JP4004935B2 - Processed water flow measurement system for sewerage plant - Google Patents

Processed water flow measurement system for sewerage plant Download PDF

Info

Publication number
JP4004935B2
JP4004935B2 JP2002351894A JP2002351894A JP4004935B2 JP 4004935 B2 JP4004935 B2 JP 4004935B2 JP 2002351894 A JP2002351894 A JP 2002351894A JP 2002351894 A JP2002351894 A JP 2002351894A JP 4004935 B2 JP4004935 B2 JP 4004935B2
Authority
JP
Japan
Prior art keywords
flow rate
treated water
time difference
ultrasonic
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002351894A
Other languages
Japanese (ja)
Other versions
JP2004184245A (en
Inventor
敏春 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002351894A priority Critical patent/JP4004935B2/en
Publication of JP2004184245A publication Critical patent/JP2004184245A/en
Application granted granted Critical
Publication of JP4004935B2 publication Critical patent/JP4004935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、下水道プラント内において家庭排水やし尿水等の処理水の流量を配管の外から超音波を用いて検出する外装式流量計測に関するものである。
【0002】
【従来の技術】
配管の外部に超音波受発信ヘッドを設け、各種流体の流量を計測する方法には大別して、時間差式とドップラー式の2種類がある。これらによる流量計測の測定原理については周知であるので、技術説明は省略する。
次に時間差式超音波流量計とドップラー式超音波流量計の利点と問題点について述べる。
時間差式は、配管内全体の流速分布を測定する方式であるので、流量を精度よく測定できるという利点を有している。しかし一方、処理水に気泡、汚泥等の超音波の透過を阻害する物質が多量に混入すると、測定精度が悪くなるばかりでなく流量測定が不可能となる(欠測する)という状態が発生する。
ドップラー式は、超音波の反射を利用している方式であるため、前記した時間差式で測定不能となるような多量な超音波透過物質が混入した場合にも、欠測が発生しないという利点を有している。しかし計測すべき流体内に超音波を反射する物質が混入していない場合には欠測することがあり、また、混入物質が配管に取り付けられたセンサに近い個所、つまり配管外径に近い個所に片寄って流れるような場合には、センサ設置個所の近傍でしか流量を測定できないので、配管内全体の平均流量は知ることができず、前記時間差式に比較して精度が悪いという問題点を有している。
【0003】
下水道プラントはその社会的使命から通常、運転を休止させることは出来ない。従って運転を止めずにメンテナンス可能な外装式超音波流量計は重用されている。そして計測される処理水量はプラント制御の基本的対象となることから精度も要求される。従って、前記時間差式流量計がほぼすべての下水道プラントに適用されているが反面、前記のようなデメリットである欠測がしばしば発生し、これを補完するために流量測定精度が劣るにもかかわらず、ドップラー式を当用する場合も多い。このように下水道プラント向きには欠測の発生しない、かつ精度の良い流量計測をするには時間差式とドップラー式双方の利点を活用するよう2種類設置して、処理水の状態に応じて切り換え使用するのが効率的である。
【0004】
このような観点から、配管内に複数のセンサーを棒状に接続し、或る一つのセンサが何らかの原因によって測定困難な状態に陥った場合に、その状況を他のセンサによって検知し補完するものが示されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平7−110246号公報(第5頁、図1)
【0006】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に示された従来技術では、配管内に流量測定用のセンサを設けているので、例えば一つのセンサが何らかの原因で流量測定不能となった場合に、その原因が不明でかつ復旧しないような場合には、センサ全体を配管から取り外すことが必要となり、そのメンテナンスの期間中は処理水の流量計測が出来ずプラントの休止に至るという問題点があった。
この発明は、上記のような課題を解決するためになされたものであり、処理水に超音波透過阻害物質の混入が増加した場合にも欠測せず、またメンテナンス容易でかつプラント運転を停止させる必要のない、下水道プラントの処理水計測システムを提供することを目的としている。
【0007】
【課題を解決するための手段】
時間差式超音波流量計とドップラー式超音波流量計とを備えた下水道プラントの処理水流量計測システムであって、
前記それぞれの流量計はそれぞれの超音波受発信ヘッド部と、信号変換器で構成されているものであり、
前記超音波受発信ヘッド部は処理水配管の外部に設けられており、前記信号変換器には流量警報設定部が設けられているとともに、前記流量警報設定部には処理水流量のしきい値が設定されており、処理水流量が前記しきい値以下では前記時間差式超音波流量計による流量計測を、前記しきい値以上では前記ドップラー式超音波流量計による流量計測を行うように、前記流量警報設定部が切り換えを行うものである。
【0008】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1はこの実施の形態1による超音波を利用した下水道プラントの処理水流量計測システム100を示す図である。図(A)は配管部の斜視図であり、図(B)はその側面図、図(C)は変換器の斜視図である。図において、内部に処理水が流れる下水汚泥配管1の外部には、時間差式超音波受発信ヘッド部2a,2bと、ドップラー式超音波受発信ヘッド部3a,3bが固定バンド4によって取り付けられている。
前記受発信ヘッド部2a,2b,3a,3bからの超音波信号は専用ケーブル5を介して変換器6に送信される。図2は、前記変換器6内のロジックを示す図であり、流量変換部7a,7b、流量警報設定部8a,8bおよびアナログ変換部9が設けられている。ここで、前記時間差式超音波受発信ヘッド2a,2bからの信号を受ける前記流量変換部7a、流量警報設定部8a、アナログ変換器9へとつながる第1の回路で時間差式超音波流量計200を成し、ドップラー式超音波受発信ヘッド3a,3b、流量変換部7b、流量警報設定部8b、アナログ変換器9とつながる第2の回路でドップラー式超音波流量計300を成している。
【0009】
次に動作について説明する。
前記処理水流量計測システム100が設けられている前段には、処理すべき汚泥水を一時的に貯える汚泥池が設けられている。この汚泥池には、市中配管を通った汚泥水が流れ込むとともに、前記汚泥水量の増大化に対応可能な容量を有している。
汚泥池の下部側に設けられた前記配管1内は、前記処理水が内部を充填した状態で流れており、種々の汚物と共に前記汚泥池で発生した気泡も含んでいる。このような処理水が前記配管1の外部に設けられた時間差式超音波受発信ヘッド部2a,2bおよびドップラー式超音波受発信ヘッド部3a,3bの個所を通過すると、前記ヘッド部2a,2b,3a,3bからの信号は専用ケーブル5で伝送されて前記変換器6に入力される。前記信号はそれぞれ時間差式用、ドップラー式用の前記流量変換部7a,または7bを介して流量変換され、さらに流量警報設定部8a,または8bを介して、前記アナログ変換部9で一般工業信号に変換され、下水道プラント制御の上位系に流量情報として伝送される。
【0010】
この実施の形態1では、前記流量警報設定部8a,8bにはプラントの処理水条件つまり、汚泥物量や大きさや前記汚泥池で発生する気泡の量等に対応して、前記時間差式超音波流量計200による流量計測と、前記ドップラー式超音波流量計300による流量計測に切り換えるべき処理水流量のしきい値が設定されている。このしきい値を設定する理由は、前記時間差式超音波流量計200とドップラー式超音波流量計300による流量計測の利点を活かそうとする目論みのもとになされたものである。
つまり、前記時間差式超音波流量計200による流量計測は、前記配管1の外部に受発信ヘッド2a,2bを設け、配管1内に充填して流れる処理水の流速を計測するので、流量計測が精度良く行えることから、可能な限り前記時間差式超音波流量計200によって流量を計測することが望ましい。ところが、この時間差式超音波流量計200による流量計測は、処理水内に超音波透過の阻害物質である気泡や汚泥等が多量に混入すると欠測が生じる。前記超音波透過の阻害物質は処理水中の気泡が支配的であり、この気泡量はプラントの設置条件や処理水量の経日的変化等の諸要因により、プラント毎に異なる値をとる。この実施の形態1では前記時間差式超音波流量計200による計測が可能な流量上限値をこのシステムが設置されるプラント内の固有値として定めておき、この値をしきい値として前記流量警報設定部8a,8bに設定する。そして処理水量が前記しきい値をこえると前記ドップラー式超音波流量計300による流量計測に切り換えることにより、前記時間差式超音波流量計200による欠点を補完する。
【0011】
すなわち、前記プラント毎に定められるしきい値が前記流量警報設定部8a,8bに設けられていて、処理水量が前記しきい値以下では前記流量警報設定部8aが前記時間差式超音波受発信ヘッド部2a,2bからの信号が前記流量変換部7a、流量警報設定部8a、アナログ変換部9を通る第1の回路、つまり時間差式超音波流量計200による処理水の流量計測を行うよう、前記しきい値以上となると前記流量警報設定部8aは、前記ドップラー式超音波受発信ヘッド部3a,3bからの信号が前記流量変換部7b、流量警報設定部8b、アナログ変換部9を通る第2の回路、つまりドップラー式超音波流量計300による処理水の流量計測を行うように切り換える。この状態で流量が前記しきい値以下になると、同様に前記流量警報設定部8bが第1の回路、つまり時間差式超音波流量計200による流量計測を行うよう切り換える。
なお前記しきい値は、前記流量計200,300をプラントに設置後のプラントの水処理条件、例えば汚泥や気泡量によって前記時間差式超音波流量計200による欠測が発生する前の測定可能な流量値上限に定められるものであり、またこの値はプラント水処理条件の大幅な変化に伴って値が変更されるものである。
【0012】
このようにこの実施の形態1では、外装式の時間差式超音波流量計200とドップラー式超音波流量計300とを備え、プラントの処理水条件に対応して定められた所定のしきい値で、前記流量計200,300を切り換えて流量計測を行うので、欠測を生じることがなく、さらに水処理条件変化に追随可能となりまたメンテナンス容易でかつメンテナンス時にプラント休止に至らない処理水量計測システムを提供することができる。
【0013】
実施の形態2.
前記実施の形態1では、時間差式超音波流量計200とドップラー式超音波流量計300との切り換えは、処理水流量しきい値でもって前記流量警報設定部8a,8bが行っていたが、この実施の形態2では、図3に示すように信号変換器6内の流量変換部7a,7bの入力側に、超音波受信強度警報設定部10a,10bを設ける構成としている。
そして、前記図1で示した時間差式超音波受発信ヘッド部2a,2bからの信号を受ける前記超音波受信強度警報設定部10aと流量変換部7a、アナログ変換器9へとつながる第1の回路でもって時間差式超音波流量計200aを成し、ドップラー式超音波受発信ヘッド部3a,3b、超音波受信強度警報設定部10b、流量変換部7b、アナログ変換器9とつながる第2の回路でもってドップラー式超音波流量計300aを成している。
【0014】
次に動作について説明する。
前記超音波受信強度警報設定部10a、10bには、プラントの処理水条件、つまり汚泥物量や大きさ、処理水中に含まれる気泡量に対応した超音波受信強度のしきい値が設定されていて、例えば、前記第1の回路すなわち時間差式超音波流量計200aで処理水流量を計測している際に、前記処理水中に含まれる気泡量が増加すると、前記超音波受信強度が次第に低下し、前記しきい値に達すると、前記超音波受信強度警報設定部10aは前記第2の回路すなわちドップラー式超音波流量計300aでの流量計測を行うように切り換える。この状態で流量計測を行っていて、処理水中に含まれる気泡量が減少して、前記しきい値に達した際には、前記超音波受信強度警報設定部10bは、前記第1の回路すなわち時間差式超音波流量計200aでの流量計測を行うように切り換える。
なお、前記しきい値は、実施の形態1と同様に、前記流量計200a,300aをプラントに設置後のプラントの水処理条件によって定められ、かつ水処理条件の大幅な状態変化に伴って値が変更されるものである。
このようにこの実施の形態2では、超音波受信強度警報設定部10a,10bに超音波受信強度のしきい値が設定されて、このしきい値を境界として流量計を切り換えているので、処理水条件にかかわらず、欠測のない流量測定が行えると共に、メンテナンス容易な流量計測システムを提供している。
【0015】
実施の形態3.
この実施の形態3では、前記実施の形態2の超音波受信強度警報設定部10a,10bに代わり、図4に示すように信号変換部6に超音波伝搬速度警報設定部11a,11bを設けた構成としたものである。そして、時間差式超音波受発信ヘッド部2a,2b、超音波伝搬速度警報設定部11a、流量変換部7a、アナログ変換器9へとつながる第1の回路で時間差式超音波流量計200bを成し、ドップラー式超音波受発信ヘッド部3a,3b、超音波伝搬速度警報設定部11b、流量変換部7b、アナログ変換器9とつながる第2の回路でドップラー式超音波流量計300bを成している。
【0016】
次に動作について説明する。
前記超音波伝搬速度警報設定部11a,11bには、前記実施の形態2と同様に、プラントの処理水条件に対応した超音波伝搬速度のしきい値が設定されている。そしてまた、例えば前記第1の回路すなわち時間差式超音波流量計200bで処理水流量を計測している際に、処理水に含まれる気泡や汚泥物の量が変化し、超音波伝搬速度が前記しきい値に達した場合、超音波伝搬速度警報設定部11aは第2の回路すなわちドップラー式超音波流量計300bによる計測に切り換える。そしてこの状態での計測を行っていて、再び処理水に含まれる気泡量等が変化し、前記しきい値に達すると、超音波伝搬速度警報設定部11bは第1の回路すなわち時間差式超音波流量計200bでの流量計測に切り換える。
なお、前記しきい値は実施の形態1と同様に、前記流量計200b、300bをプラントに設置後、プラントの水処理条件によって定められ、かつ水処理条件の大幅に状態変化に伴って値が変更されるものである。
このように実施の形態3では、超音波伝搬速度警報設定部11a,11bに超音波伝搬速度のしきい値が設定されていて、このしきい値を境界として流量計を切り換えているので、処理水条件にかかわらず、欠測のない流量測定が行えると共に、メンテナンス容易な流量計測システムを提供している。
【0017】
実施の形態4.
なお、前記実施の形態1〜実施の形態3では、超音波受発信ヘッド部を時間差式用の2a,2b、ドップラー式の3a,3bをそれぞれ設ける例を示したが、この実施の形態4では図5に示すように、前記時間差式とドップラー式に共用可能な超音波受発信ヘッド部2cを設けているので、受発信ヘッドのセット数を減らして安価なシステムとなると同時に、前記実施の形態1〜実施の形態3と同様の効果を奏する。なお図5では、信号変換器6の記入を省略している。
【0018】
【発明の効果】
この発明は以上述べたような構成の下水道プラントの処理水計測システムであるので、以下のような効果がある。
時間差式超音波流量計とドップラー式超音波流量計とを備え、それぞれの流量計はそれぞれの超音波受発信ヘッド部と、信号変換器で構成されていて、
超音波受発信ヘッド部は処理水配管の外部に設けられており、信号変換器には流量警報設定部が設けられているとともに、流量警報設定部には処理水流量のしきい値が設定されており、処理水流量が前記しきい値以下では時間差式超音波流量計による流量計測を、前記しきい値以上ではドップラー式超音波流量計による流量計測を行うように、流量警報設定部が切り換えを行うものであるので、処理水中に気泡、汚泥物等による超音波透過阻害物質が増加したとしても、流量測定不能となるような事態は生じず、またプラントの水処理条件の変化にも対応したしきい値を設定することができるとともに、さらに、メンテナンスが容易でかつ、メンテナンスにプラントの休止を必要としないという優れた効果を奏する。
【図面の簡単な説明】
【図1】 この発明の実施の形態1、2による下水道プラントの処理水流量計測システムを示す図である。
【図2】 この発明の実施の形態1による変換器内のロジックを示す図である。
【図3】 この発明の実施の形態2による変換器内のロジックを示す図である。
【図4】 この発明の実施の形態3による変換器内のロジックを示す図である。
【図5】 この発明の実施の形態4による下水道プラントの処理水流量計測システムを示す図である。
【符号の説明】
1 配管、2a,2b 時間差式超音波受発信ヘッド部、
2c 超音波受発信ヘッド部、
3a,3b ドップラー式超音波受発信ヘッド部、6 信号変換器、
7a,7b 流量変換部、8a,8b 流量警報設定部、9 アナログ変換部、
10a,10b 超音波受信強度警報設定部、
11a,11b 超音波伝搬速度警報設定部、
100 処理水流量計測システム、
200,200a,200b 時間差式超音波流量計、
300,300a,300b ドップラー式超音波流量計。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exterior type flow rate measurement that detects the flow rate of treated water such as domestic wastewater and human urine water from outside a pipe using ultrasonic waves in a sewerage plant.
[0002]
[Prior art]
There are two types of methods, a time difference type and a Doppler type, in which an ultrasonic wave receiving / transmitting head is provided outside the pipe and the flow rates of various fluids are measured. Since the measurement principle of the flow rate measurement by these is well known, the technical explanation is omitted.
Next, the advantages and problems of the time difference type ultrasonic flowmeter and the Doppler type ultrasonic flowmeter will be described.
Since the time difference formula is a method for measuring the flow velocity distribution in the entire pipe, it has an advantage that the flow rate can be measured with high accuracy. However, if a large amount of substances that inhibit the transmission of ultrasonic waves, such as bubbles and sludge, is mixed in the treated water, not only will the measurement accuracy be deteriorated, but the flow measurement may be impossible (missed). .
The Doppler method is a method that uses reflection of ultrasonic waves. Therefore, even when a large amount of ultrasonic transmitting material that cannot be measured by the time difference method described above is mixed, the missing measurement does not occur. Have. However, if the substance that reflects ultrasonic waves is not mixed in the fluid to be measured, it may be missed, and the place where the mixed substance is close to the sensor attached to the pipe, that is, the place near the outer diameter of the pipe. In the case where the flow is offset, the flow rate can be measured only in the vicinity of the sensor installation location, so the average flow rate in the entire pipe cannot be known, and the accuracy is poor compared to the time difference formula. Have.
[0003]
Sewerage plants usually cannot be shut down due to their social mission. Therefore, an external ultrasonic flowmeter that can be maintained without stopping operation is heavily used. Since the amount of treated water to be measured is a basic object of plant control, accuracy is also required. Therefore, although the time difference type flow meter is applied to almost all sewerage plants, on the other hand, the missing measurement which is the disadvantage described above often occurs, and the flow measurement accuracy is inferior to compensate for this. In many cases, the Doppler type is used. Thus, in order to measure the flow rate with high accuracy and no missing measurement for sewerage plants, two types are installed to take advantage of both the time difference method and the Doppler method, and switch according to the state of the treated water. It is efficient to use.
[0004]
From this point of view, when a plurality of sensors are connected in a pipe shape in a pipe and one sensor falls into a state that is difficult to measure for some reason, the situation is detected and complemented by other sensors. (See, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP-A-7-110246 (5th page, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, in the prior art disclosed in Patent Document 1, since a sensor for measuring the flow rate is provided in the pipe, for example, when one sensor becomes unable to measure the flow rate for some reason, the cause is unknown. If the sensor is not restored, it is necessary to remove the entire sensor from the pipe, and there is a problem that the flow rate of the treated water cannot be measured during the maintenance period and the plant is stopped.
The present invention has been made to solve the above-described problems, and is not missing even when the mixing of ultrasonic permeation-inhibiting substances increases in the treated water, is easy to maintain, and stops plant operation. It aims at providing the treated water measuring system of a sewerage plant which does not need to be made to do.
[0007]
[Means for Solving the Problems]
A process water flow measurement system for a sewer plant equipped with a time difference type ultrasonic flow meter and a Doppler type ultrasonic flow meter,
Each of the flow meters is composed of a respective ultrasonic transmission / reception head unit and a signal converter,
The ultrasonic wave receiving / transmitting head part is provided outside the treated water piping, the signal converter is provided with a flow rate alarm setting unit, and the flow rate alarm setting unit has a threshold value of the treated water flow rate. Is set, and when the treated water flow rate is equal to or lower than the threshold value, the flow rate measurement by the time difference type ultrasonic flow meter is performed. The flow rate alarm setting unit performs switching.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a treated water flow rate measurement system 100 of a sewer plant using ultrasonic waves according to the first embodiment. Fig. (A) is a perspective view of the piping section, Fig. (B) is a side view thereof, and Fig. (C) is a perspective view of the converter. In the figure, outside of the sewage sludge pipe 1 through which treated water flows, time difference type ultrasonic wave receiving / transmitting head portions 2a, 2b and Doppler type ultrasonic wave receiving / transmitting head portions 3a, 3b are attached by a fixing band 4. Yes.
Ultrasonic signals from the transmission / reception head units 2a, 2b, 3a, 3b are transmitted to the converter 6 via the dedicated cable 5. FIG. 2 is a diagram showing the logic in the converter 6, in which flow rate conversion units 7 a and 7 b, flow rate alarm setting units 8 a and 8 b, and an analog conversion unit 9 are provided. Here, a time difference type ultrasonic flowmeter 200 is connected to the flow rate conversion unit 7a, the flow rate alarm setting unit 8a, and the analog converter 9 that receive signals from the time difference type ultrasonic wave transmission / reception heads 2a and 2b. The Doppler type ultrasonic flowmeter 300 is composed of a second circuit connected to the Doppler type ultrasonic wave receiving / transmitting heads 3a and 3b, the flow rate conversion unit 7b, the flow rate alarm setting unit 8b, and the analog converter 9.
[0009]
Next, the operation will be described.
In the previous stage where the treated water flow rate measuring system 100 is provided, a sludge pond for temporarily storing sludge water to be treated is provided. The sludge pond has a capacity capable of accommodating the increase in the amount of sludge water while flowing into the sludge pond through the city piping.
Inside the pipe 1 provided on the lower side of the sludge pond, the treated water flows in a state of filling the inside thereof, and also includes bubbles generated in the sludge pond together with various filths. When such treated water passes through the time difference type ultrasonic wave receiving / transmitting head portions 2a, 2b and the Doppler type ultrasonic wave receiving / transmitting head portions 3a, 3b provided outside the pipe 1, the head portions 2a, 2b. , 3a, 3b are transmitted by the dedicated cable 5 and input to the converter 6. The signals are converted through the flow rate conversion unit 7a or 7b for the time difference type or Doppler type, respectively, and further converted into general industrial signals by the analog conversion unit 9 through the flow rate alarm setting unit 8a or 8b. It is converted and transmitted as flow rate information to the upper system of the sewerage plant control.
[0010]
In the first embodiment, the flow rate alarm setting units 8a and 8b include the time difference type ultrasonic flow rate corresponding to the treated water conditions of the plant, that is, the amount and size of sludge, the amount of bubbles generated in the sludge pond, and the like. A threshold value of the treated water flow rate to be switched between the flow rate measurement by the meter 200 and the flow rate measurement by the Doppler ultrasonic flow meter 300 is set. The reason for setting this threshold value is based on the idea of making use of the advantages of the flow rate measurement by the time difference type ultrasonic flow meter 200 and the Doppler type ultrasonic flow meter 300.
That is, the flow rate measurement by the time difference type ultrasonic flowmeter 200 is provided with receiving / transmitting heads 2a and 2b outside the pipe 1, and measures the flow rate of the treated water flowing in the pipe 1 so that the flow rate can be measured. It is desirable to measure the flow rate with the time difference type ultrasonic flowmeter 200 as much as possible because it can be performed with high accuracy. However, the flow rate measurement by the time difference type ultrasonic flowmeter 200 causes missing measurement when a large amount of bubbles, sludge, etc., which are substances that inhibit ultrasonic transmission, are mixed in the treated water. The ultrasonic transmission inhibiting substance is predominantly bubbles in the treated water, and the amount of bubbles varies depending on the plant depending on various factors such as plant installation conditions and changes in the amount of treated water over time. In the first embodiment, a flow rate upper limit value that can be measured by the time difference type ultrasonic flowmeter 200 is determined as a unique value in a plant in which the system is installed, and the flow rate alarm setting unit is set with this value as a threshold value. Set to 8a, 8b. When the amount of treated water exceeds the threshold value, the flow rate measurement by the Doppler type ultrasonic flow meter 300 is switched to compensate for the disadvantage of the time difference type ultrasonic flow meter 200.
[0011]
That is, a threshold value determined for each plant is provided in the flow rate alarm setting units 8a and 8b, and when the amount of treated water is equal to or less than the threshold value, the flow rate alarm setting unit 8a performs the time difference type ultrasonic transmission / reception head. The signals from the units 2a and 2b are measured so that the flow rate of the treated water is measured by the first circuit passing through the flow rate conversion unit 7a, the flow rate alarm setting unit 8a, and the analog conversion unit 9, that is, the time difference type ultrasonic flowmeter 200. When the threshold value is exceeded, the flow rate alarm setting unit 8a receives a signal from the Doppler type ultrasonic wave transmission / reception head units 3a, 3b through the second flow rate conversion unit 7b, the flow rate alarm setting unit 8b, and the analog conversion unit 9. The circuit is switched to measure the flow rate of the treated water by the Doppler type ultrasonic flowmeter 300. In this state, when the flow rate becomes equal to or lower than the threshold value, the flow rate alarm setting unit 8b similarly switches to perform the flow rate measurement by the first circuit, that is, the time difference type ultrasonic flowmeter 200.
Note that the threshold value can be measured before the time difference ultrasonic flowmeter 200 causes a missing measurement due to the water treatment conditions of the plant after the flowmeters 200 and 300 are installed in the plant, for example, sludge and bubble amount. The upper limit of the flow rate value is determined, and this value is changed with a significant change in the plant water treatment conditions.
[0012]
As described above, in the first embodiment, the exterior type time difference type ultrasonic flowmeter 200 and the Doppler type ultrasonic flowmeter 300 are provided, and at a predetermined threshold value determined in accordance with the treated water conditions of the plant. Since the flow rate is measured by switching the flowmeters 200 and 300, there is no missing measurement, and it is possible to follow a change in water treatment conditions, and it is easy to maintain and does not bring down the plant during maintenance. Can be provided.
[0013]
Embodiment 2. FIG.
In the first embodiment, the switching between the time difference type ultrasonic flow meter 200 and the Doppler type ultrasonic flow meter 300 is performed by the flow rate alarm setting units 8a and 8b with the treated water flow rate threshold value. In the second embodiment, as shown in FIG. 3, ultrasonic reception intensity alarm setting units 10a and 10b are provided on the input side of the flow rate conversion units 7a and 7b in the signal converter 6.
The first circuit connected to the ultrasonic wave reception intensity alarm setting unit 10a, the flow rate conversion unit 7a, and the analog converter 9 that receive signals from the time difference type ultrasonic wave transmission / reception head units 2a and 2b shown in FIG. Therefore, a time difference type ultrasonic flowmeter 200a is formed, and a second circuit connected to the Doppler type ultrasonic wave transmission / reception head units 3a and 3b, an ultrasonic wave reception intensity alarm setting unit 10b, a flow rate conversion unit 7b, and an analog converter 9 is used. Thus, a Doppler type ultrasonic flowmeter 300a is formed.
[0014]
Next, the operation will be described.
In the ultrasonic wave reception intensity alarm setting units 10a and 10b, a threshold value of ultrasonic wave reception intensity corresponding to the treated water condition of the plant, that is, the amount and size of sludge and the amount of bubbles contained in the treated water is set. For example, when the amount of bubbles contained in the treated water increases when the treated water flow rate is measured by the first circuit, that is, the time difference type ultrasonic flowmeter 200a, the ultrasonic reception intensity gradually decreases, When the threshold value is reached, the ultrasonic wave reception intensity alarm setting unit 10a switches to perform flow rate measurement with the second circuit, that is, the Doppler ultrasonic flow meter 300a. When the flow rate measurement is performed in this state and the amount of bubbles contained in the treated water decreases and reaches the threshold value, the ultrasonic reception intensity alarm setting unit 10b sets the first circuit, that is, It switches so that flow measurement may be performed with the time difference type ultrasonic flowmeter 200a.
The threshold value is determined according to the water treatment conditions of the plant after the flow meters 200a and 300a are installed in the plant, as in the first embodiment, and is a value according to a significant state change of the water treatment conditions. Is to be changed.
As described above, in the second embodiment, the ultrasonic wave reception intensity threshold value is set in the ultrasonic wave reception intensity alarm setting units 10a and 10b, and the flowmeter is switched using the threshold value as a boundary. Regardless of the water conditions, we can measure the flow rate without missing and provide a flow rate measurement system that is easy to maintain.
[0015]
Embodiment 3 FIG.
In the third embodiment, in place of the ultrasonic wave reception intensity alarm setting units 10a and 10b of the second embodiment, the ultrasonic wave velocity alarm setting units 11a and 11b are provided in the signal conversion unit 6 as shown in FIG. It is a configuration. The time difference type ultrasonic flowmeter 200b is formed by a first circuit connected to the time difference type ultrasonic wave receiving / transmitting head units 2a and 2b, the ultrasonic wave propagation speed alarm setting unit 11a, the flow rate conversion unit 7a, and the analog converter 9. The Doppler ultrasonic flowmeter 300b is constituted by a second circuit connected to the Doppler ultrasonic wave receiving / transmitting head units 3a and 3b, the ultrasonic wave propagation speed alarm setting unit 11b, the flow rate conversion unit 7b, and the analog converter 9. .
[0016]
Next, the operation will be described.
In the ultrasonic wave propagation speed alarm setting units 11a and 11b, similarly to the second embodiment, a threshold value of ultrasonic wave propagation speed corresponding to the treated water condition of the plant is set. Further, for example, when the treated water flow rate is measured by the first circuit, that is, the time difference type ultrasonic flowmeter 200b, the amount of bubbles and sludge contained in the treated water changes, and the ultrasonic propagation velocity is When the threshold value is reached, the ultrasonic wave propagation speed alarm setting unit 11a switches to the measurement by the second circuit, that is, the Doppler ultrasonic flow meter 300b. When the measurement in this state is performed and the amount of bubbles contained in the treated water changes again and reaches the threshold value, the ultrasonic wave propagation speed alarm setting unit 11b performs the first circuit, that is, the time difference type ultrasonic wave. Switch to flow measurement with the flow meter 200b.
As in the first embodiment, the threshold value is determined by the water treatment conditions of the plant after the flow meters 200b and 300b are installed in the plant, and the value is greatly increased as the water treatment conditions change. It will be changed.
As described above, in the third embodiment, the ultrasonic wave propagation speed threshold value is set in the ultrasonic wave propagation speed alarm setting units 11a and 11b, and the flowmeter is switched using this threshold value as a boundary. Regardless of the water conditions, we can measure the flow rate without missing and provide a flow rate measurement system that is easy to maintain.
[0017]
Embodiment 4 FIG.
In the first to third embodiments, an example in which the ultrasonic transmission / reception head units are provided with the time difference type 2a and 2b and the Doppler type 3a and 3b, respectively, is shown. As shown in FIG. 5, since the ultrasonic wave receiving / transmitting head portion 2c that can be used for both the time difference type and the Doppler type is provided, the number of sets of the receiving / transmitting heads is reduced and the system becomes inexpensive. 1 to the same effect as the third embodiment. In FIG. 5, the entry of the signal converter 6 is omitted.
[0018]
【The invention's effect】
Since the present invention is a treated water measuring system for a sewer plant having the above-described configuration, the following effects can be obtained.
It is equipped with a time difference type ultrasonic flow meter and a Doppler type ultrasonic flow meter, each flow meter is composed of a respective ultrasonic receiving / transmitting head part and a signal converter,
The ultrasonic transmission / reception head unit is provided outside the treated water piping, the signal converter is provided with a flow rate alarm setting unit, and a threshold value for the treated water flow rate is set in the flow rate alarm setting unit. The flow rate alarm setting unit switches so that the flow rate measurement using the time difference type ultrasonic flow meter is performed when the treated water flow rate is lower than the threshold value, and the flow rate measurement is performed using the Doppler ultrasonic flow meter when the treated water flow rate is higher than the threshold value. Therefore, even if there is an increase in the amount of substances that inhibit ultrasonic transmission due to bubbles, sludge, etc. in the treated water, there will be no situation that the flow measurement becomes impossible, and it will respond to changes in the water treatment conditions of the plant. In addition, it is possible to set the threshold value, and further, the maintenance is easy, and there is an excellent effect that the plant does not need to be stopped for the maintenance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a treated water flow rate measurement system for a sewer plant according to Embodiments 1 and 2 of the present invention.
FIG. 2 is a diagram showing logic in a converter according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing logic in a converter according to a second embodiment of the present invention.
FIG. 4 is a diagram showing logic in a converter according to Embodiment 3 of the present invention.
FIG. 5 is a diagram showing a treated water flow rate measurement system for a sewer plant according to Embodiment 4 of the present invention.
[Explanation of symbols]
1 piping, 2a, 2b time difference type ultrasonic wave receiving / transmitting head,
2c Ultrasonic receiving / transmitting head,
3a, 3b Doppler type ultrasonic transmission / reception head, 6 signal converter,
7a, 7b Flow rate conversion unit, 8a, 8b Flow rate alarm setting unit, 9 Analog conversion unit,
10a, 10b Ultrasonic wave reception intensity alarm setting unit,
11a, 11b ultrasonic wave propagation speed alarm setting unit,
100 treated water flow measurement system,
200, 200a, 200b Time difference type ultrasonic flowmeter,
300, 300a, 300b Doppler type ultrasonic flowmeter.

Claims (3)

時間差式超音波流量計とドップラー式超音波流量計とを備えた下水道プラントの処理水流量計測システムであって、
前記それぞれの流量計はそれぞれの超音波受発信ヘッド部と、信号変換器で構成されているものであり、
前記超音波受発信ヘッド部は処理水配管の外部に設けられており、前記信号変換器には流量警報設定部が設けられているとともに、前記流量警報設定部には処理水流量のしきい値が設定されており、処理水流量が前記しきい値以下では前記時間差式超音波流量計による流量計測を、前記しきい値以上では前記ドップラー式超音波流量計による流量計測を行うように、前記流量警報設定部が切り換えを行うことを特徴とする下水道プラントの処理水流量計測システム。
A process water flow measurement system for a sewer plant equipped with a time difference type ultrasonic flow meter and a Doppler type ultrasonic flow meter,
Each of the flow meters is composed of a respective ultrasonic transmission / reception head unit and a signal converter,
The ultrasonic wave receiving / transmitting head part is provided outside the treated water piping, the signal converter is provided with a flow rate alarm setting unit, and the flow rate alarm setting unit has a threshold value of the treated water flow rate. Is set, and when the treated water flow rate is equal to or lower than the threshold value, the flow rate measurement by the time difference type ultrasonic flow meter is performed. A system for measuring the flow rate of treated water in a sewage plant, wherein a flow rate alarm setting unit performs switching.
前記超音波受発信用ヘッド部は、前記時間差式流量計用と前記ドップラー式流量計用とを共用するよう設けられたことを特徴とする請求項1に記載の下水道プラントの処理水計測システム。The treated water measuring system for a sewage plant according to claim 1, wherein the ultrasonic wave receiving / transmitting head unit is provided so as to share the time difference type flow meter and the Doppler type flow meter. 前記しきい値は、前記プラント内に前記時間差式流量計およびドップラー式流量計を設置後、処理水条件に対応して設定されているものであることを特徴とする請求項1、請求項2のいずれか1項に記載の下水道プラントの処理水計測システム。The said threshold value is set according to the treated water conditions after installing the said time difference type flow meter and the Doppler type flow meter in the said plant , The Claim 1 and Claim 2 characterized by the above-mentioned. The treated water measuring system of the sewer plant of any one of.
JP2002351894A 2002-12-04 2002-12-04 Processed water flow measurement system for sewerage plant Expired - Lifetime JP4004935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351894A JP4004935B2 (en) 2002-12-04 2002-12-04 Processed water flow measurement system for sewerage plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351894A JP4004935B2 (en) 2002-12-04 2002-12-04 Processed water flow measurement system for sewerage plant

Publications (2)

Publication Number Publication Date
JP2004184245A JP2004184245A (en) 2004-07-02
JP4004935B2 true JP4004935B2 (en) 2007-11-07

Family

ID=32753650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351894A Expired - Lifetime JP4004935B2 (en) 2002-12-04 2002-12-04 Processed water flow measurement system for sewerage plant

Country Status (1)

Country Link
JP (1) JP4004935B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080182A1 (en) * 2005-01-31 2006-08-03 Fuji Electric Systems Co., Ltd. Ultrasonic flowmeter and ultrasonic flowmeter employing two methods
JP6428300B2 (en) * 2015-01-23 2018-11-28 横河電機株式会社 Ultrasonic flow meter
CN106643931B (en) * 2016-09-23 2019-03-01 三川智慧科技股份有限公司 A kind of ultrasonic flow rate measuring method and device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018005B2 (en) * 1979-12-16 1985-05-08 株式会社荏原製作所 Ultrasonic flow meter that can automatically switch between transmission measurement mode and reflection measurement mode
JPS59126212A (en) * 1983-01-07 1984-07-20 Fuji Electric Co Ltd Ultrasonic type flow rate measuring apparatus

Also Published As

Publication number Publication date
JP2004184245A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
KR101142897B1 (en) Ultrasonic measure system for both flow and concentration
CN104316109B (en) Urban sewer network multi-factor monitoring method
CN106088267B (en) Household sewer pipe anti-blocking warning device
WO2005038410A3 (en) Device for determining and/or monitoring the volume and/or mass flow rate of a medium in a pipeline
CN101109654A (en) Pipe flow meter
JP4004935B2 (en) Processed water flow measurement system for sewerage plant
US10161124B2 (en) Sewer overflow discharge monitoring system and method
KR102365920B1 (en) Non-contect type flow control apparatus for sewage pipes using flow rate and level of iot based digital filter type
JP2010266345A (en) Flow-rate measuring apparatus
EP0932029A3 (en) Acoustic flow meter
KR20180009916A (en) An Ultrasound Apparatus for Measuring an Interface Surface of an Active Carbon
WO2013108413A1 (en) Ultrasonic concentration meter for measuring sludge concentration, and sludge treatment system
JP2005241343A (en) Apparatus for measuring fluid in pipe
CN207850864U (en) A kind of slurry density of desulfurizing absorption column measuring device
JPS59126212A (en) Ultrasonic type flow rate measuring apparatus
JP2002116069A (en) Apparatus and method for measuring flow rate
RU2775639C1 (en) Water discharge system with controlled inflow to a sewerage pumping station
RU2802098C1 (en) Ship sewage pumping plant
JP2002285600A (en) Drain pipe system
JP5043514B2 (en) Ultrasonic vortex flowmeter
CN212269485U (en) Water purifier box with prevent pipeline stagnant water
CN209742930U (en) Cleaning and separating system for pure water hydraulic support and pure water hydraulic support
RU2149361C1 (en) Liquid flow rate measuring system
JP3887209B2 (en) Inflow prediction device
Yoder Plumbing the depths of open-channel flow measurement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Ref document number: 4004935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term