation Friction hinge
US5456538A (en) * 1993-08-04 1995-10-10 Nsk Ltd. Roller bearing
JP2589482Y2 (en) * 1994-06-30 1999-01-27 加藤電機株式会社 Tilt hinge for OA equipment
JPH0941781A (en) * 1995-07-31 1997-02-10 Nhk Spring Co Ltd Friction lock type hinge device
US5832566A (en) * 1995-09-28 1998-11-10 Hewlett-Packard Company Friction hinge device
US5638579A (en) * 1996-09-05 1997-06-17 Tenney; Kenneth B. Friction tilt mechanism
JPH10184167A (en) * 1996-12-27 1998-07-14 Nhk Spring Co Ltd Friction lock device
US5771540A (en) * 1997-01-22 1998-06-30 Torqmaster, Inc. Equilibrated hinge with variable frictional torque

Also Published As

Publication number Publication date
JP2001182420A (en) 2001-07-06
US6634062B2 (en) 2003-10-21
US20010027589A1 (en) 2001-10-11

Similar Documents

Publication Publication Date Title
JP4011809B2 (en) Torque hinge structure and portable office equipment
US20060181811A1 (en) Tolerance ring with debris-reducing profile
JP2744196B2 (en) Spherical plain bearing
US6381809B2 (en) Frictional hinge device and a portable business machine into which the frictional hinge device is incorporated
US20050225903A1 (en) Tolerance ring with debris-reducing profile
JP3974726B2 (en) Friction hinge device and portable office equipment using the same
US6609829B2 (en) Hydrodynamic bearing for motor
JP4180731B2 (en) Friction hinge and portable office equipment
EP2657551A1 (en) Ball joint
JP6628499B2 (en) Sliding member and pump
JPH10292867A (en) Gas seal device
JP2000027846A (en) Friction hinge and portable business machine
JP2020051615A (en) Structure
US6385815B1 (en) Frictional hinge device
US6539583B1 (en) Frictional hinge device and a portable business device having the hinge device incorporated thereinto
JPH11141536A (en) Rotary hinge with torque damper
US6490758B1 (en) Frictional hinge device
JP7163466B1 (en) Strain wave gearing
JP2001173635A (en) Hinge device
JP2002115762A (en) Sealing device
JP2004239346A (en) Fluid dynamic pressure bearing, motor with the same, and disk drive device with the motor
KR200352396Y1 (en) Automobile door checker with enhanced durability
JP2004011748A (en) Slide bearing
JP3580580B2 (en) Hydrodynamic bearing
JP5092952B2 (en) Hinge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees