JP4006203B2 - Precision analysis method for automatic analyzer and chemical analysis method - Google Patents

Precision analysis method for automatic analyzer and chemical analysis method Download PDF

Info

Publication number
JP4006203B2
JP4006203B2 JP2001249733A JP2001249733A JP4006203B2 JP 4006203 B2 JP4006203 B2 JP 4006203B2 JP 2001249733 A JP2001249733 A JP 2001249733A JP 2001249733 A JP2001249733 A JP 2001249733A JP 4006203 B2 JP4006203 B2 JP 4006203B2
Authority
JP
Japan
Prior art keywords
absorbance
sample
reaction
automatic analyzer
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001249733A
Other languages
Japanese (ja)
Other versions
JP2003057248A (en
Inventor
優 七字
清孝 斉藤
智子 堀越
智憲 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001249733A priority Critical patent/JP4006203B2/en
Publication of JP2003057248A publication Critical patent/JP2003057248A/en
Application granted granted Critical
Publication of JP4006203B2 publication Critical patent/JP4006203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、血液,尿等の生体試料の分析装置に係り、特に短時間に多数の試料の分析が可能な自動分析装置に関する。
【0002】
【従来の技術】
自動分析装置は、多数の検体を同時に扱い、さらに、多成分を迅速に、かつ、高精度で分析処理することができるため、生化学検査はもちろんのこと、免疫血清学検査,製薬関連における研究機関での毒物試験など様々な分野での検査に用いられている。特に病院での使用は、分析対象とする検体が患者の血液や尿の如き生体液試料であり、その分析結果が疾病の診断や治療方針を決定するが故に、分析装置の信頼性および迅速性が常に求められている。このため、分析を行う装置の管理は重要で、装置が正常に動作し、測定が正しく行われているかどうかを確認する方法の1つとして既知濃度の精度管理用試料を測定する方法がある。これは、患者検体の測定前後あるいは測定間などに精度管理用試料を測定し、精度管理用試料の測定値が管理内であれば装置は正常に動作していると判断し、患者検体の測定値を保証するという方法である。従って、精度管理用試料の測定値が管理外の場合には、装置に何らかの異常が発生していることになり、患者検体の測定値は保証できないため、ユーザは分析を停止し、その原因を早急に究明し、対策を行う必要がある。
【0003】
この課題に対して、特開2000−275252号公報には、自動分析装置で測定される光度計の吸光度の変化パターンを観察し、異常の有無、及び異常の原因を推定する方法についての技術が開示されている。
【0004】
【発明が解決しようとする課題】
特開2000−275252号公報に記載の技術は、測定時の吸光度変化パターンをいくつかの異常時の吸光度変化パターンと比較して、異常の有無及び原因の推定を行っている。異常の原因は一つのみであるとは限らず、複数の原因が関係していることもある。このように複数の原因が関係している場合、特開2000−275252号公報に記載の技術では、原因の特定が困難であり、結局、オペレータが測定データを見て、原因を特定する必要がある。この場合、異常データを示す分析項目が単項目か複数項目か、複数項目の場合には、装置動作で共通性があるのかないのか、反応過程吸光度はどうか、キャリブレーションの結果はどうか、定期交換部品の保守はいつ行ったか、サンプルプローブ,試薬プローブ,攪拌機構,洗浄機構等各機構部は正常に動作し、それぞれの部位に汚れや詰まりはないか、さらに、試料や試薬にも問題はないかなど様々なチェックを行ければならない。それゆえ、原因究明や対策に費やす時間がかかり、迅速結果が求められる患者検体の測定結果の出力は遅くなる。また、ユーザの装置に対する熟練度が関係し、初心者が対策に費やす時間は、計り知れない。従来の自動分析装置は、正常な状態であれば、装置のもつ能力を十分に発揮することが可能だが、一度異常が生じた場合には、原因を究明し、対策を行わなければならい。しかし、原因究明は、ユーザの熟練度が関係し、それゆえ、迅速・正確な結果報告が必要とされる患者検体への対応が遅延する結果を招いていた。
【0005】
本発明の目的は、精度管理用試料の測定の異常の有無、及び異常の原因を、例え異常の原因が複数あったとしても、特定することができ、対策を容易にすることにより、作業効率の向上を図ることができる自動分析装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するための本発明の構成は以下の通りである。
(1)被検試料を収容する試料容器と、該試料に添加する試薬を収容する試薬容器と、該試料と該試薬を反応させる反応容器と、該反応容器中での反応を反応液の吸光度変化で測定する光度計を備えた自動分析装置において、既知濃度の精度管理用試料の測光点の任意の測光点間の吸光度差,吸光度変化量,2区間における吸光度変化量の差,吸光度変化量の比率,任意の区間の測光点から算出される吸光度のばらつき、から選ばれた少なくとも一つの吸光度の変化パターンを予め記憶させた記憶部と、該変化パターンと、精度管理用試料の反応過程吸光度変化を比較する演算処理部を備え、更に、比較の結果、該精度管理用試料の測定結果に異常がある場合には、異常の原因を表示するように表示装置を制御する制御部と、該制御部からの指示に応じて異常の原因を表示する表示装置を備えた自動分析装置。
(2)(1)において、前記既知濃度の精度管理用試料における反応過程吸光度および反応過程吸光度から算出される吸光度の変化パターンを装置動作正常時と、異常時の両方について記憶し、更に、異常時における不具合内容を記憶する記憶部を備え、精度管理用試料の反応過程吸光度との適合性を判定する演算処理部と、判定後に精度管理用試料の測定が正常か異常かを表示し、異常の場合に不具合内容と処置方法を表示するように制御する制御部と、を備えた自動分析装置。
(3)(2)において、精度管理用試料の吸光度パターンが、前記記憶した吸光度パターンと適合しなかった場合に、新たに反応過程吸光度のパターンと、その不具合内容を追加登録し記憶する記憶部を備えた自動分析装置。
(4)(1)〜(3)のいずれかにおいて、精度管理用試料の反応過程吸光度が異常と判定された場合に、該当する分析項目の測定を停止するように制御する制御部を備えた自動分析装置。
(5)試料と試薬を混合し、該試料と該試薬の反応を反応液の吸光度変化で測定する化学分析方法の精度管理方法において、既知濃度の精度管理用試料の測光点の任意の測光点間の吸光度差,吸光度変化量,2区間における吸光度変化量の差,吸光度変化量の比率,任意の区間の測光点から算出される吸光度のばらつき、から選ばれた少なくとも一つの吸光度の変化パターンと、精度管理用試料の反応過程吸光度変化を比較し、精度管理用試料の測定結果の異常の有無を判断する化学分析方法の精度管理方法。
【0007】
【発明の実施の形態】
本発明が適用される自動分析装置は、試料中の目的成分と試薬を反応させ、反応液を光学的に測定し、その反応過程吸光度を多点測定する測定部と、画面を通して情報の入出力または条件設定を行い得る操作部を具備する。
【0008】
本発明では、既知濃度の精度管理用試料の基準とする反応過程吸光度Ai(iは、測光開始点〜測光終了点)を記憶する記憶部と、許容する吸光度Li(iは、測光開始点〜測光終了点)を設定するための登録用画面を表示する表示部を備え、さらに、不具合時の異常な反応過程吸光度の変化パターンと、その吸光度変化パターンに対する不具合内容を設定し、それぞれ記憶しておく記憶部と、前記基準とする反応過程吸光度と不具合時の反応過程吸光度の適合性を判定する演算処理部によって異常個所を判定し、その判定内容によって不具合内容を表示する表示部を備えたことを特徴とする。
【0009】
ここで、不具合内容を判定するための反応過程吸光度の変化パターンとは、次の1)〜4)の内容である。
【0010】
1)試薬添加前・後の吸光度差
2)試薬添加後の任意に設定された範囲の吸光度変化量
3)任意に設定された2区間の吸光度変化量の差あるいは比率
4)吸光度のばらつき
なお、吸光度のばらつきは、任意に設定された範囲の各測光点の吸光度から標準偏差(SD)や標準残差(Syx)などの統計処理で算出された数値で表される。
【0011】
以上の内容は、不具合内容によって特定のパターンを示すため、定期的あるいは任意に測定される精度管理用試料の反応過程吸光度に適用することにより、異常時の不良個所の把握が容易となり、迅速な処置および復旧が可能となる。
【0012】
以下に本発明の実施例を図面を用いて説明する。図1に、本発明を適用した自動分析装置の概略構成を示す。図1の分析装置は複数のサンプルカップ1が架設できるサンプルディスク2,試料を所定量採取するサンプルプローブ3を備えたサンプリング機構4,複数の試薬分注を行う試薬ピペッティング機構5a,5bおよび試薬ディスク6a,6b,複数の直接測光用反応容器7を保持した反応ディスク8,攪拌機構9a,9b,反応容器洗浄機構10,光度計11,機構系全体の制御を行わせるための中央処理装置(マイクロコンピュータ)12などを主要に構成されている。複数の反応容器を保持した反応ディスク8は、1サイクル毎に半回転+1反応容器を回転させ一時停止する動作の制御が行われる。すなわち1サイクル毎の停止時に反応ディスク8の反応容器7は反時計方向に1反応容器分ずつに進行した形で停止する。光度計11は複数の検知器を有する多波長光度計が用いられており、光源ランプ13と相対し反応ディスク8が回転状態にあるとき反応容器7の列が光源ランプ13からの光束14を通過するように構成されている。光束14の位置と試料吐出位置15の間には反応容器洗浄機構10が配備されている。さらに波長を選択するマルチプレクサ16,対数変換増幅器17,A/D変換器18,プリンタ19,CRT20,試薬分注機構駆動回路21などから構成され、これらはいずれもインターフェース22を経て中央処理装置12に接続されている。この中央処理装置は機構系全体の制御を含めた装置全体の制御と濃度あるいは酵素活性値演算などのデータ処理も行う。上記の構成における動作原理を以下に説明する。操作パネル23にあるスタートスイッチを押すと反応容器洗浄機構10により反応容器7の洗浄が開始され、さらに水ブランクの測定が行われる。この値は反応容器7で以後測定される吸光度の基準となる。反応ディスク8の1サイクルの動作、すなわち反回転+1反応容器をさせて一時停止する動作の繰り返しにより試料吐出位置15まで進むと、サンプルカップ1はサンプリング位置に移動する。同様に2つの試薬ディスク6a,6bも試薬ピペッティング位置に移動する。この間にサンプリング機構4が動作し、サンプルカップ1から、例えば分析項目Aの試料量をサンプルプローブ3で吸引しその後、反応容器7に吐出する。一方試薬ピペッティング機構はサンプリング機構が反応容器7に試料の吐出を行っているとき、試薬ピペッティング機構5aが動作を開始し試薬ディスク6aに架設した分析項目Aの第一試薬を試薬プローブ24aによって吸引する。ついで試薬プローブ24aは反応容器7上に移動して吸引した試薬を吐出した後、プローブ洗浄槽でプローブの内壁と外壁が洗浄され、次の分析項目Bの第一試薬分注に備える。第一試薬添加後に測光が開始される。測光は反応ディスク8の回転時、反応容器7が光束14を横切ったときに行われる。第一試薬が添加されてから反応ディスクが2回転+2反応容器分回転すると攪拌機構9aが作動して試料と試薬を攪拌する。反応容器7が試料分注位置から25回転+25反応容器分回転した位置、すなわち第二試薬分注位置まで進むと第二試薬が試薬プローブ24bから添加されその後攪拌機構9bにより攪拌が行われる。反応ディスク8によって反応容器7は次々と光束14を横切りそのつど吸光度が測定される。これらの吸光度は10分の反応時間において計34回の測光が行われる。測光を終えた反応容器7は反応容器洗浄機構10より洗浄され次の試料の分析に備える。測定した吸光度は中央処理装置12で濃度あるいは酵素活性値に換算されプリンタ19から分析結果が出力される。
【0013】
次に、図1の分析装置に適用した本発明の具体例の一つを説明する。まず、装置の動作が正常な状態において既知濃度の精度管理用試料をn回多重測定し、その反応過程吸光度から次式(1)および(2)により、各測光点i(i:1〜34)の平均吸光度XAiと各測光点の標準偏差SDiを算出する。
【0014】
XAi=1/n(A1+A2+……+An) …(1)
SDi=(Σ(A−XAi)2/(n−1))1/2 …(2)
次に、求めた平均吸光度XAiを基準吸光度とし、かつ、標準偏差SDiから、図2に示すように各測光点の基準吸光度XAiに対し、±2SDiを許容範囲として記憶部に記憶する。なお、各測光点の基準吸光度と許容範囲を、図3に示すような反応過程モニタ画面25に表示して、基準とする反応過程吸光度と許容範囲の確認を容易とするとともに、ユーザによる変更および設定も可能とする。
【0015】
設定後、定期的あるいは任意に精度管理試料の測定が開始された場合の基準吸光度との判定および処置の仕方を、図4のフローチャートで説明する。まず、精度管理試料の測定が開始される(S1)と、各測光点の実測吸光度Biが測定される(S2)。次に、それぞれの測光点の実測吸光度Biが前記基準吸光度の許容範囲内、すなわち、次式(3)の範囲内かどうかの判定を行う(S3)。
【0016】
(XAi+2SDi)>Bi>(XAi−2SDi) …(3)
この判定により、実測吸光度Biが基準吸光度の許容範囲内の場合は正常と判定し、正常に測定されたことを画面に表示する(S4)。許容範囲外の場合は異常と判定し、異常であることを画面に表示(S5)するとともに、警報等でユーザに知らせる(S6)。
【0017】
続いて、予め登録した装置動作正常時と異常時の既知濃度の精度管理用試料における反応過程吸光度および反応過程吸光度から算出される吸光度の変化パターンと、定期的あるいは任意に測定される精度管理用試料の反応過程吸光度との適合性を判定して、異常時の反応過程吸光度および反応過程吸光度から算出される吸光度の変化パターンと一致した場合に、その不具合内容と処置方法を表示する例を次に示す。
【0018】
まず最初に、生体試料中の成分であるLD(乳酸脱水素酵素)の装置動作正常時と異常時の反応過程吸光度を図5に示す。LDの分析は、LDが補酵素NADH(β−ニコチンアミドアデニンジヌクレオチド還元型)の存在下で、基質であるピルビン酸を乳酸に変換する反応を触媒し、同時に、波長340nmに吸収のあるNADHは酸化され、波長340nmに吸収のないNAD(β−ニコチンアミドアデニンジヌクレオチド酸化型)に変換されるため、このときの減少速度を波長340nmで測定して、LDの活性値を求める方法である。通常、分析試薬は2試薬系で、第1試薬に補酵素NADHが、第2試薬に基質ピルビン酸が含まれている。
【0019】
したがって、装置が正常に動作している時の既知濃度の精度管理試料における反応過程吸光度は、図5の正常時に示すように、検体が分注され、続いて第1試薬が添加されると、第1試薬中の補酵素NADH自体の吸収で、約1000(Abs.×104)前後の吸光度になる。ついで、検体中の妨害成分である内因性ピルビン酸による反応で吸光度が減少し、その後ピルビンが除去されて吸光度は一定になる。次に、第2試薬で基質ピルビン酸が添加されると、添加直後の吸光度は、補酵素NADHが第2試薬で希釈されるため、吸光度は7000(Abs.×104)前後に低下し、ついで、精度管理試料のLDの活性値に伴って、基質ピルビン酸が乳酸に変化し、NADHがNADに変換され吸光度は一定の速度で減少する。
【0020】
ところが、装置の状態が異常な場合、例えば図5のサンプルプローブ詰まり時の反応過程吸光度は、サンプルが分注されないためにサンプル中の内因性物質による反応がなく、第1試薬添加直後の吸光度は試薬中のNADHの吸収のみで、変化せず一定の吸光度を示すのみである。さらに、サンプルの乳びなど、サンプル自体の色による吸収もなくなるため、サンプルが正常に分注されたときと比較して吸光度が低値となる傾向がある。また、第1試薬プローブ詰まりの場合は、測光に必要な反応液量に満たないため、光は空気層を通過し、吸光度は0近辺の数値になる。さらに、第2試薬プローブ詰まりの場合は、第2試薬添加による補酵素NADHの希釈がないために、吸光度は低下せず、さらに、基質ピルビン酸が添加されないため、反応は起きず、吸光度の減少反応は起きない。
【0021】
この他、光源ランプの劣化や光学セルの汚れなど測光上に問題があった場合は、反応過程吸光度の各測光点全てあるいは一部の測光点の吸光度がばらつき、反応が直線的あるいは滑らかに進行しない傾向となる。したがって、図6に示すように、
1)試薬添加後の任意に設定された範囲の吸光度変化量
2)試薬添加前・後の吸光度差
3)任意に設定された2区間の吸光度変化量の差あるいは比率
4)吸光度のばらつき
等の各種吸光度パターンと、それぞれのパターンの値を算出するためのチェックポイント、すなわち測光点の設定と、そのときの基準とする吸光度、さらに、それぞれの許容範囲を設定し、設定後、図7に示すように、不良要因別に吸光度パターンを設定することにより、測定した精度管理試料の反応過程吸光度、すなわち実測吸光度Biから、前記吸光度パターンを算出し、前記設定した正常時および不具合時の吸光度パターンと比較することによって、不良要因を判定し、内容を画面に表示することが可能となる。
【0022】
例えば、図5の例についていえば、サンプルプローブ詰まり時の吸光度パターンは、以下の如くになる。
パターン1
測定ポイント1〜5において
1000ABS(×104)>(B1−B5) …(4)
パターン2
測定ポイント6〜16において
11000ABS(×104)<Bi …(5)
(Biは実測吸光度)
パターン3
測定ポイント17〜34において
Ai+200ABS(×104)<Bi …(6)
(Aiは基準吸光度、Biは実測吸光度)
パターン4
測定ポイント20〜34において
80ABS/min(×104)>|ΔB| …(7)
(ΔBは吸光度変化量)
また、第1試薬プローブが詰まった場合の吸光度パターンは、
パターン1
測定ポイント1〜16において
200ABS(×104)>Bi …(8)
(Biは実測吸光度)
パターン2
測定ポイント17〜34において
Bi<6000ABS(×104) …(9)
(Biは実測吸光度)
パターン3
測定ポイント20〜34において
80ABS/min(×104)>|ΔB| …(10)
(ΔBは吸光度変化量)
さらに、第2試薬プローブが詰まった場合の吸光度パターンは、
パターン1
測定ポイント1〜16において
Ai−200<Bi<Ai+200ABS(×104) …(11)
(Aiは基準吸光度、Biは実測吸光度)
パターン2
測定ポイント17〜34において
Ai+200ABS(×104)<Bi …(12)
(Aiは基準吸光度、Biは実測吸光度)
パターン3
測定ポイント20〜34において
80ABS/min(×104)>|ΔB| …(13)
(ΔBは吸光度変化量)
パターン4
測定ポイント16と17の吸光度差において
800ABS(×104)>|B16−B17| …(14)
(Bは実測吸光度)
以上のように、各種吸光度パターンを不良要因別に設定し、予め登録しておくことにより、定期的あるいは任意に測定する精度管理試料の反応過程吸光度から同様に算出した吸光度パターンと、それぞれの不具合内容に対する吸光度パターンとを比較判定し、その適合性によって、不具合の原因および処置のしかたを図8の例のように表示することが可能となる。また、上記判定後、いずれの吸光度パターンとも一致しなかった場合には、ユーザに異常の原因を推定できるように、問題がなかった個所の表示、正常時の吸光度許容範囲から外れた測定ポイント、外れた吸光度差の表示等を行い、その時の吸光度パターン記憶しておき、次回の原因推定に役立てるようにしておく。
【0023】
以上の実施形態を図9のフローチャートを用いて説明する。
【0024】
まず、ユーザの指示により精度管理試料の測定が開始され(S11)ると、各測光点の吸光度から前記吸光度パターンを算出し(S12)、次に、予め登録した正常時および各種不具合時の反応過程吸光度のパターンと比較して、吸光度パターンが一致するかどか判定する(S13)。判定後、吸光度パターンが一致した場合は、吸光度パターンが正常か異常時かを判定し(S14)、正常時の吸光度パターンと一致した場合は、正常であることを表示し(S15)、異常時の吸光度パターンと一致した場合は、該当する不良内容を表示してユーザに知らせる(S16)。また、予め登録されている反応過程の吸光度パターンのいずれにも一致しなかった場合には、ユーザが反応過程の吸光度パターンを登録するかどうか判断する手段を設け(S17)、登録を行う場合には不良内容と反応過程吸光度のパターンをユーザが入力する(S18)。これにより、装置は、不良内容と反応過程吸光度のパターンを記憶する(S19)。
【0025】
以上の実施例によって、ユーザは、異常が生じた場合に早期に発見することができ、さらに、異常個所を表示することで、その後の対策も迅速に行うことができるようになり、患者検体の信頼性の高い分析結果を出力することができるようになる。この他、異常が判明した場合に、該当する分析項目の測定を停止する制御部を設けることによって、サンプルや試薬の無駄を無くすことができる。
【0026】
【発明の効果】
本発明によれば、既知濃度の精度管理試料の測定によって、原因の特定が困難な測定値ではなく、装置の動作状態が良く反映される測定値換算前の吸光度、すなわち、反応過程吸光度により装置状態を監視するため、異常が生じた場合の早期発見につながり、また、異常原因の特定が可能なため、迅速な対応および処置を行うことができる。
【図面の簡単な説明】
【図1】本発明を適用した自動分析装置の概略構成を示す図。
【図2】本発明における基準吸光度と許容範囲の一例を示す図。
【図3】本発明における反応過程モニタ画面の一例を示す図。
【図4】本発明における第1の実施形態の操作フローの一例を示す図。
【図5】本発明におけるLDの正常および異常時の反応過程吸光度の一例を示す図。
【図6】本発明における反応過程吸光度との適合性をチェックの一例を示す図。
【図7】本発明における不良内容パターン表示の一例を示す図。
【図8】本発明における精度管理状態の一例を示す図。
【図9】本発明における第2の実施形態の操作フローの一例を示す図。
【符号の説明】
1…サンプルカップ、2…サンプルディスク、3…サンプルプローブ、4…サンプリング機構、5…試薬ピペッティング機構、6…試薬ディスク、7…直接測光用反応容器、8…反応容器、9…攪拌機構、10…反応容器洗浄機構、11…光度計、12…中央処理装置、13…光源ランプ、14…光束、15…試料吐出位置、16…マルチプレクサ、17…対数変換増幅器、18…A/D変換器、19…プリンタ、20…CRT、21…試薬分注機構駆動回路、22…インターフェース、23…操作パネル、24a…第一試薬プローブ、24b…第二試薬プローブ、25…既知濃度の精度管理用試料の基準反応過程モニタ画面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an analyzer for biological samples such as blood and urine, and more particularly to an automatic analyzer capable of analyzing a large number of samples in a short time.
[0002]
[Prior art]
The automatic analyzer can handle a large number of samples at the same time, and can analyze and process multiple components quickly and with high accuracy. It is used for inspections in various fields such as intoxication tests at institutions. Especially in hospital use, the analysis target is a biological fluid sample such as blood or urine of the patient, and the analysis results determine the diagnosis and treatment policy of the disease. Is always sought. For this reason, management of an apparatus that performs analysis is important, and there is a method of measuring an accuracy control sample having a known concentration as one of methods for confirming whether the apparatus operates normally and measurement is performed correctly. This is because the sample for quality control is measured before and after the measurement of the patient sample or between measurements, and if the measured value of the sample for quality control is within the control, the device is judged to be operating normally, and the measurement of the patient sample is performed. This is a method of guaranteeing the value. Therefore, if the measurement value of the quality control sample is out of control, an error has occurred in the device, and the measurement value of the patient sample cannot be guaranteed. It is necessary to investigate immediately and take countermeasures.
[0003]
In response to this problem, Japanese Patent Laid-Open No. 2000-275252 discloses a technique for observing a change pattern of absorbance of a photometer measured by an automatic analyzer and estimating the presence or absence of an abnormality and the cause of the abnormality. It is disclosed.
[0004]
[Problems to be solved by the invention]
The technique described in Japanese Patent Application Laid-Open No. 2000-275252 compares the change in absorbance at the time of measurement with the change in absorbance at the time of some abnormalities to estimate the presence and cause of the abnormality. The cause of abnormality is not limited to one, and a plurality of causes may be involved. When a plurality of causes are related in this way, it is difficult to identify the cause with the technique described in Japanese Patent Application Laid-Open No. 2000-275252, and eventually the operator needs to identify the cause by looking at measurement data. is there. In this case, if the analysis item indicating abnormal data is a single item or multiple items, or if there are multiple items, whether there is commonality in the operation of the device, what is the absorbance in the reaction process, what is the result of the calibration, periodic exchange When the parts were maintained, the mechanical parts such as the sample probe, reagent probe, agitation mechanism, and washing mechanism worked normally, and there was no dirt or clogging in each part, and there was no problem with the sample or reagent. I have to check various things. Therefore, it takes time to investigate the cause and take countermeasures, and the output of the measurement result of the patient specimen for which a quick result is required is delayed. In addition, the skill level of the user's device is related, and the time that a beginner spends on countermeasures is immeasurable. Conventional automatic analyzers can fully demonstrate their capabilities when they are in a normal state, but once an abnormality occurs, the cause must be investigated and countermeasures taken. However, the investigation of the cause is related to the skill level of the user, and therefore results in a delay in dealing with patient specimens that require quick and accurate result reporting.
[0005]
The object of the present invention is to determine whether there is an abnormality in the measurement of a quality control sample, and the cause of the abnormality, even if there are multiple causes of the abnormality. It is an object of the present invention to provide an automatic analyzer capable of improving the performance.
[0006]
[Means for Solving the Problems]
The configuration of the present invention for achieving the above object is as follows.
(1) A sample container for storing a test sample, a reagent container for storing a reagent to be added to the sample, a reaction container for reacting the sample and the reagent, and the reaction in the reaction container for absorbance of the reaction solution In an automatic analyzer equipped with a photometer that measures the change, the difference in absorbance between the photometry points of the sample for quality control of known concentration, the change in absorbance, the difference in absorbance change between the two sections, the change in absorbance A storage unit that stores in advance at least one absorbance change pattern selected from the ratio of the above, a variation in absorbance calculated from a photometric point in an arbitrary interval, and the reaction process absorbance of the sample for quality control, the change pattern An arithmetic processing unit for comparing changes, and if there is an abnormality in the measurement result of the quality control sample as a result of the comparison, a control unit for controlling the display device to display the cause of the abnormality; and From the control An automatic analyzer having a display device for displaying the cause of the abnormality in accordance with the shown.
(2) In (1), the reaction process absorbance and the absorbance change pattern calculated from the reaction process absorbance in the accuracy control sample of the known concentration are stored for both normal and abnormal operation of the apparatus. A memory unit that stores the details of malfunctions at the time, an arithmetic processing unit that determines the compatibility with the reaction process absorbance of the quality control sample, and displays whether the measurement of the quality control sample is normal or abnormal after the determination. And a control unit that controls to display the content of the defect and the treatment method.
(3) In (2), when the absorbance pattern of the quality control sample does not match the stored absorbance pattern, a storage unit that newly registers and stores the reaction process absorbance pattern and the contents of the defect Automatic analyzer equipped with.
(4) In any one of (1) to (3), when the reaction process absorbance of the quality control sample is determined to be abnormal, a control unit is provided to control to stop the measurement of the corresponding analysis item. Automatic analyzer.
(5) In the accuracy management method of the chemical analysis method in which the sample and the reagent are mixed and the reaction between the sample and the reagent is measured by the change in absorbance of the reaction solution, an arbitrary photometry point of the photometry point of the sample for accuracy control at a known concentration At least one absorbance change pattern selected from the difference in absorbance between them, the change in absorbance, the difference in absorbance change between the two sections, the ratio of the absorbance change, and the variation in absorbance calculated from the photometric point in any section An accuracy management method of a chemical analysis method for comparing the change in absorbance of the reaction process of the accuracy control sample and determining whether there is an abnormality in the measurement result of the accuracy control sample.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The automatic analyzer to which the present invention is applied has a measurement unit that reacts a target component in a sample with a reagent, optically measures a reaction liquid, and measures the reaction process absorbance at multiple points, and inputs and outputs information through a screen. Alternatively, an operation unit capable of setting conditions is provided.
[0008]
In the present invention, a storage unit for storing a reaction process absorbance Ai (i is a photometric start point to a photometric end point) as a reference for a quality control sample having a known concentration, and an allowable absorbance Li (i is a photometric start point to It includes a display unit that displays a registration screen for setting the metering end point, and also sets the abnormal reaction process absorbance change pattern at the time of failure, and the failure content for that absorbance change pattern, and stores each A storage unit, and a display unit for determining an abnormal part by an arithmetic processing unit for determining compatibility between the reaction process absorbance as the reference and the reaction process absorbance at the time of the defect, and displaying the content of the defect according to the determination content It is characterized by.
[0009]
Here, the change pattern of the reaction process absorbance for determining the content of the defect is the content of the following 1) to 4).
[0010]
1) Absorbance difference before and after reagent addition 2) Absorbance change amount in arbitrarily set range after reagent addition 3) Difference or ratio of absorbance change in two arbitrarily set sections 4) Absorbance variation The variation in absorbance is represented by a numerical value calculated by statistical processing such as standard deviation (SD) and standard residual (Syx) from the absorbance at each photometric point in an arbitrarily set range.
[0011]
Since the above shows a specific pattern depending on the content of the defect, applying it to the reaction process absorbance of a quality control sample that is measured periodically or arbitrarily makes it easy to identify the defective part at the time of abnormality, and promptly Treatment and recovery are possible.
[0012]
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration of an automatic analyzer to which the present invention is applied. 1 includes a sample disk 2 on which a plurality of sample cups 1 can be installed, a sampling mechanism 4 having a sample probe 3 for collecting a predetermined amount of sample, a reagent pipetting mechanism 5a, 5b for dispensing a plurality of reagents, and a reagent. Central processing unit for controlling the disks 6a and 6b, the reaction disk 8 holding a plurality of reaction vessels 7 for direct photometry, the stirring mechanisms 9a and 9b, the reaction vessel cleaning mechanism 10, the photometer 11, and the entire mechanism system ( Microcomputer) 12 and the like are mainly configured. The reaction disk 8 holding a plurality of reaction vessels controls the operation of rotating and temporarily stopping the half rotation + 1 reaction vessel every cycle. That is, at the time of stopping every cycle, the reaction vessel 7 of the reaction disk 8 stops in the form of proceeding by one reaction vessel in the counterclockwise direction. As the photometer 11, a multi-wavelength photometer having a plurality of detectors is used. When the reaction disk 8 is in a rotating state as opposed to the light source lamp 13, the row of reaction vessels 7 passes the light beam 14 from the light source lamp 13. Is configured to do. A reaction container cleaning mechanism 10 is disposed between the position of the light beam 14 and the sample discharge position 15. Further, it comprises a multiplexer 16 for selecting a wavelength, a logarithmic conversion amplifier 17, an A / D converter 18, a printer 19, a CRT 20, a reagent dispensing mechanism drive circuit 21, etc., all of which are connected to the central processing unit 12 via an interface 22. It is connected. This central processing unit performs control of the entire device including control of the entire mechanical system and data processing such as calculation of concentration or enzyme activity value. The operation principle in the above configuration will be described below. When the start switch on the operation panel 23 is pressed, the reaction vessel 7 starts to be washed by the reaction vessel washing mechanism 10, and the water blank is further measured. This value is a reference for the absorbance measured in the reaction vessel 7 thereafter. When the reaction disk 8 advances to the sample discharge position 15 by repeating the operation of one cycle of the reaction disk 8, that is, the operation of temporarily stopping the counter-rotation + 1 reaction container, the sample cup 1 moves to the sampling position. Similarly, the two reagent disks 6a and 6b are also moved to the reagent pipetting position. During this time, the sampling mechanism 4 operates, and the sample amount of, for example, the analysis item A is sucked from the sample cup 1 by the sample probe 3 and then discharged to the reaction container 7. On the other hand, in the reagent pipetting mechanism, when the sampling mechanism is discharging the sample to the reaction vessel 7, the reagent pipetting mechanism 5a starts operating, and the first reagent of the analysis item A constructed on the reagent disk 6a is moved by the reagent probe 24a. Suction. Next, the reagent probe 24a moves onto the reaction vessel 7 and discharges the sucked reagent, and then the inner wall and outer wall of the probe are washed in the probe washing tank to prepare for the first reagent dispensing of the next analysis item B. Photometry is started after the first reagent is added. Photometry is performed when the reaction vessel 7 crosses the light beam 14 when the reaction disk 8 rotates. When the reaction disk rotates twice by two reaction containers after the first reagent is added, the stirring mechanism 9a is activated to stir the sample and the reagent. When the reaction container 7 moves from the sample dispensing position to the position rotated by 25 rotations + 25 reaction containers, that is, to the second reagent dispensing position, the second reagent is added from the reagent probe 24b and then stirred by the stirring mechanism 9b. By the reaction disk 8, the reaction vessel 7 successively traverses the luminous flux 14, and the absorbance is measured each time. These absorbances are measured 34 times in total for a reaction time of 10 minutes. After completion of photometry, the reaction vessel 7 is washed by the reaction vessel washing mechanism 10 to prepare for the next sample analysis. The measured absorbance is converted into a concentration or enzyme activity value by the central processing unit 12 and the analysis result is output from the printer 19.
[0013]
Next, one specific example of the present invention applied to the analyzer of FIG. 1 will be described. First, an accuracy control sample with a known concentration is multiplexed n times in a normal state of the operation of the apparatus, and each photometric point i (i: 1 to 34) is obtained from the reaction process absorbance according to the following equations (1) and (2). ) Average absorbance XAi and standard deviation SDi of each photometric point.
[0014]
XAi = 1 / n (A1 + A2 + ... + An) (1)
SDi = (Σ (A−XAi) 2 / (n−1)) 1/2 (2)
Next, the obtained average absorbance XAi is set as a reference absorbance, and from the standard deviation SDi, ± 2SDi is stored in the storage unit as an allowable range with respect to the reference absorbance XAi at each photometric point as shown in FIG. The reference absorbance and allowable range of each photometric point are displayed on the reaction process monitor screen 25 as shown in FIG. 3 to facilitate confirmation of the reference reaction process absorbance and allowable range, Setting is also possible.
[0015]
The method of determination and treatment with reference absorbance when measurement of a quality control sample is started periodically or arbitrarily after setting will be described with reference to the flowchart of FIG. First, when measurement of a quality control sample is started (S1), the measured absorbance Bi at each photometric point is measured (S2). Next, it is determined whether or not the measured absorbance Bi at each photometry point is within the allowable range of the reference absorbance, that is, within the range of the following equation (3) (S3).
[0016]
(XAi + 2SDi)>Bi> (XAi-2SDi) (3)
As a result of this determination, if the measured absorbance Bi is within the allowable range of the reference absorbance, it is determined to be normal, and the fact that it has been measured normally is displayed on the screen (S4). If it is outside the allowable range, it is determined as abnormal, and the abnormality is displayed on the screen (S5), and the user is notified by an alarm or the like (S6).
[0017]
Subsequently, for pre-registered device normality and abnormalities of known concentration accuracy control sample reaction process absorbance, absorbance change pattern calculated from reaction process absorbance, and periodically or arbitrarily measured accuracy control The following is an example of determining the compatibility with the reaction process absorbance of the sample, and displaying the details of the failure and the treatment method when it matches the reaction process absorbance at the time of abnormality and the absorbance change pattern calculated from the reaction process absorbance. Shown in
[0018]
First, FIG. 5 shows the absorbance of the reaction process during normal and abnormal apparatus operation of LD (lactate dehydrogenase), which is a component in a biological sample. In the analysis of LD, in the presence of the coenzyme NADH (β-nicotinamide adenine dinucleotide reduced form), LD catalyzes the reaction of converting the substrate pyruvic acid into lactic acid, and simultaneously absorbs NADH at a wavelength of 340 nm. Is oxidized and converted to NAD (β-nicotinamide adenine dinucleotide oxidation type) having no absorption at a wavelength of 340 nm, and the rate of decrease at this time is measured at a wavelength of 340 nm to determine the activity value of LD. . Usually, the analysis reagent is a two-reagent system, and the first reagent contains coenzyme NADH and the second reagent contains the substrate pyruvic acid.
[0019]
Therefore, the reaction process absorbance in the quality control sample of known concentration when the apparatus is operating normally, as shown in the normal state of FIG. 5, when the specimen is dispensed and subsequently the first reagent is added, Absorption of the coenzyme NADH itself in the first reagent results in an absorbance of about 1000 (Abs. × 10 4 ). Next, the absorbance is reduced by the reaction with endogenous pyruvic acid, which is an interfering component in the specimen, and then pyrubin is removed to make the absorbance constant. Next, when the substrate pyruvic acid is added with the second reagent, the absorbance immediately after the addition decreases to around 7000 (Abs. × 10 4 ) because the coenzyme NADH is diluted with the second reagent, Next, the substrate pyruvic acid changes to lactic acid with the LD activity value of the quality control sample, NADH is converted to NAD, and the absorbance decreases at a constant rate.
[0020]
However, when the state of the apparatus is abnormal, for example, the reaction process absorbance at the time of clogging of the sample probe in FIG. 5 is that the sample is not dispensed, so there is no reaction due to endogenous substances in the sample, and the absorbance immediately after the addition of the first reagent is Only the absorption of NADH in the reagent only shows a constant absorbance without change. Furthermore, since the absorption due to the color of the sample itself such as the chyle of the sample is also eliminated, the absorbance tends to be lower than that when the sample is normally dispensed. In the case of clogging with the first reagent probe, since the amount of the reaction solution necessary for photometry is not reached, light passes through the air layer, and the absorbance becomes a value near zero. Furthermore, in the case of clogging with the second reagent probe, since the coenzyme NADH is not diluted by the addition of the second reagent, the absorbance does not decrease, and further, since no substrate pyruvic acid is added, no reaction occurs and the absorbance decreases. There is no reaction.
[0021]
In addition, if there is a problem in photometry such as deterioration of the light source lamp or contamination of the optical cell, the absorbance at all or some of the photometry points in the reaction process varies, and the reaction proceeds linearly or smoothly. Tend to not. Therefore, as shown in FIG.
1) Absorbance change in arbitrarily set range after addition of reagent 2) Absorbance difference before and after addition of reagent 3) Difference or ratio of absorbance change in two sections set arbitrarily 4) Absorbance variation, etc. FIG. 7 shows various absorbance patterns, check points for calculating the values of the respective patterns, that is, photometry points, absorbances used as references, and allowable ranges. As described above, by setting an absorbance pattern for each defect factor, the absorbance pattern is calculated from the reaction process absorbance of the measured quality control sample, that is, the actually measured absorbance Bi, and compared with the set normality and malfunction absorbance patterns. By doing so, it becomes possible to determine the cause of the failure and display the content on the screen.
[0022]
For example, in the example of FIG. 5, the absorbance pattern when the sample probe is clogged is as follows.
Pattern 1
1000 ABS (× 10 4 )> (B1-B5) at measurement points 1 to 5 (4)
Pattern 2
At measurement points 6 to 16, 11000 ABS (× 10 4 ) <Bi (5)
(Bi is the measured absorbance)
Pattern 3
At measurement points 17 to 34, Ai + 200 ABS (× 10 4 ) <Bi (6)
(Ai is the standard absorbance, Bi is the measured absorbance)
Pattern 4
80 ABS / min (× 10 4 )> | ΔB | at the measurement points 20 to 34 (7)
(ΔB is the amount of change in absorbance)
The absorbance pattern when the first reagent probe is clogged is:
Pattern 1
200 ABS (× 10 4 )> Bi at measurement points 1 to 16 (8)
(Bi is the measured absorbance)
Pattern 2
At measurement points 17 to 34, Bi <6000 ABS (× 10 4 ) (9)
(Bi is the measured absorbance)
Pattern 3
80 ABS / min (× 10 4 )> | ΔB | at the measurement points 20 to 34 (10)
(ΔB is the amount of change in absorbance)
Furthermore, the absorbance pattern when the second reagent probe is clogged is
Pattern 1
At measurement points 1 to 16, Ai−200 <Bi <Ai + 200 ABS (× 10 4 ) (11)
(Ai is the standard absorbance, Bi is the measured absorbance)
Pattern 2
At measurement points 17 to 34, Ai + 200 ABS (× 10 4 ) <Bi (12)
(Ai is the standard absorbance, Bi is the measured absorbance)
Pattern 3
80 ABS / min (× 10 4 )> | ΔB | at the measurement points 20 to 34 (13)
(ΔB is the amount of change in absorbance)
Pattern 4
In the absorbance difference between the measurement points 16 and 17, 800 ABS (× 10 4 )> | B16−B17 | (14)
(B is measured absorbance)
As described above, by setting various absorbance patterns for each failure factor and registering them in advance, the absorbance pattern calculated in the same way from the reaction process absorbance of the quality control sample measured periodically or arbitrarily, and the contents of each defect It is possible to display the cause of the failure and how to deal with it as shown in the example of FIG. In addition, after the above determination, if it does not match any absorbance pattern, so that the cause of the abnormality can be estimated to the user, the display of the location where there was no problem, the measurement point outside the normal absorbance tolerance range, The deviation difference in absorbance is displayed, and the absorbance pattern at that time is stored so that it can be used for the next cause estimation.
[0023]
The above embodiment will be described with reference to the flowchart of FIG.
[0024]
First, when the measurement of the quality control sample is started by the user's instruction (S11), the absorbance pattern is calculated from the absorbance at each photometric point (S12), and then the response at the time of normal registration and various malfunctions registered in advance. It is determined whether or not the absorbance pattern matches with the process absorbance pattern (S13). After the determination, if the absorbance pattern matches, it is determined whether the absorbance pattern is normal or abnormal (S14). If the absorbance pattern matches the normal absorbance pattern, it is displayed that the absorbance pattern is normal (S15). If it matches the absorbance pattern, the corresponding defect content is displayed to inform the user (S16). In addition, when it does not match any of the absorbance patterns of the reaction process registered in advance, a means for determining whether or not the user registers the absorbance pattern of the reaction process is provided (S17). The user inputs a defect content and a reaction process absorbance pattern (S18). Thereby, the apparatus stores the defect content and the reaction process absorbance pattern (S19).
[0025]
According to the above embodiment, when an abnormality occurs, the user can detect early, and further, by displaying the abnormal part, the subsequent measures can be quickly performed, and the patient sample can be quickly detected. A highly reliable analysis result can be output. In addition, waste of samples and reagents can be eliminated by providing a control unit that stops measurement of the corresponding analysis item when an abnormality is found.
[0026]
【The invention's effect】
According to the present invention, it is not the measurement value whose cause is difficult to be determined by the measurement of the quality control sample of known concentration, but the absorbance before conversion of the measured value that reflects the operating state of the device well, that is, the reaction process absorbance. Since the state is monitored, it leads to early detection when an abnormality occurs, and the cause of the abnormality can be identified, so that quick response and treatment can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an automatic analyzer to which the present invention is applied.
FIG. 2 is a diagram showing an example of a reference absorbance and an allowable range in the present invention.
FIG. 3 is a diagram showing an example of a reaction process monitor screen in the present invention.
FIG. 4 is a diagram showing an example of an operation flow according to the first embodiment of the present invention.
FIG. 5 is a diagram showing an example of reaction process absorbance when LD is normal and abnormal in the present invention.
FIG. 6 is a diagram showing an example of checking compatibility with reaction process absorbance in the present invention.
FIG. 7 is a diagram showing an example of a defect content pattern display in the present invention.
FIG. 8 is a diagram showing an example of a quality control state in the present invention.
FIG. 9 is a diagram showing an example of an operation flow according to the second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sample cup, 2 ... Sample disk, 3 ... Sample probe, 4 ... Sampling mechanism, 5 ... Reagent pipetting mechanism, 6 ... Reagent disk, 7 ... Reaction container for direct photometry, 8 ... Reaction container, 9 ... Stirring mechanism, DESCRIPTION OF SYMBOLS 10 ... Reaction container washing | cleaning mechanism, 11 ... Photometer, 12 ... Central processing unit, 13 ... Light source lamp, 14 ... Light beam, 15 ... Sample discharge position, 16 ... Multiplexer, 17 ... Logarithmic conversion amplifier, 18 ... A / D converter , 19 ... Printer, 20 ... CRT, 21 ... Reagent dispensing mechanism drive circuit, 22 ... Interface, 23 ... Operation panel, 24a ... First reagent probe, 24b ... Second reagent probe, 25 ... Sample for quality control of known concentration Standard reaction process monitor screen.

Claims (4)

被検試料を収容する試料容器と、該試料に添加する試薬を収容する試薬容器と、該試料と該試薬を反応させる反応容器と、該反応容器中での反応を反応液の吸光度変化で測定する光度計を備えた自動分析装置において、
装置の動作が正常な状態において既知濃度の精度管理用試料を多重測定し、その反応過程吸光度から各測光点毎の平均吸光度を算出する算出手段と、
該算出手段で算出された各測光点毎の平均吸光度に基づいて作成された複数の不良要因別の吸光度パターンを記憶する記憶部と、
該記憶部に記憶された吸光度パターンと、定期的あるいは任意に測定された精度管理試料の反応過程吸光度変化パターンを比較して不良要因を判定する演算処理部と、
を備えたことを特徴とする自動分析装置。
A sample container for storing a test sample, a reagent container for storing a reagent to be added to the sample, a reaction container for reacting the sample with the reagent, and measuring a reaction in the reaction container by a change in absorbance of the reaction solution In an automatic analyzer equipped with a photometer
A calculation means for multiply measuring a sample for quality control at a known concentration in a state where the operation of the apparatus is normal, and calculating an average absorbance for each photometric point from the reaction process absorbance;
A storage unit for storing a plurality of absorbance patterns for each defect factor created based on the average absorbance for each photometric point calculated by the calculation unit;
An arithmetic processing unit that compares the absorbance pattern stored in the storage unit with a reaction process absorbance change pattern of a quality control sample measured periodically or arbitrarily to determine a failure factor;
An automatic analyzer characterized by comprising:
請求項1記載の自動分析装置において、
前記演算処理部での判定の結果、該精度管理用試料の測定結果に異常がある場合には、不良要因を表示するように表示装置を制御する制御部と、
を備えたことを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
As a result of the determination in the arithmetic processing unit, when there is an abnormality in the measurement result of the quality control sample, a control unit that controls the display device to display the cause of failure;
An automatic analyzer characterized by comprising:
請求項1記載の自動分析装置において、
精度管理用試料の吸光度パターンが、前記記憶部に記憶した吸光度パターンと適合しなかった場合、新たに反応過程吸光度のパターンと、その不良要因を前記記憶部に記憶させる機能を備えたことを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
When the absorbance pattern of the quality control sample does not match the absorbance pattern stored in the storage unit, a function of newly storing the reaction process absorbance pattern and its failure factor in the storage unit is provided. An automatic analyzer.
請求項1〜3のいずれかに記載の自動分析装置において、
精度管理用試料の反応過程吸光度が異常と判定された場合に、該当する分析項目の測定を停止するように制御する制御部を備えたことを特徴とする自動分析装置。
In the automatic analyzer in any one of Claims 1-3,
An automatic analyzer comprising a control unit that controls to stop measurement of a corresponding analysis item when a reaction process absorbance of a sample for quality control is determined to be abnormal.
JP2001249733A 2001-08-21 2001-08-21 Precision analysis method for automatic analyzer and chemical analysis method Expired - Lifetime JP4006203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001249733A JP4006203B2 (en) 2001-08-21 2001-08-21 Precision analysis method for automatic analyzer and chemical analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001249733A JP4006203B2 (en) 2001-08-21 2001-08-21 Precision analysis method for automatic analyzer and chemical analysis method

Publications (2)

Publication Number Publication Date
JP2003057248A JP2003057248A (en) 2003-02-26
JP4006203B2 true JP4006203B2 (en) 2007-11-14

Family

ID=19078693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001249733A Expired - Lifetime JP4006203B2 (en) 2001-08-21 2001-08-21 Precision analysis method for automatic analyzer and chemical analysis method

Country Status (1)

Country Link
JP (1) JP4006203B2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3840450B2 (en) * 2002-12-02 2006-11-01 株式会社日立ハイテクノロジーズ Analysis equipment
JP2005127757A (en) * 2003-10-22 2005-05-19 Hitachi High-Technologies Corp Automatic analyzer
JP2005351690A (en) * 2004-06-09 2005-12-22 Hitachi Sci Syst Ltd Multilaned electrophoresis analysis method, electrophoresis analyzer used therefor, multilaned electrophoresis analysis program, and medium
JP2006125953A (en) * 2004-10-28 2006-05-18 Jeol Ltd Biochemical automatic analyzer
JP4825442B2 (en) * 2005-04-15 2011-11-30 株式会社日立ハイテクノロジーズ Accuracy control method of automatic analyzer for clinical examination, and automatic analyzer
JP4631687B2 (en) 2005-12-09 2011-02-16 株式会社島津製作所 Data processing equipment for measuring equipment
JP4525624B2 (en) * 2006-03-23 2010-08-18 日立化成工業株式会社 Automatic analyzer
JP2007292495A (en) * 2006-04-21 2007-11-08 Olympus Corp Analyzer, analysis method and analysis program
JP2007327779A (en) * 2006-06-06 2007-12-20 Olympus Corp Automatic analyzer, and dispensing accuracy confirmation method of same
JP4648250B2 (en) 2006-06-19 2011-03-09 ベックマン コールター, インコーポレイテッド Analysis apparatus, analysis method, and analysis program
JP2008058065A (en) * 2006-08-30 2008-03-13 Hitachi High-Technologies Corp Autoanalyzer and automatic analysis method
WO2008044312A1 (en) * 2006-10-13 2008-04-17 Olympus Corporation Method of identifying error and analyzer
JP4896147B2 (en) * 2006-10-13 2012-03-14 ベックマン コールター, インコーポレイテッド Abnormality identification method and analyzer
JP5106906B2 (en) * 2007-04-05 2012-12-26 株式会社日立ハイテクノロジーズ Automatic analyzer
EP2175259A4 (en) * 2007-06-19 2011-11-02 Beckman Coulter Inc Method of specifying error and analyzer
US9297820B2 (en) * 2008-02-13 2016-03-29 Hitachi High-Technologies Corporation Automatic analyzer
JP4951594B2 (en) * 2008-07-31 2012-06-13 シスメックス株式会社 Clinical examination information processing apparatus, system, analysis apparatus, and program thereof
JP2010133870A (en) * 2008-12-05 2010-06-17 Beckman Coulter Inc Automatic analyzer and precision management method of automatic analyzer
US9229015B2 (en) 2008-12-26 2016-01-05 Hitachi High-Technologies Corporation Accuracy management method
JP5414286B2 (en) * 2009-01-16 2014-02-12 株式会社東芝 Automatic analyzer
JP5160461B2 (en) * 2009-01-29 2013-03-13 株式会社日立ハイテクノロジーズ Automatic analyzer
JP5193937B2 (en) * 2009-05-08 2013-05-08 株式会社日立ハイテクノロジーズ Automatic analyzer and analysis method
JP5193940B2 (en) * 2009-05-11 2013-05-08 株式会社日立ハイテクノロジーズ Automatic analyzer
JP5513040B2 (en) * 2009-08-28 2014-06-04 シスメックス株式会社 Automatic analyzer
JP5405378B2 (en) * 2010-04-09 2014-02-05 株式会社日立ハイテクノロジーズ Nucleic acid analyzer and method
JP5147906B2 (en) * 2010-07-22 2013-02-20 株式会社日立ハイテクノロジーズ Quality control system
JP6174411B2 (en) * 2013-07-29 2017-08-02 株式会社堀場製作所 Water quality analyzer and water quality analysis method
JP6165555B2 (en) * 2013-08-27 2017-07-19 東芝メディカルシステムズ株式会社 Automatic analyzer and its dispensing performance confirmation method
DE102015119608A1 (en) 2015-11-13 2017-05-18 Endress+Hauser Conducta Gmbh+Co. Kg Automatic analyzer and procedure
US10197993B2 (en) 2016-03-31 2019-02-05 Sysmex Corporation Method and system for performing quality control on a diagnostic analyzer
WO2020080271A1 (en) * 2018-10-17 2020-04-23 株式会社日立ハイテク Abnormality determining method, and automated analysis device
JP2022516259A (en) * 2018-12-28 2022-02-25 ベックマン コールター, インコーポレイテッド Clinical analyzer automated system diagnosis
EP4123310A4 (en) * 2020-03-19 2024-04-17 Hitachi High Tech Corp Automatic analysis device
WO2023171013A1 (en) * 2022-03-09 2023-09-14 株式会社日立ハイテク Automatic analysis device and automatic analysis method

Also Published As

Publication number Publication date
JP2003057248A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP4006203B2 (en) Precision analysis method for automatic analyzer and chemical analysis method
US11280733B2 (en) Automatic analyzer
JP3901587B2 (en) Automatic analyzer and data management method in automatic analyzer
EP2096442B1 (en) Automatic analyzer
JP4276894B2 (en) Anomaly detection system and anomaly detection method
WO2010128575A1 (en) Automatic analysis device and analysis method
JPH09502021A (en) Method and apparatus for automatically performing analyzes related to thrombosis and hemostasis
JPS6312964A (en) Method and instrument for automatic discrete analysis
JP3603019B2 (en) Biochemical automatic analyzer
JP4825442B2 (en) Accuracy control method of automatic analyzer for clinical examination, and automatic analyzer
JP2000105239A (en) Biochemical automatic analyzer
US20120282137A1 (en) Automatic analyzer
JPH0627743B2 (en) Automatic analyzer
JP2009281802A (en) Autoanalyzer and specimen searching system
JP2001264283A (en) Method and device for measuring electrolyte
JP5271929B2 (en) Automatic analyzer
JP2002196005A (en) Automatic chemical analyzer having recalculating function
JP2519325B2 (en) Automated analyzers and methods for clinical testing
JPS6125064A (en) Automatic chemical analyzer
JP4920450B2 (en) Automatic analyzer and accuracy control method thereof
JP2003066051A (en) Automatic analyzer
JP7357557B2 (en) Automatic analyzer and reaction abnormality determination method
JP6165555B2 (en) Automatic analyzer and its dispensing performance confirmation method
JPH10282112A (en) Automatic chemical analysis device, and enzyme-activity measurement method using the device
JPH01214765A (en) Automatic biochemical analysis apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent or registration of utility model

Ref document number: 4006203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

EXPY Cancellation because of completion of term