JP4006055B2 - Compound semiconductor manufacturing method and compound semiconductor device - Google Patents

Compound semiconductor manufacturing method and compound semiconductor device Download PDF

Info

Publication number
JP4006055B2
JP4006055B2 JP14144697A JP14144697A JP4006055B2 JP 4006055 B2 JP4006055 B2 JP 4006055B2 JP 14144697 A JP14144697 A JP 14144697A JP 14144697 A JP14144697 A JP 14144697A JP 4006055 B2 JP4006055 B2 JP 4006055B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
crystal
group
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14144697A
Other languages
Japanese (ja)
Other versions
JPH10335748A (en
Inventor
幸司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14144697A priority Critical patent/JP4006055B2/en
Publication of JPH10335748A publication Critical patent/JPH10335748A/en
Application granted granted Critical
Publication of JP4006055B2 publication Critical patent/JP4006055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、V族元素としてNとAsとを共に含むIII−V族化合物半導体を有する化合物半導体装置と化合物半導体の製造方法に関する。
【0002】
【従来の技術】
近年、オプトエレクトロニクス用材料としてのIII−V族化合物半導体の利用分野を大きく広げる新しい材料系として、V族元素としてN(窒素)とAs(砒素)とを共に含むIII−V族化合物混晶半導体材料が提案され、注目されている。N組成の大きなAlGaNxAs1-x(x=0.2)系混晶はSi基板に格子整合する直接遷移型半導体材料となる可能性があることから光−電子集積回路用の光源材料として、また、N組成の小さなGaInNyAs1-y(y=0.015〜0.035)系混晶は光ファイバー通信に重要な波長1.3μm,1.55μmに相当するバンドギャップをもつ直接遷移型半導体材料をGaAs基板に格子整合して得られる可能性があり、これらは応用物理誌第65巻1996年第2号148頁(参考文献1)に詳しい。
【0003】
特に後者においては、活性層に上記のGaInNAs混晶を用い、かつクラッド層にAlGaAs系あるいはGaInP系化合物半導体を用いることにより活性層とクラッド層との間に大きなバンドオフセットがとれ、従来の同波長域の半導体レーザに比べて格段に温度特性が向上した通信用半導体レーザが実現される材料系であることが実証され、特に実用上注目に値する。
【0004】
より具体的には、Electronics Letters,1996年,第32巻,1585頁(参考文献2)において、Ga0.75In0.250.005As0.995を単一量子井戸活性層の井戸層に用いた半導体レーザが示され、77Kにおいて波長1.113μmでのレーザ発振が報告されている。この従来例におけるGaInNAsからなる層を含む活性層は、分子線エピタキシャル成長(Moleculer Beam Epitaxy:MBE)法によって作製されており、N原料としてラジカル励起されたN分子線が用いられている。基板には、GaAs(001)面が用いられており、500℃の基板温度で結晶成長されている。
【0005】
【発明が解決しようとする課題】
上記の従来例は波長1.113μmでのレーザ発振であり、光ファイバー通信に重要な波長1.3μm,1.55μmでのレーザ発振には至っていない。波長1.3μm,1.55μmに相当するバンドギャップを有するGaInNAs混晶をGaAsに格子整合して得るためには、その組成を、波長1.3μmに対してはGa0.928In0.0720.025As0.975、1.55μmに対してはGa0.904In0.0960.034As0.966とすればよい。すなわち、参考文献2に示された従来例よりも、Nの組成比を大きく(0.025以上)する必要がある。
【0006】
本願発明者らが鋭意実験を行った結果、従来の方法で作製されるGaInNAs混晶においては、Nの組成を増すに連れてその結晶品質が大きく悪化し、波長1.3μmや1.55μmに相当するバンドギャップをもつGaInNAs結晶は半導体レーザの活性層として用いるのに十分な結晶性、発光特性をもたないことがわかってきた。Journal of Electronic Materials,1995年,第24巻,263頁(参考文献3)においては、GaAs0.80.2の組成を有する結晶を作ろうとしてもGaAsとGaNとに相分離してしまうことが報告されていることから推測されるように、As化合物とN化合物とは本質的に安定な混晶系を作らないことがその原因であると考えられる。つまり、上記の如く波長1.3μm,1.55μmでのレーザ発振に要求されるGaInNAs混晶結晶は、参考文献3の報告例に比べてN組成が一桁程度小さいながらもGa−In−As−N四元混晶系における非混和領域(miscibility gap)内に相当する組成であると見られ、微視的にはN化合物の領域とAs化合物の領域とに局在した不均一な組成分布をもちやすい傾向があり、多くの結晶欠陥が誘発される。その為に半導体レーザの活性層として用いるのに十分な結晶性,発光特性が得られない。
【0007】
本発明は上記の問題を解決することを目的としたものである。つまり、V族元素としてAsとNとを共に含むIII−V族化合物半導体混晶において、非混和領域内に相当する組成でも良好な結晶性を保ったまま均一な組成分布をもつ混晶結晶を作製することができる結晶成長の方法を提供するものである。特に、波長1.3μm,1.55μmに相当するバンドギャップを有するAsとNとを共に含むIII−V族化合物半導体混晶(特にGaInNAs混晶)を得る製造方法を提供するものである。また、十分な結晶性、発光特性が得られる化合物半導体装置を提供するものである。
【0008】
【課題を解決するための手段】
また、この発明の請求項1に係る化合物半導体の製造方法は、
V族元素としてN(窒素)とAs(砒素)とを共に含むIII−V族化合物半導体結晶を一層以上含む積層構造を半導体基板上に作製する化合物半導体の製造方法であって、
前記半導体基板が閃亜鉛鉱型の半導体結晶から成り、かつミラー指数(001)である面が、方向指数<1−10>方向へ傾くように傾斜された表面を有し
前記V族元素としてNとAsとを共に含むIII−V族化合物半導体結晶は、V族元素として結晶中に含まれているNの組成比[N原子密度]/([N原子密度]+[As原子密度])が0.025以上であり、
前記半導体基板として用いる閃亜鉛鉱型の半導体結晶がGaAsからなることによって上記の目的を達成する。
尚、本願明細書中の{111}B面方向とは、{111}B面の法線方向のことを指す。この明細書では、面の方向とは、面の法線方向を指す。
【0009】
発明者らは、上記に示した従来の結晶成長の検討手法から観点を変えて、用いる基板の表面の状態に注目して検討を行った。その結果、基板表面のステップ密度とステップ端を終端している原子の種類が、V族元素としてAsとNとを共に含むIII−V族化合物半導体混晶を結晶成長する際に大きな影響を与えていることを見い出した。請求項1による本発明では、基板表面にV族元素で終端されたステップを有する為に、組成が均一で良好な結晶性を有するAsとNとを共に含むIII−V族化合物半導体混晶を作製することができる。
【0010】
この発明の請求項2に係る化合物半導体の製造方法は、
前記基板が、ミラー指数(001)である面が、方向指数<1−10>方向へ3度以上30度以下の角度で方向が傾くように、傾斜された表面を有していることによって上記の目的を達成する。
【0011】
この発明の請求項3に係る化合物半導体の製造方法は、前記積層構造は、600℃以上750℃以下の温度で結晶成長されることによって上記の目的を達成する。
【0012】
結晶成長の温度を適切に選ぶことにより、特に効果的に前記の作用・効果を得ることができる。
【0013】
この発明の化合物半導体の製造方法は、前記V族元素としてNとAsとを共に含むIII−V族化合物半導体結晶は、V族元素として結晶中に含まれているNの組成比[N原子密度]/([N原子密度]+[As原子密度])
が0.025以上であることによって上記の目的を達成する。
【0014】
一定値以上のNを含んだAsとNとを共に含むIII−V族化合物半導体混晶に対してこの発明を適用することで、格段の効果を得ることができる。
【0015】
この発明の化合物半導体の製造方法は、基板として用いる閃亜鉛鉱型の半導体結晶がGaAsからなることによって上記の目的を達成する。
【0016】
基板としてGaAsを用いることにより、光ファイバー通信に重要な波長1.3μm,1.55μmに対応するV族元素としてAsとNとを共に含むIII−V族化合物半導体混晶を概ね格子整合させて得ることができる。
【0017】
この発明の請求項に係る化合物半導体の製造方法は、V族元素としてP(燐)を含む化合物半導体を積層し、その上にV族元素としてAsだけを有する化合物半導体を少なくとも1分子層以上10分子層以下だけ積層し、その上にV族元素としてNとAsとを共に含むIII−V族化合物半導体結晶を結晶成長する工程を含んでいることによって上記の目的を達成する。
【0018】
この工程を行うことにより、P化合物と、V族元素としてNとAsとを共に含むIII−V族化合物半導体混晶との界面が急峻になる。
【0019】
この発明の請求項に係る化合物半導体の製造方法は、V族元素としてNとAsとを共に含むIII−V族化合物半導体結晶を結晶成長する直前に、N原料だけを供給する工程を含むことによって上記の目的を達成する。
【0020】
この工程を行うことにより、V族元素としてNとAsとを共に含むIII−V族化合物半導体混晶を結晶成長する直前に下地の表面が窒化される為、その上のAsとNとを共に含むIII−V族化合物半導体混晶が結晶成長の初期からスムースなステップフロー成長が起こるようになる。
【0021】
この発明の請求項に係る化合物半導体装置は、
半導体基板上に、V族元素としてN(窒素)とAs(砒素)とを共に含むIII−V族化合物半導体結晶を一層以上含む積層構造を有する化合物半導体装置であって、
前記半導体基板が閃亜鉛鉱型の半導体結晶から成り、かつIII−V族半導体を積層する面方位が、ミラー指数(001)である面が、方向指数<1−10>方向へ傾くように、傾斜されており、
前記V族元素としてNとAsとを共に含むIII−V族化合物半導体結晶は、V族元素として結晶中に含まれているNの組成比[N原子密度]/([N原子密度]+[As原子密度])が0.025以上であり、
前記半導体基板として用いる閃亜鉛鉱型の半導体結晶がGaAsからなることを特徴とする。
【0022】
【発明の実施の形態】
(実施の形態1)本発明の実施形態1として、(001)面から(111)B面方向へ傾斜したGaAs基板の上に、MBE法を用いてAlGaAs/GaInNAs/AlGaAsからなるダブルヘテロ構造を作製した場合について示す。
【0023】
(001)面から(111)B面方向へ傾斜した表面を有するGaAs基板を準備し、その上に、Al分子線,Ga分子線,In分子線,As2分子線,ラジカル励起されたN分子線を原料とするMBE法により化合物半導体の多層膜を結晶成長した。
【0024】
ここで「(001)面から(111)B面方向へ傾斜した表面」とは、(001)面の傾斜基板であり、As原子で終端するステップ端を表面に有するように傾斜して切り出された基板である。(001)面から(111)B面方向へ55°傾斜した基板は、(111)B面となる。なお、{111}B面は{111}As面、{111}A面は{111}Ga面とも呼ぶ。
【0025】
作製した多層膜の構造は、まずGaAs基板の上に層厚0.5μmのGaAsからなるバッファ層を、その上に層厚0.5μmのAl0.2Ga0.8Asからなる第一障壁層を、その上に層厚0.1μmのGa0.928In0.0720.025As0.975からなる発光層を、その上に層厚0.5μmのAl0.2Ga0.8Asからなる第二障壁層を、その上に保護層として層厚0.5μmのGaAsが形成されている。この時のGa0.928In0.0720.025As0.975結晶は、GaAsに格子整合し、波長1.3μmに相当するバンドギャップを有するGaInNAs結晶である。結晶成長温度は、多層膜を作製する間中650℃に保持し、結晶成長速度は0.5μm/時間とした。
【0026】
また、MBE法による結晶成長は、図1に示すシーケンスで行った。図1(a)は基板温度、また図1(b)から(f)はそれぞれの分子線のシャッターシーケンスを示す。つまり、GaAs基板をMBE結晶成長装置内に導入した後、(工程A)As2分子線を照射しながら650℃にまで昇温し、GaAsの清浄表面を得る。その後、(工程B)Ga分子線,As2分子線により層厚0.5μmのGaAsを結晶成長し、続いて(工程C)Al分子線,Ga分子線,As2分子線により層厚0.5μmのAl0.2Ga0.8Asを得る。次に(工程D)Nラジカル分子線だけを供給して成長層最表面のステップ端を形成するAs原子の一部を窒化によりN原子で置き換えた後、(工程E)Ga分子線,In分子線,As2分子線,Nラジカル分子線により層厚0.1μmのGaInNAs層を得る。再び(工程F)Al分子線,Ga分子線,As2分子線により層厚0.5μmのAl0.2Ga0.8Asを、最後に(工程G)Al分子線を止めて0.5μmのGaAsを得る。各層を結晶成長する際の各分子線の強度は、それぞれの層に対して最適となるように調節した。
【0027】
5°の傾斜角を有する基板の上に作製した試料のGaInNAs層だけを室温でYAGレーザを用いて励起し、そのホトルミネッセンスのスペクトルを測定した結果を図2に示す。図2(a)は、5°傾斜した(001)基板を用いた場合であり、図2(b)は傾斜していない(001)基板を用いた場合である。同時に示した傾斜していない(001)面上に作製された試料のPL強度と比較して、半値幅の減少、発光強度の増大が確認され、結晶欠陥が少ない高品質のGaInNAs混晶を得ることができた。また、得られた膜には組成の不均一はなく、表面状態も極めてスムースで良好であった。
【0028】
傾斜基板上に作製したGaInNAs層のPL強度の傾斜角度依存性を図3に示している。比較の為に、(001)面から(111)A面方向へ傾斜した表面を有するGaAs基板にも同じ構造を作製して図3に同時に示している。{001}面から{111}B面方向へ傾斜した表面をもつ基板上へ結晶成長した試料ではその傾斜角度とともに発光強度が増加し、最大値をとる。一方、{111}A面方向へ傾斜した表面をもつ基板上へ結晶成長した場合には、傾斜角度が小さい領域ではステップフロー成長が起こる効果で若干の結晶性の改善が見られるものの、その傾斜角度が大きくなると傾斜がない場合よりもむしろPL発光強度が減少する。本発明の如く、{001}面から{111}B面方向へ傾斜した表面を有するGaAs基板の上へGaInNAs結晶を結晶成長することでその結晶性が格段に向上することが見い出される。
【0029】
従来のように{001}面から傾斜していない面方位を有する基板の上に、非混和領域内に相当する不安定な組成のAsとNとを共に含むIII−V族化合物半導体混晶を結晶成長させた場合、微視的に島状成長が起こり、個々の微小な結晶の島で独立にAs化合物またはN化合物の安定な組成が結晶成長し始めて局所的に相分離を起こす傾向にある。その結果、巨視的に見た結晶の質としては良好なものとはならない。一方でステップ端がV族元素で終端した表面を持つ基板、つまり{100}面から{111}B面方向へ傾斜した表面をもつ基板を用いた場合、ステップ端はV族元素で安定になろうとするので、結晶成長中に基板に付着したAs源とN源は原子種によらずステップ端に到達したものはそのままV族サイトに取り込まれる。その結果、ステップ端に取り込まれるAsとNの比は、結晶の安定性によらずAs源とN源との供給量により決まるので、均一な組成をもつAsとNとを共に含むIII−V族化合物半導体混晶混晶を良好な結晶性で得ることができるようになる。このように、V族サイトで終端している表面ステップを有する基板を用いることにより、非混和領域内に相当する組成でも相分離を起こすことなく、均一で良好な結晶性を有するAsとNとを共に含むIII−V族化合物半導体混晶を作製することが可能になる新たな効果が見い出された。
【0030】
傾斜基板の角度に関しては、図3に見られるように3〜30°で十分な効果が現われ、5〜15°とするのがより好ましい。傾斜角度が小さい場合にはステップの密度が低い為にその効果が顕著には現われず、傾斜角度が大きすぎる場合にも結晶性の悪化が生じる。
【0031】
図4に、(001)面から(111)B面方向へ10°傾斜した表面を有するGaAs基板の上へ多層構造を作製した時のPL強度の、結晶成長時の基板温度の依存性を示す。いずれもGaAsに格子整合する組成で、波長1.3μmに相当するバンドギャップを有するGaInNAs結晶のPL強度である。PL強度は基板温度700℃の試料の値で規格化している。基板温度600℃から750℃の間で発光強度の強い試料が得られ、図4中で示されたΔTの範囲が最適な結晶成長温度範囲であることがわかる。結晶成長の温度が低い場合にはステップ端から結晶成長が生じるステップフロー成長が起こりにくく、また結晶成長温度が高い場合には一旦結晶中に取り込まれたV族元素が再蒸発する為に良好な結晶成長が生じない。
【0032】
なお、図1に示したように、GaInNAs層を結晶成長する直前にNラジカル分子線だけを供給し、下地のAl0.2Ga0.8As層最表面のステップ端を形成するAs原子の一部をN原子で置き換え(工程D)、その後にGaInNAs層の結晶成長を開始した(工程E)。最初に基板表面のAs原子の一部をN原子で置換しておくと、その後のAsとNとを共に含むIII−V族化合物半導体混晶の成長がホモエピタキシャル成長となるのでステップフロー成長が生じやすく、初期の結晶成長がスムースに開始され、その上に作製された結晶の質が向上する。
【0033】
特に電子のド・ブロイ波長よりも薄いGaInNAs層を量子井戸層として結晶成長させた場合、その時に生じる量子効果は、ステップの窒化工程(工程D)の採用により著しく増大することがわかった。窒化工程を含まない場合には、As化合物(Al0.2Ga0.8As)とAsとNとを共に含むIII−V族化合物半導体混晶(GaInNAs)との界面とが急俊に切り替わらない為に量子効果が低減していると考えられる。界面に窒化工程を入れることで、その組成の切り替えが急俊に生じるようになり、良好な界面が得られるようになる。
【0034】
以上のように、本発明により、高品質のGaInNAs混晶を得ることができた。さらに、上記の方法を、1.3μmの波長域に対応する活性層の作製に適用して半導体レーザ素子を作製したところ、高性能のレーザが得られた。
【0035】
(実施の形態2)本発明の実施形態2として、(001)面から(111)B面方向へ傾斜したGaAs基板の上に、有機金属気相成長(Metal Organic Chemical Vapor Deposition:MO−CVD)法を用いてGaInP/GaInNAs/GaInPからなる単一量子井戸構造を作製した場合について示す。
【0036】
(001)面から(111)B面方向へ傾斜した表面を有するGaAs基板を準備し、その上に、トリメチルガリウム(TMG),トリメチルインジウム(TMI),アルシン(AsH3),フォスフィン(PH3),ジメチルヒドラジン(DMeHy)を原料ガスとし、水素(H2)をキャリアガスとするMO−CVD法により化合物半導体の多層膜を結晶成長した。
【0037】
作製した多層膜の構造は、まずGaAs基板の上に層厚0.5μmのGaAsからなるバッファ層を、その上にGa0.51In0.49Pからなる第一障壁層を、その上に層厚8nmのGa0.89In0.110.04As0.96からなる単一量子井戸発光層を、その上に層厚0.5μmのGa0.51In0.49Pからなる第二障壁層を、その上に保護層として層厚0.5μmのGaAsが形成されている。この時のGa0.89In0.110.04As0.96結晶は、GaAsに格子整合するGaInNAs結晶である。結晶成長は常圧で行い、結晶成長温度は多層膜を作製する間中700℃に保持し、結晶成長速度は1μm/時間とした。
【0038】
また、MO−CVD法による結晶成長は、図5に示すシーケンスで行った。図5(a)は基板温度、図5(b)から(f)はそれぞれの原料ガスのシーケンスを示す。つまり、GaAs基板をMO−CVD結晶成長装置内に導入した後、(工程I)AsH3とH2の雰囲気により700℃にまで昇温し、その後、(工程J)TMG,AsH3により層厚0.5μmのGaAsを結晶成長させ、(工程K)TMG,TMI,PH3により層厚0.5μmのGa0.51In0.49Pを得る。次に(工程L)TMGとAsH3とを供給して1から3分子層分のGaAsを結晶成長した後、(工程M)DMeHyだけを供給して成長層最表面のステップ端を形成するAs原子の一部を窒化によりN原子で置き換えた後、(工程N)TMG,TMI,AsH3,DMeHyにより層厚8nmのGaInNAs層を得る。再び(工程O)TMGとAsH3とを供給して1から3分子層分のGaAsを結晶成長した後、(工程P)TMG,TMI,PH3より層厚0.5μmのGa0.51In0.49Pを、最後に(工程Q)TMG,AsH3で0.5μmのGaAsを得た。各層を結晶成長する際の各ガスの流量は、それぞれの層に対して最適となるように調節した。
【0039】
比較の為に、(001)面から(111)A面方向へ傾斜した表面を有するGaAs基板にも同じ構造を作製し、各試料のGaInNAs層だけを室温でYAGレーザを用いて励起してそのホトルミネッセンスの強度(PL強度)を測定したところ、図3に示した第一実施形態のものと同様の結果が得られ、{001}面から{111}B面方向へ3〜30°、望ましくは5〜15°だけ傾斜した表面を有するGaAs基板の上へGaInNAs結晶を結晶成長することでその結晶性が格段に向上することが見い出された。結晶成長時の基板温度に対するPL強度の依存性も図4と同様の結果であった。
【0040】
なお、図5に示したように、下地のGaInP層の上にGaInNAs層を結晶成長する前に、数分子層程度のAs化合物を成長させ(工程L)、かつその最表面のステップ端を形成するAs原子の一部をN原子で置き換え(工程M)、その後にGaInNAs層の結晶成長を開始した(工程N)。P化合物の上にGaInNAs層を直接的に結晶成長させると、結晶成長の初期においてGaInNAsのステップフロー成長が生じにくく、傾斜基板を用いた効果が十分に発揮されない傾向があった。これに対し、P化合物の上に、As化合物の薄層を界してから結晶成長を開始することで解決されることが見い出された。As化合物の薄層の厚さは、少なくとも1分子層以上は必要であるが、P化合物とGaInNAs層とのヘテロ接合のバンドラインナップに影響を与えないように10分子層以下であるのが望ましい。
【0041】
また、中間層のAs化合物の上にGaInNAs層を結晶成長する時には、界面に窒化工程を入れて表面のAs原子の一部をN原子で置換しておくと、その後のV族元素としてAsとNとを共に含むIII−V族化合物半導体混晶の成長がホモエピタキシャル成長となるのでステップフロー成長が生じやすく、初期の結晶成長がスムースに開始され、その上の成長層の結晶性が向上する。また、As化合物とAsとNとを共に含むIII−V族化合物半導体混晶の組成との切り替えが急峻に生じるようになる。
【0042】
以上のように、本発明により、高品質のGaInNAs混晶を得ることができた。さらに、上記の方法を、1.55μmの波長域に対応する活性層の作製に適用して半導体レーザ素子を作製したところ、高性能のレーザ素子が得られた。
【0043】
(実施の形態3)本発明の実施形態3として、(001)面から(111)B面方向へ傾斜したGaAs基板の上に、有機金属MBE(MO−MBE)法を用いてGaInAs/GaNAs/GaInAsからなる歪補償型量子井戸構造を作製した場合について示す。
【0044】
(001)面から(111)B面方向へ15°傾斜した表面を有するGaAs基板を準備し、その上に、トリメチルガリウム(TMG)分子線,トリメチルインジウム(TMI)分子線,As2分子線,ジエルチルアミン(NH(C252)分子線を原料とするMO−MBE法により化合物半導体の多層膜を結晶成長した。
【0045】
作製した多層膜の構造は、まずGaAs基板の上に層厚1.0μmのGaAsからなるバッファ層を、その上に層厚10nmのGa0.7In0.3Asからなる+2%の圧縮歪をもつ第一障壁層と層厚8nmのGaN0.03As0.97からなる−0.5%の引っ張り歪をもつ量子井戸発光層からなる三重量子井戸構造を、その上に保護層として層厚0.5μmのGaAsが形成されている。結晶成長温度は多層膜を作製する間中600℃に保持し、結晶成長速度は0.4μm/時間とした。得られた膜は組成の不均一が見られず、発光特性に優れた単結晶膜であった。
【0046】
さらに、上記の方法で作製されたGaNAsを活性層とする半導体レーザ素子を作製したところ、波長1.3μmで発光する高性能のレーザが得られた。
【0047】
(実施の形態4)本発明の実施形態4として、(001)面から(111)B面方向へ傾斜したGaP基板の上に、有機金属気相成長MO−CVD法を用いてAlGaNAs/GaNAs/AlGaNAsからなる単一量子井戸構造を作製した場合について示す。
【0048】
(001)面から(111)B面方向へ10°傾斜した表面を有するGaP基板を準備し、その上に、トリメチルアルミニウム(TMA),トリメチルガリウム(TMG),アルシン(AsH3),アンモニア(NH3)を原料ガスとし、H2をキャリアガスとするMO−CVD法により化合物半導体の多層膜を結晶成長した。
【0049】
作製した多層膜の構造は、まずGaP基板の上に層厚0.5μmのAl0.2Ga0.80.2As0.8からなる第一障壁層を、その上に層厚10nmのGaN0.2As0.8からなる単一量子井戸発光層を、その上に層厚0.5μmのAl0.2Ga0.80.2As0.8からなる第二障壁層を、その上に保護層として層厚0.5μmのGaAsが形成されている。この時の各層は、GaPに概ね格子整合する混晶組成である。結晶成長は100Torrで行い、結晶成長温度は多層膜を作製する間中750℃に保持し、結晶成長速度は0.3μm/時間とした。
【0050】
得られた膜をX線回折により評価した結果、(400)回折スペクトルの半値幅は15秒と極めて良好な値を示した。組成の不均一も見られず結晶性に優れた単結晶膜が得られた。さらに、上記の方法で作製されたGaNAsを活性層とする半導体レーザ素子を作製したところ、高性能のレーザが得られた。
【0051】
ところで、これまでに示した全ての実施形態において、{001}基板の傾斜方向は、{111}B面の方向から{001}面内で±10°程度ずれていても表面ステップはV族元素で終端するので同様の効果が得られた。
【0052】
また、基板は閃亜鉛鉱型の半導体結晶であればGaAsやGaPに限定されるものではなく、その他のIII−V族半導体やII−VI族半導体結晶でも同様の効果が得られた。
【0053】
また、上記の実施形態ではMBE法,MO−MBE法およびMO−CVD法について述べたが、III族原料として固体原料,V族原料としてAsH3を用いたガスソースMBE(GS−MBE)法、あるいはIII族原料に有機金属化合物,V族原料にガス原料に用いた化学分子線エピタキシャル成長(CBE)法などを用いても同様の効果が得られた。
【0054】
また、上記の実施形態ではIII族元素としてGa,In,Al、V族元素としてAs,Nを適宜含んだ化合物について示したが、その他のIII族元素(B等)やV族元素(P,Sb等)や不純物元素(Zn,Be,Mg,Te,S,Se,Si等)が適宜含まれていても同様の効果が得られる。
【0055】
なお、これまでの記述の中で「上」と示された方向は基板から離れる方向を示しており、「下」は基板へ近づく方向を示している。「下」から「上」の方向へ向かって結晶成長は進行する。
【0056】
本発明は上記の実施形態に示した結晶組成,バンドギャップ波長,ヘテロ接合の組み合わせに限定されることなく、他の組成,バンドギャップをもつAsとNとを共に含むIII−V族化合物半導体混晶の作製に対して適用することが可能であることは言うまでもない。また、本発明は成長層が基板結晶に格子整合する場合に限定されるものではなく、例えば半導体レーザの歪量子井戸構造など、結晶欠陥を誘発するものでなければ格子不整を有する混晶比であっても良い。
【0057】
また、結晶成長の方法、原料に関しても上記の具体例に示されたもの以外のものを用いることが可能である。特にMBE法,CVD法共に、ラジカル励起されたN2,NH3または有機窒素化合物がN源として望ましい。
【0058】
また、本実施の形態では基板を残存させているが、基板をエッチング除去しても本発明は効果があるのは言うまでもない。
【0059】
【発明の効果】
以上のように、この発明の請求項1に係る化合物半導体の製造方法によれば、非混和領域内に相当する組成でも相分離することなく極めて均一で良好な結晶性を有するAsとNとを共に含むIII−V族化合物半導体混晶を作製することができる。特に、波長1.3μm,1.55μmに相当するバンドギャップを有し、半導体レーザの活性層として用いるのに十分な結晶性を有するAsとNとを共に含むIII−V族化合物半導体混晶を作製することができるようになる。
【0060】
この発明の請求項2、3に係る化合物半導体の製造方法によれば、請求項2の効果をより好適に得ることができる。
【0061】
この発明の請求項に係る化合物半導体の製造方法によれば、従来の結晶成長方法では良好な結晶を得ることができない大きなN組成をもつ結晶が得られるようになる。
【0062】
この発明の請求項に係る化合物半導体の製造方法によれば、波長1.3μm,1.55μmに対応するバンドギャップを有する均一で良好な組成分布をもつAsとNとを共に含むIII−V族化合物半導体混晶を格子整合させて得ることができるようになり、請求項1から4の方法で作製されるAsとNとを共に含むIII−V族化合物半導体混晶を用いて光ファイバー通信に重要な高品質の発光素子を創出することが可能になる。
【0063】
この発明の請求項に係る化合物半導体の製造方法によれば、P化合物の上のAsとNとを共に含むIII−V族化合物半導体混晶が結晶成長の初期からスムースなステップフロー成長が起こるようになり、結晶性が向上する。
【0064】
この発明の請求項に係る化合物半導体の製造方法によれば、その上のAsとNとを共に含むIII−V族化合物半導体混晶が結晶成長の初期からスムースなステップフロー成長が起こるようになり、結晶性が向上する。また、下地のAs化合物とV族元素としてAsとNとを共に含むIII−V族化合物半導体混晶との界面が、量子井戸構造を作製するのに十分に急峻になる。
【0065】
この発明の請求項に係る化合物半導体装置は、非混和領域内に相当する組成でも相分離することなく極めて均一で良好な結晶性を有するAsとNとを共に含むIII−V族化合物半導体混晶を有するので、高性能の化合物半導体装置が提供でき、特に、化合物半導体装置として発光素子に適用した場合には、高効率の化合物半導体発光素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における結晶成長のタイムチャートを示す図である。
【図2】本発明の実施の形態1において作製されるGaInNAs結晶のPLスペクトルを示す図である。
【図3】本発明の実施の形態1において作製されるGaInNAs結晶の基板の傾斜角度、傾斜方向に対するPL強度の依存性を示す図である。
【図4】本発明の実施の形態1において作製されるGaInNAs結晶の基板温度に対するPL強度の依存性を示す図である。
【図5】本発明の実施の形態2における結晶成長のタイムチャートを示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compound semiconductor device having a III-V group compound semiconductor containing both N and As as group V elements, and a method for manufacturing the compound semiconductor.
[0002]
[Prior art]
In recent years, as a new material system that greatly expands the field of use of III-V compound semiconductors as optoelectronic materials, III-V compound mixed crystal semiconductors containing both N (nitrogen) and As (arsenic) as group V elements Materials have been proposed and attracted attention. AlGaN with large N compositionxAs1-xSince the (x = 0.2) mixed crystal may be a direct transition semiconductor material lattice-matched to the Si substrate, it is a light source material for opto-electronic integrated circuits, and GaInN with a small N composition.yAs1-yThe (y = 0.015-0.035) mixed crystal is obtained by lattice-matching a direct transition semiconductor material having a band gap corresponding to wavelengths of 1.3 μm and 1.55 μm, which are important for optical fiber communication, to a GaAs substrate. These are detailed in Applied Physics Journal Vol. 65, 1996, No. 2, page 148 (Reference 1).
[0003]
In particular, in the latter, a large band offset can be obtained between the active layer and the clad layer by using the GaInNAs mixed crystal for the active layer and an AlGaAs or GaInP compound semiconductor for the clad layer. It is proved to be a material system that realizes a semiconductor laser for communication whose temperature characteristics are remarkably improved as compared with semiconductor lasers in the region, and is particularly noteworthy in practical use.
[0004]
More specifically, in Electronic Letters, 1996, Vol. 32, page 1585 (reference 2), Ga0.75In0.25N0.005As0.995Is used for the well layer of a single quantum well active layer, and lasing at a wavelength of 1.113 μm at 77K has been reported. The active layer including the layer made of GaInNAs in this conventional example is manufactured by molecular beam epitaxy (MBE), and radical-excited N molecular beams are used as N raw materials. A GaAs (001) plane is used for the substrate, and the crystal is grown at a substrate temperature of 500 ° C.
[0005]
[Problems to be solved by the invention]
The conventional example described above is laser oscillation at a wavelength of 1.113 μm, and laser oscillation at wavelengths of 1.3 μm and 1.55 μm, which are important for optical fiber communication, has not been achieved. In order to obtain a GaInNAs mixed crystal having band gaps corresponding to wavelengths of 1.3 μm and 1.55 μm by lattice matching with GaAs, the composition is set to Ga for a wavelength of 1.3 μm.0.928In0.072N0.025As0.975Ga for 1.55 μm0.904In0.096N0.034As0.966And it is sufficient. That is, it is necessary to make the composition ratio of N larger (0.025 or more) than the conventional example shown in Reference Document 2.
[0006]
As a result of intensive experiments by the inventors of the present application, in the GaInNAs mixed crystal produced by the conventional method, the crystal quality greatly deteriorates as the composition of N increases, and the wavelength becomes 1.3 μm or 1.55 μm. It has been found that a GaInNAs crystal having a corresponding band gap does not have sufficient crystallinity and light emission characteristics to be used as an active layer of a semiconductor laser. Journal of Electronic Materials, 1995, Vol. 24, p.263 (reference 3) describes GaAs0.8N0.2As estimated from the fact that it is reported that phase separation into GaAs and GaN is attempted even if a crystal having a composition of 1 is made, the As compound and the N compound have an essentially stable mixed crystal system. It is thought that the cause is not to make. That is, the GaInNAs mixed crystal required for laser oscillation at wavelengths of 1.3 μm and 1.55 μm as described above has a Ga-In-As that has an N composition that is about an order of magnitude smaller than the reported example of Reference 3. -N quaternary mixed crystal system is considered to have a composition corresponding to an immiscible region (miscibility gap), and microscopically, a non-uniform composition distribution localized in a region of N compound and a region of As compound Tend to have a large number of crystal defects. Therefore, sufficient crystallinity and light emission characteristics for use as an active layer of a semiconductor laser cannot be obtained.
[0007]
The present invention aims to solve the above problems. In other words, in a III-V compound semiconductor mixed crystal containing both As and N as group V elements, a mixed crystal having a uniform composition distribution while maintaining good crystallinity even in a composition corresponding to the non-miscible region. A method of crystal growth that can be produced is provided. In particular, the present invention provides a manufacturing method for obtaining a group III-V compound semiconductor mixed crystal (particularly a GaInNAs mixed crystal) containing both As and N having band gaps corresponding to wavelengths of 1.3 μm and 1.55 μm. It is another object of the present invention to provide a compound semiconductor device capable of obtaining sufficient crystallinity and light emission characteristics.
[0008]
[Means for Solving the Problems]
  Moreover, the manufacturing method of the compound semiconductor which concerns on Claim 1 of this invention is as follows.
  A method for producing a compound semiconductor, wherein a laminated structure including one or more III-V compound semiconductor crystals containing both N (nitrogen) and As (arsenic) as group V elements is formed on a semiconductor substrate,
  The semiconductor substrate is composed of a zinc blende type semiconductor crystal, andThe surface having the Miller index (001) is inclined in the direction index <1-10> direction.With an inclined surface,
  The group III-V compound semiconductor crystal containing both N and As as the group V element has a composition ratio of [N atom density] / ([N atom density] + [ As atom density]) is 0.025 or more,
  The zincblende type semiconductor crystal used as the semiconductor substrate is made of GaAs.To achieve the above objective.
  In addition, the {111} B plane direction in the present specification refers to the normal direction of the {111} B plane. In this specification, the direction of a surface refers to the normal direction of the surface.
[0009]
The inventors changed the viewpoint from the conventional method for examining crystal growth described above, and examined the state of the surface of the substrate used. As a result, the step density on the substrate surface and the type of atoms terminating the step end have a great effect on the growth of III-V compound semiconductor mixed crystals containing both As and N as group V elements. I found out. In the present invention according to claim 1, since the substrate surface has a step terminated with a group V element, a III-V group compound semiconductor mixed crystal containing both As and N having a uniform composition and good crystallinity is formed. Can be produced.
[0010]
A method for producing a compound semiconductor according to claim 2 of the present invention includes:
  SaidBoardThe surface having the Miller index (001) is inclined in the direction index <1-10> direction at an angle of 3 degrees or more and 30 degrees or less.The above objective is achieved by having an inclined surface.
[0011]
In the method for producing a compound semiconductor according to a third aspect of the present invention, the stacked structure is achieved by crystal growth at a temperature of 600 ° C. or higher and 750 ° C. or lower.
[0012]
By appropriately selecting the temperature for crystal growth, the above-mentioned actions and effects can be obtained particularly effectively.
[0013]
This inventionConversionIn the compound semiconductor manufacturing method, the group III-V compound semiconductor crystal containing both N and As as the group V element has a composition ratio of [N atom density] / N contained in the crystal as the group V element. ([N atom density] + [As atom density])
The above-mentioned object is achieved by having 0.025 or more.
[0014]
By applying this invention to a III-V compound semiconductor mixed crystal containing both As and N containing N above a certain value, a remarkable effect can be obtained.
[0015]
This inventionConversionThe compound semiconductor manufacturing method achieves the above object by forming a zinc blende type semiconductor crystal used as a substrate from GaAs.
[0016]
By using GaAs as the substrate, a group III-V compound semiconductor mixed crystal containing both As and N as group V elements corresponding to wavelengths 1.3 μm and 1.55 μm, which are important for optical fiber communications, is obtained by lattice matching. be able to.
[0017]
Claims of the invention4According to the method for manufacturing a compound semiconductor, a compound semiconductor containing P (phosphorus) as a group V element is stacked, and a compound semiconductor having only As as a group V element is stacked on at least one molecular layer to 10 molecular layers. Further, the above object is achieved by including a step of growing a III-V group compound semiconductor crystal containing both N and As as group V elements.
[0018]
By performing this step, the interface between the P compound and the III-V group compound semiconductor mixed crystal containing both N and As as group V elements becomes steep.
[0019]
Claims of the invention5The method for producing a compound semiconductor according to the present invention achieves the above object by including a step of supplying only an N raw material immediately before crystal growth of a group III-V compound semiconductor crystal containing both N and As as group V elements. To do.
[0020]
By performing this step, the surface of the base is nitrided immediately before crystal growth of the III-V compound semiconductor mixed crystal containing both N and As as group V elements. The III-V compound semiconductor mixed crystal including the substrate starts smooth step flow growth from the beginning of crystal growth.
[0021]
Claims of the invention6The compound semiconductor device according to
A compound semiconductor device having a stacked structure including at least one group III-V compound semiconductor crystal containing both N (nitrogen) and As (arsenic) as group V elements on a semiconductor substrate,
  A surface on which the semiconductor substrate is made of zinc blende type semiconductor crystal and a group III-V semiconductor is laminatedofThe direction isThe surface having the Miller index (001) is inclined so as to incline in the direction index <1-10> direction,
  The group III-V compound semiconductor crystal containing both N and As as the group V element has a composition ratio of [N atom density] / ([N atom density] + [ As atom density]) is 0.025 or more,
  The zincblende type semiconductor crystal used as the semiconductor substrate is made of GaAs.It is characterized by that.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1) As Embodiment 1 of the present invention, a double heterostructure made of AlGaAs / GaInNAs / AlGaAs is formed on a GaAs substrate inclined from the (001) plane toward the (111) B plane using the MBE method. The case of manufacturing will be described.
[0023]
A GaAs substrate having a surface inclined from the (001) plane toward the (111) B plane is prepared, and an Al molecular beam, a Ga molecular beam, an In molecular beam, As2A multilayer film of a compound semiconductor was grown by MBE using a molecular beam or radical-excited N molecular beam as a raw material.
[0024]
Here, the “surface inclined from the (001) plane toward the (111) B plane” is an inclined substrate of the (001) plane and is cut out with an inclination so that the surface has a step end terminated with As atoms. Substrate. A substrate inclined by 55 ° from the (001) plane toward the (111) B plane is the (111) B plane. The {111} B plane is also called a {111} As plane, and the {111} A plane is also called a {111} Ga plane.
[0025]
The structure of the produced multilayer film is as follows. First, a buffer layer made of GaAs having a layer thickness of 0.5 μm is formed on a GaAs substrate, and an Al layer having a layer thickness of 0.5 μm is formed thereon.0.2Ga0.8A first barrier layer made of As and a Ga layer having a layer thickness of 0.1 μm thereon0.928In0.072N0.025As0.975A light emitting layer made of Al with a thickness of 0.5 μm thereon0.2Ga0.8On the second barrier layer made of As, GaAs having a layer thickness of 0.5 μm is formed as a protective layer. Ga at this time0.928In0.072N0.025As0.975The crystal is a GaInNAs crystal lattice-matched to GaAs and having a band gap corresponding to a wavelength of 1.3 μm. The crystal growth temperature was maintained at 650 ° C. during the production of the multilayer film, and the crystal growth rate was 0.5 μm / hour.
[0026]
The crystal growth by the MBE method was performed in the sequence shown in FIG. FIG. 1A shows the substrate temperature, and FIGS. 1B to 1F show the shutter sequences of the respective molecular beams. That is, after introducing the GaAs substrate into the MBE crystal growth apparatus, (Process A) As2While irradiating with a molecular beam, the temperature is raised to 650 ° C. to obtain a clean surface of GaAs. Then, (Process B) Ga molecular beam, As2Crystal growth of GaAs with a layer thickness of 0.5 μm by molecular beam, followed by (Step C) Al molecular beam, Ga molecular beam, As2Al with a thickness of 0.5 μm by molecular beam0.2Ga0.8Get As. Next, (step D) after supplying only N radical molecular beam and replacing a part of As atoms forming the step end of the growth layer outermost surface with N atom by nitriding, (step E) Ga molecular beam, In molecule Line, As2A GaInNAs layer having a layer thickness of 0.1 μm is obtained by molecular beam or N radical molecular beam. Again (Process F) Al molecular beam, Ga molecular beam, As2Al with a thickness of 0.5 μm by molecular beam0.2Ga0.8Finally, (Step G) Al molecular beam is stopped to obtain 0.5 μm GaAs. The intensity of each molecular beam during crystal growth of each layer was adjusted so as to be optimum for each layer.
[0027]
FIG. 2 shows the result of measuring the photoluminescence spectrum of only a sample GaInNAs layer prepared on a substrate having an inclination angle of 5 °, which was excited using a YAG laser at room temperature. FIG. 2A shows a case where a (001) substrate inclined by 5 ° is used, and FIG. 2B shows a case where a (001) substrate not inclined is used. Compared to the PL intensity of the sample prepared on the non-tilted (001) plane shown at the same time, a reduction in half-value width and an increase in emission intensity were confirmed, and a high-quality GaInNAs mixed crystal with few crystal defects was obtained. I was able to. Further, the obtained film had no compositional nonuniformity, and the surface condition was extremely smooth and good.
[0028]
FIG. 3 shows the inclination angle dependence of the PL intensity of the GaInNAs layer fabricated on the inclined substrate. For comparison, the same structure is produced on a GaAs substrate having a surface inclined from the (001) plane toward the (111) A plane, and is shown in FIG. In a sample grown on a substrate having a surface inclined from the {001} plane toward the {111} B plane, the emission intensity increases with the inclination angle and takes the maximum value. On the other hand, when a crystal is grown on a substrate having a surface inclined in the {111} A plane direction, the crystallinity is slightly improved due to the effect of step flow growth in a region where the inclination angle is small, but the inclination As the angle increases, the PL emission intensity decreases rather than when there is no inclination. As in the present invention, it is found that the crystallinity of a GaInNAs crystal is remarkably improved by growing a GaInNAs crystal on a GaAs substrate having a surface inclined from the {001} plane toward the {111} B plane.
[0029]
A III-V compound semiconductor mixed crystal containing both As and N having an unstable composition corresponding to the immiscible region on a substrate having a plane orientation not inclined from the {001} plane as in the prior art. In the case of crystal growth, island-like growth occurs microscopically, and a stable composition of an As compound or N compound starts to grow independently on each small crystal island and tends to cause phase separation locally. . As a result, the quality of the crystal viewed macroscopically is not good. On the other hand, when a substrate having a surface with a step end terminated with a group V element, that is, a substrate with a surface inclined from the {100} plane toward the {111} B plane, the step end becomes stable with a group V element. Therefore, the As source and N source attached to the substrate during crystal growth reach the step end regardless of the atomic species and are taken into the group V site as they are. As a result, the ratio of As and N incorporated into the step end is determined by the supply amount of As source and N source regardless of the stability of the crystal, and therefore, III-V containing both As and N having a uniform composition. Group crystal semiconductor mixed crystals can be obtained with good crystallinity. Thus, by using a substrate having a surface step terminated at a group V site, As and N having uniform and good crystallinity without causing phase separation even in a composition corresponding to the immiscible region. A new effect has been found that makes it possible to produce a III-V compound semiconductor mixed crystal containing both of.
[0030]
With respect to the angle of the inclined substrate, a sufficient effect appears at 3 to 30 ° as seen in FIG. 3, and it is more preferably set to 5 to 15 °. When the tilt angle is small, the step density is low, so that the effect does not appear remarkably. When the tilt angle is too large, the crystallinity deteriorates.
[0031]
FIG. 4 shows the dependence of the PL intensity on the substrate temperature during crystal growth when a multilayer structure is formed on a GaAs substrate having a surface inclined by 10 ° from the (001) plane to the (111) B plane. . All of these are PL intensities of GaInNAs crystals having a band gap corresponding to a wavelength of 1.3 μm with a composition lattice-matched to GaAs. The PL intensity is normalized by the value of the sample with a substrate temperature of 700 ° C. A sample with strong emission intensity is obtained at a substrate temperature of 600 ° C. to 750 ° C., and it can be seen that the range of ΔT shown in FIG. 4 is the optimum crystal growth temperature range. When the temperature of crystal growth is low, step flow growth in which crystal growth occurs from the end of the step is difficult to occur, and when the crystal growth temperature is high, group V elements once incorporated into the crystal are re-evaporated, which is good. Crystal growth does not occur.
[0032]
As shown in FIG. 1, just before the crystal growth of the GaInNAs layer, only the N radical molecular beam is supplied and the underlying Al0.2Ga0.8A part of As atoms forming the step edge on the outermost surface of the As layer was replaced with N atoms (process D), and then crystal growth of the GaInNAs layer was started (process E). When a part of As atoms on the substrate surface is first substituted with N atoms, the subsequent growth of the III-V compound semiconductor mixed crystal containing both As and N becomes homoepitaxial growth, resulting in step flow growth. The initial crystal growth starts smoothly and the quality of the crystal produced thereon is improved.
[0033]
In particular, when a GaInNAs layer thinner than the electron de Broglie wavelength is grown as a quantum well layer, it has been found that the quantum effect generated at that time is remarkably increased by adopting a step nitriding step (step D). When the nitriding step is not included, the As compound (Al0.2Ga0.8It is thought that the quantum effect is reduced because the interface with the III-V compound semiconductor mixed crystal (GaInNAs) containing both As), As, and N is not rapidly switched. By introducing a nitriding step at the interface, the composition is rapidly switched and a good interface can be obtained.
[0034]
As described above, according to the present invention, a high quality GaInNAs mixed crystal could be obtained. Furthermore, when the above method was applied to the production of an active layer corresponding to a wavelength region of 1.3 μm to produce a semiconductor laser device, a high-performance laser was obtained.
[0035]
(Embodiment 2) As Embodiment 2 of the present invention, metal organic chemical vapor deposition (MO-CVD) is formed on a GaAs substrate inclined from the (001) plane toward the (111) B plane. A case where a single quantum well structure made of GaInP / GaInNAs / GaInP is fabricated using the method will be described.
[0036]
A GaAs substrate having a surface inclined from the (001) plane toward the (111) B plane is prepared, and trimethylgallium (TMG), trimethylindium (TMI), arsine (AsH) is formed thereon.Three), Phosphine (PHThree), Dimethylhydrazine (DMeHy) as a source gas, hydrogen (H2A compound semiconductor multilayer film was grown by MO-CVD using a carrier gas as a carrier gas.
[0037]
The structure of the produced multilayer film is as follows. First, a buffer layer made of GaAs having a thickness of 0.5 μm is formed on a GaAs substrate, and Ga is formed thereon.0.51In0.49A first barrier layer made of P is formed on the Ga layer having a thickness of 8 nm.0.89In0.11N0.04As0.96A single quantum well light-emitting layer made of GaGa having a layer thickness of 0.5 μm thereon0.51In0.49On the second barrier layer made of P, GaAs having a layer thickness of 0.5 μm is formed as a protective layer. Ga at this time0.89In0.11N0.04As0.96The crystal is a GaInNAs crystal lattice-matched to GaAs. Crystal growth was performed at normal pressure, the crystal growth temperature was maintained at 700 ° C. during the production of the multilayer film, and the crystal growth rate was 1 μm / hour.
[0038]
The crystal growth by the MO-CVD method was performed in the sequence shown in FIG. FIG. 5A shows the substrate temperature, and FIGS. 5B to 5F show the sequence of each source gas. That is, after introducing the GaAs substrate into the MO-CVD crystal growth apparatus, (Step I) AsHThreeAnd H2The temperature is raised to 700 ° C. in the atmosphere of (3), and then (Process J) TMG, AsHThreeCrystal growth of GaAs with a thickness of 0.5 μm by (Step K) TMG, TMI, PHThreeGa layer with a layer thickness of 0.5 μm0.51In0.49Get P. Next (Process L) TMG and AsHThreeAnd crystal growth of 1 to 3 molecular layers of GaAs. (Process M) Only DMeHy is supplied to form part of As atoms forming the step edge on the outermost surface of the growth layer by nitriding with N atoms. After replacement, (Step N) TMG, TMI, AsHThree, DMInHy obtains a GaInNAs layer having a thickness of 8 nm. Again (Step O) TMG and AsHThreeAnd crystal growth of 1 to 3 molecular layers of GaAs, (Process P) TMG, TMI, PHThreeGa with a layer thickness of 0.5 μm0.51In0.49P, and finally (process Q) TMG, AsHThreeThus, 0.5 μm of GaAs was obtained. The flow rate of each gas during crystal growth of each layer was adjusted so as to be optimal for each layer.
[0039]
For comparison, the same structure is fabricated on a GaAs substrate having a surface inclined from the (001) plane to the (111) A plane, and only the GaInNAs layer of each sample is excited using a YAG laser at room temperature. When the intensity of photoluminescence (PL intensity) was measured, the same result as that of the first embodiment shown in FIG. 3 was obtained, and 3-30 ° from the {001} plane to the {111} B plane direction, desirably It has been found that the crystallinity is remarkably improved by growing a GaInNAs crystal on a GaAs substrate having a surface inclined by 5 to 15 °. The dependence of the PL intensity on the substrate temperature during crystal growth was similar to that shown in FIG.
[0040]
As shown in FIG. 5, before the GaInNAs layer is crystal-grown on the underlying GaInP layer, an As compound of several molecular layers is grown (step L), and the step end of the outermost surface is formed. A part of As atoms to be replaced was replaced with N atoms (step M), and then crystal growth of the GaInNAs layer was started (step N). When the GaInNAs layer is directly crystal-grown on the P compound, the GaInNAs step flow growth hardly occurs at the initial stage of the crystal growth, and the effect using the tilted substrate tends not to be sufficiently exhibited. On the other hand, it has been found that the problem can be solved by starting crystal growth after a thin layer of the As compound is bound on the P compound. The thickness of the thin layer of the As compound is required to be at least one molecular layer or more, but is desirably 10 molecular layers or less so as not to affect the band lineup of the heterojunction between the P compound and the GaInNAs layer.
[0041]
Further, when a GaInNAs layer is grown on the As compound of the intermediate layer, a nitriding process is performed at the interface and a part of As atoms on the surface is replaced with N atoms. Since the growth of the III-V group compound semiconductor mixed crystal containing N together becomes homoepitaxial growth, step flow growth is likely to occur, the initial crystal growth is smoothly started, and the crystallinity of the growth layer thereon is improved. In addition, the switching of the composition of the III-V compound semiconductor mixed crystal containing both the As compound and As and N occurs abruptly.
[0042]
As described above, according to the present invention, a high quality GaInNAs mixed crystal could be obtained. Furthermore, when the above method was applied to the production of an active layer corresponding to a wavelength region of 1.55 μm to produce a semiconductor laser device, a high-performance laser device was obtained.
[0043]
(Embodiment 3) As Embodiment 3 of the present invention, GaInAs / GaNAs / is formed on a GaAs substrate inclined from the (001) plane toward the (111) B plane by using an organic metal MBE (MO-MBE) method. A case where a strain compensation quantum well structure made of GaInAs is manufactured will be described.
[0044]
A GaAs substrate having a surface inclined by 15 ° from the (001) plane toward the (111) B plane is prepared, and a trimethylgallium (TMG) molecular beam, a trimethylindium (TMI) molecular beam, As2Molecular beam, diethylylamine (NH (C2HFive)2) A compound semiconductor multilayer film was grown by MO-MBE using a molecular beam as a raw material.
[0045]
The structure of the produced multilayer film is as follows. First, a buffer layer made of GaAs having a thickness of 1.0 μm is formed on a GaAs substrate, and a Ga layer having a thickness of 10 nm is formed thereon.0.7In0.3A first barrier layer made of As and having a compressive strain of + 2% and GaN having a thickness of 8 nm0.03As0.97GaAs having a layer thickness of 0.5 μm is formed as a protective layer on the triple quantum well structure composed of a quantum well light emitting layer having a tensile strain of −0.5%. The crystal growth temperature was maintained at 600 ° C. during the production of the multilayer film, and the crystal growth rate was 0.4 μm / hour. The obtained film was a single crystal film with no compositional uniformity and excellent emission characteristics.
[0046]
Furthermore, when a semiconductor laser device using GaNAs produced by the above method as an active layer was produced, a high-performance laser emitting light at a wavelength of 1.3 μm was obtained.
[0047]
(Embodiment 4) As Embodiment 4 of the present invention, AlGaNAs / GaNAs / is formed on a GaP substrate inclined from the (001) plane toward the (111) B plane by using metal organic chemical vapor deposition MO-CVD. A case where a single quantum well structure made of AlGaNAs is fabricated will be described.
[0048]
A GaP substrate having a surface inclined by 10 ° from the (001) plane toward the (111) B plane is prepared, and trimethylaluminum (TMA), trimethylgallium (TMG), arsine (AsH) is formed thereon.Three), Ammonia (NHThree) As the source gas and H2A multilayer film of a compound semiconductor was grown by MO-CVD using as a carrier gas.
[0049]
The structure of the produced multilayer film is as follows. First, an Al layer with a thickness of 0.5 μm is formed on a GaP substrate.0.2Ga0.8N0.2As0.8A first barrier layer made of GaN having a thickness of 10 nm0.2As0.8A single quantum well light-emitting layer made of Al with a thickness of 0.5 μm is formed thereon.0.2Ga0.8N0.2As0.8On the second barrier layer made of GaAs, GaAs having a layer thickness of 0.5 μm is formed as a protective layer. Each layer at this time has a mixed crystal composition that substantially lattice matches with GaP. Crystal growth was performed at 100 Torr, the crystal growth temperature was maintained at 750 ° C. during the production of the multilayer film, and the crystal growth rate was 0.3 μm / hour.
[0050]
As a result of evaluating the obtained film by X-ray diffraction, the full width at half maximum of the (400) diffraction spectrum was 15 seconds, which was a very good value. A single crystal film excellent in crystallinity with no non-uniform composition was obtained. Furthermore, when a semiconductor laser device using GaNAs produced by the above method as an active layer was produced, a high-performance laser was obtained.
[0051]
By the way, in all the embodiments shown so far, even if the inclination direction of the {001} substrate is deviated by about ± 10 ° in the {001} plane from the direction of the {111} B plane, the surface step is a group V element. The same effect was obtained because it ends with.
[0052]
Further, the substrate is not limited to GaAs or GaP as long as it is a zinc blende type semiconductor crystal, and similar effects were obtained with other III-V group semiconductors and II-VI group semiconductor crystals.
[0053]
In the above embodiment, the MBE method, the MO-MBE method, and the MO-CVD method have been described. As a group III material, a solid material, and as a group V material, AsHThreeThe same effect can be obtained by using a gas source MBE (GS-MBE) method using a gas or a chemical molecular beam epitaxy (CBE) method using an organometallic compound as a group III material and a gas material as a group V material. It was.
[0054]
In the above-described embodiment, a compound containing Ga, In, Al as the group III element and As, N as the group V element is shown. However, other group III elements (such as B) and group V elements (P, The same effect can be obtained even if an impurity element (Zn, Be, Mg, Te, S, Se, Si, etc.) is appropriately contained.
[0055]
In the description so far, the direction indicated as “up” indicates a direction away from the substrate, and “down” indicates a direction approaching the substrate. Crystal growth proceeds from “down” to “up”.
[0056]
The present invention is not limited to the combination of the crystal composition, the band gap wavelength, and the heterojunction shown in the above embodiment, but includes a group III-V compound semiconductor including both As and N having other compositions and band gaps. Needless to say, it can be applied to the production of crystals. In addition, the present invention is not limited to the case where the growth layer is lattice-matched to the substrate crystal. For example, a strain ratio of a mixed crystal having a lattice irregularity, such as a strained quantum well structure of a semiconductor laser, does not induce crystal defects. There may be.
[0057]
Moreover, it is possible to use a crystal growth method and materials other than those shown in the above specific examples. Especially for both MBE and CVD, radical excited N2, NHThreeOr an organic nitrogen compound is desirable as the N source.
[0058]
Although the substrate is left in this embodiment mode, it goes without saying that the present invention is effective even if the substrate is removed by etching.
[0059]
【The invention's effect】
As described above, according to the method for producing a compound semiconductor according to the first aspect of the present invention, As and N having extremely uniform and good crystallinity are obtained without phase separation even in a composition corresponding to the immiscible region. A III-V compound semiconductor mixed crystal containing both can be produced. In particular, a III-V group compound semiconductor mixed crystal containing both As and N having band gaps corresponding to wavelengths of 1.3 μm and 1.55 μm and sufficient crystallinity to be used as an active layer of a semiconductor laser. It can be made.
[0060]
According to the method for producing a compound semiconductor according to the second and third aspects of the present invention, the effect of the second aspect can be obtained more suitably.
[0061]
Claims of the invention1According to the method for producing a compound semiconductor according to the present invention, a crystal having a large N composition, which cannot obtain a good crystal by the conventional crystal growth method, can be obtained.
[0062]
Claims of the invention1According to the method for producing a compound semiconductor according to the present invention, a III-V compound semiconductor mixed crystal containing both As and N having a uniform and good composition distribution having band gaps corresponding to wavelengths of 1.3 μm and 1.55 μm is obtained. High-quality light emission important for optical fiber communication using a III-V compound semiconductor mixed crystal containing both As and N prepared by the method of claims 1 to 4 It becomes possible to create an element.
[0063]
Claims of the invention4According to the method for producing a compound semiconductor according to the present invention, a smooth step flow growth occurs in the III-V compound semiconductor mixed crystal containing both As and N on the P compound from the initial stage of the crystal growth. Will improve.
[0064]
Claims of the invention5According to the method for producing a compound semiconductor, the III-V compound semiconductor mixed crystal containing both As and N on the surface of the compound semiconductor starts smooth step flow growth from the initial stage of crystal growth, and crystallinity is improved. To do. Further, the interface between the underlying As compound and the III-V compound semiconductor mixed crystal containing both As and N as group V elements is sharp enough to produce a quantum well structure.
[0065]
Claims of the invention6The compound semiconductor device according to the present invention has a III-V group compound semiconductor mixed crystal containing both As and N having extremely uniform and good crystallinity without phase separation even in a composition corresponding to the immiscible region. A compound semiconductor device with high performance can be provided. In particular, when the compound semiconductor device is applied to a light emitting element as a compound semiconductor device, a highly efficient compound semiconductor light emitting element can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing a time chart of crystal growth in a first embodiment of the present invention.
FIG. 2 is a diagram showing a PL spectrum of a GaInNAs crystal produced in the first embodiment of the present invention.
FIG. 3 is a diagram showing the dependence of the PL intensity on the tilt angle and tilt direction of the substrate of the GaInNAs crystal fabricated in the first embodiment of the present invention.
FIG. 4 is a diagram showing the dependence of PL intensity on the substrate temperature of the GaInNAs crystal produced in the first embodiment of the present invention.
FIG. 5 is a diagram showing a time chart of crystal growth in a second embodiment of the present invention.

Claims (6)

V族元素としてN(窒素)とAs(砒素)とを共に含むIII−V族化合物半導体結晶を一層以上含む積層構造を半導体基板上に作製する化合物半導体の製造方法であって、
前記半導体基板が閃亜鉛鉱型の半導体結晶から成り、かつミラー指数(001)である面が、方向指数<1−10>方向へ傾くように傾斜された表面を有し
前記V族元素としてNとAsとを共に含むIII−V族化合物半導体結晶は、V族元素として結晶中に含まれているNの組成比[N原子密度]/([N原子密度]+[As原子密度])が0.025以上であり、
前記半導体基板として用いる閃亜鉛鉱型の半導体結晶がGaAsからなることを特徴とする化合物半導体の製造方法。
A method for producing a compound semiconductor, wherein a laminated structure including one or more III-V compound semiconductor crystals containing both N (nitrogen) and As (arsenic) as group V elements is formed on a semiconductor substrate,
The surface of the semiconductor substrate made of zinc blende type semiconductor crystal and having a Miller index (001) is inclined so as to incline in the direction index <1-10> direction ,
The group III-V compound semiconductor crystal containing both N and As as the group V element has a composition ratio of [N atom density] / ([N atom density] + [ As atom density]) is 0.025 or more,
Method of producing a compound semiconductor of the zinc blende-type semiconductor crystal used as a semiconductor substrate and said GaAs Tona Rukoto.
前記基板が、ミラー指数(001)である面が、方向指数<1−10>方向へ3度以上30度以下の角度で方向が傾くように、傾斜された表面を有していることを特徴とする請求項1に記載の化合物半導体の製造方法。The substrate has a surface that is inclined such that a plane having a Miller index (001) is inclined in an angle of 3 degrees or more and 30 degrees or less in a direction index <1-10> direction. The method for producing a compound semiconductor according to claim 1. 前記積層構造は、600℃以上750℃以下の温度で結晶成長されることを特徴とする請求項1乃至2のいずれかに記載の化合物半導体の製造方法。  The method for producing a compound semiconductor according to claim 1, wherein the stacked structure is crystal-grown at a temperature of 600 ° C. or higher and 750 ° C. or lower. V族元素としてP(燐)を含む化合物半導体を積層し、その上にV族元素としてAsだけを有する化合物半導体を少なくとも1分子層以上10分子層以下積層し、その上にV族元素としてNとAsとを共に含むIII−V族化合物半導体結晶を結晶成長する工程を含むことを特徴とする請求項1乃至3のいずれかに記載の化合物半導体の製造方法。 A compound semiconductor containing P (phosphorus) as a V group element is stacked, and a compound semiconductor having only As as a V group element is stacked thereon, and at least 1 molecular layer and 10 molecular layers are stacked thereon. 4. The method for producing a compound semiconductor according to claim 1 , further comprising a step of crystal growth of a group III-V compound semiconductor crystal containing both As and As . V族元素としてNとAsとを共に含むIII−V族化合物半導体結晶を結晶成長する直前に、N原料だけを供給する工程を含むことを特徴とする請求項1乃至4のいずれかに記載の化合物半導体の製造方法。 5. The method according to claim 1 , further comprising a step of supplying only an N raw material immediately before crystal growth of a group III-V compound semiconductor crystal containing both N and As as a group V element. A method for producing a compound semiconductor. 半導体基板上に、V族元素としてN(窒素)とAs(砒素)とを共に含むIII−V族化合物半導体結晶を一層以上含む積層構造を有する化合物半導体装置であって、A compound semiconductor device having a stacked structure including at least one group III-V compound semiconductor crystal containing both N (nitrogen) and As (arsenic) as group V elements on a semiconductor substrate,
前記半導体基板が閃亜鉛鉱型の半導体結晶から成り、かつIII−V族半導体を積層する面の方位が、ミラー指数(001)である面が、方向指数<1−10>方向へ傾くように、傾斜されており、The surface on which the semiconductor substrate is made of zinc blende type semiconductor crystal and the orientation of the surface on which the group III-V semiconductor is laminated is the Miller index (001) is inclined in the direction index <1-10> direction. Is inclined,
前記V族元素としてNとAsとを共に含むIII−V族化合物半導体結晶は、V族元素として結晶中に含まれているNの組成比[N原子密度]/([N原子密度]+[As原子密度])が0.025以上であり、The group III-V compound semiconductor crystal containing both N and As as the group V element has a composition ratio of [N atom density] / ([N atom density] + [ As atom density]) is 0.025 or more,
前記半導体基板として用いる閃亜鉛鉱型の半導体結晶がGaAsからなることを特徴とする化合物半導体装置。A compound semiconductor device, wherein a zinc blende type semiconductor crystal used as the semiconductor substrate is made of GaAs.
JP14144697A 1997-05-30 1997-05-30 Compound semiconductor manufacturing method and compound semiconductor device Expired - Fee Related JP4006055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14144697A JP4006055B2 (en) 1997-05-30 1997-05-30 Compound semiconductor manufacturing method and compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14144697A JP4006055B2 (en) 1997-05-30 1997-05-30 Compound semiconductor manufacturing method and compound semiconductor device

Publications (2)

Publication Number Publication Date
JPH10335748A JPH10335748A (en) 1998-12-18
JP4006055B2 true JP4006055B2 (en) 2007-11-14

Family

ID=15292124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14144697A Expired - Fee Related JP4006055B2 (en) 1997-05-30 1997-05-30 Compound semiconductor manufacturing method and compound semiconductor device

Country Status (1)

Country Link
JP (1) JP4006055B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320134A (en) * 2000-05-01 2001-11-16 Ricoh Co Ltd Semiconductor light-emitting device, its manufacturing method, optical transmission module, optical transmission /reception module, optical communication system, computer system, and network system
JP2001339121A (en) * 2000-05-29 2001-12-07 Sharp Corp Nitride semiconductor light emitting device and optical device including the same
JP2008022040A (en) * 2007-10-05 2008-01-31 Ricoh Co Ltd Semiconductor light-emitting device, optical transmission module, optical transmission/reception module, optical communication system, computer system, and network system

Also Published As

Publication number Publication date
JPH10335748A (en) 1998-12-18

Similar Documents

Publication Publication Date Title
US6455877B1 (en) III-N compound semiconductor device
JP2956489B2 (en) Crystal growth method of gallium nitride based compound semiconductor
US6861271B2 (en) Forming indium nitride (InN) and indium gallium nitride (InGaN) quantum dots grown by metal-organic-vapor-phase-epitaxy (MOCVD)
US5998810A (en) Semiconductor light-emitting diode having a p-type semiconductor layer formed on a light-emitting layer
US8882910B2 (en) AlGaN substrate and production method thereof
US20070128743A1 (en) Process of producing group III nitride based reflectors
JP3646649B2 (en) Gallium nitride compound semiconductor light emitting device
JP2000232238A (en) Nitride semiconductor light-emitting element and manufacture thereof
EP1122841A1 (en) Process for producing nitride semiconductor device
JPH0918092A (en) Growth method of single crystal iii-v compound semiconductor
JP2003332696A (en) METHOD FOR FORMING LONG WAVELENGTH INDIUM/GALLIUM/ ARSENIC NITRIDE (InGaAsN) ACTIVE REGION
JP2905667B2 (en) Method for manufacturing II-VI compound semiconductor thin film and II-VI compound semiconductor device
JPH1079501A (en) Method for forming quantum dot and quantum dot structure
JPH11135889A (en) Substrate for crystal growth and light-emitting device using the same
JPH0832113A (en) Manufacture of p-type gan semiconductor
JPH10341060A (en) Crystal growth method of nitride compound semiconductor and gallium nitride light-emitting diode
JP3857467B2 (en) Gallium nitride compound semiconductor and manufacturing method thereof
JP3064891B2 (en) Group 3-5 compound semiconductor, method of manufacturing the same, and light emitting device
JP4006055B2 (en) Compound semiconductor manufacturing method and compound semiconductor device
JP4284944B2 (en) Method for manufacturing gallium nitride based semiconductor laser device
JP4002323B2 (en) Method for producing compound semiconductor
EP1873880A1 (en) Process for producing gallium nitride-based compound semiconductor laser element and gallium nitride-based compound semiconductor laser element
JPH10242586A (en) Group iii nitride semiconductor device and manufacture thereof
JP2001308464A (en) Nitride semiconductor element, method for manufacturing nitride semiconductor crystal, and nitride semiconductor substrate
JP3654331B2 (en) Semiconductor manufacturing method and semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees