JP4001195B2 - 光増幅器 - Google Patents

光増幅器 Download PDF

Info

Publication number
JP4001195B2
JP4001195B2 JP28486799A JP28486799A JP4001195B2 JP 4001195 B2 JP4001195 B2 JP 4001195B2 JP 28486799 A JP28486799 A JP 28486799A JP 28486799 A JP28486799 A JP 28486799A JP 4001195 B2 JP4001195 B2 JP 4001195B2
Authority
JP
Japan
Prior art keywords
wavelength band
wavelength
signal light
band
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28486799A
Other languages
English (en)
Other versions
JP2001111496A (ja
Inventor
浩次 増田
昇 高知尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28486799A priority Critical patent/JP4001195B2/ja
Publication of JP2001111496A publication Critical patent/JP2001111496A/ja
Application granted granted Critical
Publication of JP4001195B2 publication Critical patent/JP4001195B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光増幅器に係り、特に搬送波として波長多重光を用いる光ファイバ通信システムに設けられる光増幅器に関する。
【0002】
【従来の技術】
図9は、波長多重の光ファイバ通信システム線形中継器として用いられる従来の光増幅器の構成を示す図である。図9に示した光増幅器104は、伝送ファイバ100と伝送ファイバ102との間に設けられている。いま、伝送ファイバ100中を長波長帯及び短波長帯の多波長信号光が伝送しているとし、その波長をそれぞれ代表してλl及びλsとする。長波長帯は、例えば1.58μm帯であり、短波長帯は、例えば1.55μm帯である。
【0003】
光増幅器104は、伝送ファイバ100を伝送してきた信号光を各々の波長帯毎に選択して分波する波長帯選択型分波器106と、波長帯選択型分波器106によって分波された波長帯の内、長波長帯を増幅する長波長帯増幅部108aと、波長帯選択型分波器106によって分波された波長帯の内、短波長帯を増幅する短波長帯増幅部108bと、長波長帯増幅部108a及び短波長帯増幅部108bによって増幅された信号光を合波する波長帯選択型合波器110とを有する。光増幅器104が信号光を長波長帯と短波長帯とに分離して各々増幅した後、合波する構成とする目的は主に総合帯域の拡大のためである。
【0004】
長波長帯増幅部108aは、増幅部112a、利得等化器114a、分散補償器116a、及び増幅部118aを有している。増幅部112aは長波長帯(1.58μm帯)増幅用のエルビウム添加ファイバ(以下、EDFという)120aと、EDF120aを励起するための励起光源122aと、EDF120aの利得を制御する利得制御回路124aとを有する。また、増幅部112aは更に励起光と信号光とを合波するための合波器やアイソレータ等の光部品を有するが、簡単のため図9では図示を省略してある。
【0005】
利得等化器114aは利得スペクトルの平坦化と平坦利得帯域の拡大とを行い、分散補償器116aは高速光パルスの伝送ファイバ分散による波形歪みの補償を行う。増幅器118aは、増幅器112aと同様に、EDF126a、励起光源128a、及び利得制御回路130aを有し、分散補償器116aから出力される信号光を増幅する。長波長帯増幅器108aが増幅器112aと増幅器118aとを備える理由は、利得等化器114a及び分散補償器116aがそれぞれ相当量の損失(数dBから十数dB程度)を有しているため、雑音指数と光出力パワーの劣化を防ぐためである。
【0006】
また、短波長帯増幅部108bは、長波長帯増幅部108aと同様の構成であり、増幅部112b、利得等化器114b、分散補償器116b、及び増幅部118bを有している。また、増幅部112bは、EDF120b、励起光源122b、及び利得制御回路124bを備え、増幅部118bは、EDF126b、励起光源128b、及び利得制御回路130bを備える。EDF120bは短波長帯(1.55μm帯)を増幅するエルビウム添加ファイバであり、EDF12aに対しては主に長さが異なる。
【0007】
上記構成において、伝送ファイバ100を伝搬してきた信号光(波長λl及びλs)が光増幅器104へ入力されると、波長帯選択型分波器106において、長波長帯(波長λl)の信号光と、短波長帯(波長λs)の信号光とに分波され、長波長帯増幅部108a及び短波長帯増幅部108bへ入力される。長波長帯増幅部108a及び短波長帯増幅部108bへ入力した信号光は、各々増幅されて波長帯選択型合波器110で合波され、伝送ファイバ102へ出力される。
【0008】
以上説明した従来の光増幅器104の詳細については、例えば、M.Yamada et al., Electron. Lett., Vol.33, pp.710-711, 1997 又は Y.Sun et al., Proc. of ECOC, pp.53-54, 1998 を参照されたい。
また、以上説明した構成の替わりに、利得等化器114aをEDF120aと126aとの間に配置した2段増幅構成において、EDF120a,120bのホストガラスの種類や長さを最適化することにより、単一波長帯の広帯域化増幅器(1.55μm帯と1.58μm帯にまたがる)が構成できることが報告されている。この詳細については、例えば、H.Masuda et al., Electron. Lett., Vol.33, pp.1070-1071, 1997 を参照されたい。この技術においては、当然のことながら波長帯選択型分波器106及び波長帯選択型合波器110は必要ではない。しかしながら、利得等化器114a及び分散補償器116aは、対象とする信号光帯域が広いほど困難であり、利得等化器114a及び分散補償器116aが複雑かつ高価になるという欠点がある。
【0009】
【発明が解決しようとする課題】
ところで、図10は、図9を用いて説明した従来技術の光増幅器の利得スペクトル特性である。図10(a)は長波長帯増幅部108aが備える増幅部112aの利得及び短波長帯増幅部108bが備える増幅部112bの利得を示しており、図10(b)は波長帯選択型分波器106及び波長帯選択型合波器110の透過損失を示しており、図10(c)は光増幅器104の利得をそれぞれ示している。
【0010】
図10(a)において、符号g1が付された曲線は長波長帯増幅部108aの利得であり、符号gsが付された曲線は短波長帯増幅部108bの利得である。また、図10(b)において、符号l1が付された曲線は、長波長帯増幅部108aを含む経路の波長帯選択型分波器106及び波長帯選択型合波器110の透過損失であり、符号l2が付された曲線は、短波長帯増幅部108bを含む経路の波長帯選択型分波器106及び波長帯選択型合波器110の透過損失である。また、図10(c)において、符号G1が付された曲線は、長波長帯増幅部108aを含む経路のみの光増幅器104の利得であり、符号G2が付された曲線は、短波長帯増幅部108bを含む経路のみの光増幅器104の利得である。
【0011】
波長帯選択型分波器106及び波長帯選択型合波器110は、誘導体多層膜フィルタを用いたもの(以下、多層膜フィルタ型という)や、広波長帯ファイバグレーティング反射器とサーキュレータを用いたもの(以下、ファイバグレーティング型という)等であり、その透過損失(波長帯選択型分波器106及び波長帯選択型合波器110の透過損失の和)は図10(b)に示したようになる。
【0012】
波長帯選択型分波器106及び波長帯選択型合波器110の透過損失値が中間的な値を示す過渡波長帯は、信号光波長間隔に関して十分狭くなく、波長帯選択型分波器106及び波長帯選択型合波器110が多層膜フィルタ型である場合には約10nm、ファイバグレーティング型である場合には約1nmである。図10(b)においては、過渡波長帯の境界波長をλtr-s及びλtr-lとしている。上記信号光波長間隔は0.8nm(周波数間隔に換算すると100GHz)や0.4nm(周波数間隔に換算すると50GHz)等である。
【0013】
図10(a)は、長波長帯増幅部108aの利得が平坦である箇所の短波長側の境界波長がλtr-lであり、短波長帯増幅部108bの利得が平坦である箇所の長波長側の境界波長がλtr-sである場合を示している。図10(a)に示した利得(単位:デシベル(dB))と図10(b)に示した損失(単位:デシベル(dB))の差が光増幅器104の利得であり、図10(c)に示されている。
【0014】
図10(b)及び図10(c)を参照すると、主に波長帯選択型分波器106及び波長帯選択型合波器110の過渡波長帯(境界波長λtr-lと境界波長λtr-sで規定される波長帯)における波長帯選択型分波器106及び波長帯選択型合波器110の損失によって過渡波長帯における信号光利得が低下しており、その結果、この過渡波長帯は信号光の増幅に使用できないという欠点が生じている。
また、本従来技術の光増幅器は、長波長帯及び短波長帯にそれぞれ2個づつ、計4個の増幅部112a,112b,118a,118bを有し、各々の増幅部112a,112b,118a,118bは励起光源122a,122b,128a,128b、利得制御回路124a,124b,130a,130b、信号光と励起光との合波器等の部品を有している。従って、総合部品点数が多く、増幅部が大規模化するとともに高価になるという欠点を有する。
【0015】
本発明は、上記事情に鑑みてなされたものであり、信号光の増幅に使用できない波長帯が存在するという欠点を除去し、又は、総合部品点数の減少が可能であり、光増幅器の規模を減少することができるとともにコストを低下することができる光増幅器を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために、本発明の光増幅器は、波長多重された信号光の増幅を行う長波長帯増幅部及び短波長帯増幅部と、
前記長波長帯増幅部の利得波長帯と短波長帯増幅部の利得波長帯にまたがって、継ぎ目の無い利得波長帯を有する前段の広帯域増幅部及び後段の広帯域増幅部と、
利得波長帯の重なった波長帯近傍の波長において、波長無依存の分岐比を有する分波器及び合波器とを備え、
前記長波長帯増幅部は、境界波長より短波長信号光を除去する光フィルタを含み、
前記短波長帯増幅部は、前記境界波長より長波長信号光を除去する光フィルタを含み、
前記長波長帯増幅部及び前記短波長増幅部は、前記境界波長においてお互いに等しく且つ平坦な平坦利得をそれぞれ有し、
前記前段の広帯域増幅部で増幅された信号光を、前記分波器を用いて前記長波長帯増幅部側及び短波長帯増幅部側に分波し、前記長波長帯増幅部側及び前記短波長帯増幅部側から出射した信号光を前記合波器で合波した後、前記後段の広帯域増幅部で増幅し、前記長波長帯増幅部側及び短波長帯増幅側から出射した信号光が、互いに同じ波長の信号光を含まない様に、前記光フィルタの透過帯域を調整したことを特徴とする。
この発明にあっては、前記境界波長より短波長信号光を除去する光フィルタ及び前記境界波長より長波長信号光を除去する光フィルタは、ブラック型ファイバグレーティングフィルタを含むことが好ましい。
【0017】
以上の手段を備える本発明をより具体的に説明すると以下の通りである。
図1は、本発明の光増幅器の第1構成を示し、図2は、本発明の光増幅器の第2構成を示す図である。図1に示した本発明の第1構成は、従来技術で問題になっていた信号光の増幅に使用できない過渡波長帯を除去する目的でなされたものであり、第2構成は従来技術の問題点であった総合部品点数が多く、増幅器が大規模、高価になるという欠点を除去する目的でなされたものである。
【0018】
図1に示した本発明の第1構成の光増幅器1は、伝送ファイバ2aと伝送ファイバ2bとの間に配置されている。この光増幅器1は、長波長帯増幅部5a及び短波長帯増幅部5bと、長波長帯増幅部5aの利得帯域及び短波長帯増幅部5bの利得帯域にまたがる利得帯域を有し、光増幅器1の入力側に設けられた広帯域増幅部3と、広帯域増幅部3と同様の利得帯域を有し、光増幅器1の出力側に設けられた広帯域増幅部10とを有する。
【0019】
また、光増幅器1は広帯域増幅部3の後段に1対1の分岐比を有する波長無依存分波器(以下、1対1分波器という)4を備え、1対1分波器4の後段に上記の長波長帯増幅部5a及び短波長帯増幅部5bが配置されている。更に、長波長帯増幅部5a及び短波長帯増幅部5bの後段であって、広帯域増幅部10の前段に1対1の分岐比を有する波長無依存合波器(以下、1対1合波器という)を備えている。上記長波長帯増幅器5aは、長波長帯透過フィルタ6a、長波長帯用の帯域除去フィルタ7a、及び長波長帯増幅装置8aを備え、上記短波長帯増幅器5bは、短波長帯透過フィルタ6b、短波長帯用の帯域除去フィルタ7b、及び短波長帯増幅装置8bを備えている。
【0020】
上記構成において、伝送ファイバ2a中を長波長帯及び短波長帯の多波長信号光が伝送しているとし、その波長をそれぞれ代表してλl及びλsとする。長波長帯は、例えば1.58μm帯であり、短波長帯は、例えば1.55μm帯である。この多波長信号が光増幅器1へ入力すると、広帯域増幅部3において長波長帯及び短波長帯の何れもが増幅される。広帯域増幅部3から出力された多波長信号は、1対1分波器4において同一の強度比で分岐される。分岐光の一方は、長波長帯増幅部5aに入力し、他方は短波長帯増幅部5bに入力する。
【0021】
長波長帯増幅部5aに入力した波長λl及びλsの信号光は、長波長帯透過フィルタ6aで短波長の信号光がほぼ除去され、更に帯域除去フィルタ7aで短波長の信号光が十分に除去される。同様に、短波長帯増幅部5bに入力した波長λl及びλsの信号光は、短波長帯透過フィルタ6bで長波長の信号光がほぼ除去され、更に帯域除去フィルタ7bで長波長の信号光が十分に除去される。帯域除去フィルタ7aを出射した波長λlの信号光及び帯域除去フィルタ7bを出射した波長λsの信号光は、それぞれ長波長帯増幅装置8a及び短波波長増幅装置8bで増幅された後、1対1合波器9で合波される。1対1合波器9を出射した波長λl及び長波長λsの信号光は広帯域増幅部10でともに増幅されて光増幅器1の出力光となる。
【0022】
上記構成においては、長波長帯透過フィルタ6a及び帯域除去フィルタ7aや短波長帯透過フィルタ6b及び帯域除去フィルタ7bは、それぞれ、長波長帯増幅部5a及び短波長増幅部5bの後段に設置してもよい。1対1分波器4及び1対1合波器9の信号光損失の典型値は約3dB、長波長帯透過フィルタ6a及び帯域除去フィルタ7a、並びに、短波長帯透過フィルタ6b及び帯域除去フィルタ7bの信号光損失の典型値は約1dBである。
【0023】
広帯域増幅部3は、長波長帯増幅部5a及び短波長増幅部5bの前段に設置した1対1分波器4等の光部品による信号光損失に起因する雑音指数劣化を回避する目的で設置されている。一方、広帯域増幅部10は、長波長帯増幅部5a及び短波長増幅部5bの後段に設置した1対1合波器9等の光部品による信号光損失に起因する信号出力低下を回避する目的で設置されている。広帯域増幅部3の利得値の典型値は約10〜15dB以上であり、広帯域増幅部10の利得値の典型値は約5〜10dB以上である。
【0024】
図3は、本発明の第1構成の光増幅器における利得スペクトル特性を示す図である。図3(a)において、符号g11が付された曲線は広帯域増幅部3又は広帯域増幅部10の利得を示しており、図3(b)において、符号g21が付された曲線が長波長帯増幅部5aの利得を示し、符号g22が付された曲線が短波長帯増幅部5bの利得を示している。但し、図3(b)において、図10に示した過渡波長帯の境界波長λtr-s及びλtr-l近辺における第1構成の過渡波長帯の境界波長をλtrとしている。長波長帯増幅部5a及び短波長増幅部5bは、境界波長λtrにおいてそれぞれ平坦利得を有するように設定されている。
【0025】
また、図3(c)において、符号l11が付された曲線は、長波長帯透過フィルタ6aの透過損失を示し、符号l12が付された曲線は、短波長帯透過フィルタ6bの透過損失を示している。また、図3(d)において、符号l21が付された曲線は、帯域除去フィルタ7aの透過損失を示しており、符号l22が付された曲線は、帯域除去フィルタ7bの透過損失を示している。長波長帯透過フィルタ7a及び短波長帯透過フィルタ7bは、境界波長λtrにおいて低い透過損失を有する。即ち、過剰な透過損失は無い。また、帯域除去フィルタ7aは、長波長帯増幅部5側で邪魔になる、境界波長λtr近傍の短波長成分を十分高い損失値(図3(d)の例では40dB)で除去している。同様に、帯域除去フィルタ7bは、短波長増幅部5b側で邪魔になる、境界波長λtr近傍の長波長成分を十分高い損失値で除去している。
【0026】
即ち、長波長帯域透過フィルタ6aと帯域除去フィルタ7aとにより、1対1分波器4から長波長帯増幅部5a側にやってきた、境界波長λtrより短波長の信号光は、十分高い損失値でもって除去され、同様に、短波長帯透過フィルタ6bと帯域除去フィルタ7bとにより、1対1分波器4から短波長増幅部5b側にやってきた、境界波長λtrより長波長の信号光は、十分高い損失値でもって除去される。
【0027】
図3(e)は、図3(a)〜(d)の利得及び損失特性から得られる、光増幅器1の利得を示している。図3(e)において、符号G11が付された曲線は、長波長帯増幅部5aを含む経路の利得を示し、符号G12が付された曲線は、短長波長帯増幅部5bを含む経路の利得を示している。後述する第1実施形態で示すように、帯域除去フィルタ7a及び帯域除去フィルタ7bの波長選択スペクトルは、十分急峻に設定できるため、図3(e)において、長波長帯増幅部5aを通る経路の利得と、短波長増幅部5bを通る経路の利得は、境界波長λtr近傍で急峻となる波長選択スペクトルを示している。
【0028】
波長多重された各波長の信号光は、長波長帯増幅部5aを含む経路又は短波長増幅部5bを含む経路を通り、一方の経路を通過して得られる信号光成分パワーは、他方の経路を通過する信号光成分パワーより十分大きいため、コヒーレント干渉による雑音劣化は十分小さく無視できる。例えば、長波長帯増幅部5aを含む経路から出力される波長λlの信号光のパワーは、短波長増幅部5bを含む経路から出力される波長λlの信号光のパワーより十分大きい。
以上述べたように、本発明の第1構成による光増幅器においては、従来技術の光増幅器において問題であった、過渡波長帯が信号光の増幅に使用できないという欠点を解消している。
【0029】
次に、本発明の第2構成による光増幅器について説明する。図9に示した従来技術の光増幅器が、長波長帯増幅部108a内の2つの増幅部112a,118aと、短波長帯増幅部108b内の2つの増幅部112b,118bとの計4つの増幅部を有している。これに対し、図2に示した本発明の第2構成の光増幅器は、伝送ファイバ2aからの信号光を増幅する広帯域増幅部21aと、広帯域増幅部21aの後段に設けられた波長帯選択型分波器22と、この波長帯選択型分波器22の後段に設けられた長波長帯の帯域幅依存型光部品23a及び短波長帯の帯域幅依存型光部品23bと、長波長帯の帯域幅依存型光部品23a及び短波長帯の帯域幅依存型光部品23bの後段に設けられた波長帯選択型合波器24と、広帯域増幅部21bとを有している。つまり、増幅部として、広帯域増幅部21a及び広帯域増幅部21bの2つのみを備える点が特徴である。
【0030】
広帯域増幅部21a及び広帯域増幅部21bの利得スペクトルは、図3(a)に示した第1構成の光増幅器1が備える広帯域増幅部3,10のそれと同様に、図10に示した従来技術の光増幅器の長波長帯増幅部108aの利得波長帯と短波長帯増幅部108bの利得波長帯にまたがるものである。広帯域増幅部21a及び広帯域増幅部21bは、光増幅導波路25a,25b、駆動回路26a,26b、利得制御回路27a,27bをそれぞれ備えている。
【0031】
広帯域増幅部21aと広帯域増幅部21bとの間に設けられた、長波長帯の帯域幅依存型光部品23a及び短波長帯の帯域幅依存型光部品23bとは、図9を用いて説明した利得等化器114a,114bや分散補償器116a,116b、及び図示しない多波長信号光挿入・分岐用の光フィルタ(アレイ導波路格子等)、等であり、それらの性能や価格が、多波長信号光の帯域に依存する光部品である。
【0032】
従来の技術の場合と同様に、広帯域増幅部21a,21bの利得と、帯域幅依存型光部品23a,23b、波長帯選択型分波器22、及び波長帯選択型合波器の損失のdB単位における差が光増幅器20の利得である広帯域増幅部21a,21bの利得値は、従来技術の場合と同様に、増幅器の雑音指数が低く、光出力が大きくなるように設定されている。
本発明の本第2構成による光増幅器では、図2から明らかなように、図9に示した従来技術の光増幅器に比べ、増幅部の数が半分(2個)になっている。従って、従来技術の光増幅器において問題であった、総合部品点数が多く、増幅器が大規模、高価になるという欠点を解消している。
【0033】
【発明の実施の形態】
以下、図面を参照して、本発明の実施形態による光増幅器について詳細に説明する。本実施形態においては、第1実施形態〜第3実施形態について説明するが、第1実施形態は、上述の本発明の第1構成に関するものであり、第2及び第3実施形態は、本発明の第2構成に関するものである。
【0034】
〔第1実施形態〕
図4は、本発明の第1実施形態による光増幅器の構成を示す図である。本実施形態において光増幅器30に入力される信号光は波長1530〜1600nmの範囲で配置された多波長信号光である。図1中の広帯域増幅部3として半導体レーザ増幅器部31を備えている。この半導体レーザ増幅器部31は、利得媒質である半導体レーザ素子32と、半導体レーザ素子32に電流を注入する電流駆動回路33と、半導体レーザ素子32の利得を制御する利得制御回路34とからなる。半導体レーザ増幅器部31は、波長1530〜1600nmの全ての信号光を増幅する。
【0035】
図1中の1対1分波器4として、分波の比率が波長に依存しない1対1ファイバカプラ35を用いている。よって、1対1ファイバカプラ35によって分波された光は波長1530〜1600nmの全ての信号光を含み、同じ強度である。図1中の長波長帯透過フィルタ6aとしては長波長帯透過多層膜フィルタ36aが設けられる。長波長帯透過多層膜フィルタ36aは、入力された信号光の内、波長が1530〜1565nmの信号光を除去する。また、図1中の短波長帯透過フィルタ6bとして短波長帯透過多層膜フィルタ36bが設けられる。短波長帯透過多層膜フィルタ36bは、入力された信号光の内、波長が1566〜1600nmの信号光を除去する。
【0036】
図1中の帯域除去フィルタ7a及び帯域除去フィルタ7bとして、長波長帯側ファイバグレーティングフィルタ37a及び短波長帯側ファイバグレーティングフィルタ37bがそれぞれ設けられている。以下、ファイバグレーティングフィルタをFGFと称する。長波長帯側FGF37aは、1565nmの信号光を反射するブラック型ファイバグレーティング38aと、1560〜1564nmの信号光をまとめて反射するチャープブラック型ファイバグレーティング39とからなる。
【0037】
同様に、短波長帯側FGF37bは、1566nmの信号光を反射するブラック型ファイバグレーティング38bと、1567〜1571nmの信号光をまとめて反射するチャープブラック型ファイバグレーティング39bとからなる。即ち、長波長帯側FGF37aは1560〜1565nmの信号光を高反射率で反射するがそれ以外の波長の信号光は透過させ、短波長帯側FGF37bは1566〜1571nmの信号光を高反射率で反射するがそれ以外の波長の信号光は透過させる。
【0038】
本実施形態では、長波長帯側FGF37a及び短波長帯側FGF37bは、それぞれ1つのブラックファイバグレーティング38a,38bと1個のチャープブラック型ファイバグレーティング39a,39bで構成しているが、これは、あくまでも一例であり、長波長帯側FGF37a及び短波長帯側FGF37bの反射及び透過特性が上記の条件を満たせば他の構成であってもも良い。例えば、長波長帯側FGF37a及び短波長帯側FGF37bが複数個のブラック型ファイバグレーティングのみからなるものであっても良い。
【0039】
図1中の長波長帯増幅装置8aとして、1.58μm帯エルビウム添加ファイバ増幅器(以下、エルビウム添加ファイバ増幅器をEDFAという)部40aを、短波長帯増幅装置8bとして、1.55μm帯EDFA部40bをそれぞれ設けている。1.58μm帯EDFA部40aは、長さが50mのエルビウム添加ファイバ(以下、EDFという)41aと、EDF41aを励起するために設けられ、1.48μmの励起光を出射する励起光源42aと、長波長帯側FGF37aから出力された信号光と励起光源42aから出射された光とを合波する光カプラ43aと、EDF41aの利得を制御する利得制御回路44aとを備えている。1.55μm帯EDFA部40bも同様にEDF41b、励起光源42b、光カプラ43b、及び利得制御回路44bを備えている。
【0040】
ここで、EDF41bは長さが10mである点においてEDF41bと異なり、励起光源42bは、0.98μmの励起光を出射する点において励起光源42aと異なる。1.58μm帯EDFA部40aは1566〜1600nmの信号光を増幅し、1.55μm帯EDFA部40bは、1530〜1565nmの信号光を増幅する。1.58μm帯EDFA部40a及び1.55μm帯EDFA部40bは、通常、図9に示した従来技術における長波長帯増幅部108a及び短波長増幅部108bのように、中間に信号光損失を有する光部品を用いた2段増幅構成であるが、図4では簡単のため1段増幅構成としてある。しかしながら、1段増幅構成の場合と2段増幅構成の場合で、その動作及び作用等において本質的な違いはない。
【0041】
図1中の1対1合波器9として、波長無依存型の1対1ファイバカプラ45を用いている。また、図1中の項帯域増幅部10としてラマン増幅器部46を用いている。ラマン増幅器部46は、利得媒質であるラマンファイバ47と、ラマンファイバ47を励起するために設けられ、1430〜1500nmの範囲の数波長からなる励起光を出射する励起光48と、ラマンファイバ47から出力された信号光と励起光源48から出射された励起光とを合波する光カプラ49と、ラマンファイバ47の利得を制御する利得制御回路50とを備えている。このラマン増幅器部46は、波長1530〜1600nmの全ての信号光を増幅する。
【0042】
次に、上記構成における、本発明の第1実施形態による光増幅器の動作について図4及び図5を参照して詳細に説明する。図5は、本発明の第1実施形態による光増幅器の各部の特性を示す図である。図5において、(a)は半導体レーザ増幅器部31及びラマン増幅器部46の利得スペクトル特性を示し、(b)は長波長帯透過多層膜フィルタ36a及び短波長帯透過多層膜フィルタ36bの透過損失を示し、(c)は長波長帯側FGF37a及び短波長帯側FGF37bの透過損失スペクトルを示し、(d)は1.58μm帯EDFA部40a及び1.55μm帯EDFA部40bの利得を示している。また、図5において、(e)は1.58μm帯EDFA部40aを含む経路、及び1.55μm帯EDFA部40bを含む経路の利得スペクトルを示し、(f)は境界波長1565.5nm近傍の信号光波長と利得スペクトルの詳細を示している。
【0043】
図4に示されたように、波長1530〜1600nmの信号光が入力されると、半導体レーザ増幅器部31に入力される。信号光が半導体レーザ増幅器部31に入力されると、信号光は波長1530〜1600nmの帯域内全てにおいて増幅される。図5(a)において、符号g31が付された曲線は、半導体レーザ増幅器部31の利得を示しており、1530〜1600nmの波長範囲でほぼ平坦な利得を有しており、その平坦利得は、約15dBである
【0044】
信号光が半導体レーザ増幅器部31から出力されると、1対1ファイバカプラ35において、1対1の強度比を有する2つの分岐光に分岐される。分岐光の一方は長波長帯透過多層膜フィルタ36aに入射し、他方は、短波長帯透過多層膜フィルタ36bに入射する。図5(b)において、符号l36aが付された曲線は長波長帯透過多層膜フィルタ36aの透過特性を示す曲線であり、符号l36bが付された曲線は短波長帯透過多層膜フィルタ36bの透過特性を示す曲線である。図5(b)から分かるように、これらの損失は、境界波長1565.5nm近傍で過渡特性を示し、境界波長1565.5nmから7nm程度波長が離れると、損失値は約40dB以上に達する。この損失値は、前述したコヒーレント干渉による雑音劣化を除去するのに十分大きな値である。
【0045】
長波長帯透過多層膜フィルタ36a及び短波長帯透過多層膜フィルタ36bを透過した信号光は、長波長帯側FGF37a及び短波長帯側FGF37bへそれぞれ入射する。図5(c)において、符号l37aが付された曲線が長波長帯側FGF37aの透過損失スペクトルを示し、符号l37bが付された曲線が短波長帯側FGF37bの透過損失スペクトルを示している。
【0046】
また、図5(c)に示したように、長波長帯側FGF37a及び短波長帯側FGF37bは、1つのブラックファイバグレーティング38a,38bと1個のチャープブラック型ファイバグレーティング39a,39bとをそれぞれ接続して構成されているので、それら2つのグレーティングに対応した段階状の損失平坦値を有しており、特に境界波長1565.5nm近傍での損失値は大きい。
【0047】
ここで、長波長帯透過多層膜フィルタ36aと長波長帯側FGF37aとを合わせた透過損失を考えてみると、境界波長1565.5nm近傍より長波長側で、常に約40dBより大きく、また、短波長帯透過多層膜フィルタ36bと短波長帯側FGF37bとを合わせた透過損失を考えてみると、境界波長1565.5nm近傍より短波長側で、常に約40dBより大きい。従って、前述したコヒーレント干渉による雑音劣化を除去することができる。
【0048】
長波長帯側FGF37aからは1566〜1600nmの信号光が出力され、短波長帯透過多層膜フィルタ36bからは1530〜1565nmの信号光が出力される。これらの信号光は1.58μm帯EDFA部40a及び1.55μm帯EDFA部40bへそれぞれ入力される。図5(d)に示したように、1.58μm帯EDFA部40aの利得は1565〜1600nmの波長領域で平坦であり、1.55μm帯EDFA部40bの利得は、1530〜約1565nmの波長領域で平坦である。よって、1.58μm帯EDFA部40aへ入力した1566〜1600nmの信号光及び1.55μm帯EDFA部40bへ入力した1530〜1565nmの信号光は増幅される。
【0049】
図5(e)において、符号G40aが付された曲線は1.58μm帯EDFA部40aを含む経路の利得スペクトルを示し、符号G40bが付された曲線は1.55μm帯EDFA部40bを含む経路の利得スペクトルについて示している。図5(e)に示されたように、各々の経路の利得は境界波長1565.5近傍を除き、ほぼ平坦な利得となっている。図5(f)に示したように、境界波長1565.5nm近傍においては、図10(c)中における波長λtr-sと波長λtr-lとによって規定される信号光の増幅に使用できない波長帯が存在しない。
よって、本実施形態によれば、1530〜1600nmの全信号光波長において、平坦利得が得られる。
【0050】
1.58μm帯EDFA部40a及び1.55μm帯EDFA部40bから出力された信号光は、1対1ファイバカプラ45へ入力されて合波される。合波された信号光はラマン増幅器部46へ入力して増幅される。ラマン増幅器部46の利得は、1530〜1600nmの波長範囲で平坦利得であり、その平坦利得は、約7dBに設定されている。よって、1対1ファイバカプラ45から出力された信号光はラマン増幅器部46において1530〜1600nmの波長範囲にわたって増幅される。
以上説明したように、本発明の第1実施形態によれば、従来技術の光増幅器で問題であった、信号光の増幅に使用できない波長帯が存在するという欠点を除去することができる。
【0051】
〔第2実施形態〕
図6は、本発明の第2実施形態による光増幅器の構成を示す図である。図2に示した第2構成の広域増幅部21aとしてハイブリッド増幅器部61を用いている。ハイブリッド増幅器部61は、EDF62及びラマンファイバ63と、EDF62及びラマンファイバ63を励起するために波長1430〜1500nmの中の数波長で多重された励起光を出射する励起光源64と、波長多重された1530〜1600nmの信号光と励起光源64から出射された励起光とを合波する合波器65と、EDF62及びラマンファイバ63の利得を制御する利得制御回路66とを備える。
【0052】
このハイブリッド増幅器部61は、いわば図4に示した半導体レーザ増幅器部31とラマン増幅器部46とを合わせたものであり、1530〜1600nmの信号光を増幅する。ハイブリッド増幅器部61の利得は約20dBに設定されている。ハイブリッド増幅器部61の詳細については、例えば、H.Masuda et al., Phton. Technol. Lett., Vol.11, pp.647-649, 1999を参照されたい。尚、伝送ファイバ2aを介して入力される信号光の1チャンネル当たりの変調速度は10Gbit/sとする。また、伝送ファイバ2a,2bは、分散シフトファイバである。
【0053】
図2中の波長帯選択型分波器22として誘電体多層膜型分波器67を用いている。また、図2中の長波長帯の帯域幅依存型光部品23a及び短波長帯の帯域幅依存型光部品23bとして、分散補償ファイバ68a及び信号光挿入分離回路69a並びに分散補償ファイバ68b及び信号光挿入分離回路69bを用いている。信号光挿入分離回路69a,69bは、それぞれ性能・価格が帯域幅に依存するアレイ導波路格子(AWG)を2個含む。図6においては、信号光挿入分離回路69a,69bから分離される波長をλout、挿入される波長をλinとしている。
【0054】
また、図2中の波長帯選択型合波器24として、誘電体多層膜型合波器70を用い、広帯域増幅部21bとしてハイブリッド増幅器部71を用いている。このハイブリッド増幅器部71の内部構成は、ハイブリッド増幅器部61と同様であり、EDF72、ラマンファイバ73、励起光源74、合波器75、利得制御回路76とを備えるが、ハイブリッド増幅器71の利得が約10dBに設定されている点において異なる。
【0055】
ハイブリッド増幅器部61とハイブリッド増幅器部71との間の光部品(例えば、誘電体多層膜型分波器67、分散補償ファイバ68a,68b、信号光挿入分離回路69a,69b、及び誘電体多層膜型合波器70等)による信号損失は約10dBである。従って、本発明の第2実施形態による光増幅器60の利得は約20dBである。
本実施形態における境界波長は1560〜1570nmの10nmである。各波長帯の信号光は、各波長帯に合わせて作製された分散補償ファイバ68a,68b及び信号光挿入分離回路69a,69bを通過し、誘電体多層膜合波器70で合波される。
以上述べたように、本発明の第2実施形態によれば、従来技術の光増幅器で問題があった、総合部品点数が多く、増幅器が大規模、高価になるという欠点を除去できる。
【0056】
〔第3実施形態〕
図7は、本発明の第3実施形態による光増幅器の構成を示す図である。図7に示した第3実施形態による光増幅器80は、1.3μm零分散ファイバ81a,81b間に設けられている。本実施形態においては、1.3μm零分散ファイバ81aから入力される信号光として、波長多重された1430〜1500nmの信号光を考え、1チャンネル当たりの変調速度は10Gbit/sとする。
【0057】
本実施形態においては、図2に示した本発明の第2構成の広帯域増幅部21aとして半導体レーザ増幅器部82を用いている。この半導体レーザ増幅器部82は、図4に示した半導体レーザ増幅器部31と同様のものであり、半導体レーザ素子83、電流駆動回路84、及び利得制御回路85を有する。半導体レーザ増幅器部31は、波長1530〜1600nmの全ての信号光を増幅する。半導体レーザ増幅器部82の利得は、約15dBである。
【0058】
また、図2中の波長帯選択型分波器22として、誘電体多層膜型分波器86を用いており、帯域幅依存型光部品として分散補償ファイバ87a〜87cを用いる。また、波長帯選択型合波器22として、誘電体多層膜型合波器88を用いている。図8は、誘電体多層膜型分波器86及び誘電体多層膜型合波器88の構成を示す図である。
【0059】
図8(a)は誘電体多層膜型分波器86の構成を示しており、境界波長帯が1450〜1455nmの誘電体多層膜型分波器86aと、境界波長帯が1475〜1480nmの誘電体多層膜型分波器86bとを2段接続したものである。この誘電体多層膜型分波器86aに波長1430〜1500nmの信号光が入力されると、20nm波長幅を有する3波長帯(1430〜1450nmの波長帯、1455〜1475nmの波長帯、1480〜1500nmの波長帯)に分波される。
【0060】
また、図8(b)は誘電体多層膜型合波器88の構成を示しており、境界波長帯が1450〜1455nmの誘電体多層膜型合波器88aと、境界波長帯が1475〜1480nmの誘電体多層膜型合波器88bとを2段接続したものである。この誘電体多層膜型分波器88aに1430〜1450nmの波長帯、1455〜1475nmの波長帯、及び1480〜1500nmの波長帯が入力されると、1430〜1500nmの波長帯を有する信号光に合波される。
【0061】
本実施形態においては、図2に示した本発明の第2構成の広帯域増幅部21bとしてラマン増幅器部89を用いている。このラマン増幅器部89は、図4に示したラマン増幅器部46と同様のものであり、ラマンファイバ90、励起光源48、光カプラ49、及び利得制御回路93を備えている。励起光源91は、1330〜1400nmの中の数波長で多重された励起光を出射するものが用いられる。これは、ラマン増幅器89において、1430〜1500nmの波長帯域を増幅する必要があるからである。ラマン増幅器部89の利得は、約15dBである。
【0062】
半導体レーザ増幅器部82及びラマン増幅器部89の利得は前述のように約15dBであり、半導体レーザ増幅器部82とラマン増幅器部89の間の光部品(例えば、誘電体多層膜型分波器86、分散補償ファイバ87a〜87c、及び誘電体多層膜型合波器88等)による信号光損失は約5dBである。従って、本実施形態による光増幅器80の利得は約20dBである。
【0063】
本実施形態の光増幅器80へ入力された信号光は、半導体レーザ増幅器部82で増幅された後、誘電体多層膜型分波器86で分波され、3波長帯(1430〜1450nmの波長帯、1455〜1475nmの波長帯、1480〜1500nmの波長帯)の信号光とされる。各波長帯の信号光は、各波長帯に合わせて作製された分散補償ファイバ87a〜87cを通過し、誘電体多層膜型合波器88で合波される。
以上述べたように、本実施例によれば、従来技術の光増幅器で問題であった、総合部品点数が多く、増幅器が大規模、高価になるという欠点を除去できる。
【0064】
【発明の効果】
以上説明したように、本発明によれば、信号光の増幅に使用できない波長帯が存在するという欠点、あるいは、総合部品点数が多く、増幅器が大規模、高価になるという欠点を除去できるという効果がある。
【図面の簡単な説明】
【図1】 本発明の光増幅器の第1構成を示す図である。
【図2】 本発明の光増幅器の第2構成を示す図である。
【図3】 本発明の第1構成の光増幅器における利得スペクトル特性を示す図である。
【図4】 本発明の第1実施形態による光増幅器の構成を示す図である。
【図5】 本発明の第1実施形態による光増幅器の各部の特性を示す図である。
【図6】 本発明の第2実施形態による光増幅器の構成を示す図である。
【図7】 本発明の第3実施形態による光増幅器の構成を示す図である。
【図8】 誘電体多層膜型分波器86及び誘電体多層膜型合波器88の構成を示す図である。
【図9】 波長多重の光ファイバ通信システム線形中継器として用いられる従来の光増幅器の構成を示す図である。
【図10】 図9を用いて説明した従来技術の光増幅器の利得スペクトル特性である。
【符号の説明】
3…広帯域増幅部(前段の広帯域増幅部)、4…1対1分波器(分波器)、6a…長波長帯域透過フィルタ(光フィルタ)、6b…短波長帯域透過フィルタ(光フィルタ)、7a,7b…帯域除去フィルタ(光フィルタ)、8a…長波長帯域増幅装置(長波長帯増幅部)、8b…短波長帯域増幅装置(短波長帯増幅部)、9…1対1合波器(合波器)、10…広帯域増幅部(後段の広帯域増幅部)、21a…広帯域増幅部(前段の広帯域増幅部)、21b…広帯域増幅部(後段の広帯域増幅部)、22…波長帯選択型分波器、23a…長波長帯の帯域幅依存型光部品(長波長帯の光部品)、23b…短波長帯の帯域幅依存型光部品(短波長帯の光部品)、24…波長帯選択型合波器。

Claims (2)

  1. 波長多重された信号光の増幅を行う長波長帯増幅部及び短波長帯増幅部と、
    前記長波長帯増幅部の利得波長帯と短波長帯増幅部の利得波長帯にまたがって、継ぎ目の無い利得波長帯を有する前段の広帯域増幅部及び後段の広帯域増幅部と、
    利得波長帯の重なった波長帯近傍の波長において、波長無依存の分岐比を有する分波器及び合波器とを備え、
    前記長波長帯増幅部は、境界波長より短波長信号光を除去する光フィルタを含み、
    前記短波長帯増幅部は、前記境界波長より長波長信号光を除去する光フィルタを含み、
    前記長波長帯増幅部及び前記短波長増幅部は、前記境界波長においてお互いに等しく且つ平坦な平坦利得をそれぞれ有し、
    前記前段の広帯域増幅部で増幅された信号光を、前記分波器を用いて前記長波長帯増幅部側及び短波長帯増幅部側に分波し、前記長波長帯増幅部側及び前記短波長帯増幅部側から出射した信号光を前記合波器で合波した後、前記後段の広帯域増幅部で増幅し、前記長波長帯増幅部側及び短波長帯増幅側から出射した信号光が、互いに同じ波長の信号光を含まない様に、前記光フィルタの透過帯域を調整したことを特徴とする光増幅器。
  2. 前記境界波長より短波長信号光を除去する光フィルタ及び前記境界波長より長波長信号光を除去する光フィルタは、ブラック型ファイバグレーティングフィルタを含むことを特徴とする請求項1記載の光増幅器。
JP28486799A 1999-10-05 1999-10-05 光増幅器 Expired - Lifetime JP4001195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28486799A JP4001195B2 (ja) 1999-10-05 1999-10-05 光増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28486799A JP4001195B2 (ja) 1999-10-05 1999-10-05 光増幅器

Publications (2)

Publication Number Publication Date
JP2001111496A JP2001111496A (ja) 2001-04-20
JP4001195B2 true JP4001195B2 (ja) 2007-10-31

Family

ID=17684069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28486799A Expired - Lifetime JP4001195B2 (ja) 1999-10-05 1999-10-05 光増幅器

Country Status (1)

Country Link
JP (1) JP4001195B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169037A (ja) 2001-11-29 2003-06-13 Nec Corp 波長多重伝送装置
WO2023026463A1 (ja) * 2021-08-27 2023-03-02 日本電気株式会社 光合分波装置及び光合分波方法

Also Published As

Publication number Publication date
JP2001111496A (ja) 2001-04-20

Similar Documents

Publication Publication Date Title
US6580548B2 (en) Broadband amplifier and communication system
US6876489B2 (en) All band amplifier
US6437906B1 (en) All-optical gain controlled L-band EDFA structure with reduced four-wave mixing cross-talk
JP3755962B2 (ja) 光中継器
US6236500B1 (en) Optical amplifier
KR19990006570A (ko) 광대역 광 증폭기 및 광 신호 증폭 방법
JP3969807B2 (ja) 分散補償装置
JP5267119B2 (ja) 光受信装置および波長多重伝送システム
US6396623B1 (en) Wide-band optical amplifiers with interleaved gain stages
US7725032B2 (en) Optical transmission apparatus
JPWO2002035665A1 (ja) 光送信機、光中継器及び光受信機並びに光送信方法
US6377375B1 (en) Optical wavelength division multiplexed signal amplifying repeater and optical communication transmission line with very large capacity
US7567377B2 (en) Multiband amplifier based on discrete SOA-Raman amplifiers
Sun et al. An 80 nm ultra wide band EDFA with low noise figure and high output power
US6204958B1 (en) Optical amplifier having a substantially flat gain spectrum
JPH1013357A (ja) 光増幅器
US6602002B1 (en) High capacity optical transmission arrangement
JP3591269B2 (ja) 超広帯域波長分散補償デバイス
US7692850B1 (en) Lumped-Raman amplification structure for very wideband applications
JP4001195B2 (ja) 光増幅器
EP1304775B1 (en) Dispersion-compensated optical fiber amplifier
JP2001156364A (ja) 広帯域光増幅器
JP3597045B2 (ja) 広帯域光増幅器およびこれを含む装置および光信号を増幅する方法
US6697575B1 (en) System and method for increasing capacity of long-haul optical transmission systems
JP3507014B2 (ja) 光増幅器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050608

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050826

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4001195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term