JP4007890B2 - Water purification material - Google Patents

Water purification material Download PDF

Info

Publication number
JP4007890B2
JP4007890B2 JP2002278611A JP2002278611A JP4007890B2 JP 4007890 B2 JP4007890 B2 JP 4007890B2 JP 2002278611 A JP2002278611 A JP 2002278611A JP 2002278611 A JP2002278611 A JP 2002278611A JP 4007890 B2 JP4007890 B2 JP 4007890B2
Authority
JP
Japan
Prior art keywords
sand
weight
parts
water
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278611A
Other languages
Japanese (ja)
Other versions
JP2004113885A (en
Inventor
直 斉藤
佳範 車田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Penta Ocean Construction Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Penta Ocean Construction Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2002278611A priority Critical patent/JP4007890B2/en
Publication of JP2004113885A publication Critical patent/JP2004113885A/en
Application granted granted Critical
Publication of JP4007890B2 publication Critical patent/JP4007890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電所から排出される産業廃棄物である石炭灰(フライアッシュ)を再利用した材料またはそれを用いた工法に関し、特に、河川や湖沼、海域などにおける水質を浄化することができる材料または工法に関する。
【0002】
【従来の技術】
河川、湖沼、海域における水質汚染要因のひとつに、水底地盤からの有機物や窒素、リンなどの栄養塩類の溶出がある。これらの溶出に対する水質浄化の代表的な対策方法として覆砂工法がある。これは、有機底質の上に天然砂や粘性土壌等を用いて略均一厚さで層を形成するもので、多くの場合天然砂を用い、栄養塩類を多量に含む底泥の上部に厚さ30cm〜150cm程度に撒き出して、栄養塩類が底泥から水中への溶出を防ぐようにする。覆砂工法によれば、浚渫により有機底質を除去したり、薬剤散布によりリンを不溶化したりする工法に比べ、低コストで溶出防止の効果を得ることができる。
【0003】
覆砂による栄養塩類の溶出抑制効果のメカニズムについては様々な説があるが、代表すると以下の効果が複合的に発揮されていると言われている。
▲1▼ 砂材の表面に栄養塩類が吸着されて、溶出が抑制される。
▲2▼ 砂材で表面を覆うことで、表層の浮泥が水流によって巻き上げられて拡散することが防止され、水中への栄養塩類の溶出が減少する。
▲3▼ 栄養塩類の溶出は嫌気状態で激増するが、良質で透水係数(水交換能)の高い砂層を表層に施工することで好気状態が保持されて、栄養塩類の溶出が抑制される。
【0004】
しかし、▲1▼については従来の天然砂では栄養塩類の吸着能力はほとんど見込まれないのが実情で、そのため栄養塩類の溶出防止には覆砂厚を厚くする必要がある。その結果、▲3▼の好気状態の保持が難しくなると共にコスト高となる問題点があった。
【0005】
ところで、施行した覆砂層は、様々な外因により影響を受ける。例えば、海底や河川底などに常に生じている水流が覆砂材を移動させて覆砂層を流出させる場合があるし、底質が軟弱であれば、覆砂材が底質内にめり込んでしまって効果を発揮しない場合もある。また、覆砂層が底生生物の育成を促進する目的で用いられる場合もある。これらの条件は、覆砂を行なう水域により異なり、最適な覆砂材の条件も異なる。しかし、従来の天然砂等を覆砂材として用いた場合は、コスト面から採取した状態のままで使用せざるを得ず、覆砂を行なう場所の条件に適した覆砂材を選択することは難しいのが実情である。
【0006】
また、天然砂に代わりうる覆砂材料として、火力発電所から排出される石炭灰(フライアッシュ)を水熱化学処理して得られた人工ゼオライトをそのままか若しくは板状等に成形して用いる海域の浄化方法の発明が開示されている(例えば、特許文献1参照。)。
【0007】
しかし、この材料では水熱化学処理等にかなりの製造コストがかかる。通常、水底地盤の上面に覆砂層を敷設するにあたっては大量の覆砂材料を必要とするから、覆砂工事にかかる費用も多大なものになってしまう。
【0008】
一方、火力発電所のボイラーから回収された石炭灰をセメント等で固化、造粒した地盤改良材の発明が開示されている。この地盤改良材は、透水性能や強度が注目されてドレーン材、コンパクション材または排水用敷砂に使用される(例えば、特許文献2参照。)。
【0009】
【特許文献1】
特開2000-29951号公報(0010欄〜0012欄)
【特許文献2】
特開2000-154526号公報(0005欄)
【0010】
【発明が解決しようとする課題】
本発明は、低コストで製造でき、かつ栄養塩類、特にリンを確実に吸着させ得る水質浄化材料を提供することを課題とする。また、覆砂される場所の底質の条件に適するように製造することができる水質浄化材料を提供することを課題とする。さらに、汚染底質上の覆砂工法において、低コストで良好な覆砂性能を得ることができる覆砂工法を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明は、石炭灰を80重量部以上97重量部以下、固化材を2重量部以上15重量部以下、ベントナイトを2重量部以上5重量部以下の範囲内で含有し、平均粒径が0.1mm〜20mm以下で圧潰強度が2MPa以上の造粒物からなり、かつ水底地盤の被覆用であことを特徴とする水質浄化材料である。これにより、栄養塩類、特にリンを確実に吸着させ得る水質浄化材料を得ることができる。また、水質浄化材料を比較的低コストで製造でき、かつリン等の栄養塩類の吸着性能が高い水質浄化材料を得ることができる。
【0012】
発明の第2は、石炭灰を80重量部以上97重量部以下、固化材を2重量部以上15重量部以下、ベントナイトを2重量部以上5重量部以下、水を15重量部以上25重量部以下の範囲内でミキサに投入し、攪拌混合して造粒物を形成し、10℃以上40℃以下で1日〜1ヶ月間乾燥することを特徴とする前記の水質浄化材料の製造方法である。
【0013】
【発明の実施の形態】
本発明を以下具体的に説明する。
本発明に係わる水質浄化材料は、火力発電所から産業廃棄物として廃棄される石炭灰を使用する。さらに石炭灰の中でも、火力発電所からの排気前に電気集塵機で捕集されるフライアッシュを用いることが、被処理水に含まれる栄養塩類の吸着除去性能の観点から望ましい。
【0014】
水質浄化材料は、この石炭灰好ましくはフライアッシュを造粒して得る。造粒にあたってはセメント等の固化材および水と混合するが、石炭灰、特にフライアッシュは保水性が悪く、造粒にあたっては、固化材と水に保水材も加える。これらをミキサに投入して室温付近で攪拌・混合して造粒する。
【0015】
造粒するにあたっては、石炭灰に事前に何らかの化学的処理を加えることなく電気集塵機から回収したままを用いて造粒することが望ましい。造粒物の製造コストを低く抑えることが可能となる。
【0016】
使用できる固化材としてはセメントまたはセメントと二水石膏が、保水材としてはベントナイト、それぞれ安定して造粒物を製造する観点から用いられる
【0017】
ここで、各成分の配合割合としては、石炭灰が80重量部以上97重量部以下である。80重量部以上で造粒時に用いるミキサの出口における造粒物の付着が生じにくくなって取扱いが容易となり、97重量部以下で覆砂材料として十分な強度が得られる。より望ましくは、85重量部以上95重量部以下であり、さらに望ましくは、87重量部以上93重量部以下である。
【0018】
固化材は、2重量部以上15重量部以下である。2重量部以上で材料に必要とされる強度を得ることができ、15重量部以下で造粒時に用いるミキサの出口で造粒物が付着するトラブルが発生しにくくなり、造粒物の取扱いが容易となる。より望ましくは7重量部以上13重量部以下であり、さらに望ましくは9重量部以上11重量部以下である。
【0019】
固化材に二水石膏を含む場合は、二水石膏が7重量部以上10重量部以下となるように配合することが望ましい。7重量部以上で他の固化材量の使用量を減少せしめて製造コストを抑制でき、10重量部以下で造粒が安定に行える。
【0020】
保水材は2重量部以上5重量部以下で加える。5重量部以下で造粒時の付着トラブルが生じにくくなり取扱いが容易となる。より望ましくは4重量部以下である。また、保水材を用いないで造粒することも可能であるが、加えたほうが造粒がより安定となりやすい。そのためさらに望ましくは2重量部以上3重量部以下である。
【0021】
水は、造粒が安定となり、粒子の強度が必要な範囲に入るように加えればよいが、例えば15重量部以上25重量部以下で加えることができる。15重量部以上で造粒物の形状が安定化しやすく、25重量部以下で必要な強度の造粒物を得やすくなる。より望ましくは18重量部以上25重量部以下である。
【0022】
上記の各配合物をミキサに投入し、室温で攪拌混合して造粒する。攪拌混合処理に使用するミキサは、処理が行なえればよく特に制限されるものではないが、例えば、円筒ドラムが横置きされ、ドラム中心に設けられた回転する主軸に攪拌羽根が設けられ、また、ドラムの側面内部に設けられた独立駆動チョッパーを有する高速回転ミキサを用いることが望ましい。このミキサを用いた場合の運転条件は、攪拌羽根を50rpm〜100rpm付近で回転し、同時にチョッパーを1000rpm〜2000rpm付近で高速回転させて3分〜10分間程度運転する。これにより、平均粒径が2mm〜10mm付近の均一な造粒物が短時間で得られる。このようなミキサの例は、例えば特開2000-154526号公報に記載されている。
【0023】
その他の望ましいミキサとしては、底面と、底面中心部に設けられた排出口に向かって下降するロート状に傾斜した側面とを有する縦置きの混合層を有し、この混合槽内の中心部鉛直方向下向きに、混合槽中心部で回転する螺旋状の内側混練羽根を取り付けた高速回転軸と、外側混練羽根が混合層の側面内側に近接して回転するように外側混練羽根をアームを介して取り付けた低速回転軸とを同心的に配設し、これらの高速回転軸と低速回転軸の回転方向を逆方向とするように駆動装置を設けたミキサが例示される。
【0024】
これらのミキサを用いて、覆砂を行なう水域の底質条件や水流条件に最も適した粒度分布を用いた覆砂材を製造することができる。具体的には、目的とする粒度分布が得られるようにミキサの運転条件を調節して造粒処理した後、造粒物をミキサから取り出し、室温付近で一定の期間、乾燥して目的とする固化造粒物を得る。乾燥温度は5℃以上で行うのが望ましく、10℃以上40℃以下で行なうのがより望ましい。最も望ましくは20℃付近で行なうことである。乾燥期間は、およそ1日から1ヶ月の間で、使用する固化材や温度の条件に応じて適宜選択すればよい。
【0025】
固化造粒物の平均粒径は、0.1mm以上20mm以下であり、望ましくは、0.5mm以上15mm以下である。さらに望ましくは0.5mm以上10mm以下である。この範囲で、覆砂材料として良好な性能が得られるが、覆砂を行なう場所および目的により覆砂材の平均粒径または粒度分布を選択すべきなのは言うまでもない。
【0026】
このようにして得られた固化造粒物の圧潰強度は、28日間の乾燥後において平均して約2MPa以上を保っているうえ、天然砂と比較して同程度のコストで得ることができ、施工上も天然砂と同じように取り扱うことができる。また、この固化造粒物は、アンモニア性窒素などの栄養塩類の吸着能に優れ、特にリンの吸着能に優れている。従って、栄養塩類で汚染された水質の浄化材料として有用である。
【0027】
次に、この造粒物を用いて行なう覆砂工法について説明する。
上記で得られた造粒物は、原則として天然砂を用いる場合と同様にして覆砂することができ、特に制限されるものではない。
【0028】
ところで、上で得られた固化造粒物では、製造段階で平均粒径や粒度分布を適宜調整することが可能である。そのため、覆砂を行なう場所の条件、及び有機塩類の溶出防止に加えた覆砂の目的に応じて、固化造粒物の製造条件を調整した物を用いる。例えば、覆砂の目的が水質浄化だけであれば、細粒分が含まれていてもよい。また、施工性を重視するのであれば、中砂から細粒砂あたりの平均粒径で粒径分布ができるだけ狭いものが良い。また、底生生物の育成も目的とするならば、幾分のシルト分を含んだほうが良い。さらには、水底水流による覆砂材の流出防止や軟弱底質への覆砂材のめり込み防止が重要であれば、粗い平均粒径のものを用いることが望ましい。
【0029】
固化造粒物を覆砂のために輸送するにあたっては、乾燥した固化造粒物をそのまま輸送するドライ工法で行っても良いし、スラリー状態で水力輸送するウェット工法を用いてもよい。
【0030】
この固化造粒物を用いた覆砂を行なうにあたっては、天然砂より栄養塩類の溶出防止効果が大きいことから、天然砂より少ない厚みで覆砂することができ、底質条件や水底の流れ条件等によって異なるものの、天然砂のみを用いる場合に比しておよそ1/3〜4/5の厚みで天然砂と同様の栄養塩類、特にリンの溶出防止効果を得ることができる。
【0031】
固化造粒物を天然砂やその他の公知の覆砂材と混合して覆砂に用いることもできる。特に、固化材からアルカリ成分が水中に滲出するおそれがある場合に、そのようなおそれがない天然砂等その他の公知の覆砂材を混合して防止する。天然砂またはその他の覆砂材の配合比率は、対象土の汚染濃度に対応して適宜決定すればよいが、通常、固化造粒物に対して20倍重量程度まで用いることができる。この範囲で栄養塩類の吸着効果が得られる。好ましくは5倍重量以下、さらに好ましくは2倍重量以下である。
【0032】
したがって、覆砂工法は従来知られている工法が使用でき特に制限されるものではないが、できるだけ薄層でかつ均一に覆砂できる工法がより適している。例えば、台船に装備したブラインド式落下装置に砂を投入し、砂天端均し装置で所定の厚さに均した後、ブラインドを同時に開き、砂を均したままの状態で面状に海底に落下させるいわゆるブラインド方式覆砂工法、単船またはフローティングコンベヤシステムと組み合わせ、台船上のコンベヤで覆砂材を搬送して先端のスプレッダ船で連続的に覆砂材を搬出するいわゆるフローティングコンベヤ+スプレッダ(FCS)式覆砂工法などを用いることが望ましい。
【0033】
以下、実施例を用いて、本発明を具体的に説明する。
なお、実施例で用いたリンの定量方法は、JIS K 0102 46.3.1に記載されたペルオキソ2硫酸カリウム分解法であり、アンモニア性窒素の定量方法は、JIS K 0102 42 2 のインドフェノール青 吸光光度法である。また、圧潰強度は、JIS Z8841-1993に従って固化造粒物10点について測定し、それらの単純平均をとることにより求めた。
【0034】
(実施例1) 火力発電所の電気集塵機から回収された石炭灰(フライアッシュ)を用い、石炭灰90重量部、普通ポルトランドセメント10重量部、ベントナイト3重量部、水21重量部を前述のドラム横置型ミキサに投入し、攪拌羽根を83rpmで、チョッパーを1500rpmで5分間運転してほぼ球状で平均粒径が約5mmの造粒物を形成した。次に、この造粒物をミキサから取り出し、20℃で28日間乾燥して目的とする固化造粒物を得た。この固化造粒物の圧潰強度は約2.1MPaであった。
【0035】
次に、ビーカーを用いて塩化アンモニウム50mg、燐酸水素2カリウム146mg、燐酸2水素カリウム11mgを水に溶解して1リットルにした塩溶液を作成し、上記で得た固化造粒物100gをこの塩溶液に投入、約1分間攪拌した後、20℃で72時間静置し、その後上澄み液を採取した。この塩溶液及び上澄み液の塩類濃度を測定し、固化造粒物の単位重量あたりの吸着量および塩溶液からの塩類の除去率を求めた。実験結果を表1に示す。リンの除去およびアンモニア性窒素の除去のいずれにも優れた数値を得た。また、固化造粒物を塩溶液に投入するに際しては、特に問題もなく固化造粒物の取扱い性は良好であった。
【0036】
(比較例1) 実施例1の固化造粒物100gに代えて、天然砂100gを用いた以外は実施例1と同様にして、天然砂の単位重量あたりの吸着量及び塩類の除去率を求めた。実験結果を表1に示す。天然砂にも若干の塩類の吸着能があるものの、その能力は固化造粒物に比してかなり低いことがわかる。
【0037】
(比較例2) 実施例1の固化造粒物100gに代えて、石炭灰100gをそのまま用いた以外は実施例1と同様にして、石炭灰の単位重量あたりの吸着量及び塩類の除去率を求めた。実験結果を表1に示す。なお、石炭灰を投入する際には、石炭灰が水をはじいて空中に容易に飛散してしまい作業環境が悪化した。石炭灰のリン除去率は、固化造粒物と同程度であったが、アンモニア性窒素の除去率は劣る結果となった。
【0038】
【表1】

Figure 0004007890
【発明の効果】
低コストで製造でき、かつ栄養塩類、特にリンを吸着させ得る水質浄化材料を得ることができる。また、覆砂される場所の底質の条件に適するように製造できる水質浄化材料が得られる。また、低コストで良好な覆砂性能を得る水質浄化材料を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material that reuses coal ash (fly ash), which is industrial waste discharged from a thermal power plant, or a construction method using the same, and in particular, it can purify water quality in rivers, lakes, sea areas, and the like. It relates to materials or construction methods that can be used.
[0002]
[Prior art]
One of the water pollution factors in rivers, lakes and marshes is the elution of organic matter, nutrients such as nitrogen and phosphorus from the bottom of the ground. There is a sand-capping method as a typical countermeasure for water purification against these elutions. In this method, natural sand or viscous soil is used to form a layer with an almost uniform thickness on the organic sediment. In many cases, natural sand is used, and thick on top of the bottom mud containing a large amount of nutrients. Scrape out about 30 to 150 cm so that nutrients are prevented from leaching from the bottom mud. According to the sand-capping method, the elution prevention effect can be obtained at a lower cost as compared with a method of removing organic sediment by dredging or insolubilizing phosphorus by spraying chemicals.
[0003]
There are various theories about the mechanism of the effect of inhibiting the dissolution of nutrient salts by sand-capping, but it is said that the following effects are exhibited in combination.
(1) Nutrient salts are adsorbed on the surface of sand material, and elution is suppressed.
(2) By covering the surface with sand material, it is possible to prevent the surface floating mud from being rolled up and diffused by the water flow, and to reduce the elution of nutrient salts into the water.
(3) Although the elution of nutrients increases dramatically in anaerobic conditions, aerobic conditions are maintained and the elution of nutrients is suppressed by constructing a sand layer with high quality and high water permeability (water exchange capacity) on the surface layer. .
[0004]
However, with respect to (1), it is a fact that conventional natural sand is hardly expected to adsorb nutrient salts, so it is necessary to increase the thickness of the sand cover to prevent the dissolution of nutrient salts. As a result, there is a problem that it is difficult to maintain the aerobic state (3) and the cost is increased.
[0005]
By the way, the enforced sand-capping layer is affected by various external factors. For example, the water flow that is constantly generated on the seabed or river bottom may move the sand-capping material and cause the sand-capping layer to flow out, and if the sediment is soft, the sand-capping material will sink into the sediment. May not be effective. Moreover, the sand-covering layer may be used for the purpose of promoting the growth of benthic organisms. These conditions differ depending on the water area where sand covering is performed, and the conditions of the optimum sand covering material are also different. However, when conventional natural sand is used as a sand-capping material, it must be used in the state collected from the cost side, and a sand-clad material suitable for the conditions of the place where sand is covered should be selected. Is difficult.
[0006]
In addition, as a sand covering material that can be substituted for natural sand, artificial zeolite obtained by hydrothermal chemical treatment of coal ash (fly ash) discharged from a thermal power plant is used as it is or molded into a plate shape, etc. The invention of the purification method is disclosed (for example, see Patent Document 1).
[0007]
However, this material requires considerable manufacturing costs for hydrothermal chemical treatment and the like. Usually, a large amount of sand covering material is required for laying the sand covering layer on the upper surface of the water bottom ground, so that the cost for sand covering work is also great.
[0008]
On the other hand, the invention of the ground improvement material which solidified and granulated the coal ash collect | recovered from the boiler of the thermal power plant with cement etc. is disclosed. This ground improvement material is used for drainage material, compaction material or drainage laying sand because of its water permeability and strength (see, for example, Patent Document 2).
[0009]
[Patent Document 1]
JP 2000-29951 A (columns 0010 to 0012)
[Patent Document 2]
JP 2000-154526 A (column 0005)
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a water purification material that can be produced at a low cost and can reliably adsorb nutrients, particularly phosphorus. It is another object of the present invention to provide a water purification material that can be manufactured so as to be suitable for the condition of the bottom sediment of the place to be covered with sand. Furthermore, it is an object of the present invention to provide a sand-capping method capable of obtaining good sand-capping performance at a low cost in the sand-capping method on the contaminated sediment.
[0011]
[Means for Solving the Problems]
The present invention contains coal ash in the range of 80 to 97 parts by weight, solidified material in the range of 2 to 15 parts by weight, bentonite in the range of 2 to 5 parts by weight and an average particle size of 0. the following crushing strength .1mm~20mm is Ri Do from granules above 2 MPa, and a water purification material comprising a Ru coating der of the sea bed soil. Thereby, the water purification material which can adsorb | suck nutrients, especially phosphorus reliably can be obtained. Moreover, the water purification material can be produced at a relatively low cost and has a high adsorption performance for nutrient salts such as phosphorus.
[0012]
The second aspect of the invention is that the coal ash is 80 to 97 parts by weight, the solidified material is 2 to 15 parts by weight, the bentonite is 2 to 5 parts by weight, and the water is 15 to 25 parts by weight. In the method for producing a water purification material described above, the mixture is put into a mixer within the following range, stirred and mixed to form a granulated product, and dried at 10 to 40 ° C. for 1 day to 1 month. is there.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
The water purification material according to the present invention uses coal ash that is discarded as industrial waste from a thermal power plant. Furthermore, among coal ash, it is desirable to use fly ash collected by an electric dust collector before exhausting from a thermal power plant from the viewpoint of adsorption removal performance of nutrient salts contained in water to be treated.
[0014]
The water purification material is obtained by granulating this coal ash, preferably fly ash. Although when the granulation is mixed with solidifying material and water such as cement, coal ash, particularly fly ash poor water retention, when the granulation, water-retaining material also Ru addition to solidifying material and water. These are put into a mixer and agitated and mixed at around room temperature for granulation.
[0015]
In granulating, it is desirable to granulate the coal ash using the state recovered from the electric dust collector without any chemical treatment in advance. It becomes possible to keep the production cost of the granulated product low.
[0016]
As the solidifying material that can be used, cement or cement and dihydrate gypsum are used, and as the water retaining material, bentonite is used from the viewpoint of stably producing a granulated product.
[0017]
Here, the blending ratio of each component, the coal ash Ru der 80 parts by weight or more 97 parts by weight or less. When the amount is 80 parts by weight or more, adhesion of the granulated material at the outlet of the mixer used at the time of granulation hardly occurs and handling becomes easy, and when it is 97 parts by weight or less, sufficient strength as a sand covering material is obtained. More desirably, it is 85 parts by weight or more and 95 parts by weight or less, and further desirably 87 parts by weight or more and 93 parts by weight or less.
[0018]
Solidifying material, Ru der than 15 parts by weight 2 parts by weight or more. The strength required for the material can be obtained at 2 parts by weight or more, and the trouble that the granulated material adheres at the outlet of the mixer used at the time of granulation at 15 parts by weight or less is less likely to occur. It becomes easy. More desirably, it is 7 parts by weight or more and 13 parts by weight or less, and further desirably 9 parts by weight or more and 11 parts by weight or less.
[0019]
When dihydrate gypsum is included in the solidifying material, it is desirable to blend so that the dihydrate gypsum is 7 parts by weight or more and 10 parts by weight or less. When the amount is 7 parts by weight or more, the amount of other solidifying material used can be reduced to reduce the manufacturing cost, and when the amount is 10 parts by weight or less, granulation can be stably performed.
[0020]
Water-retaining material is Ru added at 5 parts by weight or less than 2 parts by weight. If it is 5 parts by weight or less, adhesion troubles during granulation hardly occur and handling becomes easy. More desirably, it is 4 parts by weight or less. In addition, it is possible to perform granulation without using a water retaining material, but adding it tends to make the granulation more stable. Therefore, it is more desirably 2 parts by weight or more and 3 parts by weight or less.
[0021]
Water may be added so that granulation becomes stable and the strength of the particles falls within a necessary range. For example, the water can be added in an amount of 15 to 25 parts by weight. If it is 15 parts by weight or more, the shape of the granulated product is easily stabilized, and if it is 25 parts by weight or less, it becomes easy to obtain a granulated product having the required strength. More desirably, it is 18 parts by weight or more and 25 parts by weight or less.
[0022]
Each of the above blends is put into a mixer and stirred and mixed at room temperature for granulation. The mixer used for the stirring and mixing process is not particularly limited as long as the process can be performed.For example, a cylindrical drum is placed horizontally, a stirring blade is provided on a rotating main shaft provided in the center of the drum, and It is desirable to use a high-speed rotary mixer having an independent drive chopper provided inside the side surface of the drum. The operation conditions when this mixer is used are that the stirring blade is rotated at around 50 to 100 rpm, and at the same time the chopper is rotated at a high speed around 1000 to 2000 rpm and operated for about 3 to 10 minutes. Thereby, a uniform granulated product having an average particle size of 2 mm to 10 mm can be obtained in a short time. An example of such a mixer is described in, for example, Japanese Patent Application Laid-Open No. 2000-154526.
[0023]
Another desirable mixer has a vertical mixing layer having a bottom surface and a funnel-inclined side surface that descends toward a discharge port provided at the center of the bottom surface. A high-speed rotating shaft attached with a spiral inner kneading blade rotating at the center of the mixing tank, and an outer kneading blade via an arm so that the outer kneading blade rotates close to the inner side surface of the mixing layer. An example is a mixer in which the attached low-speed rotation shafts are arranged concentrically, and a drive device is provided so that the rotation directions of these high-speed rotation shafts and low-speed rotation shafts are opposite.
[0024]
Using these mixers, it is possible to produce a sand covering material using a particle size distribution that is most suitable for the bottom sediment condition and water flow condition of the water area where sand covering is performed. Specifically, after adjusting the mixer operating conditions so as to obtain the desired particle size distribution and granulating, the granulated product is taken out of the mixer and dried for a certain period of time near the room temperature. A solidified granule is obtained. The drying temperature is preferably 5 ° C or higher, more preferably 10 ° C or higher and 40 ° C or lower. Most preferably, it is performed at around 20 ° C. What is necessary is just to select a drying period suitably according to the conditions of the solidification material to be used and temperature between about 1 day to 1 month.
[0025]
The average particle diameter of the solidified granulated product state, and are 20mm or more or less 0.1 mm, preferably is 0.5mm or more 15mm or less. More desirably, it is 0.5 mm or more and 10 mm or less. In this range, good performance as a sand-capping material can be obtained, but it goes without saying that the average particle size or particle size distribution of the sand-capping material should be selected according to the place and purpose of sand-capping.
[0026]
The crushing strength of the solidified granule obtained in this way is about 2 MPa or more on average after drying for 28 days, and can be obtained at the same cost as natural sand. It can be handled in the same way as natural sand. Further, this solidified granulated product is excellent in the adsorption ability of nutrient salts such as ammonia nitrogen, and in particular, excellent in the adsorption ability of phosphorus. Therefore, it is useful as a purification material for water quality contaminated with nutrient salts.
[0027]
Next, the sand covering method performed using this granulated material is demonstrated.
The granulated product obtained above can in principle be covered with sand in the same manner as when natural sand is used, and is not particularly limited.
[0028]
By the way, in the solidified granule obtained above, it is possible to appropriately adjust the average particle size and particle size distribution in the production stage. Therefore, the thing which adjusted the manufacturing conditions of the solidified granulated material according to the conditions of the place where sand covering is performed, and the purpose of sand covering in addition to the elution prevention of organic salts is used. For example, if the purpose of sand-capping is only water purification, fine particles may be included. Moreover, if emphasis is placed on workability, it is preferable that the average particle size from medium sand to fine sand is as narrow as possible. Also, if you want to grow benthic organisms, it is better to include some silt. Furthermore, if it is important to prevent the sand-covering material from flowing out by the bottom water flow or to prevent the sand-covering material from sinking into the soft sediment, it is desirable to use a material having a coarse average particle diameter.
[0029]
In transporting the solidified granulated material for covering sand, it may be carried out by a dry construction method in which the dried solidified granulated product is transported as it is, or a wet construction method in which the solidified granulated product is transported hydraulically in a slurry state.
[0030]
In covering sand using this solidified granulated material, it has a greater effect of preventing the elution of nutrients than natural sand. Although it differs depending on the like, it is possible to obtain an effect of preventing the elution of nutrient salts similar to natural sand, particularly phosphorus, at a thickness of about 1/3 to 4/5 as compared with the case of using only natural sand.
[0031]
The solidified granulated product can be mixed with natural sand or other known sand-capping material and used for sand-capping. In particular, when there is a possibility that the alkali component may ooze out from the solidified material, other known sand-covering materials such as natural sand that do not have such a risk are mixed and prevented. The blending ratio of natural sand or other sand-capping material may be appropriately determined according to the contamination concentration of the target soil, but it can usually be used up to about 20 times the weight of the solidified granulated product. An adsorption effect of nutrient salts can be obtained within this range. Preferably it is 5 times weight or less, More preferably, it is 2 times weight or less.
[0032]
Therefore, a conventionally known construction method can be used as the sand covering method, and it is not particularly limited. However, a method capable of covering sand as uniformly as possible with a thin layer is more suitable. For example, sand is poured into a blind dropping device installed on a trolley, leveled to a predetermined thickness with a sand top leveling device, then the blinds are opened at the same time, and the sand is leveled and the sea floor is flattened. The so-called "floating conveyor + spreader" that is used in combination with the so-called blind-type sand-capping method, single ship or floating conveyor system, which transports the sand-carrying material with the conveyor on the trolley and continuously carries out the sand-clad material with the spreader ship at the tip. It is desirable to use (FCS) type sand-capping method.
[0033]
Hereinafter, the present invention will be specifically described with reference to examples.
The phosphorus quantification method used in the examples is the potassium peroxodisulfate decomposition method described in JIS K 0102 46.3.1, and the ammoniacal nitrogen quantification method is the indophenol blue absorbance of JIS K 0102 42 2. It is a photometric method. The crushing strength was determined by measuring 10 points of solidified granulated material according to JIS Z8841-1993 and taking a simple average of them.
[0034]
(Example 1) Using the coal ash (fly ash) collected from the electrostatic precipitator of the thermal power plant, 90 parts by weight of coal ash, 10 parts by weight of ordinary Portland cement, 3 parts by weight of bentonite, and 21 parts by weight of water were added to the above drum. The mixture was put into a horizontal mixer, and the stirring blade was operated at 83 rpm and the chopper was operated at 1500 rpm for 5 minutes to form a granulated product having a substantially spherical shape and an average particle diameter of about 5 mm. Next, this granulated product was taken out from the mixer and dried at 20 ° C. for 28 days to obtain a desired solidified granulated product. The crushing strength of the solidified granulated product was about 2.1 MPa.
[0035]
Next, using a beaker, a salt solution was prepared by dissolving 50 mg of ammonium chloride, 146 mg of potassium dihydrogen phosphate and 11 mg of potassium dihydrogen phosphate in water to make 1 liter, and 100 g of the solidified granulated product obtained above was added to this salt. The solution was poured into the solution and stirred for about 1 minute, and then allowed to stand at 20 ° C. for 72 hours, after which the supernatant was collected. The salt concentration of this salt solution and supernatant was measured, and the amount of adsorption per unit weight of the solidified granulated product and the removal rate of salts from the salt solution were determined. The experimental results are shown in Table 1. Excellent values were obtained for both phosphorus removal and ammoniacal nitrogen removal. In addition, when the solidified granulated product was added to the salt solution, there was no particular problem and the handleability of the solidified granulated product was good.
[0036]
(Comparative example 1) It replaced with 100g of the solidified granulated material of Example 1, and obtained | required the adsorption amount per unit weight of natural sand and the removal rate of salts similarly to Example 1 except having used 100g of natural sand. It was. The experimental results are shown in Table 1. Although natural sand also has some salt adsorbing ability, it can be seen that its ability is considerably lower than that of solidified granules.
[0037]
(Comparative example 2) It replaces with the solidified granulated material 100g of Example 1, and uses the coal ash 100g as it is, it carries out similarly to Example 1, and sets the adsorption amount per unit weight of coal ash, and the removal rate of salts. Asked. The experimental results are shown in Table 1. When coal ash was introduced, the coal ash repelled water and easily scattered in the air, resulting in a worse working environment. The phosphorus removal rate of coal ash was similar to that of the solidified granulated product, but the removal rate of ammonia nitrogen was inferior.
[0038]
[Table 1]
Figure 0004007890
【The invention's effect】
A water purification material that can be produced at low cost and can adsorb nutrient salts, particularly phosphorus, can be obtained. Moreover, the water purification material which can be manufactured so that it may be suitable for the condition of the bottom quality of the place covered with sand is obtained. Moreover, the water purification material which obtains favorable sand covering performance at low cost can be obtained.

Claims (2)

石炭灰を80重量部以上97重量部以下、固化材を2重量部以上15重量部以下、ベントナイトを2重量部以上5重量部以下の範囲内で含有し、平均粒径が0.1mm〜20mm以下で圧潰強度が2MPa以上の造粒物からなり、かつ水底地盤の被覆用であことを特徴とする水質浄化材料。Contains 80 to 97 parts by weight of coal ash , 2 to 15 parts by weight of solidified material, 2 to 5 parts by weight of bentonite, and an average particle size of 0.1 mm to 20 mm water purification material less in the crushing strength, characterized in that Ri Do from granules above 2 MPa, and Ru coating der of the sea bed soil. 石炭灰を80重量部以上97重量部以下、固化材を2重量部以上15重量部以下、ベントナイトを2重量部以上5重量部以下、水を15重量部以上25重量部以下の範囲内でミキサに投入し、攪拌混合して造粒物を形成し、10℃以上40℃以下で1日〜1ヶ月間乾燥することを特徴とする請求項1に記載の水質浄化材料の製造方法。80 to 97 parts by weight of coal ash, 2 to 15 parts by weight of solidified material, 2 to 5 parts by weight of bentonite, and 15 to 25 parts by weight of water 2. The method for producing a water purification material according to claim 1, wherein the mixture is stirred and mixed to form a granulated product and dried at 10 ° C. to 40 ° C. for 1 day to 1 month.
JP2002278611A 2002-09-25 2002-09-25 Water purification material Expired - Fee Related JP4007890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278611A JP4007890B2 (en) 2002-09-25 2002-09-25 Water purification material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278611A JP4007890B2 (en) 2002-09-25 2002-09-25 Water purification material

Publications (2)

Publication Number Publication Date
JP2004113885A JP2004113885A (en) 2004-04-15
JP4007890B2 true JP4007890B2 (en) 2007-11-14

Family

ID=32273844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278611A Expired - Fee Related JP4007890B2 (en) 2002-09-25 2002-09-25 Water purification material

Country Status (1)

Country Link
JP (1) JP4007890B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136395A (en) * 2005-11-21 2007-06-07 Chugoku Electric Power Co Inc:The Diatom adhesion material and water quality improving method using the same
WO2008001442A1 (en) 2006-06-29 2008-01-03 Createrra Inc. Anion adsorbent, water or soil cleanup agent and process for producing the same
JP4533983B2 (en) * 2007-06-19 2010-09-01 中国電力株式会社 Method for improving the hydrophilicity of river tidal flats where sludge accumulates
US7514002B1 (en) 2007-11-09 2009-04-07 Hokuriku Electric Power Company Method for removing phosphorus and method for reutilizing recovered phosphorus
JP5380131B2 (en) * 2009-03-31 2014-01-08 北陸電力株式会社 Phosphorus adsorbent and method for producing fertilizer using the same
JP5072988B2 (en) * 2010-02-25 2012-11-14 中国電力株式会社 Granules for water purification, water purification method
JP2012223733A (en) * 2011-04-21 2012-11-15 Hiroshima Univ Method for improving ambient water quality
JP6803584B2 (en) * 2016-07-21 2020-12-23 中国電力株式会社 Method for manufacturing coal ash granules and method for improving water bottom
WO2021054116A1 (en) * 2019-09-19 2021-03-25 国立大学法人神戸大学 Phosphorus adsorbent

Also Published As

Publication number Publication date
JP2004113885A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
CN1922117A (en) Construction material based upon a sludge or sludged waste material
JP4007890B2 (en) Water purification material
CN112121770A (en) Sludge ceramsite for heavy metal wastewater treatment and preparation method thereof
CN107417058A (en) A kind of river embankment bed mud is modified the method and its application for preparing ecology filler
JP5582141B2 (en) Treatment agent, method for producing the same, and treatment method
SK279921B6 (en) Process for treating contaminated sediments from water sources
JP3980533B2 (en) Methods for preventing leaching of toxic metals from hazardous metal contaminated waste
JP2005281439A (en) Soil aggregate for improving bottom sediment, bottom sediment improvement method and water bottom ground
JP2004008945A (en) Method of insolubilization of harmful material
JP2010047645A (en) Water-retaining solidifying and conditioning agent for soil
CN109110929B (en) Water purification biological material and preparation method thereof
JP2006263509A (en) Method for fixing substance easily eluted in water, and material obtained by it
JP2004351306A (en) Water cleaning material effectively utilizing shell of foulings
JP2000117020A (en) Contact purifying material and its production
JP2010099655A (en) Sludge granulated product and its production method
JP2007136395A (en) Diatom adhesion material and water quality improving method using the same
JP4393757B2 (en) Zeolite material
JP2004321036A (en) Granular culture soil
CN115159683B (en) Simulated sediment aggregate and preparation method and application thereof
CN115650540B (en) Method for recycling sludge of eutrophic water body and application thereof
WO2012137524A1 (en) Fertilizer and method for producing same
JP4645195B2 (en) Method for producing carbonated solid
CN1705619A (en) Sludge treatment method
JP2003047978A (en) Material for underground water purifying pile, its manufacturing method, and underground water purifying pile
WO2023238922A1 (en) Water purification and greening method and water purification and greening device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4007890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees