JP4003862B2 - Compact - Google Patents

Compact Download PDF

Info

Publication number
JP4003862B2
JP4003862B2 JP2001024510A JP2001024510A JP4003862B2 JP 4003862 B2 JP4003862 B2 JP 4003862B2 JP 2001024510 A JP2001024510 A JP 2001024510A JP 2001024510 A JP2001024510 A JP 2001024510A JP 4003862 B2 JP4003862 B2 JP 4003862B2
Authority
JP
Japan
Prior art keywords
molded body
primary molded
light
resin
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001024510A
Other languages
Japanese (ja)
Other versions
JP2002225068A (en
Inventor
尚 鈴木
洋介 深川
宏治 關
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2001024510A priority Critical patent/JP4003862B2/en
Publication of JP2002225068A publication Critical patent/JP2002225068A/en
Application granted granted Critical
Publication of JP4003862B2 publication Critical patent/JP4003862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、近接センサ等に適用して好適な成形体に関する。
【0002】
【従来の技術】
検出スイッチとしての近接スイッチや光電スイッチ等においては、動作状態を認識させるために発光素子例えば、LEDを備えたものが多い。筺体内部に配置されたチップもしくはユニットのLEDを外部から視認可能とするためには筺体の一部をLEDから発光された光を透過する透光部品で構成したり、或いは図8に示すように透光性を有する樹脂で形成した筺体1内にLED2を収納することが必要である。また、特に水等の液体が使用される環境や、製造ライン等で使用されるものにおいては耐水性、耐環境性等が要求される。
【0003】
【発明が解決しようとする課題】
筺体の一部を透光部品で形成する構造においては、その透光部品の材質に透光性と機械的強さとを併せ持つ材料を用いる必要がある。熱硬化性樹脂に対して、成形時間が短く、通常の射出成形機で対応でき、樹脂選択肢が多く製品仕様に応じた樹脂を選択できる等の理由により、熱可塑性樹脂を用いることが望ましい。しかしながら、一般的に透光性の良好な熱可塑性樹脂(非晶性樹脂)は、機械的強度が小さい傾向にあるので、透光部品の材料として選択できる樹脂の種類が限定されてしまい、製品設計の自由度が小さいという問題がある。また、筺体の構成部品が多くなることから、部品コスト及び組立コストが高い、或いは更なる小型化の要求に対応できないという問題がある。また、特に耐環境性を要求される用途に対して、筺体の大部分を形成する部品とそれに嵌め込まれる透光部品との境界から筺体内部へ異物(水、ガス等)が浸入するのを長期間にわたって防ぐように密封することは難しく、それが可能であってもコストが高くなるという問題がある。
【0004】
更に、図8のように筺体の全部を透光性樹脂で形成する構造も想定し得るが、前述の通り、一般的に透光性の良好な熱可塑性樹脂(非晶性樹脂)は機械的強さが小さい傾向にあるので、筺体の機械的強さや耐久性に関して製品設計の自由度が小さいという問題がある。
更に、上記のように筺体の少なくとも一部を透光部品で形成すると、筺体内から外部へ放出される発光体(LED、豆電球等)の光量が減るという問題がある。例えば、LED2は半導体からなる発光素子を透明エポキシ樹脂からなる封止体(以下、「封止体2」ということもある)で封止したものである。発光素子から出た光は、封止体2を媒質として外部へ放出されるが、このとき封止体2の周囲の媒質が空気なので、これらの媒質の屈折率の差によって界面で一回目の反射が生じ、外部へ透過する光Lの光量が減少する。発光面2aから放出された光Lが筺体1の内面1aに達すると、空気と筺体1との屈折率の差によって界面で二回目の反射が生じ、更に筺体1の外面1bに達すると筺体1と外界の空気との屈折率の差によって界面で三回目の反射が生じて、夫々透過光の光量が減少する。このように、外部へ至った光Laは、これらの三回の反射によって光量が減少したものである。また、これらの反射によって内側方向へ戻った光(例えば、図8に示すLb)の多くは反射を繰り返して筺体1から出ることなく減衰する。このため、筺体1の外部から見たLED2は輝度が低く、視認性が悪いという問題がある。
【0005】
本発明は、上述の点に鑑みてなされたもので、内蔵する発光体から外界への光の透過量を多くして輝度を高めることにより視認性を向上させ、更に耐久性の向上を図るようにした成形体を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1の成形体は、取り付け用の貫通孔を有する中実一体構造の成形体であって、発光体を中実一体に封止した透光性を有する熱可塑性樹脂製の一次成形体と、この一次成形体よりも弾性係数の大きい樹脂からなり、上記一次成形体の表面を被覆してその外殻を形成する樹脂製の二次成形体と、この二次成形体に開口されて前記一次成形体の一部を露出させて該一次成形体に生じる応力を逃がす開口部とを備え、特に前記二次成形体は、前記貫通孔の軸方向に前記一次成形体を挟み込む一対の板体と、これらの板体を相互に連結して前記一次成形体を保護すると共に上記一対の板体の間に前記開口部を形成した連設部と、前記板体に連接されて前記貫通孔の内周面を形成して該貫通孔の変形を防止する補強部とを有することを特徴とする。
好ましくは前記一次成形体を形成する透光性を有する熱可塑性樹脂として、乳白色の半透明状を呈するエラストマを用いることが望ましい。
【0007】
また前記開口部は、前記発光体から出力されて前記一次成形体を透過した光の出射面としての役割も担う。
このような発明の構成によれば、発光体を直接封止することで、耐環境性に優れたパッケージが可能であると共に、発光体とそれを直接封止する熱可塑性樹脂との屈折率の差が、発光体と空気との屈折率の差よりも小さいので、その界面を透過する光が減衰し難い。更に、光の媒質(透光性材料、空気)同士の界面の総数を少なくできるので、そこを透過する光が減衰し難い。従って、発光体から発光された光の透過量が多くなり、外部からの視認性が向上する。また、熱可塑性樹脂としてエラストマを用いると、低い溶融温度で流動性を保つことができるため、成形時にインサート部品である発光体に対して熱的・機械的な悪影響を及ぼし難い。しかも、常温においても弾性係数が比較的小さいので、成形後の冷却時に成形体の内部に発生する応力が小さく、インサート部品である発光体に対して機械的な悪影響を及ぼし難い。更に、エラストマの表面の一部を弾性係数の大きい材料で覆うことにより、機械的な強さを要求される用途にも適用することが可能となる。
【0008】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態について説明する。
図1は本発明に係る成形体の実施形態を示す近接センサの斜視図、図2は図1に示す近接センサの一次成形体の斜視図、図3は、図2に示す近接センサの一次成形体を覆う二次成形体の斜視図である。尚、図3に示す二次成形体は、形状を判り易くするために図1に示す近接センサにおいて図2に示す一次成形体を取り除いた状態を示している。
【0009】
図1乃至図3に示すように近接センサ(成形体)10は、近接センサ本体としての一次成形体11、この一次成形体11を覆う外殻としての二次成形体12及び電線13から成る。
一次成形体11は、発光体を有するインサート部品を封止すると共に前記発光体からの光を透過させて外界に出す即ち、視認性を有することを目的とし、二次成形体12は、近接センサ10の筺体化を目的として、当該センサ筺体に要求される仕様を満たす成形樹脂が選択され、2回の成形により、前記インサート部品にダメージを与えることなく、封止及びセンサの筺体化を実現する中実一体成形構造とするものである。尚、一次成形樹脂と二次成形樹脂間に密着性が得られるものを選定することは勿論である。
【0010】
一次成形体11は、図4に示すように電気部品や電子部品としての検出コイルを巻回したコア21、発光体としての発光素子(例えば、LED)22及び他の回路素子24等が実装された回路基板20がインサートされている。また、電線13は、被覆材14の端末14aから引き出された心線15〜17の端末が回路基板20に接続されている(図6)。
【0011】
回路基板20及び電線13の端末は、一次成形用の金型(図示せず)に収納され、電線13の被覆14の端末近傍部分14bがカシメられてくびられ、一次成形樹脂25が充填される。この一次成形樹脂25は、回路基板20、コア21、発光素子22、回路素子24間の隙間に充填され、且つこれらの内蔵する部品の近傍に達したときにその耐熱温度よりも低くなるような溶融温度で充填される。例えば、摂氏250度の溶融樹脂を金型内に注入すると流路中で溶融樹脂のスキン層が冷却されると共にコア層は高温に保たれつつ部品近傍まで流動し、部品近傍に至った時点でスキン層は摂氏90度程度になっており、このスキン層が耐熱温度摂氏100度の部品に接触しても問題は生じない。また、このときスキン層が断熱作用を発揮するため、高温に保たれたコア層からの熱が直接部品に届くことがなく悪影響を及ぼさない。特に、ポリエステル系の熱可塑性エラストマは透光性を有すると共に、比較的低温の溶融状態にあっても流動性が良く、比較的低い圧力で射出することが可能であるため、溶融樹脂の流れによって内蔵部品の破損や位置ずれを生じることなく一体的にモールドすることができる。そして、発光素子22の発光面22aは、一次成形樹脂25に直接接触しており、間に空気層が無い。
【0012】
また、一次成形樹脂25は、被覆材14の開口する端末14aから内部に入り込み、端末近傍部分14bがカシメられているために当該部分14bから内部への侵入を阻止され、前記カシメられた部分14bから端末14aに向かって拡開する略ラッパ状に押し広げられる。勿論、端末14aにおける心線15〜17の間にも一次成形樹脂25が入り込む。これにより、電線13の一次成形体11からの引き抜き強度(引張強度)が大幅に向上すると共に、インサート部品のシール性が確保される。このようにして、一次成形体11が成形される。
【0013】
図2及び図4に示すように一次成形体11は、略直方体形状をなし、回路基板20の後方に上面11aと後部下面11b'とを貫通してネジ取付孔(段差孔)11cが設けられており、更に、二次成形体12との密着性の向上及び回路基板20の変形等を防止するために上面11aから回路基板20までテーパ孔11dが複数設けられ、両側面の前、後に夫々溝11e、11fが、前面中央に溝11gが設けられている。溝11gの下端は、前部下面11bに連設されている。
【0014】
一次成形体11の上面11aの先端中央部は、発光素子22の上方に張り出して凸部11hとされている。これにより発光素子22は、発光面22aの正面、上方、及び左右方向の全面に亘り一次成形体25に密接してモールドされており、発光面22aから出た光が直接一次成形樹脂25を通して外界即ち、一次成形体11から外部に出ることが可能とされている。
【0015】
図4に示すように一次成形体11の前部下面11bは、回路基板20に固定されているコア21の端面(検出面)21aと同一面とされ、当該前部下面11bに連設する後部下面11b'は、前部下面11bから所定の高さtに設定されている。この前部下面11bは、基準面とされる(以下「基準面11b」という)。基準面11bの前端近傍の左右両側に円柱形状の突起11i、11iが突設されており、その高さは、基準面11bから前記所定の高さtに設定されている。
【0016】
この一次成形体11は、透光性を有する樹脂により成形されている。透光性を有する樹脂としては、上述したポリエステル系熱可塑性エラストマは、非晶性樹脂と結晶性樹脂とのアロイ材料で、乳白色の半透明性状を呈して透光性を有しており、弾性係数が小さく(例えば、縦弾性係数45〜460MPa)、耐クラック性に優れているので、本発明の実施に最適である。
【0017】
また、この樹脂は、縦弾性係数(ヤング率)が小さいため、インサート部品や後述する二次成形体12の二次成形樹脂との線膨張係数の違いを吸収し、温度変化による一次、二次成形樹脂間の密着性の低下、クラックの発生等を抑制することができる。また、ガラス転移点が室温以下であるため、インサート部品に加わる熱応力の絶対値そのものを低減することができる。
【0018】
これ以外にも透明性樹脂材料として種々の熱可塑性エラストマが適する他、インサート部品の条件によっては、ポリアリレート(PAR)やポリカーボネート(PC)といったエンジニアリングプラスチックも適用可能である。尚、半透明の材料を用いた場合には発光体からの光が拡散されて成形体全体が比較的均一に発光して見える。また、透明の材料を用いた場合には発光体が直接観察される他、視認位置によっては各面(透明樹脂と空気との界面)での反射光も観察される。
【0019】
次に、一次成形体11を二次成形用の金型(図示せず)に収納し、両側部の溝11e、11f、前面の溝11gに対向して設けられた各ゲートから二次成形用の溶融した成形樹脂26を加圧注入して二次成形体12を成形する。この二次成形樹脂26は、一次成形体11を保護する外殻としての強度を確保し、且つ寸法精度を得るために硬い樹脂が使用される。
【0020】
一次成形体11に使用する一次成形樹脂は、縦弾性係数が小さい反面、線膨張係数は大きいため、センサパッケジにおいて二次成形体12で一次成形体11の外周面の全てを覆って拘束する密封構造を採用すると、周囲の温度変化によって発生した歪みが全て一次成形体11の内部応力となり、インサート部品に大きな応力を与えることとなる。
【0021】
そこで、本発明では、二次成形体12を機械的強度、寸法精度の必要な部分のみに制限する応力開放構造としたものである。即ち、一次成形体11に対して決まった領域を開放し、その部分において周囲温度変化に伴って一次成形体が膨張・収縮することを許容することで、一次成形体11のインサート部品に発生する熱応力を外部に発散できる構造としている。代表的な二次成形樹脂として、PBT、ABS、PC等がある。これらの、二次成形樹脂26は、一次成形樹脂25に比べて縦弾性係数が大きい(例えば、2000〜6000MPa)。
【0022】
図3、図5及び図6に示すように二次成形体12は、一次成形体11の上面11aを保護する上板12a、基準面11bと各突起11iの端面との間に生じさせた空間に充填されてコア21の端面21aを保護する下板12b、ねじ取付孔11cの内周面及びネジ頭部と当接する段差面を覆うネジ取付補強部12c、上面11aの各孔11dに充填されて回路基板20の反り等の変形を防止する突起部12d、両側部の溝11eに充填されて上板12aと下板12bとを連設すると共に前側部の一部を保護する補強部を兼ねた連設部12e、両側部の溝11fに充填されて後側部の一部を保護する補強部12f、前面の溝11eに充填されて前面の一部を保護する補強部12g、及び電線13の被覆材14の端末近傍部分14bを覆う保護部12j等からなる。
【0023】
二次成形体12の下板12bは、一次成形体11の基準面11bに密着成形され、左、右の突起11i、11iにより板厚が所定の高さtに正確に成形されて下面が後部下面11b'と面一をなしている。各突起11iは、上面11aの前部に充填される樹脂による変形を防止して前部下面11bと金型との間の前記空間を所定の間隔tに保持する。これにより、コア21の端面(検出面)21aから下板12bの下面までの距離が前記所定の高さtに精度よく設定され(図5)、近接センサ10の動作距離のバラツキが抑えられる。また、下板12bは、基準面11bに密着成形されることでシール性が確保され、コア21の端面21aが液密に封止される。
【0024】
また、図5、図6に示すようにネジ取付孔11cの内周面及び段差面を二次成形体12の補強部12cにより覆うことで強度が確保され、ネジで取り付ける際にネジ頭の下面接触部及び貫通するネジ軸部等による近接センサ10の変形や破損等が防止されると共に、電線13の心線15〜17が保護され、シール性も確保される。
【0025】
このようにして、近接センサ10は、一次成形体11と二次成形体12とにより、センサ封止に求められるシール性、強度、及び透光性の機能を満たす構造体とされている。このような構造とすることにより、近接センサ10の更なる小型化が図られる。
図7に示すように発光素子22の発光面22aから出た光Lは、直接一次成形樹脂25を透光して透過光Laとして一次成形体11から出ると共に、一部が外界(空気)との境界面11sで反射されて反射光Lbとして樹脂25内(一次成形体11内)に戻る。しかし、発光面22aから出た光Lが直接樹脂25から空気(外界)へ進む場合と、空気を通して樹脂25へ進む場合とでは、境界面における反射率が大きく異なり、前記境界面11sにおける反射率は、前述した図8に示す従来構造における樹脂(筺体1)の内面1aにおける反射率に比べて非常に小さい。従って、発光面22aから出た光Lは、その大部分が透過光Laとして外界に進み、反射光Lbは少ない。
【0026】
更に、反射光Lbの大部分が再び透過光Lcとして外界に進み、反射光Ldは非常に少なくなる。従って、発光素子22の発光面22aから出た光Lの大部分が一次成形体11から出てくることとなり、透過光量が多くなり、輝度が高くなる。また、発光面22aを囲繞する一次成形体11の前面、凸部11h及び前部両側面に亘る広範囲の輝度が高くなる。これにより、近接センサ10の広範囲において発光素子22による視認が可能となる。
【0027】
また、一次成形体11の広範囲に亘り輝度が高くなることで、発光素子22の配置の自由度が増し、設定がし易くなり、センサの小型化が可能となる。また、耐水性、耐環境性を向上することができるセンサパッケージが可能となる。
【0028】
【発明の効果】
以上説明したように本発明の構成によれば、発光体を熱可塑性樹脂で直接封止することで生産性及び耐環境性に優れたパッケージを得ることができ、発光体から発光された光の透過光量が多くなり、外部からの視認性が向上する。また、熱可塑性樹脂として熱可塑性エラストマを用いると、成形時にインサート部品である発光体に対して熱的・機械的な悪影響を及ぼし難く、成形後の冷却時に成形体の内部に発生する応力が小さいので、インサート部品である発光体に対して機械的な悪影響を及ぼし難い。更に、熱可塑性エラストマの表面の一部を弾性係数の大きい材料で覆うと、機械的な強さを要求される用途にも適用することが可能となる。
【図面の簡単な説明】
【図1】本発明に係る成形体の第1の実施形態を示し、近接センサの斜視図である。
【図2】図1に示す近接センサの一次成形体の斜視図である。
【図3】図2に示す近接センサの一次成形体を覆う二次成形体の斜視図で、図1に示す近接センサにおいて図2に示す一次成形体を取り除いた状態を示す。
【図4】図2に示す一次成形体の矢線IV−IVに沿う断面図である。
【図5】図1に示す近接センサの矢線V−Vに沿う断面図である。
【図6】図5に示す近接センサの矢線VI−VIに沿う断面図である。
【図7】図4に示す近接センサの発光素子から出た光の光路の説明図である。
【図8】従来の検出スイッチの筺体内に収納した発光体から出た光の光路の説明図である。
【符号の説明】
10 近接センサ(成形体)
11 一次成形体
12 二次成形体
13 電線
20 回路基板
21 コア
22 発光素子(発光体)
24 回路素子
25 一次成形樹脂
26 二次成形樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded article suitable for application to a proximity sensor or the like.
[0002]
[Prior art]
Many proximity switches, photoelectric switches, and the like as detection switches are provided with a light emitting element such as an LED in order to recognize an operation state. In order to make the LED of the chip or unit arranged inside the housing visible from the outside, a part of the housing is configured with a light-transmitting component that transmits light emitted from the LED, or as shown in FIG. It is necessary to house the LED 2 in the housing 1 formed of a resin having translucency. In particular, water resistance, environmental resistance, and the like are required in an environment where a liquid such as water is used or in a production line.
[0003]
[Problems to be solved by the invention]
In a structure in which a part of the casing is formed of a light-transmitting component, it is necessary to use a material having both light-transmitting properties and mechanical strength as the material of the light-transmitting component. It is desirable to use a thermoplastic resin for a reason that the molding time is short for a thermosetting resin, it can be handled by a normal injection molding machine, and there are many resin options and a resin can be selected according to product specifications. However, generally, a thermoplastic resin (amorphous resin) having a good translucency tends to have a low mechanical strength, and therefore the types of resins that can be selected as a material for the translucent component are limited. There is a problem that the degree of freedom of design is small. Further, since the number of components of the housing increases, there is a problem that the component cost and the assembly cost are high, or the request for further miniaturization cannot be met. In particular, for applications that require environmental resistance, foreign matter (water, gas, etc.) can be prevented from entering the housing from the boundary between the components that make up the majority of the housing and the translucent components that fit into it. It is difficult to seal to prevent over time, and even if it is possible, there is a problem that the cost is high.
[0004]
Furthermore, as shown in FIG. 8, a structure in which the entire casing is formed of a translucent resin can be assumed. However, as described above, generally a thermoplastic resin (amorphous resin) having good translucency is mechanical. Since the strength tends to be small, there is a problem that the degree of freedom in product design is small with respect to the mechanical strength and durability of the housing.
Furthermore, when at least a part of the housing is formed of a light-transmitting component as described above, there is a problem in that the amount of light emitted from the light emitting body (LED, miniature bulb, etc.) emitted from the housing is reduced. For example, the LED 2 is obtained by sealing a light emitting element made of a semiconductor with a sealing body made of a transparent epoxy resin (hereinafter also referred to as “sealing body 2”). The light emitted from the light emitting element is emitted to the outside using the sealing body 2 as a medium. At this time, since the medium around the sealing body 2 is air, the first time at the interface due to the difference in the refractive index of these media. Reflection occurs, and the amount of light L transmitted to the outside decreases. When the light L emitted from the light emitting surface 2a reaches the inner surface 1a of the housing 1, the second reflection occurs at the interface due to the difference in refractive index between air and the housing 1, and when the light L further reaches the outer surface 1b of the housing 1, the housing 1 The third reflection occurs at the interface due to the difference in refractive index between the air and the outside air, and the amount of transmitted light decreases. In this way, the light La reaching the outside has a light amount reduced by these three reflections. Further, most of the light (for example, Lb shown in FIG. 8) that has returned inward due to these reflections is repeatedly reflected and attenuated without leaving the housing 1. For this reason, the LED 2 viewed from the outside of the housing 1 has a problem of low brightness and poor visibility.
[0005]
The present invention has been made in view of the above-mentioned points. It is intended to improve visibility by increasing the amount of light transmitted from the built-in light emitter to the outside world to increase luminance, and to further improve durability. An object is to provide a molded article.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the molded article of claim 1 is a molded article having a solid integrated structure having through holes for attachment, and has a light-transmitting thermoplasticity in which the luminous body is sealed integrally. A primary molded body made of resin, a resin secondary molded body made of a resin having a larger elastic modulus than the primary molded body, covering the surface of the primary molded body to form an outer shell thereof, and the secondary molded body An opening that is opened in the molded body to expose a part of the primary molded body to release stress generated in the primary molded body, and in particular, the secondary molded body is formed in the axial direction of the through hole. A pair of plates sandwiching the body , connecting these plates together to protect the primary molded body and forming the opening between the pair of plates, and the plate body A reinforcing portion connected to form an inner peripheral surface of the through hole to prevent deformation of the through hole; Characterized in that it.
Preferably, it is desirable to use a milky white translucent elastomer as the light-transmitting thermoplastic resin forming the primary molded body.
[0007]
The opening also serves as an exit surface for light output from the light emitter and transmitted through the primary molded body.
According to such a configuration of the invention, by directly sealing the light emitter, a package having excellent environmental resistance is possible, and the refractive index of the light emitter and the thermoplastic resin directly sealing the light emitter is high. Since the difference is smaller than the difference in refractive index between the light emitter and air, it is difficult for light transmitted through the interface to attenuate. Furthermore, since the total number of interfaces between light media (translucent material, air) can be reduced, the light transmitted therethrough is not easily attenuated. Therefore, the transmission amount of the light emitted from the light emitter is increased, and the visibility from the outside is improved. Further, when an elastomer is used as the thermoplastic resin, the fluidity can be maintained at a low melting temperature, and therefore, it is difficult to exert a thermal and mechanical adverse effect on the light-emitting body that is an insert part during molding. In addition, since the elastic modulus is relatively small even at room temperature, the stress generated in the molded body during cooling after molding is small, and it is difficult to exert a mechanical adverse effect on the light-emitting body that is an insert part. Furthermore, by covering a part of the surface of the elastomer with a material having a large elastic modulus, it can be applied to applications that require mechanical strength.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 is a perspective view of a proximity sensor showing an embodiment of a molded body according to the present invention, FIG. 2 is a perspective view of a primary molded body of the proximity sensor shown in FIG. 1, and FIG. 3 is a primary molding of the proximity sensor shown in FIG. It is a perspective view of the secondary fabrication object which covers a body. The secondary molded body shown in FIG. 3 shows a state in which the primary molded body shown in FIG. 2 is removed from the proximity sensor shown in FIG. 1 for easy understanding of the shape.
[0009]
As shown in FIGS. 1 to 3, the proximity sensor (molded body) 10 includes a primary molded body 11 as a proximity sensor body, a secondary molded body 12 as an outer shell covering the primary molded body 11, and an electric wire 13.
The primary molded body 11 is intended to seal an insert part having a light emitter and transmit light from the light emitter to the outside, that is, to have visibility. The secondary molded body 12 is a proximity sensor. A molding resin that satisfies the specifications required for the sensor housing is selected for the purpose of housing the sensor 10, and sealing and housing of the sensor are realized without damaging the insert parts by two moldings. A solid integrated structure is adopted. Needless to say, a material that provides adhesion between the primary molding resin and the secondary molding resin is selected.
[0010]
As shown in FIG. 4, the primary molded body 11 is mounted with a core 21 around which a detection coil as an electric component or an electronic component is wound, a light emitting element (for example, LED) 22 as a light emitter, and other circuit elements 24. A circuit board 20 is inserted. Moreover, as for the electric wire 13, the terminal of the core wires 15-17 pulled out from the terminal 14a of the coating | covering material 14 is connected to the circuit board 20 (FIG. 6).
[0011]
The circuit board 20 and the end of the electric wire 13 are housed in a primary molding die (not shown), the terminal vicinity portion 14b of the coating 14 of the electric wire 13 is crimped, and the primary molding resin 25 is filled. . The primary molding resin 25 is filled in the gaps between the circuit board 20, the core 21, the light emitting element 22, and the circuit element 24, and becomes lower than the heat resistant temperature when it reaches the vicinity of these built-in components. Filled at melting temperature. For example, when a molten resin of 250 degrees Celsius is injected into the mold, the skin layer of the molten resin is cooled in the flow path and the core layer flows to the vicinity of the part while being kept at a high temperature. The skin layer has a temperature of about 90 degrees Celsius, and no problem arises even if the skin layer contacts a component having a heat resistant temperature of 100 degrees Celsius. Further, at this time, since the skin layer exhibits a heat insulating action, heat from the core layer kept at a high temperature does not reach the parts directly and does not have an adverse effect. In particular, polyester-based thermoplastic elastomers are translucent, have good flowability even in a relatively low temperature melt state, and can be injected at a relatively low pressure. It is possible to mold integrally without causing damage or displacement of the built-in parts. The light emitting surface 22a of the light emitting element 22 is in direct contact with the primary molding resin 25 and there is no air layer therebetween.
[0012]
Further, the primary molding resin 25 enters the inside from the terminal 14a where the covering material 14 is opened, and since the terminal vicinity portion 14b is crimped, the intrusion into the inside from the portion 14b is prevented, and the crimped portion 14b. To the terminal 14a and is spread out in a substantially trumpet shape. Of course, the primary molding resin 25 also enters between the core wires 15 to 17 in the terminal 14a. Thereby, the pulling strength (tensile strength) from the primary molded body 11 of the electric wire 13 is significantly improved, and the sealing performance of the insert part is ensured. In this way, the primary molded body 11 is molded.
[0013]
As shown in FIGS. 2 and 4, the primary molded body 11 has a substantially rectangular parallelepiped shape, and a screw mounting hole (step hole) 11 c is provided behind the circuit board 20 through the upper surface 11 a and the rear lower surface 11 b ′. Furthermore, a plurality of tapered holes 11d are provided from the upper surface 11a to the circuit board 20 in order to improve the adhesion with the secondary molded body 12 and prevent the circuit board 20 from being deformed. Grooves 11e and 11f are provided in the center of the front surface and a groove 11g is provided. The lower end of the groove 11g is connected to the front lower surface 11b.
[0014]
The central portion of the tip of the upper surface 11a of the primary molded body 11 protrudes above the light emitting element 22 to form a convex portion 11h. As a result, the light emitting element 22 is molded in close contact with the primary molded body 25 over the entire surface in the front, upper, and right and left directions of the light emitting surface 22a, and light emitted from the light emitting surface 22a directly passes through the primary molded resin 25 to the outside. That is, it is possible to go outside from the primary molded body 11.
[0015]
As shown in FIG. 4, the front lower surface 11 b of the primary molded body 11 is flush with the end surface (detection surface) 21 a of the core 21 fixed to the circuit board 20, and the rear portion is connected to the front lower surface 11 b. The lower surface 11b ′ is set to a predetermined height t from the front lower surface 11b. The front lower surface 11b serves as a reference surface (hereinafter referred to as “reference surface 11b”). Cylindrical protrusions 11i and 11i are provided on the left and right sides near the front end of the reference surface 11b, and the height thereof is set to the predetermined height t from the reference surface 11b.
[0016]
This primary molded body 11 is molded from a resin having translucency. As the resin having translucency, the above-mentioned polyester-based thermoplastic elastomer is an alloy material of an amorphous resin and a crystalline resin, has a milky white translucency , has translucency, and is elastic. Since the coefficient is small (for example, the longitudinal elastic modulus is 45 to 460 MPa) and the crack resistance is excellent, it is optimal for the implementation of the present invention.
[0017]
In addition, since this resin has a small longitudinal elastic modulus (Young's modulus), it absorbs the difference in linear expansion coefficient between the insert part and the secondary molded resin of the secondary molded body 12 described later, and the primary and secondary due to temperature changes. Decrease in adhesion between molding resins, generation of cracks, and the like can be suppressed. Moreover, since the glass transition point is not more than room temperature, the absolute value of the thermal stress applied to the insert part itself can be reduced.
[0018]
In addition to this, various thermoplastic elastomers are suitable as the transparent resin material, and engineering plastics such as polyarylate (PAR) and polycarbonate (PC) are also applicable depending on the conditions of the insert parts. When a translucent material is used, light from the light emitter is diffused and the entire molded body appears to emit light relatively uniformly. When a transparent material is used, the light emitter is directly observed, and reflected light on each surface (interface between the transparent resin and air) is also observed depending on the viewing position.
[0019]
Next, the primary molded body 11 is accommodated in a mold (not shown) for secondary molding, and secondary molding is performed from each gate provided facing the grooves 11e and 11f on both sides and the groove 11g on the front surface. Then, the molten molded resin 26 is pressurized and injected to form the secondary molded body 12. As the secondary molding resin 26, a hard resin is used in order to secure strength as an outer shell for protecting the primary molded body 11 and to obtain dimensional accuracy.
[0020]
The primary molded resin used for the primary molded body 11 has a small longitudinal elastic modulus but a large linear expansion coefficient. Therefore, in the sensor package, the secondary molded body 12 covers and restrains the entire outer peripheral surface of the primary molded body 11 with the secondary molded body 12. When the structure is adopted, all distortions caused by ambient temperature changes become the internal stress of the primary molded body 11, and a large stress is given to the insert part.
[0021]
Therefore, in the present invention, the secondary molded body 12 has a stress release structure that restricts only the portions that require mechanical strength and dimensional accuracy. That is, a predetermined region is opened with respect to the primary molded body 11, and the primary molded body is allowed to expand and contract in accordance with a change in ambient temperature at that portion, thereby generating an insert part of the primary molded body 11. It has a structure that can dissipate thermal stress to the outside. Typical secondary molding resins include PBT, ABS, and PC. These secondary molding resins 26 have a larger longitudinal elastic modulus than the primary molding resin 25 (for example, 2000 to 6000 MPa).
[0022]
As shown in FIGS. 3, 5, and 6, the secondary molded body 12 is a space formed between the upper plate 12 a that protects the upper surface 11 a of the primary molded body 11, the reference surface 11 b, and the end surface of each projection 11 i. The lower plate 12b that protects the end surface 21a of the core 21, the screw mounting reinforcing portion 12c that covers the inner peripheral surface of the screw mounting hole 11c and the stepped surface that contacts the screw head, and the holes 11d of the upper surface 11a are filled. The projection 12d that prevents deformation of the circuit board 20 such as warpage, and the upper plate 12a and the lower plate 12b that are filled in the grooves 11e on both sides are connected to each other and serve as a reinforcing portion that protects a part of the front side. The continuous portion 12e, the reinforcing portion 12f that fills the grooves 11f on both sides and protects a part of the rear side portion, the reinforcing portion 12g that fills the grooves 11e on the front surface and protects a part of the front surface, and the electric wire 13 Protective part which covers the terminal vicinity part 14b of the coating | covering material 14 Consisting of 2j and the like.
[0023]
The lower plate 12b of the secondary molded body 12 is formed in close contact with the reference surface 11b of the primary molded body 11, and the left and right projections 11i and 11i are accurately molded to a predetermined thickness t, and the lower surface is the rear portion. It is flush with the lower surface 11b ′. Each protrusion 11i prevents deformation due to the resin filled in the front portion of the upper surface 11a, and holds the space between the front lower surface 11b and the mold at a predetermined interval t. Thereby, the distance from the end surface (detection surface) 21a of the core 21 to the lower surface of the lower plate 12b is accurately set to the predetermined height t (FIG. 5), and variations in the operating distance of the proximity sensor 10 are suppressed. Further, the lower plate 12b is tightly formed on the reference surface 11b to ensure sealing performance, and the end surface 21a of the core 21 is sealed in a liquid-tight manner.
[0024]
Further, as shown in FIGS. 5 and 6, the strength is ensured by covering the inner peripheral surface and the step surface of the screw mounting hole 11c with the reinforcing portion 12c of the secondary molded body 12, and the lower surface of the screw head when mounting with a screw. The proximity sensor 10 is prevented from being deformed or damaged by the contact portion and the threaded shaft portion and the like, and the core wires 15 to 17 of the electric wire 13 are protected, and sealing performance is also ensured.
[0025]
In this way, the proximity sensor 10 is a structure that satisfies the sealing, strength, and translucency functions required for sensor sealing by the primary molded body 11 and the secondary molded body 12. By adopting such a structure, the proximity sensor 10 can be further reduced in size.
As shown in FIG. 7, the light L emitted from the light emitting surface 22a of the light emitting element 22 is directly transmitted through the primary molding resin 25 and exits from the primary molded body 11 as transmitted light La, and a part of the light L is from the outside (air). Is reflected by the boundary surface 11 s and returns to the resin 25 (inside the primary molded body 11) as reflected light Lb. However, when the light L emitted from the light emitting surface 22a travels directly from the resin 25 to the air (outside) and when it travels through the air to the resin 25, the reflectance at the boundary surface is greatly different, and the reflectance at the boundary surface 11s is different. Is much smaller than the reflectance on the inner surface 1a of the resin (casing 1) in the conventional structure shown in FIG. Therefore, most of the light L emitted from the light emitting surface 22a travels to the outside as transmitted light La, and the reflected light Lb is small.
[0026]
Furthermore, most of the reflected light Lb again travels to the outside as transmitted light Lc, and the reflected light Ld becomes very small. Therefore, most of the light L emitted from the light emitting surface 22a of the light emitting element 22 comes out of the primary molded body 11, and the amount of transmitted light increases and the luminance increases. Moreover, the brightness | luminance of the wide range covering the front surface of the primary molded object 11 surrounding the light emission surface 22a, the convex part 11h, and both front side surfaces becomes high. Thereby, visual recognition by the light emitting element 22 is possible in a wide range of the proximity sensor 10.
[0027]
Further, since the luminance of the primary molded body 11 is increased over a wide range, the degree of freedom of arrangement of the light emitting elements 22 is increased, setting is easy, and the sensor can be miniaturized. In addition, a sensor package capable of improving water resistance and environmental resistance becomes possible.
[0028]
【The invention's effect】
As described above, according to the configuration of the present invention, a package excellent in productivity and environmental resistance can be obtained by directly sealing a light emitter with a thermoplastic resin, and light emitted from the light emitter can be obtained. The amount of transmitted light increases and visibility from the outside improves. In addition, when a thermoplastic elastomer is used as the thermoplastic resin, it is difficult to exert a thermal and mechanical adverse effect on the light-emitting body that is an insert part during molding, and the stress generated inside the molded body during cooling after molding is small. Therefore, it is difficult to exert a mechanical adverse effect on the light emitting body that is the insert part. Furthermore, if a part of the surface of the thermoplastic elastomer is covered with a material having a large elastic modulus, it can be applied to applications requiring mechanical strength.
[Brief description of the drawings]
FIG. 1 is a perspective view of a proximity sensor, showing a first embodiment of a molded body according to the present invention.
FIG. 2 is a perspective view of a primary molded body of the proximity sensor shown in FIG.
3 is a perspective view of a secondary molded body covering the primary molded body of the proximity sensor shown in FIG. 2, and shows a state where the primary molded body shown in FIG. 2 is removed from the proximity sensor shown in FIG.
4 is a cross-sectional view taken along arrows IV-IV of the primary molded body shown in FIG.
FIG. 5 is a cross-sectional view of the proximity sensor shown in FIG. 1 along the arrow VV.
6 is a sectional view taken along arrows VI-VI of the proximity sensor shown in FIG.
7 is an explanatory diagram of an optical path of light emitted from a light emitting element of the proximity sensor shown in FIG. 4. FIG.
FIG. 8 is an explanatory diagram of an optical path of light emitted from a light emitter housed in a housing of a conventional detection switch.
[Explanation of symbols]
10 Proximity sensor (molded product)
11 Primary molded body 12 Secondary molded body 13 Electric wire 20 Circuit board 21 Core 22 Light emitting element (light emitting body)
24 Circuit element 25 Primary molding resin 26 Secondary molding resin

Claims (3)

取り付け用の貫通孔を有する中実一体構造の成形体であって、発光体を中実一体に封止した透光性を有する熱可塑性樹脂製の一次成形体と、この一次成形体よりも弾性係数の大きい樹脂からなり、上記一次成形体の表面を被覆してその外殻を形成する樹脂製の二次成形体と、この二次成形体に開口されて前記一次成形体の一部を露出させて該一次成形体に生じる応力を逃がす開口部とを備え、
前記二次成形体は、前記貫通孔の軸方向に前記一次成形体を挟み込む一対の板体と、これらの板体を相互に連結して前記一次成形体を保護すると共に上記一対の板体の間に前記開口部を形成した連設部と、前記板体に連接されて前記貫通孔の内周面を形成して該貫通孔の変形を防止する補強部とを有することを特徴とする成形体。
A molded body having a solid integrated structure having through holes for mounting, and a primary molded body made of a thermoplastic resin having a translucent property in which a light emitting body is sealed in a solid body, and more elastic than the primary molded body A resin secondary molded body made of a resin having a large coefficient and covering the surface of the primary molded body to form an outer shell thereof, and an opening in the secondary molded body to expose a part of the primary molded body An opening for releasing stress generated in the primary molded body,
The secondary molded body includes a pair of plate bodies sandwiching the primary molded body in the axial direction of the through-holes, and interconnecting these plate bodies to protect the primary molded body and the pair of plate bodies. A molding comprising: a continuous portion having the opening formed therebetween; and a reinforcing portion connected to the plate body to form an inner peripheral surface of the through hole to prevent deformation of the through hole. body.
前記一次成形体を形成する透光性を有する熱可塑性樹脂は、乳白色の半透明状を呈するエラストマである請求項1に記載の成形体。  The molded article according to claim 1, wherein the light-transmitting thermoplastic resin forming the primary molded article is a milky white translucent elastomer. 前記開口部は、前記発光体から出力されて前記一次成形体を透過した光の出射面を形成するものである請求項1に記載の成形体。  The molded body according to claim 1, wherein the opening forms an emission surface of light output from the light emitter and transmitted through the primary molded body.
JP2001024510A 2001-01-31 2001-01-31 Compact Expired - Fee Related JP4003862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001024510A JP4003862B2 (en) 2001-01-31 2001-01-31 Compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024510A JP4003862B2 (en) 2001-01-31 2001-01-31 Compact

Publications (2)

Publication Number Publication Date
JP2002225068A JP2002225068A (en) 2002-08-14
JP4003862B2 true JP4003862B2 (en) 2007-11-07

Family

ID=18889641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024510A Expired - Fee Related JP4003862B2 (en) 2001-01-31 2001-01-31 Compact

Country Status (1)

Country Link
JP (1) JP4003862B2 (en)

Also Published As

Publication number Publication date
JP2002225068A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP4404860B2 (en) LED housing and manufacturing method thereof
JP5340157B2 (en) Housing for optoelectronic devices, optoelectronic device, and method of manufacturing housing for optoelectronic devices
KR101101476B1 (en) Light emitting apparatus and semiconductor apparatus, and method for manufacturing the same
JP2005294736A (en) Manufacturing method for semiconductor light emitting device
CN106461439B (en) Sensor and its manufacturing method
JP2005159296A5 (en)
JP5426091B2 (en) Light emitting device
JP2010003743A (en) Light-emitting device
KR101649287B1 (en) Lightemitting diode and method for producing a lightemitting diode
EP1484802B1 (en) Optical semiconductor device
JP2010237641A (en) Optical module and cable with module
KR20090051863A (en) Light emitting diode package and method of fabricating the same
US6181720B1 (en) Semiconductor laser device and method for manufacturing same
JP2010114141A (en) Light reception/light emission integrated type semiconductor device, and electronic equipment
KR20060025152A (en) Method for producing a laser diode component, housing for a laser diode component, and laser diode component itself
JP4003862B2 (en) Compact
JPH1084137A (en) Light emitting device and manufacture thereof
JP2006049624A (en) Light emitting element
JP3966444B2 (en) Molded body structure and molding method
JP6094443B2 (en) Electronic device and manufacturing method thereof
JP6063777B2 (en) Sensor device
JP2010251563A (en) Semiconductor device
JP7232582B2 (en) Resin-encapsulated in-vehicle electronic control unit
JP2004363454A (en) Reliable optical semiconductor device
JP3966445B2 (en) Proximity sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Effective date: 20051003

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051026

A521 Written amendment

Effective date: 20051220

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20070717

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070808

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD01 Notification of change of attorney

Effective date: 20070816

Free format text: JAPANESE INTERMEDIATE CODE: A7426

A61 First payment of annual fees (during grant procedure)

Effective date: 20070816

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20100831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110831

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees