JP2004011748A - Slide bearing - Google Patents

Slide bearing Download PDF

Info

Publication number
JP2004011748A
JP2004011748A JP2002165713A JP2002165713A JP2004011748A JP 2004011748 A JP2004011748 A JP 2004011748A JP 2002165713 A JP2002165713 A JP 2002165713A JP 2002165713 A JP2002165713 A JP 2002165713A JP 2004011748 A JP2004011748 A JP 2004011748A
Authority
JP
Japan
Prior art keywords
ring
inner ring
outer ring
shaft
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002165713A
Other languages
Japanese (ja)
Inventor
Takayuki Shamoto
社本 隆行
Hajime Kachi
加知 肇
Tsunetaro Kashiyama
樫山 恒太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Metal Co Ltd
Original Assignee
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Metal Co Ltd filed Critical Daido Metal Co Ltd
Priority to JP2002165713A priority Critical patent/JP2004011748A/en
Publication of JP2004011748A publication Critical patent/JP2004011748A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slide bearing at low cost and with favorable precision by reducing the number of component items. <P>SOLUTION: An outer ring 2 of metal is engaged in a bearing housing 8 of metal, and an inner ring 3 of resin is injection-molded on an inner circumferential surface of the outer ring 2. With the inner ring 3, a shaft 9 is engaged. The inner ring 3 is rotatable to the outer ring 2, and protruded parts 5 and recessed parts 4 are respectively provided in an inner circumferential surface of the outer ring 2 and an outer circumferential surface of the inner ring 3, thereby the inner ring 3 is not deflected or removed when the inner ring 3 is rotated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、外輪と樹脂製の内輪とから成り、この外輪の内周面と内輪の外周面とが互いにすべり合うすべり軸受に関する。
【0002】
【従来の技術】
従来より、すべり軸受は、円筒状の金属製裏金の内周面に軸受合金層を設けたものが一般的で、その軸受合金層と軸との間には適当なクリアランスが設けられている。しかし、高度な精度が要求される、例えば精密機器などにおいては、こうしたクリアランスによって、軸が振れたりすることは許容されない。
【0003】
このような軸振れをなくすため、例えば金属製の外輪と内輪の間に、樹脂製のライナを射出成形し、その後、熱処理を施して、内輪に対してライナを回転可能にしたものがある。この場合、軸と内輪はきつく嵌合して一体化され、摺動面はライナの内周面と内輪の外周面とされる。
【0004】
【発明が解決しようとする課題】
しかしながら、このような外輪、ライナ、そして内輪から構成されるすべり軸受では、軸振れを防止できるものの、すべり軸受を構成する部品点数が3点であり、コスト高となっていた。
本発明は上記の事情に鑑みてなされたもので、その目的は、軸振れを防止でき、且つ部品点数の減少化を図ることができるすべり軸受を提供することにある。
【0005】
【問題を解決するための手段】
上記目的を達成するため、本発明のすべり軸受は、外輪と、この外輪の内周面に射出成形によって設けられ、この外輪に対し回転可能な樹脂製の内輪とから成り、前記外輪と内輪は抜け防止のため互いに嵌合する凸条部と凹条部とを有し、外輪は軸受ハウジングに嵌合され、内輪は軸に嵌合されることを特徴とする(請求項1の発明)。
【0006】
この構成によれば、外輪は軸受ハウジングに、また、内輪は軸に嵌合され、摺動面は外輪の内周面と内輪の外周面となる。この場合、内輪は外輪の内周面に射出成形されたものである。射出成形時に、射出材(射出成形された内輪)は、外輪の内周面に密着するが、冷却により収縮する。この収縮により内輪と外輪との間に生ずる隙間は微小なので、内外輪間でのガタがなく、軸振れが防止できる。
【0007】
さらに、すべり軸受を構成する部品点数が、外輪と内輪の2点で済むようになる。ここで、内輪と外輪の摺動面、つまり外輪の内周面と内輪の外周面とは、互いに嵌合する凸条部と凹条部を有している。このため、外輪の内周面と内輪の外周面とは互いに嵌合し、この二つの面が回転し摺動する際に、内輪が外輪に対し軸方向にずれたり、抜けたりすることがない。
また、本発明のすべり軸受は、内輪の内周面における軸方向両端側は、軸の外径よりも大きな内径を有していることを特徴とする(請求項2の発明)。
【0008】
この構成によれば、内輪の軸方向両端側は、軸の外径よりも径大な部分(内径拡大部分)となっているので、軸方向中央部は軸と密に嵌合する部分(密嵌部分)となる。このため、軸の先端部分を内輪に挿入する場合、当初は内径拡大部分に挿入すれば良いので、挿入し易く、その後は当該部分の内周面がガイドとなって、軸の先端を内輪の軸方向中央部へと導くので、密嵌部分への挿入も比較的容易に行なうことができ、しかも、密嵌部分の軸方向長さを短くしているから、摩擦抵抗が比較的小さく、軸をその密嵌部分に通す作業を楽に行なうことができる。
【0009】
このように、軸の挿入性を良くするために、内輪の軸方向両端側の内径を拡大し、軸との間に隙間ができるようにしたが、本発明では、内輪は軸と一体的に回転し、内輪と外輪との接触面が摺動面となっているため、上記のようにすることで、内輪と軸との接触面積が減少しても、摺動面の面圧が増加することはなく、寿命が短くなる恐れはない。
【0010】
また、本発明のすべり軸受は、外輪において、その外輪の外径が径小で軸受ハウジングと非接触となる部分が存在し、また内輪において、その内輪の内径が径大で軸と非接触となる部分が存在し、この外輪が軸受ハウジングに非接触な部分と、この内輪が軸と非接触な部分とはお互いずれた位置に設けられていることを特徴とする(請求項3の発明)。
【0011】
ここで、内輪および外輪は、軸および軸受ハウジングとそれぞれ密に嵌合、特に圧入気味に嵌合されると、内輪は外側に膨らみ、外輪は内側に窄む。すると、内輪と外輪との摺動面間に作用する圧力が大きくなり、その結果、摩耗が早期に進行し、寿命が短くなる。しかしながら、上記請求項3の発明の構成によれば、外輪が軸受ハウジングに対して非接触の部分と内輪が軸に対して非接触の部分とは軸方向の位置がずれている。すなわち内輪が軸と接触する部分と同じ軸方向位置では外輪が軸受ハウジングと非接触となっていてその間に隙間があり、外輪が軸受ハウジングと接触している部分と同じ軸方向位置では、内輪が軸と非接触となっていてその間に隙間がある。
【0012】
外輪が軸受ハウジングと接触する部分において内側に窄むと、内輪が軸との間の隙間内で内側に窄んで外輪との接触圧を低下させる。また、内輪が軸と接触する部分において外側に膨らむと、外輪が軸受ハウジングとの間の隙間内で外側に撓んで内輪との接触圧を低下させる。従って、早期摩耗を防止でき、長寿命化を図ることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施例を図面に従って具体的に説明する。まず、第一の実施例について図1及び2を用いて説明する。図1に示すように、すべり軸受1は円筒形の外輪2の内周面に円筒形の内輪3を嵌合状態に設けて構成されている。外輪2は金属製(鉄、アルミニウム、及びそれらの合金等)、内輪3は樹脂製(POM:ポリオキシメチレン、PPS:ポリフェニレンサルファイド等)であり、外輪2と内輪3の軸方向における幅は、ほぼ同じである。
【0014】
外輪2の内周面のうち、軸方向中央部には、円周方向に延びる凹条部4が設けられている。また、この凹条部4に対応して、内輪3の外周面のうち、軸方向中央部には、円周方向に延びる凸条部5が設けられている。そして、内輪3の内径において、軸方向両端側は、軸方向中央部より径大になっている。このように、内輪はその内面に、軸方向中央部に位置して内径が径小である内径縮小部(軸との密嵌部)6、軸方向両端側に位置して内径が径大である内径拡大部7を有する。
【0015】
ここで、樹脂製の内輪3は、金属製の外輪2に射出成形したもので、この内輪3は、成形後の収縮により、外輪2に対して回転可能となる。なお、収縮量によって、外輪2と内輪3とのクリアランスを調整することができる。収縮量は、樹脂へのファイバ等の充てん剤の充てん量や、金型温度や、成形圧力や、射出速度を調整することで調整することができる。
【0016】
次に、前述したすべり軸受1の使用形態を説明する。図2に示すように、このすべり軸受1は、その外輪2の外周面が金属製の軸受ハウジング8の内周面に嵌合され、固定される。この軸受ハウジング8に固定されたすべり軸受1の内輪3には、軸9が挿入される。この際、内輪3の軸方向両端側が内径拡大部7となっているので、軸9を内輪3に入れ易くなる。また、内輪3の内径拡大部7内に入れられた軸9は、その後、当該内径拡大部7に導かれ、内輪3の内径縮小部6まで案内されるため内径縮小部6へ嵌め込み易くなる。さらに、内径縮小部6へと軸9を押し込む際、内輪3と軸9とが接触する面(内径縮小部6)の軸方向長さを短くしているため、摩擦抵抗が少なく押し込み易くなる。
【0017】
このようにして、すべり軸受1に軸9が嵌合されると、内輪3と軸9とは一体となって回転し、外輪2の内周面と内輪3の外周面とが摺動する。この際、前述の通り、外輪2の内周面には凹条部4が、内輪3の外周面には凸条部5が設けられており、それらが互いに嵌合されているため、軸9と共に内輪3が回転しても、軸方向にずれたり、外れたりすることがない。また、外輪2と内輪3との摺動面は、外輪2の内周面と内輪3の外周面のほぼ全面と広いため、互いの面圧が低くなり、摺動面の摩耗が少ない。なお、内輪3と軸9とは、必ずしも一体となって回転する必要はなく、場合によっては内輪3に対して軸9が回っても良い。
【0018】
次に、図3は、本発明の第二の実施例を示すもので、第一の実施例と異なる所は、外輪2の外周面にある。なお、図3には第一実施例と同一部分について、同一符号を付して示し、その詳細な説明を省略し、異なる部分についてのみ説明する。第二の実施例のすべり軸受1は、外輪2の外周面のうち、軸方向中央部に、軸方向両端側よりも外径が径小となる径小部10を設けている。よって、外輪2の外周面は、外輪2が軸受ハウジング8に圧入気味に嵌合されると、軸方向両端側で軸受ハウジング8と接触し内径方向に縮むが、軸方向中央部の径小部10は非接触となり、軸受ハウジング8と外輪2の外周面との間に隙間11を有する。
【0019】
一方、内輪3の内周面のうち、軸方向両端側は、第一の実施例と同様に軸方向中央部分よりも内径が径大となるよう構成されている。よって、内輪3の内周面は、軸9が圧入気味に嵌合されると、軸方向中央部の内径縮小部6で軸9と接触し外径方向に膨らむが、軸方向両端側の内径拡大部7は非接触となり、軸9と内輪3の内周面との間に隙間12を有する。
【0020】
このように、外輪2の径小部10と内輪3の内径拡大部7とは、互いに軸方向にずれた位置にある。そして、外輪2の径小部10と内輪3の内径縮小部6とは、軸方向同位置にあって、その長さは同等に定められ、また、内輪3の内径拡大部7と外輪2の軸方向両端側の径大部13は軸方向同位置にあって、その長さは同等に定められている。
【0021】
本実施例では、隙間11と、内輪3の内周面が軸9と接触する箇所(内径縮小部6)は、軸方向において同位置である。このため、内輪3が外径方向に膨らむ分に対応して、外輪2は撓むことが可能となる。また、隙間12と、外輪2の外周面が軸受ハウジング8と接触する箇所(径大部13)は、軸方向において同位置である。このため、外輪2が内径方向に縮む分に対応して、内輪3は撓むことが可能となる。以上のように、摺動する外輪2の内周面と内輪3の外周面との圧力関係は、どちらかが圧力を逃がす形になるので、互いの面の摩擦抵抗が減少し、長寿命なすべり軸受1となる。
【0022】
最後に、図4は本発明の第三の実施例を示すもので、第一、及び第二の実施例と異なる所は、外輪の内周面における凸条部の形態と、内輪の外周面における凹条部の形態である。なお、図4には第一、及び第二の実施例と同一部分について、同一符号を付して示し、その詳細な説明を省略し、異なる部分についてのみ説明する。第三の実施例のすべり軸受1は、外輪3の内周面全体を、その軸方向断面の形状が円弧凸面状をなす凸条部14としている。また、この凸条部14に対応して、内輪3の外周面全体を、その軸方向断面の形状が円弧凹面状をなす凹条部15としている。
【0023】
【発明の効果】
以上説明したように、本発明のすべり軸受によれば、次の効果を得ることができる。請求項1によれば、すべり軸受を構成する部品を2点に減少化でき、製造コストを低減できる。
そして、請求項2によれば、内輪の内周面における軸方向両側は、軸の外径よりも大きな内径を有しているため、その部分がガイドとなり、軸を入れ易くなる。
また、請求項3によれば、外輪と内輪との摺動面における接触圧力を減少させ、すべり軸受が長寿命となる。
【図面の簡単な説明】
【図1】本発明の第一の実施例を示す縦断側面図
【図2】使用形態を示す縦断側面図
【図3】本発明の第二の実施例を示す図2相当図
【図4】本発明の第三の実施例を示す図2相当図
【符号の説明】
2は外輪、3は内輪、4は凹条部、5は凸条部、8は軸受ハウジング、9は軸、13は凸条部、14は凹条部を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a slide bearing which includes an outer ring and a resin inner ring, and in which the inner peripheral surface of the outer ring slides against the outer peripheral surface of the inner ring.
[0002]
[Prior art]
Conventionally, a plain bearing is generally provided with a bearing alloy layer on the inner peripheral surface of a cylindrical metal backing metal, and an appropriate clearance is provided between the bearing alloy layer and the shaft. However, in a case where high precision is required, for example, in a precision instrument or the like, the shaft is not allowed to swing due to such a clearance.
[0003]
In order to eliminate such shaft runout, for example, there is a type in which a resin liner is injection-molded between an outer ring and an inner ring made of metal, and then heat-treated to make the liner rotatable with respect to the inner ring. In this case, the shaft and the inner ring are tightly fitted and integrated, and the sliding surfaces are the inner peripheral surface of the liner and the outer peripheral surface of the inner ring.
[0004]
[Problems to be solved by the invention]
However, in such a slide bearing composed of the outer ring, the liner, and the inner ring, although the shaft runout can be prevented, the number of components constituting the slide bearing is three, and the cost is high.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sliding bearing that can prevent shaft runout and reduce the number of parts.
[0005]
[Means to solve the problem]
In order to achieve the above object, the sliding bearing of the present invention comprises an outer ring, and a resin inner ring provided on the inner peripheral surface of the outer ring by injection molding and rotatable with respect to the outer ring, wherein the outer ring and the inner ring are It has a ridge portion and a concave ridge portion that are fitted to each other to prevent slippage, the outer ring is fitted to the bearing housing, and the inner ring is fitted to the shaft (the invention of claim 1).
[0006]
According to this configuration, the outer ring is fitted to the bearing housing, the inner ring is fitted to the shaft, and the sliding surfaces are the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. In this case, the inner race is injection molded on the inner peripheral surface of the outer race. At the time of injection molding, the injection material (injection-molded inner ring) is in close contact with the inner peripheral surface of the outer ring, but contracts due to cooling. Since the gap created between the inner ring and the outer ring due to this contraction is very small, there is no backlash between the inner and outer rings, and shaft runout can be prevented.
[0007]
Further, the number of parts constituting the slide bearing can be reduced to two, that is, the outer ring and the inner ring. Here, the sliding surfaces of the inner ring and the outer ring, that is, the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring have a convex ridge and a concave ridge fitted to each other. For this reason, the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring are fitted to each other, and when the two surfaces rotate and slide, the inner ring does not shift or slip off in the axial direction with respect to the outer ring. .
Further, the sliding bearing of the present invention is characterized in that both ends in the axial direction on the inner peripheral surface of the inner ring have an inner diameter larger than the outer diameter of the shaft (the invention of claim 2).
[0008]
According to this configuration, since both ends in the axial direction of the inner race are portions larger in diameter than the outer diameter of the shaft (increased inner diameter), the central portion in the axial direction is a portion that fits tightly with the shaft (density). Fitting part). For this reason, when inserting the tip portion of the shaft into the inner ring, it is easy to insert it at first, since it is sufficient to insert it into the enlarged inner diameter portion, and thereafter the inner peripheral surface of the portion serves as a guide, and the tip of the shaft is Since the guide is guided to the central portion in the axial direction, it can be relatively easily inserted into the tightly-fitted portion. Further, since the axial length of the closely-fitted portion is shortened, the frictional resistance is relatively small, and Can be easily passed through the close fitting portion.
[0009]
As described above, in order to improve the insertability of the shaft, the inner diameter of both ends in the axial direction of the inner ring is enlarged so that a gap is formed between the inner ring and the shaft, but in the present invention, the inner ring is integrally formed with the shaft. It rotates, and the contact surface between the inner ring and the outer ring is a sliding surface. Therefore, even if the contact area between the inner ring and the shaft decreases, the surface pressure on the sliding surface increases by performing the above. There is no danger that the life will be shortened.
[0010]
Further, the sliding bearing of the present invention has a portion in the outer ring where the outer diameter of the outer ring is small in diameter and is not in contact with the bearing housing, and in the inner ring, the inner diameter of the inner ring is large in diameter and is in non-contact with the shaft. And a portion where the outer ring is not in contact with the bearing housing and a portion where the inner ring is not in contact with the shaft are provided at positions shifted from each other (the invention of claim 3). .
[0011]
Here, when the inner race and the outer race are tightly fitted to the shaft and the bearing housing, respectively, and especially when they are slightly fitted, the inner race swells outward and the outer race narrows inward. Then, the pressure acting between the sliding surfaces of the inner ring and the outer ring increases, and as a result, wear progresses early and the life is shortened. However, according to the configuration of the third aspect of the invention, the axial position of the portion where the outer ring is not in contact with the bearing housing and the position of the inner ring where the inner ring is not in contact with the shaft are shifted. That is, at the same axial position as the portion where the inner ring contacts the shaft, the outer ring is not in contact with the bearing housing, and there is a gap between them.At the same axial position as the portion where the outer ring contacts the bearing housing, the inner ring is It is not in contact with the shaft and there is a gap between them.
[0012]
When the outer ring contracts inward at a portion where the outer ring comes into contact with the bearing housing, the inner ring contracts inward in a gap between the shaft and the inner ring, thereby reducing the contact pressure with the outer ring. Further, when the inner ring expands outward at a portion where the inner ring comes into contact with the shaft, the outer ring flexes outward in a gap between the inner ring and the bearing housing to reduce the contact pressure with the inner ring. Therefore, early wear can be prevented, and the life can be extended.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. First, a first embodiment will be described with reference to FIGS. As shown in FIG. 1, the sliding bearing 1 is configured such that a cylindrical inner ring 3 is provided on an inner peripheral surface of a cylindrical outer ring 2 in a fitted state. The outer ring 2 is made of metal (iron, aluminum, alloys thereof, etc.), the inner ring 3 is made of resin (POM: polyoxymethylene, PPS: polyphenylene sulfide, etc.), and the width of the outer ring 2 and the inner ring 3 in the axial direction is: Almost the same.
[0014]
The inner peripheral surface of the outer ring 2 is provided with a concave ridge 4 extending in the circumferential direction at a central portion in the axial direction. In addition, a ridge 5 extending in the circumferential direction is provided at a central portion in the axial direction of the outer peripheral surface of the inner ring 3 corresponding to the concave ridge 4. In the inner diameter of the inner ring 3, both ends in the axial direction are larger in diameter than the central portion in the axial direction. As described above, the inner ring has, on its inner surface, a reduced inner diameter portion (closely fitted portion with the shaft) 6 which is located at the center in the axial direction and has a smaller inner diameter, and which has an inner diameter which is located at both ends in the axial direction. It has a certain inner diameter enlarged portion 7.
[0015]
Here, the resin inner ring 3 is formed by injection molding on the metal outer ring 2, and the inner ring 3 becomes rotatable with respect to the outer ring 2 by contraction after molding. Note that the clearance between the outer ring 2 and the inner ring 3 can be adjusted by the amount of contraction. The amount of shrinkage can be adjusted by adjusting the filling amount of the filler such as fiber into the resin, the mold temperature, the molding pressure, and the injection speed.
[0016]
Next, a usage mode of the above-described slide bearing 1 will be described. As shown in FIG. 2, in the sliding bearing 1, the outer peripheral surface of the outer ring 2 is fitted and fixed to the inner peripheral surface of a metal bearing housing 8. A shaft 9 is inserted into the inner ring 3 of the sliding bearing 1 fixed to the bearing housing 8. At this time, since both ends in the axial direction of the inner ring 3 are the inner diameter enlarged portions 7, the shaft 9 can be easily inserted into the inner ring 3. Further, the shaft 9 inserted into the inner-diameter enlarged portion 7 of the inner ring 3 is thereafter guided to the inner-diameter enlarged portion 7 and guided to the inner-diameter reduced portion 6 of the inner ring 3, so that it is easy to fit into the inner-diameter reduced portion 6. Further, when the shaft 9 is pushed into the inner diameter reducing portion 6, the surface in contact with the inner ring 3 and the shaft 9 (the inner diameter reducing portion 6) is shortened in the axial direction.
[0017]
When the shaft 9 is fitted to the slide bearing 1 in this manner, the inner ring 3 and the shaft 9 rotate integrally, and the inner peripheral surface of the outer ring 2 and the outer peripheral surface of the inner ring 3 slide. At this time, as described above, the concave portion 4 is provided on the inner peripheral surface of the outer ring 2, and the convex portion 5 is provided on the outer peripheral surface of the inner ring 3. Also, even if the inner ring 3 rotates, it does not shift or come off in the axial direction. In addition, since the sliding surface between the outer ring 2 and the inner ring 3 is large over substantially the entire inner peripheral surface of the outer ring 2 and the entire outer peripheral surface of the inner ring 3, the surface pressure of each other is reduced and the sliding surface is less worn. The inner ring 3 and the shaft 9 do not necessarily need to rotate integrally, and the shaft 9 may rotate with respect to the inner ring 3 in some cases.
[0018]
Next, FIG. 3 shows a second embodiment of the present invention. A different point from the first embodiment is on the outer peripheral surface of the outer ring 2. In FIG. 3, the same parts as those in the first embodiment are denoted by the same reference numerals, detailed description thereof will be omitted, and only different parts will be described. In the sliding bearing 1 of the second embodiment, a small-diameter portion 10 whose outer diameter is smaller than the both ends in the axial direction is provided at the central portion in the axial direction on the outer peripheral surface of the outer ring 2. Therefore, when the outer ring 2 is fitted into the bearing housing 8 in a slightly press-fitted manner, the outer peripheral surface of the outer ring 2 comes into contact with the bearing housing 8 at both ends in the axial direction and shrinks in the inner diameter direction. 10 is non-contact and has a gap 11 between the bearing housing 8 and the outer peripheral surface of the outer ring 2.
[0019]
On the other hand, both ends in the axial direction of the inner peripheral surface of the inner ring 3 are configured such that the inner diameter is larger than the central portion in the axial direction, as in the first embodiment. Therefore, when the shaft 9 is fitted in a slightly press-fitted manner, the inner peripheral surface of the inner ring 3 comes into contact with the shaft 9 at the inner diameter reduction portion 6 at the axial center and expands in the outer diameter direction. The enlarged portion 7 becomes non-contact, and has a gap 12 between the shaft 9 and the inner peripheral surface of the inner ring 3.
[0020]
As described above, the small-diameter portion 10 of the outer ring 2 and the inner-diameter enlarged portion 7 of the inner ring 3 are located at positions shifted from each other in the axial direction. The small-diameter portion 10 of the outer ring 2 and the reduced-diameter portion 6 of the inner ring 3 are located at the same position in the axial direction, and their lengths are equally determined. The large-diameter portions 13 at both ends in the axial direction are located at the same position in the axial direction, and their lengths are determined equally.
[0021]
In the present embodiment, the gap 11 and the portion where the inner peripheral surface of the inner race 3 comes into contact with the shaft 9 (the inner diameter reduction portion 6) are at the same position in the axial direction. For this reason, the outer ring 2 can be bent in accordance with the amount by which the inner ring 3 expands in the outer diameter direction. In addition, the gap 12 (the large-diameter portion 13) where the outer peripheral surface of the outer ring 2 contacts the bearing housing 8 is the same position in the axial direction. For this reason, the inner ring 3 can be bent in accordance with the contraction of the outer ring 2 in the radial direction. As described above, the pressure relationship between the inner peripheral surface of the outer ring 2 that slides and the outer peripheral surface of the inner ring 3 is such that one of them releases the pressure, so that the frictional resistance between the surfaces decreases, and a long life is obtained. It becomes the sliding bearing 1.
[0022]
Finally, FIG. 4 shows a third embodiment of the present invention, which differs from the first and second embodiments in the form of a ridge on the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring. It is a form of the ridge in FIG. In FIG. 4, the same portions as those of the first and second embodiments are denoted by the same reference numerals, detailed description thereof will be omitted, and only different portions will be described. In the sliding bearing 1 according to the third embodiment, the entire inner peripheral surface of the outer ring 3 is formed as a convex ridge portion 14 whose axial cross section has a circular arc convex shape. Corresponding to the ridges 14, the entire outer peripheral surface of the inner ring 3 is formed as a ridge 15 having an arc-shaped concave cross section in the axial direction.
[0023]
【The invention's effect】
As described above, according to the sliding bearing of the present invention, the following effects can be obtained. According to the first aspect, the number of parts constituting the sliding bearing can be reduced to two, and the manufacturing cost can be reduced.
According to the second aspect, since both sides in the axial direction of the inner peripheral surface of the inner ring have an inner diameter larger than the outer diameter of the shaft, the portion serves as a guide, so that the shaft can be easily inserted.
According to the third aspect, the contact pressure on the sliding surface between the outer ring and the inner ring is reduced, and the life of the slide bearing is extended.
[Brief description of the drawings]
FIG. 1 is a vertical sectional side view showing a first embodiment of the present invention. FIG. 2 is a vertical sectional side view showing a use mode. FIG. 3 is a diagram corresponding to FIG. 2 showing a second embodiment of the present invention. FIG. 2 corresponding to FIG. 2 showing a third embodiment of the present invention.
2 is an outer ring, 3 is an inner ring, 4 is a concave ridge, 5 is a convex ridge, 8 is a bearing housing, 9 is a shaft, 13 is a convex ridge, and 14 is a concave ridge.

Claims (3)

外輪と、
この外輪の内周面に射出成形によって設けられ、この外輪に対し回転可能な樹脂製の内輪とから成り、
前記外輪と前記内輪は抜け防止のため互いに嵌合する凸条部と凹条部とを有し、前記外輪は軸受ハウジングに嵌合され、前記内輪は軸に嵌合されることを特徴とするすべり軸受。
Outer ring,
A resin inner ring provided on the inner peripheral surface of the outer ring by injection molding and rotatable with respect to the outer ring;
The outer ring and the inner ring have a convex ridge and a concave ridge that are fitted to each other to prevent detachment, the outer ring is fitted to a bearing housing, and the inner ring is fitted to a shaft. Plain bearing.
前記内輪の内周面における軸方向両端側は、軸の外径よりも大きな内径を有していることを特徴とする請求項1記載のすべり軸受。The sliding bearing according to claim 1, wherein both axial ends of the inner peripheral surface of the inner ring have an inner diameter larger than an outer diameter of the shaft. 前記外輪は、その外径が径小で軸受ハウジングと非接触となる部分が存在し、また前記内輪は、その内径が径大で軸と非接触となる部分が存在し、前記外輪が軸受ハウジングに非接触な部分と、前記内輪が軸と非接触な部分とは互いに軸方向にずれた位置に設けられていることを特徴とする請求項1または2記載のすべり軸受。The outer ring has a portion whose outer diameter is small and is not in contact with the bearing housing, and the inner ring has a portion whose inner diameter is large and is not in contact with the shaft, and the outer ring is a bearing housing. The sliding bearing according to claim 1 or 2, wherein a portion that is not in contact with the shaft and a portion of the inner ring that is not in contact with the shaft are provided at positions shifted from each other in the axial direction.
JP2002165713A 2002-06-06 2002-06-06 Slide bearing Pending JP2004011748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002165713A JP2004011748A (en) 2002-06-06 2002-06-06 Slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002165713A JP2004011748A (en) 2002-06-06 2002-06-06 Slide bearing

Publications (1)

Publication Number Publication Date
JP2004011748A true JP2004011748A (en) 2004-01-15

Family

ID=30433487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002165713A Pending JP2004011748A (en) 2002-06-06 2002-06-06 Slide bearing

Country Status (1)

Country Link
JP (1) JP2004011748A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235425A (en) * 2010-04-27 2011-11-09 美蓓亚株式会社 Sliding bearing having self-lubricating liner
DE102013114899A1 (en) * 2013-12-27 2015-07-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Disc brake for a commercial vehicle
KR101694140B1 (en) * 2015-09-18 2017-01-09 (유)삼송 A seat belt load limiter having reduced friction
JPWO2016035373A1 (en) * 2014-09-02 2017-06-15 株式会社リケン Roller type rocker arm
CN107709804A (en) * 2015-06-23 2018-02-16 奥依列斯工业株式会社 Sliding bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235425A (en) * 2010-04-27 2011-11-09 美蓓亚株式会社 Sliding bearing having self-lubricating liner
US8690438B2 (en) 2010-04-27 2014-04-08 Minebea Co., Ltd. Sliding bearing having self-lubricating liner
US9080605B2 (en) 2010-04-27 2015-07-14 Minebea Co., Ltd. Sliding bearing having self-lubricating liner
DE102013114899A1 (en) * 2013-12-27 2015-07-02 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Disc brake for a commercial vehicle
DE102013114899B4 (en) * 2013-12-27 2016-05-12 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Disc brake for a commercial vehicle
JPWO2016035373A1 (en) * 2014-09-02 2017-06-15 株式会社リケン Roller type rocker arm
CN107709804A (en) * 2015-06-23 2018-02-16 奥依列斯工业株式会社 Sliding bearing
CN107709804B (en) * 2015-06-23 2020-09-01 奥依列斯工业株式会社 Sliding bearing
KR101694140B1 (en) * 2015-09-18 2017-01-09 (유)삼송 A seat belt load limiter having reduced friction

Similar Documents

Publication Publication Date Title
EP1830082B1 (en) Retainer for ball bearing and ball bearing using the same
US5785433A (en) Rolling bearing creep prevention device
JP7276035B2 (en) hydrodynamic bearing
JP6501823B2 (en) Bearing seal structure, pulley bearing, and method of designing bearing seal
JP2004011748A (en) Slide bearing
JP2003239957A (en) Bearing device and mechanical element incorporating the same
JP2009092083A (en) Camshaft
JP2006329368A (en) Bearing for resin pulley
JP2006226430A (en) Ball bearing
JP2002310167A (en) Roller bearing
JP2014029178A (en) Spherical slide bearing and method of manufacturing the same
JP2012127466A (en) Sealing device of rolling bearing
JPS628418Y2 (en)
JP5272737B2 (en) Crown type cage and ball bearing
JP2000087988A (en) Creep preventive device of rolling bearing
JPH0932856A (en) Sliding bearing and its manufacture
JP2014148991A (en) Rolling bearing
JPH0988967A (en) Pulley and ball bearing therefor
JP2537288Y2 (en) Oil seal
JP2008057665A (en) Bearing
JP4424092B2 (en) Synthetic resin crown cage
WO2010137434A1 (en) Ball bearing retainer and ball bearing
JP2019070406A (en) Foil bearing
JP2019168020A (en) Cylindrical roller bearing
JPS63167125A (en) Rolling bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060718