JP4003290B2 - Support structure of piezoelectric vibrator - Google Patents

Support structure of piezoelectric vibrator Download PDF

Info

Publication number
JP4003290B2
JP4003290B2 JP12960798A JP12960798A JP4003290B2 JP 4003290 B2 JP4003290 B2 JP 4003290B2 JP 12960798 A JP12960798 A JP 12960798A JP 12960798 A JP12960798 A JP 12960798A JP 4003290 B2 JP4003290 B2 JP 4003290B2
Authority
JP
Japan
Prior art keywords
support
piezoelectric vibrator
crystal
supports
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12960798A
Other languages
Japanese (ja)
Other versions
JPH11308067A (en
Inventor
忠央 曽我
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP12960798A priority Critical patent/JP4003290B2/en
Publication of JPH11308067A publication Critical patent/JPH11308067A/en
Application granted granted Critical
Publication of JP4003290B2 publication Critical patent/JP4003290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は圧電デバイスの改良に関し、詳細には円形の圧電振動子を金属ベース上に横形に支持した状態で金属ケースによって気密封止したタイプの圧電デバイスにおける圧電振動子の支持構造に関するものである。更に詳細には、耐衝撃性、耐振動性に優れ、悪環境下においても安定して動作することができる圧電振動子の支持構造に関する。
【0002】
【従来の技術】
近年の移動体通信市場の急激な成長に伴って、通信機器はより過酷な環境下での設置に見合った厳しいスペックが求められている。また、計測機器についても小型化の要請が高まるにつれて小型化、可搬型化が進んでいるため、過酷な環境下で使用されることが多くなっている。従って、これらの機器に使用される基準周波数発生源としての発振器、振動子等の圧電デバイスに対しても、衝撃、振動の環境下においても安定した周波数出力が得られるような性能が求められている。
図3(a) (b) (c) は従来の圧電デバイスの一例の斜視図、要部構成図、及びサポートの構成図であり、この圧電デバイスは、円盤状の金属ベース1内を絶縁状態で気密貫通する3本のリード部材2(入力側)、3(出力側)、4(ダミー)と、各リード部材2、3、4の上部により下端部を夫々固定されて上方に延びるクランク形状の3本の導電性のサポート5、6、7と、各サポート5、6、7の受承面5a,6a,7aによって水晶素板8を3点支持するとともに水晶素板8(圧電素板)の両主面に夫々形成された励振電極9、10から端縁に夫々延びるリード電極9a,10aを備えた円形圧電振動子(円形水晶振動子)11と、該円形水晶振動子11を含む金属ベース1上の空間を気密封止する図示しない金属ケースとから成る。
3本のリード部材2、3、4の内の2本、例えば符号2、3は入力側、及び出力側であり、他の一本のリード部材4はサポートを支持する手段(ダミー)である。サポート5、6、7は金属薄板を図3(b) (c) に示すようにクランク状に成形したものである。
【0003】
上記各サポート5、6、7は金属薄板を図3(b) (c) に示すようにクランク状に成形したものであり、受承面5a,6a,7a上に水晶素板8の主面を密着支持し、かつ背板5b,6b,7bの前面により水晶素板8の側端面(外周面)を密着支持した状態で、背板5b,6b,7bの両側縁に沿って半田或は導電性接着剤等のバインダ15を塗布することにより水晶振動子11と固定される。具体的には、電気的に機能するリード部材2、3と夫々接続された各サポート5、6は、水晶振動子の両リード電極9a,10aの各端部に対して、半田或は導電性接着剤等のバインダ15によって電気的に接続されるとともに、水晶素板8に対しても同時に機械的に固定されている。また、電気的には機能していないリード部材4に接続されたサポート7は、バインダ15により水晶素板側端面と機械的に接続固定されている。
このタイプの圧電デバイスにおける水晶振動子の支持構造は、3点支持構造を採用している為、2点支持構造に比べれば外部環境要因としての衝撃力や振動が付加された場合にも、周波数出力に歪みを生じることが少なく、安定した周波数出力を得ることができ、耐衝撃性、耐振動性を高めることができる。
【0004】
ところで上記タイプの圧電デバイスにおいて水晶振動子を支持する際に、サポートの背板5b,6b,7bの両側縁(図3(c) にメッシュ模様にて図示)に沿ってバインダ15を塗布しているのは、一方の側縁のみに沿ってバインダを塗布しただけでは、水晶素板の側端面とサポートの背板の側縁とが接触する長さが十分とはならず、必要な固着強度を得ることが困難であるからである。また、上記サポート5、6、7は、金属薄板をクランク状に2か所90度に折り曲げ加工したものであるため、必要な剛性を確保する為にはある程度の幅、及び厚みを必要とする一方で、幅広であることが水晶素板の支持安定性を高めることに貢献している。このようなサポートを3本用いて水晶振動子を3点で支持することにより、水晶振動子は安定した状態でベース1上に支持され、外的衝撃に対しても安定した周波数を出力することが可能となる。また、外的衝撃に対してより安定した周波数を確保する為にはサポート数を増加すればよい。
しかしながら、サポートが幅広となって水晶振動子との接触面積が広くなることと、サポート数が増えて水晶振動子との接触面積が広くなることは、水晶振動子の自由振動を阻害する不具合をもたらし、サポートとの接触部より漏洩する励振エネルギーの量の増加により必要な励振振幅が得られないという問題をもたらす。また、各サポートについてバインダによる固着部が2か所づつ、合計6か所存することは熱変化に伴って水晶素板に対する応力の増加をもたらし、この応力の増加は経年的に増大し、周波数変動をもたらす。
また、サポートの加工において曲げ箇所が多くなるため、サポート価格が高くなると共に、サポートが弾性変形しにくい為、水晶振動子に加わる応力を吸収緩和しにくくなり、振動等に対する周波数安定性が低下する。更に、導電性接着剤により固着部が合計6か所となるので、作業性がわるいという問題があった。
【0005】
次に、図4(a) (b) 及び(c) は他の従来の圧電デバイスにおける水晶振動子の支持構造を示す全体斜視図、要部構成図、及びサポートの構成図である。
この従来例の支持構造が図3に示したタイプと違う点は、サポートとして略T字状の金属薄板を用いた点である。このサポート20、21、22は、各リード部材2、3、4の上端部に固定される基部20a,21a,22aと、水晶素板8の側端面(外周面)に密着する湾曲した内面を有した幅広の接続片20b,21b,22bと、から成る。各接続片20b,21b,22bが接する水晶素板の側端面には夫々リード電極9a,10aの延長端としての、或は格別に設けたメタライズ部を設け、各メタライズ部と各接続片20b,21b,22bとの間に夫々薄肉のAu−Geチップ23を介在させた状態で加熱することにより各メタライズ部とAu−Geチップ23と各接続片20b,21b,22bとを金属共晶結合により固着していた。しかし、サポート20、21、22は、その表面が滑らかである為、外的な衝撃が水晶振動子に加わった場合に、Au−Geチップとの共晶結合面にて剥離が起こり易い。そのような理由から上記サポートの各接続片20b,21b,22bの面積を広くして水晶素板側端縁との固着面積を広く確保することにより、固着強度を高めていた。
しかしながら、サポートと水晶素板側端縁との固着面積を広くすると、熱変化及び経年変化に伴って発生する水晶振動子への応力が増大し、水晶振動子の出力周波数の安定性を低下させるという問題が起きる。更に、外的衝撃に対する周波数安定度を向上させるためにサポートの数を増加させた場合、サポート全体の固着面積の増加を招き、同様に水晶振動子の出力周波数の安定性が低下するという問題が起きる。
【0006】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、金属ベース上に立設した3本のサポートによって円形水晶振動子の外周縁3点を支持する支持構造の圧電デバイスにおいて、軽量かつ単純構造のサポートを用いることにより、水晶振動子との間の固着面積を減少させることを可能とした圧電振動子の支持構造を提供することにある。更に具体的には、サポートを幅広としたり、サポート数を増やすことにより水晶振動子との接触面積が広くなると、水晶振動子の自由振動を阻害する不具合をもたらし、サポートとの接触部より漏洩する励振エネルギーの量の増加により必要な励振振幅が得られないという問題をもたらすが、本発明では、上記接触面積とサポート数を増大させることがないので、上記不具合が発生しない。
また、水晶振動子外周のメタライズ部とサポータとの間をAu−Geチップを用いて接合させる場合には、接合強度が低下して剥離が発生しやすいという問題があったが、本発明はこのような不具合をも解決するものである。
【0007】
【課題を解決するための手段】
上記課題を達成するため、本発明は、金属ベースを絶縁状態で気密貫通する3本のリード部材と、各リード部材の上部に夫々固定されて上方に延びるサポートと、各サポートによって外周部を3点支持されるとともに圧電素板の両主面に夫々形成された励振電極から圧電振動子の端縁に夫々延びるリード電極を備えた円形圧電振動子と、該圧電振動子を含む金属ベース上の空間を気密封止する金属ケースとから成る圧電デバイスであって、上記各サポートの内の2つは夫々の上部を上記圧電振動子の両リード電極の端部と電気的に接続されているものにおいて、上記サポートは、その上端縁中央部から下向きに2本平行に切り込み形成することにより得た支持小片を90度屈曲させた平板状の構成を有し、該支持小片の上面に水晶振動子の主面を支持した状態でサポート上部の背板を水晶振動子の外周面と接触せしめ、支持小片を屈曲させることにより形成された空所内にバインダを注入して背板と水晶振動子外周面とを固着したことを特徴とする。
また、金属ベースを絶縁状態で気密貫通する3本のリード部材と、各リード部材の上部に夫々固定されて上方に延びるサポートと、各サポートによって外周部を3点支持されるとともに圧電素板の両主面に夫々形成された励振電極から圧電振動子の端縁に夫々延びるリード電極を備えた円形圧電振動子と、該圧電振動子を含む金属ベース上の空間を気密封止する金属ケースとから成る圧電デバイスであって、上記各サポートの内の2つは夫々の上部を上記圧電振動子の両リード電極の端部と電気的に接続され、かつ各サポートは水晶振動子外周面に形成したメタライズ部に対してAu−Ge金属を介して固着されているものにおいて、上記サポートは、水晶振動子の外周面のメタライズ部と接する領域に少なくとも一つの貫通穴を有し、Au−Ge金属の溶融時に該金属の一部が貫通穴内に浸入して固化する。また、金属ベースを絶縁状態で気密貫通する3本のリード部材と、各リード部材の上部に夫々固定されて上方に延びるサポートと、各サポートによって外周部を3点支持されるとともに圧電素板の両主面に夫々形成された励振電極から圧電振動子の端縁に夫々延びるリード電極を備えた円形圧電振動子と、該圧電振動子を含む金属ベース上の空間を気密封止する金属ケースとから成る圧電デバイスであって、上記各サポートの内の2つは夫々の上部を上記圧電振動子の両リード電極の端部と電気的に接続され、かつ各サポートは水晶振動子外周面に形成したメタライズ部に対してバインダを介して固着されているものにおいて、上記サポートは、水晶振動子の外周面のメタライズ部と接する領域に少なくとも一つの貫通穴を有し、バインダの溶融時に該バインダの一部が貫通穴内に浸入して固化する。
【0008】
【発明の実施の形態】
以下、本発明を図面に示した形態例により詳細に説明する。
図1(a) (b) (c) 及び(d) は本発明の一形態例の3点支持構造の水晶振動子を備えた圧電デバイスの内部構成を示す斜視図、要部側面図、サポートの一例の斜視図、及び接合部の正面図であり、この圧電デバイスは、円盤状の金属ベース1内を絶縁状態で気密貫通する3本のリード部材2(入力側)、3(出力側)、4(ダミー)と、各リード部材2、3、4の上部により下端部を夫々固定されて上方に延びるクランク形状の3本の導電性のサポート30、31、32と、各サポート30、31、32の上部によって水晶素板8を3点支持するとともに水晶素板8(圧電素板)の両主面に夫々形成された励振電極9、10から端縁に夫々延びるリード電極9a,10aを備えた縦形の円形圧電振動子(円形水晶振動子)11と、該円形水晶振動子11を含む金属ベース1上の空間を気密封止する図示しない金属ケースとから成る。
3本のリード部材2、3、4の内の2本、例えば符号2、3は入力側、及び出力側であり、他の一本のリード部材4はサポートを支持する手段(ダミー)である。
サポート30、31、32は金属薄板を図1(b) (c) に示すような構成としたものであり、具体的には矩形の金属薄板の上端縁のほぼ中央部から下方へ向けて2本の平行な切込35を形成して所定幅の矩形小片36を設け、この矩形小片36を90度一方側に屈曲させた構成を有する。屈曲後の矩形小片は支持小片36となる。各サポートの下端部は各リード部材2、3、4の上端部に固着される一方で、各サポート上端部の支持小片36の上面にて水晶振動子11の主面を密着支持すると共に、支持小片36の両側に位置する背板37の前面37aによって水晶振動子11の側端面(外周面)を接触支持する。更に、図1(d) に示すように2つの背板37間の空所内にバインダ38を一回滴下(注入)することにより、水晶振動子側端面とサポート上部との間の固着を図っている。
この形態例のサポートは、図3に示した従来例のサポートに比べて水晶振動子と接触する面積が明らかに小さくなるので、水晶振動子の自由振動を阻害する要因が少なくなり、サポートとの接触部より漏洩する励振エネルギーの量が減少するため、必要な励振レベルを出力する水晶振動子を容易に実現できる。
しかも、従来の一つのサポートの両サイドに沿って2か所バインダを滴下する訳ではなく、各サポート上部中央に位置する空所内に一回滴下するだけで接合が行われるので、従来に比して固着箇所が半減し、接合作業が容易化する。
また、本形態例のサポートは、折り曲げ点が少ない為、加工が容易であり、サポート価格を低減し、またサポートの弾性変形により外的衝撃をサポートが吸収緩和することができる。
【0009】
図2(a) (b) 及び(c) は本発明の他の形態例の3点支持構造の水晶振動子を備えた圧電デバイスの内部構成を示す斜視図、要部側面図、サポートの一例の斜視図であり、この形態例において使用するサポート40は、水晶振動子11の側端面に密着可能な内面形状を有した矩形の金属板であり、下端部にて各リード部材2、3、4の上端部と固定されると共に、上部には1又は複数の貫通穴41が形成されている。貫通穴41は、水晶振動子11の側端面に位置するリード電極9a,10a或はメタライズ部と接する範囲に形成され、貫通穴41が形成されたサポート上部とメタライズされた水晶振動子の側端面との間にAu−Geチップ42を挟んだ状態で接合部を加熱することにより、Au−Geチップ42を溶融せしめて両者の接合を行う。溶融したAu−Geチップ42の多くは水晶振動子の側端面とサポート内面との接合に寄与する一方で、溶融したAu−Ge金属の一部は、貫通穴41内に浸入した状態で固化するので、Au−Ge金属のリベット効果によってAu−Ge金属とサポートの接合面との間の共晶結合が剥離することがなくなる。
この形態例によれば、貫通穴を利用してAu−Ge金属を用いた接合力を高めているので、水晶振動子側端面と接するサポートの接合面積を小さくすることが可能となり、熱変化、経年変化に対しても周波数の安定度の高い圧電デバイスを実現することができる。
また、サポートの数を増加させて支持安定性を高めたとしても、従来例と比較して水晶振動子とサポートとの固着面積は極めて小面積となるので、水晶振動子に加わる応力を最小限とすることができる。
しかも、折り曲げ部のないサポート構造である為弾性変形が容易であり、外的衝撃を吸収緩和して水晶振動子の周波数安定性を高めることができる。
なお、第2の形態例において、Au−Ge金属に代えて、第1の形態例で使用したバインダ(導電性接着剤、ハンダ等)を用いてサポートとメタライズ部との接合を行ってもよい。この場合も、バインダの一部が溶融して貫通穴内に入り込むことにより接合が確実なものとなる。
【0010】
【発明の効果】
以上のように本発明によれば、金属ベース上に立設した3本のサポートによって円形水晶振動子の外周縁3点を支持する支持構造の圧電デバイスにおいて、軽量かつ単純構造のサポートを用いることにより、水晶振動子との間の固着面積を減少させることができる。
更に具体的には、サポートを幅広としたり、サポート数を増やすことにより水晶振動子との接触面積が広くなると、水晶振動子の自由振動を阻害する不具合をもたらし、サポートとの接触部より漏洩する励振エネルギーの量の増加により必要な励振振幅が得られないという問題をもたらすが、本発明では、上記接触面積とサポート数を増大させることがないので、上記不具合が発生しない。
また、水晶振動子外周のメタライズ部とサポータとの間をAu−Geチップを用いて接合させる場合には、接合強度が低下して剥離が発生しやすいという問題があったが、本発明はこのような不具合をも解決できる。
【図面の簡単な説明】
【図1】 (a) (b) (c) 及び(d) は本発明の一形態例の3点支持構造の水晶振動子を備えた圧電デバイスの内部構成を示す斜視図、要部側面図、サポートの一例の斜視図、及び接合部の正面図。
【図2】 (a) (b) 及び(c) は本発明の他の形態例の3点支持構造の水晶振動子を備えた圧電デバイスの内部構成を示す斜視図、要部側面図、サポートの一例の斜視図。
【図3】 (a) (b) (c) は従来の圧電デバイスの一例の斜視図、要部構成図、及びサポートの構成図。
【図4】 (a) (b) 及び(c) は他の従来の圧電デバイスにおける水晶振動子の支持構造を示す全体斜視図、要部構成図、及びサポートの構成図。
【符号の説明】
1 金属ベース、2、3、4 リード部材、8 水晶素板、9、10 励振電極、9a,10a リード電極、11 水晶振動子、30、31、32 サポート、35 切り込み、36 矩形小片、37 背板、37a 前面,38 バインダ,40 サポート,41 貫通穴.
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a piezoelectric device, and more particularly, to a support structure of a piezoelectric vibrator in a piezoelectric device of a type in which a circular piezoelectric vibrator is horizontally sealed on a metal base and hermetically sealed by a metal case. . More specifically, the present invention relates to a support structure for a piezoelectric vibrator that is excellent in impact resistance and vibration resistance and that can operate stably even in adverse environments.
[0002]
[Prior art]
Along with the rapid growth of the mobile communication market in recent years, communication devices are required to have strict specifications suitable for installation in a harsher environment. In addition, as the demand for miniaturization of measuring instruments increases, miniaturization and portability are progressing, and therefore, they are often used in harsh environments. Therefore, the piezoelectric device such as an oscillator or a vibrator as a reference frequency generation source used in these devices is required to have a performance capable of obtaining a stable frequency output even under an impact or vibration environment. Yes.
3A, 3B, and 3C are a perspective view, an essential configuration diagram, and a support configuration diagram of an example of a conventional piezoelectric device. The piezoelectric device is in an insulated state in the disk-shaped metal base 1. FIG. The three lead members 2 (input side), 3 (output side), 4 (dummy) that penetrate airtightly at the top, and the crank shape that extends upward with the lower ends fixed by the upper portions of the lead members 2, 3, 4 respectively. The three conductive supports 5, 6, 7 and the receiving surfaces 5 a, 6 a, 7 a of the supports 5, 6, 7 support the crystal base plate 8 at three points and the crystal base plate 8 (piezoelectric base plate) A circular piezoelectric vibrator (circular crystal vibrator) 11 having lead electrodes 9a and 10a respectively extending from the excitation electrodes 9 and 10 to the end edges, respectively, formed on both main surfaces, and the circular crystal vibrator 11. It comprises a metal case (not shown) that hermetically seals the space on the metal base 1.
Two of the three lead members 2, 3, 4, for example, reference numerals 2 and 3 are the input side and the output side, and the other one lead member 4 is a means (dummy) for supporting the support. . The supports 5, 6, and 7 are formed by forming a thin metal plate into a crank shape as shown in FIGS. 3 (b) and 3 (c).
[0003]
Each of the supports 5, 6, and 7 is formed by forming a thin metal plate into a crank shape as shown in FIGS. 3 (b) and 3 (c), and the main surface of the crystal base plate 8 on the receiving surfaces 5 a, 6 a, and 7 a. In a state where the side end surfaces (outer peripheral surfaces) of the quartz base plate 8 are closely supported by the front surfaces of the back plates 5b, 6b, 7b, and solder or along the side edges of the back plates 5b, 6b, 7b. It is fixed to the crystal unit 11 by applying a binder 15 such as a conductive adhesive. Specifically, each of the supports 5 and 6 connected to the electrically functioning lead members 2 and 3 is soldered or conductive with respect to each end portion of both lead electrodes 9a and 10a of the crystal resonator. While being electrically connected by a binder 15 such as an adhesive, it is also mechanically fixed to the quartz base plate 8 at the same time. Further, the support 7 connected to the lead member 4 that is not electrically functioning is mechanically connected and fixed to the end face of the crystal base plate by a binder 15.
The quartz crystal support structure in this type of piezoelectric device employs a three-point support structure, so even when impact forces or vibrations are added as external environmental factors compared to the two-point support structure, the frequency There is little distortion in the output, a stable frequency output can be obtained, and impact resistance and vibration resistance can be improved.
[0004]
By the way, when supporting the crystal resonator in the above-described type of piezoelectric device, a binder 15 is applied along both side edges of the support back plates 5b, 6b, 7b (shown in mesh pattern in FIG. 3 (c)). The reason is that applying a binder along only one side edge does not provide sufficient contact length between the side edge of the quartz base plate and the side edge of the back plate of the support. It is because it is difficult to obtain. The supports 5, 6, and 7 are formed by bending a thin metal plate into two cranks at 90 degrees, so that a certain amount of width and thickness are required to ensure the necessary rigidity. On the other hand, the wide width contributes to increasing the support stability of the quartz base plate. By using three such supports and supporting the crystal resonator at three points, the crystal resonator is supported on the base 1 in a stable state and outputs a stable frequency against external impact. Is possible. In order to secure a more stable frequency against external impact, the number of supports may be increased.
However, the wide support and wider contact area with the crystal unit, and the increased number of supports and wider contact area with the crystal unit, have the disadvantage of hindering free vibration of the crystal unit. This causes a problem that the required excitation amplitude cannot be obtained due to an increase in the amount of excitation energy leaked from the contact portion with the support. In addition, the presence of a total of 6 binders with 2 binders for each support leads to an increase in stress on the quartz base plate due to thermal changes, and this increase in stress increases over time, resulting in frequency fluctuations. Bring.
In addition, since the number of bent portions in the processing of the support increases, the support price increases, and the support is difficult to elastically deform, so that it is difficult to absorb and relax the stress applied to the crystal resonator, and the frequency stability against vibration and the like is reduced. . Further, there are a total of six fixing portions due to the conductive adhesive, which causes a problem of poor workability.
[0005]
Next, FIGS. 4A, 4B, and 4C are an overall perspective view, a main configuration diagram, and a configuration diagram of a support showing a support structure of a crystal resonator in another conventional piezoelectric device.
The difference between the conventional support structure and the type shown in FIG. 3 is that a substantially T-shaped thin metal plate is used as a support. The supports 20, 21, and 22 have bases 20 a, 21 a, and 22 a that are fixed to the upper ends of the lead members 2, 3, and 4, and curved inner surfaces that are in close contact with the side end surfaces (outer peripheral surfaces) of the crystal base plate 8. And wide connecting pieces 20b, 21b, and 22b. On the side end surfaces of the quartz base plate to which each of the connection pieces 20b, 21b, 22b is in contact, a metallized portion as an extended end of the lead electrodes 9a, 10a or a specially provided metallized portion is provided. Each metallized portion, the Au-Ge chip 23 and each of the connection pieces 20b, 21b, and 22b are bonded to each other by metal eutectic bonding by heating with a thin Au-Ge chip 23 interposed between 21b and 22b. It was stuck. However, since the surfaces of the supports 20, 21, and 22 are smooth, when an external impact is applied to the crystal resonator, peeling is likely to occur at the eutectic bonding surface with the Au—Ge chip. For this reason, the fixing strength is increased by increasing the area of each of the connection pieces 20b, 21b, 22b of the support to ensure a large fixing area with the crystal element side edge.
However, if the fixing area between the support and the edge of the crystal base plate is widened, the stress on the crystal unit that occurs with thermal and secular changes will increase, reducing the stability of the output frequency of the crystal unit. The problem occurs. Furthermore, when the number of supports is increased in order to improve the frequency stability against external shock, the fixing area of the entire support is increased, and similarly the stability of the output frequency of the crystal unit is lowered. Get up.
[0006]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to use a lightweight and simple structure support in a piezoelectric device having a support structure in which three outer peripheral edges of a circular crystal resonator are supported by three supports erected on a metal base. Accordingly, it is an object of the present invention to provide a support structure for a piezoelectric vibrator that can reduce the fixing area between the quartz vibrator and the quartz vibrator. More specifically, if the contact area with the crystal unit is increased by widening the support or increasing the number of supports, this will cause a problem that obstructs the free vibration of the crystal unit and leak from the contact part with the support. Although an increase in the amount of excitation energy causes a problem that a necessary excitation amplitude cannot be obtained, the present invention does not increase the contact area and the number of supports, so the above-described problem does not occur.
In addition, when the metallized portion on the outer periphery of the quartz crystal resonator and the supporter are bonded using an Au—Ge chip, there is a problem that the bonding strength is reduced and peeling is likely to occur. It also solves such problems.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, three lead members that penetrate the metal base in an airtight state in an insulated state, a support that is fixed to the upper part of each lead member and extends upward, and each support has an outer peripheral portion 3 A circular piezoelectric vibrator having a lead electrode that is point-supported and extends from excitation electrodes formed on both main surfaces of the piezoelectric element plate to the edge of the piezoelectric vibrator, and a metal base including the piezoelectric vibrator. A piezoelectric device comprising a metal case for hermetically sealing a space, wherein two of the supports are electrically connected at their upper ends to the ends of both lead electrodes of the piezoelectric vibrator. The support has a plate-like configuration in which a support piece obtained by cutting two parallel downwards from the center of the upper edge of the support is bent 90 degrees, and a crystal resonator is formed on the upper surface of the support piece. Lord of The back plate on the upper part of the support is brought into contact with the outer peripheral surface of the crystal unit while the support is supported, and a binder is injected into the void formed by bending the support piece to fix the back plate and the outer peripheral surface of the crystal unit. It is characterized by that.
In addition, three lead members that penetrate the metal base in an airtight state in an insulated state, a support that is fixed to the upper portion of each lead member and extends upward, and each support supports the outer periphery at three points. A circular piezoelectric vibrator having a lead electrode extending from an excitation electrode formed on each of the main surfaces to an edge of the piezoelectric vibrator, and a metal case for hermetically sealing a space on a metal base including the piezoelectric vibrator; Two of the supports are electrically connected to the ends of both lead electrodes of the piezoelectric vibrator, and each support is formed on the outer peripheral surface of the crystal vibrator. The support is fixed to the metallized part via Au-Ge metal, and the support has at least one through hole in a region in contact with the metallized part on the outer peripheral surface of the crystal resonator. Some of the metal is solidified intrudes into the through hole during the melting of Ge metal. In addition, three lead members that penetrate the metal base in an airtight state in an insulated state, a support that is fixed to the upper portion of each lead member and extends upward, and each support supports the outer periphery at three points. A circular piezoelectric vibrator having a lead electrode extending from an excitation electrode formed on each of the main surfaces to an edge of the piezoelectric vibrator, and a metal case for hermetically sealing a space on a metal base including the piezoelectric vibrator; Two of the supports are electrically connected to the ends of both lead electrodes of the piezoelectric vibrator, and each support is formed on the outer peripheral surface of the crystal vibrator. In the case where the support is fixed to the metallized portion via a binder, the support has at least one through hole in a region in contact with the metallized portion on the outer peripheral surface of the crystal unit. Some of the binder is solidified by entering into the through hole Toruji.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
1 (a), (b), (c), and (d) are a perspective view, a side view of a main part, and a support showing an internal configuration of a piezoelectric device including a crystal resonator having a three-point support structure according to an embodiment of the present invention. FIG. 2 is a perspective view of an example, and a front view of a joint portion, and this piezoelectric device includes three lead members 2 (input side) and 3 (output side) penetrating through a disk-shaped metal base 1 in an insulated state. 4 (dummy), three crank-shaped conductive supports 30, 31, 32 that are fixed at the lower ends by the upper portions of the lead members 2, 3, 4 and extend upward, and the supports 30, 31. , 32 support the crystal base plate 8 at three points, and lead electrodes 9a, 10a extending from the excitation electrodes 9, 10 respectively formed on both main surfaces of the crystal base plate 8 (piezoelectric base plate) to the edges. A vertical circular piezoelectric vibrator (circular crystal vibrator) 11 provided, and the circular crystal vibrator 1 1 and a metal case (not shown) that hermetically seals the space on the metal base 1 including the metal base 1.
Two of the three lead members 2, 3, 4, for example, reference numerals 2 and 3 are the input side and the output side, and the other one lead member 4 is a means (dummy) for supporting the support. .
The supports 30, 31, and 32 are configured by forming a thin metal plate as shown in FIGS. 1 (b) and 1 (c). A rectangular cut piece 36 having a predetermined width is provided by forming parallel cuts 35, and the rectangular piece 36 is bent 90 degrees to one side. The rectangular piece after bending becomes a supporting piece 36. While the lower end portion of each support is fixed to the upper end portion of each lead member 2, 3, 4, the main surface of the crystal unit 11 is closely supported and supported by the upper surface of the support piece 36 of each support upper end portion. The side end face (outer peripheral face) of the crystal unit 11 is contact-supported by the front face 37a of the back plate 37 located on both sides of the small piece 36. Further, as shown in FIG. 1 (d), the binder 38 is dropped once (injected) into the space between the two back plates 37, thereby fixing the crystal oscillator side end face and the support upper part. Yes.
Compared with the support of the conventional example shown in FIG. 3, the support of this embodiment has an apparently smaller area in contact with the crystal unit, so that the factors that obstruct the free vibration of the crystal unit are reduced. Since the amount of excitation energy leaking from the contact portion is reduced, a crystal resonator that outputs a necessary excitation level can be easily realized.
In addition, the binder is not dripped in two places along both sides of the conventional one support, but the joining is performed only by dropping once in the space located at the center of each support. As a result, the number of fixing points is halved and the joining work is facilitated.
In addition, since the support of this embodiment has few bending points, it is easy to process, the support price can be reduced, and the external shock can be absorbed and relaxed by elastic deformation of the support.
[0009]
2 (a), 2 (b) and 2 (c) are a perspective view showing an internal configuration of a piezoelectric device including a quartz resonator having a three-point support structure according to another embodiment of the present invention, a side view of an essential part, and an example of a support. The support 40 used in this embodiment is a rectangular metal plate having an inner surface shape that can be brought into close contact with the side end surface of the crystal unit 11, and each lead member 2, 3, 4 is fixed to the upper end of 4 and one or a plurality of through holes 41 are formed in the upper part. The through hole 41 is formed in a range in contact with the lead electrodes 9a, 10a or the metallized portion located on the side end surface of the crystal resonator 11, and the support upper portion where the through hole 41 is formed and the side end surface of the metallized crystal resonator. The Au-Ge chip 42 is heated in a state where the Au-Ge chip 42 is sandwiched between the two, so that the Au-Ge chip 42 is melted to join the two. Most of the molten Au—Ge chip 42 contributes to the bonding between the side end surface of the crystal resonator and the inner surface of the support, while a part of the molten Au—Ge metal is solidified while entering the through hole 41. Therefore, the eutectic bond between the Au—Ge metal and the support interface is not peeled off by the rivet effect of the Au—Ge metal.
According to this embodiment, since the bonding force using the Au-Ge metal is enhanced using the through hole, it becomes possible to reduce the bonding area of the support in contact with the crystal oscillator side end surface, It is possible to realize a piezoelectric device with high frequency stability against aging.
Even if the support stability is increased by increasing the number of supports, the bonding area between the crystal unit and the support is extremely small compared to the conventional example, so the stress applied to the crystal unit is minimized. It can be.
Moreover, since the support structure does not have a bent portion, elastic deformation is easy, and external shock can be absorbed and relaxed to improve the frequency stability of the crystal unit.
In the second embodiment, the support and the metallized portion may be joined using the binder (conductive adhesive, solder, etc.) used in the first embodiment instead of the Au—Ge metal. . Also in this case, a part of the binder is melted and enters the through hole, so that the joining is ensured.
[0010]
【The invention's effect】
As described above, according to the present invention, in a piezoelectric device having a support structure that supports three outer peripheral edges of a circular crystal resonator by three supports erected on a metal base, a lightweight and simple support is used. As a result, it is possible to reduce the fixed area between the quartz resonator and the quartz resonator.
More specifically, if the contact area with the crystal unit is increased by widening the support or increasing the number of supports, this will cause a problem that obstructs the free vibration of the crystal unit and leak from the contact part with the support. Although an increase in the amount of excitation energy causes a problem that a necessary excitation amplitude cannot be obtained, the present invention does not increase the contact area and the number of supports, and thus the above-described problem does not occur.
In addition, when the metallized portion on the outer periphery of the quartz crystal resonator and the supporter are bonded using an Au—Ge chip, there is a problem that the bonding strength is reduced and peeling is likely to occur. Such problems can be solved.
[Brief description of the drawings]
FIGS. 1 (a), (b), (c) and (d) are a perspective view and a side view of an essential part showing an internal configuration of a piezoelectric device including a crystal resonator having a three-point support structure according to an embodiment of the present invention. The perspective view of an example of a support, and the front view of a junction part.
FIGS. 2A, 2B and 2C are a perspective view showing an internal configuration of a piezoelectric device including a quartz resonator having a three-point support structure according to another embodiment of the present invention, a side view of a main part, and a support; FIG.
FIGS. 3A, 3B and 3C are a perspective view, a main part configuration diagram, and a support configuration diagram of an example of a conventional piezoelectric device.
FIGS. 4A, 4B, and 4C are an overall perspective view, a main configuration diagram, and a configuration diagram of a support showing a support structure of a crystal resonator in another conventional piezoelectric device.
[Explanation of symbols]
1 Metal base, 2, 3, 4 Lead member, 8 Crystal base plate, 9, 10 Excitation electrode, 9a, 10a Lead electrode, 11 Crystal resonator, 30, 31, 32 Support, 35 Notch, 36 Rectangular small piece, 37 Back Plate, 37a Front, 38 Binder, 40 Support, 41 Through hole.

Claims (1)

金属ベースを絶縁状態で気密貫通する3本のリード部材と、各リード部材の上部に夫々固定されて上方に延びるサポートと、各サポートによって外周部を3点支持されるとともに圧電素板の両主面に夫々形成された励振電極から圧電振動子の端縁に夫々延びるリード電極を備えた円形圧電振動子と、該圧電振動子を含む金属ベース上の空間を気密封止する金属ケースとから成る圧電デバイスであって、上記各サポートの内の2つは夫々の上部を上記圧電振動子の両リード電極の端部と電気的に接続されているものにおいて、上記サポートは、その上端縁中央部から下向きに2本平行に切り込み形成することにより得た支持小片を90度屈曲させた平板状の構成を有し、該支持小片の上面に水晶振動子の主面を支持した状態でサポート上部の背板を水晶振動子の外周面と接触せしめ、支持小片を屈曲させることにより形成された空所内にバインダを注入して背板と水晶振動子外周面とを固着したことを特徴とする圧電振動子の支持構造。  Three lead members that penetrate the metal base in an airtight state in an insulated state, a support that is fixed to the top of each lead member and extends upward, and each support supports the outer peripheral portion at three points. A circular piezoelectric vibrator having a lead electrode extending from an excitation electrode formed on each surface to an edge of the piezoelectric vibrator, and a metal case for hermetically sealing a space on a metal base including the piezoelectric vibrator. A piezoelectric device, wherein two of the supports are electrically connected at their upper ends to the ends of both lead electrodes of the piezoelectric vibrator, and the support has a central portion at its upper edge. The support piece obtained by cutting two parallel downwards is formed into a plate-like structure bent 90 degrees, and the upper surface of the support is supported with the main surface of the crystal unit supported on the upper surface of the support piece. Back Of the piezoelectric vibrator characterized in that the back plate and the quartz crystal outer peripheral surface are fixed by injecting a binder into the space formed by bending the support piece and bending the support piece. Support structure.
JP12960798A 1998-04-23 1998-04-23 Support structure of piezoelectric vibrator Expired - Fee Related JP4003290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12960798A JP4003290B2 (en) 1998-04-23 1998-04-23 Support structure of piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12960798A JP4003290B2 (en) 1998-04-23 1998-04-23 Support structure of piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JPH11308067A JPH11308067A (en) 1999-11-05
JP4003290B2 true JP4003290B2 (en) 2007-11-07

Family

ID=15013652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12960798A Expired - Fee Related JP4003290B2 (en) 1998-04-23 1998-04-23 Support structure of piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP4003290B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188718A (en) * 2008-02-06 2009-08-20 Nippon Dempa Kogyo Co Ltd Crystal oscillator
JP2014011601A (en) * 2012-06-29 2014-01-20 Daishinku Corp Crystal oscillator
JP6295611B2 (en) 2013-11-05 2018-03-20 セイコーエプソン株式会社 Vibrator, oscillator, electronic device, and moving object
WO2022148160A2 (en) * 2021-11-23 2022-07-14 深圳顺络电子股份有限公司 Inductor with special-shaped structure and method for manufacturing same

Also Published As

Publication number Publication date
JPH11308067A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
TWI396381B (en) Piezoelectric resonator and assembly comprising the same enclosed in a case
JP2008131549A (en) Quartz oscillation device
JP2011229114A (en) Piezoelectric device and method of manufacturing the same
JP4003290B2 (en) Support structure of piezoelectric vibrator
JP3570600B2 (en) Piezoelectric component and method of manufacturing the same
US7116039B2 (en) Crystal unit and holding structure of crystal unit
JP3775433B2 (en) Electronic component equipment
JPS62242405A (en) Composite electronic parts
JP4373309B2 (en) Package for electronic components
JP2000353934A (en) Surface acoustic wave device
JP7523271B2 (en) Piezoelectric Devices
JP2012175405A (en) Piezoelectric vibrating element, piezoelectric vibrator, piezoelectric oscillator, and electronic equipment
JP2004297209A (en) Surface mount piezoelectric vibrator
JPH11251863A (en) Piezoelectric vibrator
JPH04284006A (en) Piezoelectric oscillator
JP3985489B2 (en) Structure of piezoelectric vibrator
JP2003163563A (en) Piezoelectric device
JP3556111B2 (en) Package for electronic component, electronic component assembly using the same, and method of manufacturing electronic component assembly
JP5468327B2 (en) Piezoelectric device
JP2002231840A (en) Package of electronic parts
JPH1093373A (en) Support structure for piezoelectric vibrator and its manufacture
JPH11163670A (en) Piezoelectric device
JPH0548370A (en) Crystal filter element
JP2010178092A (en) Piezoelectric device
JPH08204490A (en) Surface mounted type electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees