JP4000893B2 - Pyromethene metal complex, light emitting device material and light emitting device using the same - Google Patents

Pyromethene metal complex, light emitting device material and light emitting device using the same Download PDF

Info

Publication number
JP4000893B2
JP4000893B2 JP2002117229A JP2002117229A JP4000893B2 JP 4000893 B2 JP4000893 B2 JP 4000893B2 JP 2002117229 A JP2002117229 A JP 2002117229A JP 2002117229 A JP2002117229 A JP 2002117229A JP 4000893 B2 JP4000893 B2 JP 4000893B2
Authority
JP
Japan
Prior art keywords
group
light emitting
compound
emitting device
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002117229A
Other languages
Japanese (ja)
Other versions
JP2003012676A (en
Inventor
清一郎 村瀬
剛 富永
亨 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002117229A priority Critical patent/JP4000893B2/en
Publication of JP2003012676A publication Critical patent/JP2003012676A/en
Application granted granted Critical
Publication of JP4000893B2 publication Critical patent/JP4000893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Pyrrole Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光色素として有用なピロメテン金属錯体およびそれを用いた発光素子に関するものである。
【0002】
【従来の技術】
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機積層薄膜発光素子の研究が近年活発に行われている。この素子は、薄型、低駆動電圧下での高輝度発光、蛍光材料を選ぶことによる多色発光が特徴であり注目を集めている。
【0003】
この研究はコダック社のC.W.Tangらが有機積層薄膜素子が高輝度に発光することを示して以来(Appl.Phys.Lett.51(12)21,p.913,1987)、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機積層薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層である8−ヒドロキシキノリンアルミニウム、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で1000cd/m2の緑色発光が可能であった。現在の有機積層薄膜発光素子は、上記の素子構成要素の他に電子輸送層を設けているものなど構成を変えているものもあるが、基本的にはコダック社の構成を踏襲している。
【0004】
多色発光の中でも赤色発光は、有用なる発光色として研究が進められている。従来、ビス(ジイソプロピルフェニル)ペリレンなどのペリレン系、ペリノン系、ポルフィリン系、Eu錯体(Chem.Lett.,1267(1991))などが赤色発光材料として知られている。
【0005】
また、赤色発光を得る手法として、ホスト材料の中に微量の赤色蛍光材料をドーパントとして混入させる方法も検討されている。ホスト材料としては、トリス(8−キノリノラト)アルミニウム錯体、ビス(10−ベンゾキノリノラト)ベリリウム錯体、ジアリールブタジエン誘導体、スチルベン誘導体、ベンズオキサゾール誘導体、ベンゾチアゾール誘導体などがあげられ、その中にドーパントとして金属フタロシアニン(MgPc、AlPcClなど)化合物、スクアリリウム化合物、ビオラントロン化合物を存在させることによって赤色発光を取り出していた。
【0006】
【発明が解決しようとする課題】
しかし、従来技術に用いられる発光材料(ホスト材料、ドーパント材料)には、発光効率が低く消費電力が高いものや、化合物の耐久性が低く素子寿命の短いものが多かった。また、フルカラーディスプレイに必要な三原色の内、緑色発光においては高性能の発光材料が見い出されているが、青色や赤色、特に赤色においては十分な特性、とりわけ高輝度、高色純度の両方を満たす発光材料は得られていない。本発明は、かかる従来技術の問題を解決し、発光効率が高く、色純度に優れた発光素子を可能にする新規ピロメテン金属錯体、およびそれを用いた発光素子を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
すなわち本発明は下記一般式(2)で示されることを特徴とするピロメテン金属錯体である。
【0008】
【化

Figure 0004000893
(R〜Rは同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基の中から選ばれる。RとRがともにフッ素である。Ar〜Ar10はアリール基を表す。(なお、ピロメテン金属錯体は2個のピロメテン基が連結基を介して結合しているものを除く))
さらに本発明は陽極と陰極の間に発光物質が存在し、電気エネルギーにより発光する素子であって、該素子が一般式(2)で示されるピロメテン金属錯体(ただし、下記式(6)で表されるピロメテン金属錯体を除く)を含むことを特徴とする発光素子である。
【0009】
【化4】
Figure 0004000893
【0010】
【発明の実施の形態】
下記一般式(1)で示される本発明のピロメテン金属錯体について詳細に説明する。
【0011】
【化
Figure 0004000893
1、R2およびLは同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。Mはm価の金属を表し、ホウ素、ベリリウム、マグネシウム、クロム、鉄、ニッケル、銅、亜鉛、白金から選ばれる少なくとも一種である。Ar1〜Ar5はアリール基を表す。
【0012】
これらの置換基の内、アルキル基とは例えばメチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、シクロアルキル基とは例えばシクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アラルキル基とは例えばベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。また、アルケニル基とは例えばビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、シクロアルケニル基とは例えばシクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アルキニル基とは例えばアセチレニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アルコキシ基とは例えばメトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。また、アルキルチオ基とはアルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリールエーテル基とは例えばフェノキシ基などのエーテル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。また、アリールチオエーテル基とはアリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリール基とは例えばフェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、複素環基とは例えばフリル基、チエニル基、オキサゾリル基、ピリジル基、キノリル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。ハロゲンとはフッ素、塩素、臭素、ヨウ素を示す。ハロアルカン、ハロアルケン、ハロアルキンとは例えばトリフルオロメチル基などの、前述のアルキル基、アルケニル基、アルキニル基の一部あるいは全部が、前述のハロゲンで置換されたものを示し、残りの部分は無置換でも置換されていてもかまわない。アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基には脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換されたものも含み、さらに脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環は無置換でも置換されていてもかまわない。シリル基とは例えばトリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シロキサニル基とは例えばトリメチルシロキサニル基などのエーテル結合を介したケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。隣接置換基との間に形成される縮合環または脂肪族環は無置換でも置換されていてもかまわない。
【0013】
また、一般式(1)で表される金属錯体の中でも下記一般式(2)のホウ素錯体が蛍光量子収率が高い。
【0014】
【化
Figure 0004000893
ここで、R3〜R6は同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。Ar6〜Ar10はアリール基を表す。これらの置換基については上記一般式(1)の説明と同様である。
【0015】
上記一般式(1)のAr1〜Ar4のうち少なくとも1つ、上記一般式(2)のAr6〜Ar9のうち少なくとも1つが炭素数4以上のアルキル基で置換されていると、薄膜中での分散性が向上し、高輝度発光が得られる。さらに材料の入手しやすさや、合成の容易さを考えると上記一般式(2)のR5およびR6はともにフッ素であることが好ましい。上記のようなピロメテン金属錯体として具体的には以下のような化合物があげられる。
【0016】
【化
Figure 0004000893
【0017】
【化
Figure 0004000893
【0018】
【化
Figure 0004000893
【0019】
【化10
Figure 0004000893
【0020】
【化11
Figure 0004000893
【0021】
【化12
Figure 0004000893
【0022】
【化13
Figure 0004000893
【0023】
【化14
Figure 0004000893
【0024】
【化15
Figure 0004000893
【0025】
【化16
Figure 0004000893
本発明のピロメテン金属錯体は、例えば以下の方法により製造することができる。
【0026】
下記一般式(3)で表される化合物と一般式(4)で表される化合物をオキシ塩化リン存在下、1,2−ジクロロエタン中で加熱した後、下記一般式(5)で表される化合物をトリエチルアミン存在下、1,2−ジクロロエタン中で反応させることにより、一般式(1)の金属錯体を得ることができる。ここで、Ar1〜Ar5、R1およびR2、M、L、mは前記と同じである。Jはハロゲンを表す。
【0027】
【化17
Figure 0004000893
【0028】
【化18
Figure 0004000893
【0029】
【化19
Figure 0004000893
本発明のピロメテン金属錯体は発光素子材料として、好適に用いられる。以下に本発明の発光素子について詳細に説明する。
【0030】
本発明において陽極は、光を取り出すために透明であれば酸化錫、酸化インジウム、酸化錫インジウム(ITO)などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。また、ガラス基板はソーダライムガラス、無アルカリガラスなどが用いられ、また厚みも機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO2などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用できる。ITO膜形成方法は、電子線ビーム法、スパッタリング法、化学反応法など特に制限を受けるものではない。
【0031】
陰極は、電子を本有機物層に効率良く注入できる物質であれば特に限定されないが、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどがあげられるが、電子注入効率をあげて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかし、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、有機層に微量のリチウムやマグネシウム(真空蒸着の膜厚計表示で1nm以下)をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げることができるが、フッ化リチウムのような無機塩の使用も可能であることから特にこれらに限定されるものではない。更に電極保護のために白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子などを積層することが好ましい例として挙げられる。これらの電極の作製法も抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなど導通を取ることができれば特に制限されない。
【0032】
発光物質とは、1)正孔輸送層/発光層、2)正孔輸送層/発光層/電子輸送層、3)発光層/電子輸送層、4)正孔輸送層/発光層/正孔阻止層、5)正孔輸送層/発光層/正孔阻止層/電子輸送層、6)発光層/正孔阻止層/電子輸送層そして、7)以上の組合わせ物質を一層に混合した形態のいずれであってもよい。即ち、素子構成としては、上記1)〜6)の多層積層構造の他に7)のように発光材料単独または発光材料と正孔輸送材料や正孔阻止層、電子輸送材料を含む層を一層設けるだけでもよい。さらに、本発明における発光物質は自ら発光するもの、その発光を助けるもののいずれにも該当し、発光に関与している化合物、層などを指すものである。
【0033】
正孔輸送層は正孔輸送性物質単独または二種類以上の物質を積層、混合するか正孔輸送性物質と高分子結着剤の混合物により形成され、正孔輸送性物質としてはN,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどのトリフェニルアミン類、ビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)類、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体、ポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが好ましいが、素子作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
【0034】
発光層は発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパント材料は積層されていても、分散されていても、いずれであってもよい。
【0035】
本発明ピロメテン金属錯体は発光材料として好適に用いられる。従来、ピロメテン金属錯体は発光材料、特にドーパント材料として、高輝度発光を示すことは知られており、また、ピロメテン骨格の1,3,5,7位に芳香環等を導入することにより、赤色発光を示すことも知られている。しかし、従来のピロメテン金属錯体は濃度消光しやすいため、発光輝度・色度ともに満足する赤色発光は得られていなかった。しかるに、ピロメテン骨格の8位に置換基を導入すると、その置換基の立体的および電子的効果により濃度消光が低減される。一方、8位の置換基が回転することにより、ピロメテン化合物の蛍光量子収率は低下する。そこで本発明のピロメテン化合物は、ピロメテン骨格の8位にアリール基を導入し、その回転を抑制することによって、蛍光量子収率が高く、かつ、濃度消光が抑制された。この回転抑制の効果は、一般式(1)のAr1とAr4、一般式(2)のAr6とAr9をともにアリール基であることにより達成されている。さらに、ピロメテン骨格に導入されたアリール基(一般式(1)のAr1〜Ar4、一般式(2)のAr6〜Ar9)のうち少なくとも1つが炭素数4以上のアルキル基で置換されていると、無置換のものに比べて膜中での分散性が向上し、さらに発光輝度が向上する。本発明のピロメテン金属錯体はホスト材料として用いてもよいが、蛍光量子収率が高いことや、発光スペクトルの半値幅が小さいことから、ドーパント材料として好適に用いられる。
【0036】
ドーピング量は、多すぎると濃度消光現象が起きるため、ホスト物質に対して10重量%以下で用いることが好ましく、更に好ましくは2重量%以下である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着しても良い。また、ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパント材料は積層されていても、分散されていても、いずれであってもよい。さらに、ピロメテン金属錯体は、極めて微量でも発光することから微量のピロメテン金属錯体をホスト材料にサンドイッチ状に挟んで使用することも可能である。この場合、一層でも二層以上ホスト材料と積層しても良い。発光材料に添加するドーパント材料は、前記ピロメテン金属錯体一種のみに限る必要はなく、複数のピロメテン金属錯体を混合して用いたり、既知のドーパント材料の一種類以上をピロメテン金属錯体と混合して用いてもよい。具体的には従来から知られている、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン化合物などを共存させることができるが特にこれらに限定されるものではない。
【0037】
ホスト材料としては特に限定されるものではないが、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8−キノリノラト)アルミニウムをはじめとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できる。
【0038】
本発明における電子輸送性材料としては、電界を与えられた電極間において陰極からの電子を効率良く輸送することが必要で、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、8−ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリレン誘導体、ペリノン誘導体、ナフタレン誘導体、クマリン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノリン誘導体、芳香族リンオキサイド化合物などがあるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層または混合して使用しても構わない。
【0039】
正孔阻止層とは、電界を与えられた電極間において陽極からの正孔が陰極からの電子と再結合することなく移動するのを防止するための層であり、各層を構成する材料の種類によっては、この層を挿入することにより正孔と電子の再結合確率が増加し、発光効率の向上が望める場合がある。したがって、正孔阻止性材料としては正孔輸送性材料よりも最高占有分子軌道レベルがエネルギー的に低く、隣接する層を構成する材料とエキサイプレックスを生成しにくいことが望まれる。陽極からの正孔の移動を効率よく阻止できる化合物が好ましく、電子輸送能の高い材料が正孔阻止能も高いことから、上記電子輸送材料が好ましい例として挙げられる。
【0040】
以上の正孔輸送層、発光層、電子輸送層、正孔阻止層は単独または二種類以上の材料を積層、混合するか、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N−ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
【0041】
発光を司る物質の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好ましい。層の厚みは、発光を司る物質の抵抗値にもよるので限定することはできないが、1〜1000nmの間から選ばれる。
【0042】
電気エネルギーとは主に直流電流を指すが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力、寿命を考慮するとできるだけ低いエネルギーで最大の輝度が得られるようにするべきである。
【0043】
本発明におけるマトリクスとは、表示のための画素が格子状に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状、サイズは用途によって決まる。例えばパソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられるし、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
【0044】
本発明におけるセグメントタイプとは、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示、自動車のパネル表示などがあげられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
【0045】
【実施例】
以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、下記の各実施例にある化合物の番号は前記に記載した化合物の番号を指すものである。また構造分析に関する評価方法を下記に示す。
【0046】
1H−NMRは超伝導FTNMR EX−270(日本電子(株)製)を用い、重クロロホルム溶液にて測定を行った。
【0047】
元素分析は、CHNコーダーMT−3型(柳本製作所(株)製)、イオンクロマトグラフィーDX320(日本ダイオネクス(株)製)およびシーケンシャル型ICP発光分光分析装置SPS4000(セイコーインスツルメンツ(株)製)を用いて測定を行った。
【0048】
マススペクトルはJMS−DX303(日本電子(株)製)を用いて測定を行った。
【0049】
吸収スペクトルおよび蛍光スペクトルはそれぞれU−3200形分光光度計、F−2500形蛍光分光光度計(ともに日立製作所(株)製)を用い、4×10-6mol/Lのジクロロメタン溶液中にて測定を行った。
【0050】
実施例1
化合物〔1〕の合成方法1,2−ジクロロエタン30ml中に、2−ベンゾイル−3,5−ビス(4−n−ヘキシルフェニル)ピロール1.3g、2,4−ビス(4−n−ヘキシルフェニル)ピロール1g、オキシ塩化リン0.47mlを入れ、加熱環流下12時間反応させた。室温に冷却した後、ジイソプロピルエチルアミン3.6ml、三フッ化ホウ素ジエチルエーテル錯体2.6mlを加え、6時間撹拌した。50mlの水を加え、ジクロロメタンで抽出し、濃縮して、シリカゲルを用いたカラムクロマトグラフィーにより精製を行い、赤紫色粉末1gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):0.90(t, 12H), 1.29-1.65(m, 32H), 2.39(t, 4H), 2.64(t, 4H), 6.44(t, 2H), 6.49(s, 2H), 6.60-6.63(m, 9H), 6.83(d,2H), 7.25(d, 4H), 7.82(d, 4H)また、元素分析結果は、組成式C637522Bとして以下のとおりであった。なお括弧内は理論値である。
C:83.5%(83.2%)
H: 8.4%( 8.3%)
N: 3.2%( 3.1%)
F: 3.2%( 4.2%)
B: 1.2%( 1.2%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=908であった。以上のことから、上記生成物である赤紫色粉末は、化合物〔1〕であることが確認された。さらに化合物〔1〕は以下のような光物理特性を示した。
吸収スペクトル:λmax568nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax613nm(溶媒:ジクロロメタン)。
【0051】
ついで、化合物〔1〕を用いた発光素子を次のように作製した。ITO透明導電膜を150nm堆積させたガラス基板(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を30×40mmに切断、エッチングを行った。得られた基板をアセトン、”セミコクリン56”で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-5Pa以下になるまで排気した。抵抗加熱法によって、まず正孔輸送材料として4,4’−ビス(N−(m−トリル)−N−フェニルアミノ)ビフェニルを50nm蒸着した。次にホスト材料として下記に示すHST1、ドーパンド材料として化合物〔1〕を用いて、ドーパント濃度が1wt%になるように15nmの厚さに共蒸着し、ホスト材料を35nmの厚さに積層した。次にリチウムを0.5nm、銀を150nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は水晶発振式膜厚モニター表示値である。この発光素子からの発光スペクトルは、ピーク波長が618nm、発光効率は4.2cd/Aの赤色発光が得られた。
【0052】
【化20
Figure 0004000893
実施例2
化合物〔2〕の合成方法2−ベンゾイル−3,5−ジフェニルピロール1.2g、2,4−ジフェニルピロール0.8gを用い、化合物〔1〕と同様に合成した。赤色粉末1.4gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):6.46(t, 2H), 6.52(s, 2H), 6.67-6.88(m,11H), 7.43(m, 6H), 7.90(d, 4H)また、元素分析結果は、組成式C392722Bとして以下のとおりであった。なお括弧内は理論値である。
C:82.3%(81.8%)
H: 4.8%( 4.7%)
N: 4.9%( 4.9%)
F: 6.6%( 6.6%)
B: 1.9%( 2.0%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=572であった。以上のことから、上記生成物である赤色粉末は、化合物〔2〕であることが確認された。さらに化合物〔2〕は以下のような光物理特性を示した。
吸収スペクトル:λmax556nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax600nm(溶媒:ジクロロメタン)。
【0053】
ついで、ドーパント材料に化合物〔2〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が608nm、発光効率は2.6cd/Aの高輝度の朱色発光が得られた。
【0054】
実施例3
化合物〔3〕の合成方法2−(2−メチルベンゾイル)−3,5−ビス(4−n−ヘキシルフェニル)ピロール0.4g、2,4−ビス(4−n−ヘキシルフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。赤紫色粉末0.1gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):0.88(t, 12H), 1.29-1.67(m, 32H), 2.39(t, 4H), 2.63(t, 4H), 3.51(s, 3H), 6.00(d, 2H), 6.51(s, 2H), 6.63-6.73(m,10H), 7.23(d, 4H), 7.81(d, 4H)また、元素分析結果は、組成式C647722Bとして以下のとおりであった。なお括弧内は理論値である。
C:83.3%(83.3%)
H: 8.4%( 8.4%)
N: 3.1%( 3.0%)
F: 3.2%( 4.1%)
B: 1.2%( 1.2%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=922であった。以上のことから、上記生成物である赤紫色粉末は、化合物〔3〕であることが確認された。さらに化合物〔3〕は以下のような光物理特性を示した。
吸収スペクトル:λmax568nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax613nm(溶媒:ジクロロメタン)。
【0055】
ついで、ドーパント材料に化合物〔3〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が618nm、発光効率は4.0cd/Aの赤色発光が得られた。
【0056】
実施例4
化合物〔4〕の合成方法2−(4−フェニルベンゾイル)−3,5−ビス(4−n−ヘキシルフェニル)ピロール0.5g、2,4−ビス(4−n−ヘキシルフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。赤紫色粉末0.18gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):0.84(t, 12H), 1.07-1.65(m, 32H), 2.25(t, 4H), 2.64(t, 4H), 6.53(s, 2H), 6.61-6.69(m, 11H), 6.88(d, 2H), 7.23(d, 4H), 7.24-7.37(m, 5H), 7.83(d, 4H)また、元素分析結果は、組成式C697922Bとして以下のとおりであった。なお括弧内は理論値である。
C:84.3%(84.1%)
H: 8.1%( 8.0%)
N: 2.9%( 2.8%)
F: 3.0%( 3.9%)
B: 1.2%( 1.2%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=984であった。以上のことから、上記生成物である赤紫色粉末は、化合物〔4〕であることが確認された。さらに化合物〔4〕は以下のような光物理特性を示した。
吸収スペクトル:λmax569nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax615nm(溶媒:ジクロロメタン)。
【0057】
ついで、ドーパント材料に化合物〔4〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が618nm、発光効率は3.8cd/Aの赤色発光が得られた。
【0058】
実施例5
化合物〔5〕の合成方法2−(4−メトキシベンゾイル)−3,5−ビス(4−n−ヘキシルフェニル)ピロール0.45g、2,4−ビス(4−n−ヘキシルフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。赤紫色粉末0.15gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):0.91(t, 12H), 1.28-1.67(m, 32H), 2.00(S, 3H), 2.38(t, 4H), 2.63(t, 4H), 6.21(d, 1H), 6.43(s, 2H), 6.46(d, 2H),6.63(m, 8H), 6.80(d, 1H), 7.25(d, 4H), 7.82(d, 4H)また、元素分析結果は、組成式C64772OF2Bとして以下のとおりであった。なお括弧内は理論値である。
C:82.1%(81.9%)
H: 8.3%( 8.2%)
N: 3.1%( 3.0%)
O: 1.8%( 1.7%)
F: 3.0%( 4.0%)
B: 1.2%( 1.2%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=938であった。以上のことから、上記生成物である赤紫色粉末は、化合物〔5〕であることが確認された。さらに化合物〔5〕は以下のような光物理特性を示した。
吸収スペクトル:λmax566nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax611nm(溶媒:ジクロロメタン)。
【0059】
ついで、ドーパント材料に化合物〔5〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が615nm、発光効率は4.0cd/Aの赤色発光が得られた。
【0060】
実施例6
化合物〔6〕の合成方法2−(4−シアノベンゾイル)−3,5−ビス(4−n−ヘキシルフェニル)ピロール0.4g、2,4−ビス(4−n−ヘキシルフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。赤褐色粉末0.3gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):0.91(t, 12H), 1.33-1.65(m, 32H), 2.44(t, 4H), 2.64(t, 4H), 6.52(s, 2H), 6.59(d, 2H), 6.70-6.75(m, 8H), 6.93(d,2H), 7.25(d, 4H), 7.83(d, 4H)また、元素分析結果は、組成式C647432Bとして以下のとおりであった。なお括弧内は理論値である。
C:82.6%(82.3%)
H: 7.9%( 7.9%)
N: 4.6%( 4.5%)
F: 3.3%( 4.1%)
B: 1.2%( 1.2%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=933であった。以上のことから、上記生成物である赤褐色粉末は、化合物〔6〕であることが確認された。さらに化合物〔6〕は以下のような光物理特性を示した。
吸収スペクトル:λmax576nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax626nm(溶媒:ジクロロメタン)。
【0061】
実施例7
化合物〔7〕の合成方法2−(1−ナフトイル)−3,5−ビス(4−n−ヘキシルフェニル)ピロール0.5g、2,4−ビス(4−n−ヘキシルフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。紫色粉末0.2gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):0.93(t, 12H), 1.25-1.65(m, 32H), 2.21(t, 4H), 2.64(t, 4H), 6.27(m, 8H), 6.40(s, 2H), 6.64(t, 1H), 7.00(dd, 2H), 7.24(d, 4H), 7.24-7.34(m, 3H), 7.80-7.87(m, 5H)また、元素分析結果は、組成式C677722Bとして以下のとおりであった。なお括弧内は理論値である。
C:84.3%(83.9%)
H: 8.1%( 8.0%)
N: 2.9%( 2.9%)
F: 3.1%( 4.0%)
B: 1.1%( 1.2%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=958であった。以上のことから、上記生成物である紫色粉末は、化合物〔7〕であることが確認された。さらに化合物〔7〕は以下のような光物理特性を示した。
吸収スペクトル:λmax571nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax616nm(溶媒:ジクロロメタン)。
【0062】
ついで、ドーパント材料に化合物〔7〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が619nm、発光効率は4.2cd/Aの赤色発光が得られた。
【0063】
実施例8
化合物〔8〕の合成方法2−ベンゾイル−3,5−ビス(4−メトキシフェニル)ピロール0.4g、2,4−ビス(4−メトキシフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。青紫色粉末0.2gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)): 3.67(s, 3H), 3.86(s, 3H), 6.38(d, 2H), 6.47(s, 2H), 6.54(t, 2H), 6.64-6.75(m, 5H), 6.85(d, 2H), 6.96(d, 4H),7.89(d, 4H)また、元素分析結果は、組成式C4335242Bとして以下のとおりであった。なお括弧内は理論値である。
C:75.0%(74.6%)
H: 5.2%( 5.1%)
N: 4.2%( 4.0%)
O: 9.3%( 9.2%)
F: 4.4%( 5.5%)
B: 1.6%( 1.6%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=692であった。以上のことから、上記生成物である青紫色粉末は、化合物〔8〕であることが確認された。さらに化合物〔8〕は以下のような光物理特性を示した。
吸収スペクトル:λmax584nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax632nm(溶媒:ジクロロメタン)。
【0064】
ついで、ドーパント材料に化合物〔8〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が620nm、発光効率は3.8cd/Aの赤色発光が得られた。
【0065】
実施例9
化合物〔9〕の合成方法2−ベンゾイル−3,5−ビス(4−n−アミルオキシフェニル)ピロール0.35g、2,4−ビス(4−n−アミルオキシフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。青紫色粉末0.1gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):0.94(t, 12H), 1.38-1.41(m, 16H), 1.68-1.83(m, 8H), 3.80(t, 4H), 4.00(t, 4H), 6.36(d, 2H), 6.46(s, 2H), 6.53(t,2H), 6.62-6.73(m, 5H), 6.85(d, 2H), 6.94(d, 4H), 7.87(d, 4H)また、元素分析結果は、組成式C5967242Bとして以下のとおりであった。なお括弧内は理論値である。
C:77.5%(77.3%)
H: 7.5%( 7.5%)
N: 3.2%( 3.1%)
O: 7.1%( 7.0%)
F: 3.1%( 4.1%)
B: 1.2%( 1.2%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=916であった。以上のことから、上記生成物である青紫色粉末は、化合物〔9〕であることが確認された。さらに化合物〔9〕は以下のような光物理特性を示した。
吸収スペクトル:λmax587nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax636nm(溶媒:ジクロロメタン)。
【0066】
実施例10
化合物〔10〕の合成方法2−(1−ナフトイル)−3,5−ビス(4−メチルフェニル)ピロール0.6g、2,4−ビス(4−メチルフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。紫色粉末0.55gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)): 2.00(s, 6H), 2.40(s, 6H), 6.26(m, 8H),6.39(s, 2H), 6.65(t, 1H), 7.00(d, 1H), 7.12(d, 1H), 7.24(d, 4H), 7.24-7.33(m, 3H), 7.77-7.86(m, 5H)また、元素分析結果は、組成式C473722Bとして以下のとおりであった。なお括弧内は理論値である。
C:83.5%(83.2%)
H: 5.6%( 5.5%)
N: 4.3%( 4.1%)
F: 4.8%( 5.6%)
B: 1.5%( 1.6%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=678であった。以上のことから、上記生成物である紫色粉末は、化合物〔10〕であることが確認された。さらに化合物〔10〕は以下のような光物理特性を示した。
吸収スペクトル:λmax575nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax613nm(溶媒:ジクロロメタン)。
【0067】
ついで、ドーパント材料に化合物〔10〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が641nm、発光効率は2.7cd/Aの赤色発光が得られた。
【0068】
実施例11
化合物〔11〕の合成方法2−ベンゾイル−3,5−ビス(4−(2,4−ジメチルフェニル)フェニル)ピロール0.35g、2,4−ビス(4−(2,4−ジメチルフェニル)フェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。紫色粉末0.15gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):2.18(s, 6H), 2.32(s, 6H), 2.36(ss, 12H), 6.67(s, 2H), 6.81(d, 8H), 6.94-7.07(m, 11H), 7.11(d, 2H), 7.43(d, 4H), 8.01(d, 4H)また、元素分析結果は、組成式C715922Bとして以下のとおりであった。なお括弧内は理論値である。
C:86.4%(86.2%)
H: 6.0%( 6.0%)
N: 2.9%( 2.8%)
F: 3.0%( 3.9%)
B: 1.2%( 1.1%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=988であった。以上のことから、上記生成物である紫色粉末は、化合物〔11〕であることが確認された。さらに化合物〔11〕は以下のような光物理特性を示した。
吸収スペクトル:λmax576nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax626nm(溶媒:ジクロロメタン)。
【0069】
実施例12
化合物〔12〕の合成方法2−(1−ナフトイル)−3,5−ビス(4−メチルフェニル)ピロール0.4g、2,4−ビス(4−メトキシフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。紫色粉末0.1gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):1.97(s, 3H), 2.40(s, 3H), 3.54(s, 3H),3.86(s, 3H), 5.99(d, 2H), 6.25(s, 4H), 6.30-6.39(m, 8H), 6.69(t, 1H), 6.97(d, 3H), 7.14(d, 1H), 7.26(d, 2H), 7.26-7.37(m, 3H), 7.78-7.95(m, 5H)また、元素分析結果は、組成式C4737222Bとして以下のとおりであった。なお括弧内は理論値である。
C:79.6%(79.4%)
H: 5.1%( 5.2%)
N: 4.0%( 3.9%)
O: 4.6%( 4.5%)
F: 4.6%( 5.4%)
B: 1.6%( 1.6%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=710であった。以上のことから、上記生成物である紫色粉末は、化合物〔12〕であることが確認された。さらに化合物〔12〕は以下のような光物理特性を示した。
吸収スペクトル:λmax577nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax624nm(溶媒:ジクロロメタン)。
【0070】
ついで、ドーパント材料に化合物〔12〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が628nm、発光効率は2.9cd/Aの赤色発光が得られた。
【0071】
実施例13
化合物〔53〕の合成方法2−ベンゾイル−3,5−ビス(4−n−ブチルフェニル)ピロール0.4g、2,4−ビス(4−n−ブチルフェニル)ピロール0.25gを用い、化合物〔1〕と同様に合成した。赤色粉末0.27gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):1.97(s, 3H), 2.40(s, 3H), 3.54(s, 3H),3.86(s, 3H), 5.99(d, 2H), 6.25(s, 4H), 6.30-6.39(m, 8H), 6.69(t, 1H), 6.97(d, 3H), 7.14(d, 1H), 7.26(d, 2H), 7.26-7.37(m, 3H), 7.78-7.95(m, 5H)また、元素分析結果は、組成式C555922Bとして以下のとおりであった。なお括弧内は理論値である。
C:83.1%(82.9%)
H: 7.5%( 7.4%)
N: 3.6%( 3.5%)
F: 4.0%( 4.8%)
B: 1.3%( 1.4%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=796であった。以上のことから、上記生成物である赤色粉末は、化合物〔53〕であることが確認された。さらに化合物〔53〕は以下のような光物理特性を示した。
吸収スペクトル:λmax569nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax611nm(溶媒:ジクロロメタン)。
【0072】
ついで、ドーパント材料に化合物〔53〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が617nm、発光効率は5.0cd/Aの赤色発光が得られた。
【0073】
実施例14
化合物〔59〕の合成方法無水テトラヒドロフラン30ml中に、化合物〔10〕0.5gを溶解し、20℃でフェニルマグネシウムブロマイド(1.0mol/L:テトラヒドロフラン)1.88mlを滴下し、60℃にて9時間反応させた。室温に冷却した後、50mlの水を加え、ジクロロメタンで抽出し、濃縮して、シリカゲルを用いたカラムクロマトグラフィーにより精製を行い、赤紫色粉末0.32gを得た。得られた粉末の1H−NMR分析結果は次の通りであった。
1H−NMR(CDCl3(d=ppm)):1.97(s, 3H), 2.40(s, 3H), 3.54(s, 3H),3.86(s, 3H), 5.99(d, 2H), 6.25(s, 4H), 6.30-6.39(m, 8H), 6.69(t, 1H), 6.97(d, 3H), 7.14(d, 1H), 7.26(d, 2H), 7.26-7.37(m, 3H), 7.78-7.95(m, 5H)また、元素分析結果は、組成式C59472Bとして以下のとおりであった。なお括弧内は理論値である。
C:89.3%(89.2%)
H: 6.0%( 5.9%)
N: 3.5%( 3.5%)
B: 1.2%( 1.4%)
また、マススペクトルより、目的物の主な分子イオンピークはm/Z=794であった。以上のことから、上記生成物である赤紫色粉末は、化合物〔59〕であることが確認された。さらに化合物〔59〕は以下のような光物理特性を示した。
吸収スペクトル:λmax568nm(溶媒:ジクロロメタン)
蛍光スペクトル:λmax613nm(溶媒:ジクロロメタン)。
【0074】
ついで、ドーパント材料に化合物〔59〕を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が616nm、発光効率は3.8cd/Aの赤色発光が得られた。
【0075】
実施例15
ホスト材料に1,4−ジケト−2,5−ジメチル−3,6−ビス(1−フェナントリル)ピロロ[3,4−c]ピロールを用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が615nm、発光効率は4.7cd/Aの赤色発光が得られた。
【0076】
実施例16
ホスト材料に1,4−ジケト−2,5−ジメチル−3,6−ビス(1−ナフチル)ピロロ[3,4−c]ピロールを用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が615nm、発光効率は5.1cd/Aの赤色発光が得られた。
【0077】
実施例17
ホスト材料に1,4−ジケト−2,5−ジメチル−3,6−ビス(1−フェナントリル)ピロロ[3,4−c]ピロールを用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が615nm、発光効率は4.3cd/Aの赤色発光が得られた。
【0078】
実施例18
ホスト材料に1,4−ジケト−2,5−ジメチル−3,6−ビス(4−(4−メチルフェニル)ナフチル−1−イル)ピロロ[3,4−c]ピロールを用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が616nm、発光効率は4.2cd/Aの赤色発光が得られた。
【0079】
実施例19
正孔輸送材料の蒸着までは実施例1と同様に行った後、化合物〔53〕を50nmの厚さに積層した。次にリチウムを0.5nm、銀を150nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が622nm、発光効率は2.5cd/Aの赤色発光が得られた。
【0080】
比較例1
ドーパント材料に下記に示すDPT1を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が609nm、発光効率は1.6cd/Aの朱色発光であった。
【0081】
【化21
Figure 0004000893
比較例2
ドーパント材料に下記に示すDPT2を用いた以外は実施例1と全く同様にして発光素子を作製した。この発光素子からの発光スペクトルは、ピーク波長が628nmの赤色発光が得られたが、発光効率は1.1cd/Aであった。
【0082】
【化22
Figure 0004000893
【0083】
【発明の効果】
本発明は、発光素子等に利用可能な高蛍光性のピロメテン金属錯体を提供できる。また、本発明のピロメテン金属錯体を用いることにより、電気エネルギーの利用効率が高く、高輝度かつ高色純度の発光素子を提供できるものである。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a pyromethene metal complex useful as a fluorescent dye and a light-emitting device using the same.
[0002]
[Prior art]
  In recent years, research has been actively conducted on organic multilayer thin film light emitting devices that emit light when electrons injected from a cathode and holes injected from an anode are recombined in an organic phosphor sandwiched between both electrodes. This device is attracting attention because it is thin, has high luminance emission under a low driving voltage, and multicolor emission by selecting a fluorescent material.
[0003]
  This study was conducted by C.D. W. Since Tang et al. Have shown that organic laminated thin-film elements emit light with high brightness (Appl. Phys. Lett. 51 (12) 21, p. 913, 1987), many research institutions have studied. A typical structure of an organic laminated thin film light emitting device presented by a research group of Kodak Company is a hole transporting diamine compound on an ITO glass substrate, 8-hydroxyquinoline aluminum as a light emitting layer, and Mg: Ag as a cathode. It is provided sequentially, and is 1000 cd / m with a driving voltage of about 10V.2Green light emission was possible. Some organic multilayer thin film light emitting elements have different configurations such as those provided with an electron transport layer in addition to the above-described element constituent elements, but basically follow the configuration of Kodak Company.
[0004]
  Among multicolor emission, red emission is being studied as a useful emission color. Conventionally, perylene series such as bis (diisopropylphenyl) perylene, perinone series, porphyrin series, Eu complex (Chem. Lett., 1267 (1991)) and the like are known as red light emitting materials.
[0005]
  As a method for obtaining red light emission, a method of mixing a small amount of a red fluorescent material as a dopant in a host material has been studied. Examples of the host material include tris (8-quinolinolato) aluminum complex, bis (10-benzoquinolinolato) beryllium complex, diarylbutadiene derivative, stilbene derivative, benzoxazole derivative, benzothiazole derivative, and the like. Red light emission was extracted by the presence of a metal phthalocyanine (MgPc, AlPcCl, etc.) compound, squarylium compound, or violanthrone compound.
[0006]
[Problems to be solved by the invention]
  However, many of the light emitting materials (host materials and dopant materials) used in the prior art have low light emission efficiency and high power consumption, and low compound durability and short device lifetime. In addition, among the three primary colors required for full-color displays, high-performance light-emitting materials have been found for green light emission. However, blue and red, especially red, have sufficient characteristics, especially high brightness and high color purity. A luminescent material has not been obtained. An object of the present invention is to solve such problems of the prior art, and to provide a novel pyromethene metal complex that enables a light emitting device having high luminous efficiency and excellent color purity, and a light emitting device using the same. It is.
[0007]
[Means for Solving the Problems]
  That is, the present invention is a pyromethene metal complex represented by the following general formula (2).
[0008]
[Chemical3]
Figure 0004000893
(R3~ R4May be the same or different, hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, The aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, and siloxanyl group are selected. R5And R6Are both fluorine. Ar6~ Ar10Represents an aryl group. (Note that the pyromethene metal complex excludes those in which two pyromethene groups are bonded via a linking group)
Furthermore, the present invention is an element in which a luminescent substance is present between an anode and a cathode and emits light by electric energy, and the element is a pyromethene metal complex represented by the general formula (2)(However, the pyromethene metal complex represented by the following formula (6) is excluded)It is a light emitting element characterized by including.
[0009]
[Formula 4]
Figure 0004000893
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  The pyromethene metal complex of the present invention represented by the following general formula (1) will be described in detail.
[0011]
[Chemical5]
Figure 0004000893
  R1, R2And L may be the same or different, hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether Group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, adjacent substituent And a condensed ring formed between and an aliphatic ring. M represents an m-valent metal and is at least one selected from boron, beryllium, magnesium, chromium, iron, nickel, copper, zinc, and platinum. Ar1~ ArFiveRepresents an aryl group.
[0012]
  Of these substituents, the alkyl group represents a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, or a butyl group, which may be unsubstituted or substituted. The cycloalkyl group represents a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, and the like, which may be unsubstituted or substituted. The aralkyl group is an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group or a phenylethyl group, and both the aliphatic hydrocarbon and the aromatic hydrocarbon may be unsubstituted or substituted. It doesn't matter. The alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group or a butadienyl group, which may be unsubstituted or substituted. The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexene group, which may be unsubstituted or substituted. . The alkynyl group refers to an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted. The alkoxy group refers to an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The aryl ether group refers to an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted. The arylthioether group is a group in which the oxygen atom of the ether bond of the arylether group is substituted with a sulfur atom. The aryl group represents an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, or a pyrenyl group, which may be unsubstituted or substituted. The heterocyclic group is a cyclic structural group having an atom other than carbon, such as a furyl group, a thienyl group, an oxazolyl group, a pyridyl group, a quinolyl group, or a carbazolyl group, which may be unsubstituted or substituted. Absent. Halogen is fluorine, chlorine, bromine or iodine. Haloalkane, haloalkene, haloalkyne means, for example, a trifluoromethyl group or the like, wherein the alkyl group, alkenyl group, or alkynyl group described above is partially or entirely substituted with the halogen described above, and the remaining portion may be unsubstituted. It may be replaced. Aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, amino groups include those substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocyclic rings, etc. The cyclic hydrocarbon, aromatic hydrocarbon and heterocyclic ring may be unsubstituted or substituted. A silyl group refers to a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted. The siloxanyl group refers to a silicon compound group via an ether bond such as a trimethylsiloxanyl group, which may be unsubstituted or substituted. The condensed ring or aliphatic ring formed between adjacent substituents may be unsubstituted or substituted.
[0013]
  Among the metal complexes represented by the general formula (1), a boron complex represented by the following general formula (2) has a high fluorescence quantum yield.
[0014]
[Chemical6]
Figure 0004000893
  Where RThree~ R6May be the same or different, hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, aryl thioether group, Aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, adjacent substituent It is selected from fused rings and aliphatic rings formed between them. Ar6~ ArTenRepresents an aryl group. These substituents are the same as described in the general formula (1).
[0015]
  Ar in the above general formula (1)1~ ArFourAt least one of the above, Ar in the general formula (2)6~ Ar9When at least one of them is substituted with an alkyl group having 4 or more carbon atoms, dispersibility in the thin film is improved, and high-luminance light emission is obtained. Furthermore, considering the availability of materials and the ease of synthesis, R in the above general formula (2)FiveAnd R6Both are preferably fluorine. Specific examples of the pyromethene metal complex include the following compounds.
[0016]
[Chemical7]
Figure 0004000893
[0017]
[Chemical8]
Figure 0004000893
[0018]
[Chemical9]
Figure 0004000893
[0019]
[Chemical10]
Figure 0004000893
[0020]
[Chemical11]
Figure 0004000893
[0021]
[Chemical12]
Figure 0004000893
[0022]
[Chemical13]
Figure 0004000893
[0023]
[Chemical14]
Figure 0004000893
[0024]
[Chemical15]
Figure 0004000893
[0025]
[Chemical16]
Figure 0004000893
  The pyromethene metal complex of the present invention can be produced, for example, by the following method.
[0026]
  The compound represented by the following general formula (3) and the compound represented by the general formula (4) are heated in 1,2-dichloroethane in the presence of phosphorus oxychloride, and then represented by the following general formula (5). By reacting the compound in 1,2-dichloroethane in the presence of triethylamine, a metal complex of the general formula (1) can be obtained. Where Ar1~ ArFive, R1And R2, M, L, and m are the same as described above. J represents halogen.
[0027]
[Chemical17]
Figure 0004000893
[0028]
[Chemical18]
Figure 0004000893
[0029]
[Chemical19]
Figure 0004000893
  The pyromethene metal complex of the present invention is suitably used as a light emitting device material. Hereinafter, the light emitting device of the present invention will be described in detail.
[0030]
  In the present invention, if the anode is transparent for extracting light, a conductive metal oxide such as tin oxide, indium oxide and indium tin oxide (ITO), or a metal such as gold, silver and chromium, copper iodide, sulfide Inorganic conductive materials such as copper and conductive polymers such as polythiophene, polypyrrole, and polyaniline are not particularly limited, but it is particularly desirable to use ITO glass or Nesa glass. The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but it is desirable that the resistance be low from the viewpoint of power consumption of the element. For example, an ITO substrate of 300 Ω / □ or less functions as an element electrode. However, since it is now possible to supply a substrate of about 10 Ω / □, it is particularly desirable to use a low resistance product. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm. Further, soda lime glass, non-alkali glass or the like is used for the glass substrate, and the thickness of the glass substrate only needs to be sufficient to maintain the mechanical strength, so 0.5 mm or more is sufficient. As for the glass material, it is better to use alkali-free glass because it is better to have less ions eluted from the glass.2Since soda lime glass with a barrier coating such as is commercially available, it can be used. The ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, or a chemical reaction method.
[0031]
  The cathode is not particularly limited as long as it can efficiently inject electrons into the organic layer, but is generally platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium, sodium, potassium, calcium. Magnesium and the like can be mentioned, but lithium, sodium, potassium, calcium, magnesium or alloys containing these low work function metals are effective for improving the device characteristics by increasing the electron injection efficiency. However, these low work function metals are generally unstable in the atmosphere. For example, the organic layer is doped with a small amount of lithium or magnesium (1 nm or less in the vacuum vapor deposition thickness gauge display) to be stable. Although a method using a high electrode can be mentioned as a preferred example, it is not particularly limited to these because an inorganic salt such as lithium fluoride can be used. Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum, indium, or alloys using these metals, and inorganic substances such as silica, titania, silicon nitride, polyvinyl alcohol, vinyl chloride, Preferred examples include laminating hydrocarbon polymers. The method for producing these electrodes is not particularly limited as long as conduction can be achieved such as resistance heating, electron beam, sputtering, ion plating, and coating.
[0032]
  The light-emitting substance is 1) hole transport layer / light-emitting layer, 2) hole transport layer / light-emitting layer / electron transport layer, 3) light-emitting layer / electron transport layer, 4) hole transport layer / light-emitting layer / hole Blocking layer, 5) Hole transport layer / light emitting layer / hole blocking layer / electron transport layer, 6) Light emitting layer / hole blocking layer / electron transport layer, and 7) Form in which one or more of the above combination materials are mixed Any of these may be used. That is, as the element structure, in addition to the multilayer structure of 1) to 6) above, a single layer including a light emitting material alone or a layer containing a light emitting material and a hole transporting material, a hole blocking layer, or an electron transporting material is used. It may be provided only. Furthermore, the luminescent substance in the present invention corresponds to both a substance that emits light by itself and a substance that assists the light emission, and refers to a compound, a layer, or the like that is involved in light emission.
[0033]
  The hole transport layer is formed by laminating and mixing a hole transport material alone or two or more kinds of materials, or a mixture of a hole transport material and a polymer binder. '-Diphenyl-N, N'-di (3-methylphenyl) -4,4'-diphenyl-1,1'-diamine, N, N'-dinaphthyl-N, N'-diphenyl-4,4'- Triphenylamines such as diphenyl-1,1′-diamine, bis (N-allylcarbazole) or bis (N-alkylcarbazole) s, pyrazoline derivatives, stilbene compounds, hydrazone compounds, oxadiazole derivatives and phthalocyanine derivatives , Heterocyclic compounds typified by porphyrin derivatives, in the case of polymer systems, polycarbonates or styrene derivatives having the above monomers in the side chain, polyvinylcarbazo Le, is preferred such as polysilane, forming a thin film required for device fabrication, and can inject holes from the anode, and is not particularly limited as long as it is a further compound capable of transporting holes.
[0034]
  The light emitting layer is formed of a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone. Each of the host material and the dopant material may be one kind or a plurality of combinations. The dopant material may be included in the host material as a whole, or may be included partially. The dopant material may be either laminated or dispersed.
[0035]
  The pyromethene metal complex of the present invention is suitably used as a light emitting material. Conventionally, it is known that a pyromethene metal complex exhibits high-luminance emission as a light-emitting material, particularly as a dopant material. In addition, by introducing an aromatic ring or the like at positions 1, 3, 5, and 7 of the pyromethene skeleton, It is also known to exhibit luminescence. However, since conventional pyromethene metal complexes are easy to quench the concentration, red light emission satisfying both emission luminance and chromaticity has not been obtained. However, when a substituent is introduced at the 8-position of the pyromethene skeleton, concentration quenching is reduced due to the steric and electronic effects of the substituent. On the other hand, when the substituent at the 8-position rotates, the fluorescence quantum yield of the pyromethene compound decreases. Therefore, in the pyromethene compound of the present invention, by introducing an aryl group at the 8-position of the pyromethene skeleton and suppressing its rotation, the fluorescence quantum yield was high and concentration quenching was suppressed. The effect of this rotation suppression is Ar in the general formula (1).1And ArFour, Ar in the general formula (2)6And Ar9Is achieved by being an aryl group. Furthermore, an aryl group introduced into the pyromethene skeleton (Ar of the general formula (1))1~ ArFour, Ar in the general formula (2)6~ Ar9) Is substituted with an alkyl group having 4 or more carbon atoms, the dispersibility in the film is improved and the emission luminance is further improved as compared with an unsubstituted group. The pyromethene metal complex of the present invention may be used as a host material, but is preferably used as a dopant material because it has a high fluorescence quantum yield and a small half-value width of an emission spectrum.
[0036]
  If the doping amount is too large, a concentration quenching phenomenon occurs, so that it is preferably used in an amount of 10% by weight or less, more preferably 2% by weight or less based on the host material. As a doping method, it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited. Further, the dopant material may be included in the host material as a whole, or may be included partially. The dopant material may be either laminated or dispersed. Furthermore, since a pyromethene metal complex emits light even in a very small amount, it is also possible to use a very small amount of a pyromethene metal complex sandwiched between host materials. In this case, one or more layers may be laminated with the host material. The dopant material added to the light emitting material need not be limited to only one kind of the above-mentioned pyromethene metal complex, and a mixture of a plurality of pyromethene metal complexes is used, or one or more kinds of known dopant materials are used in combination with a pyromethene metal complex. May be. Specifically, conventionally known rare earth complexes such as naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, A quinacridone derivative, a phenoxazine derivative, an oxazine compound, and the like can coexist, but are not particularly limited thereto.
[0037]
  The host material is not particularly limited, but has previously been known as a phosphor, fused ring derivatives such as anthracene and pyrene, metal chelated oxinoid compounds including tris (8-quinolinolato) aluminum, bisstyryl Bisstyryl derivatives such as anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, pyrrolopyrrole derivatives In the polymer system, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polythiophene derivatives, and the like can be used.
[0038]
  As the electron transporting material in the present invention, it is necessary to efficiently transport electrons from the cathode between electrodes to which an electric field is applied, and it is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently. . For this purpose, it is required that the material has a high electron affinity, a high electron mobility, excellent stability, and a substance that does not easily generate trapping impurities during manufacturing and use. As substances satisfying such conditions, quinolinol derivative metal complexes represented by 8-hydroxyquinoline aluminum, tropolone metal complexes, flavonol metal complexes, perylene derivatives, perinone derivatives, naphthalene derivatives, coumarin derivatives, oxadiazole derivatives, aldazine derivatives , A bisstyryl derivative, a pyrazine derivative, a phenanthroline derivative, a quinoline derivative, and an aromatic phosphorus oxide compound, but are not particularly limited. These electron transport materials are used alone, but may be laminated or mixed with different electron transport materials.
[0039]
  The hole blocking layer is a layer for preventing the holes from the anode from moving between the electrodes to which an electric field is applied without recombining with the electrons from the cathode, and the kind of material constituting each layer. Depending on the case, insertion of this layer may increase the probability of recombination of holes and electrons, and may improve the light emission efficiency. Therefore, it is desirable that the hole-occluding material has a lower maximum occupied molecular orbital level than the hole-transporting material in terms of energy, and it is difficult to generate an exciplex with the material constituting the adjacent layer. A compound that can efficiently block the movement of holes from the anode is preferable, and a material having a high electron transporting capability also has a high hole blocking capability. Therefore, the electron transporting material is a preferable example.
[0040]
  The above hole transport layer, light-emitting layer, electron transport layer, and hole blocking layer may be a single material or a laminate of two or more materials, mixed, or polymer binders such as polyvinyl chloride, polycarbonate, polystyrene, poly (N -Vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide, ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, etc. It can also be used by being dispersed in a soluble resin, a curable resin such as a phenol resin, a xylene resin, a petroleum resin, a urea resin, a melamine resin, an unsaturated polyester resin, an alkyd resin, an epoxy resin, or a silicone resin.
[0041]
  The formation method of the substance responsible for light emission is not particularly limited, such as resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination method, coating method, etc., but resistance heating evaporation and electron beam evaporation are usually preferable in terms of characteristics. . The thickness of the layer is not limited because it depends on the resistance value of the substance responsible for light emission, but is selected from 1 to 1000 nm.
[0042]
  Electrical energy mainly refers to direct current, but pulsed current or alternating current can also be used. The current value and the voltage value are not particularly limited, but the maximum luminance should be obtained with the lowest possible energy in consideration of the power consumption and lifetime of the element.
[0043]
  The matrix in the present invention refers to a matrix in which pixels for display are arranged in a lattice pattern, and displays characters and images by a set of pixels. The shape and size of the pixel are determined by the application. For example, a rectangular pixel with a side of 300 μm or less is normally used for displaying images and characters on a personal computer, monitor, television, etc. In a large display such as a display panel, a pixel with a side of mm order is used. . In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. The line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
[0044]
  The segment type in the present invention means that a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation status display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be given. The matrix display and the segment display may coexist in the same panel.
[0045]
【Example】
  EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated, this invention is not limited by these examples. In addition, the number of the compound in each following Example points out the number of the compound described above. The evaluation method for structural analysis is shown below.
[0046]
  1H-NMR was measured with a deuterated chloroform solution using superconducting FTNMR EX-270 (manufactured by JEOL Ltd.).
[0047]
  For elemental analysis, a CHN coder MT-3 type (manufactured by Yanagimoto Seisakusho Co., Ltd.), ion chromatography DX320 (manufactured by Nippon Dionex Co., Ltd.) and a sequential ICP emission spectroscopic analyzer SPS4000 (manufactured by Seiko Instruments Inc.) are used. Was measured.
[0048]
  Mass spectrum was measured using JMS-DX303 (manufactured by JEOL Ltd.).
[0049]
  For the absorption spectrum and the fluorescence spectrum, U-3200 type spectrophotometer and F-2500 type spectrophotometer (both manufactured by Hitachi, Ltd.) were used, respectively.-6Measurement was carried out in a mol / L dichloromethane solution.
[0050]
  Example 1
  Synthesis method of compound [1] In 30 ml of 1,2-dichloroethane, 1.3 g of 2-benzoyl-3,5-bis (4-n-hexylphenyl) pyrrole and 2,4-bis (4-n-hexylphenyl) ) 1 g of pyrrole and 0.47 ml of phosphorus oxychloride were added and reacted for 12 hours under heating and reflux. After cooling to room temperature, 3.6 ml of diisopropylethylamine and 2.6 ml of boron trifluoride diethyl ether complex were added and stirred for 6 hours. 50 ml of water was added, extracted with dichloromethane, concentrated and purified by column chromatography using silica gel to obtain 1 g of reddish purple powder. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 0.90 (t, 12H), 1.29-1.65 (m, 32H), 2.39 (t, 4H), 2.64 (t, 4H), 6.44 (t, 2H), 6.49 (s, 2H) , 6.60-6.63 (m, 9H), 6.83 (d, 2H), 7.25 (d, 4H), 7.82 (d, 4H)63H75N2F2B was as follows. The values in parentheses are theoretical values.
C: 83.5% (83.2%)
H: 8.4% (8.3%)
N: 3.2% (3.1%)
F: 3.2% (4.2%)
B: 1.2% (1.2%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 908. From the above, it was confirmed that the reddish purple powder as the product was the compound [1]. Furthermore, the compound [1] exhibited the following photophysical properties.
Absorption spectrum: λmax 568 nm (solvent: dichloromethane)
Fluorescence spectrum: λ max 613 nm (solvent: dichloromethane).
[0051]
  Next, a light emitting device using the compound [1] was produced as follows. A glass substrate (manufactured by Asahi Glass Co., Ltd., 15Ω / □, electron beam evaporated product) on which an ITO transparent conductive film was deposited to 150 nm was cut into 30 × 40 mm and etched. The obtained substrate was ultrasonically cleaned with acetone and “Semicocrine 56” for 15 minutes each, and then washed with ultrapure water. Subsequently, it was ultrasonically cleaned with isopropyl alcohol for 15 minutes and then immersed in hot methanol for 15 minutes to dry. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, and placed in a vacuum deposition apparatus, and the degree of vacuum in the apparatus was 5 × 10.-FiveIt exhausted until it became Pa or less. First, 4,4′-bis (N- (m-tolyl) -N-phenylamino) biphenyl was deposited as a hole transport material by 50 nm by a resistance heating method. Next, HST1 shown below as a host material and compound [1] as a dopant material were used to co-evaporate to a thickness of 15 nm so that the dopant concentration was 1 wt%, and the host material was laminated to a thickness of 35 nm. Next, lithium was deposited to 0.5 nm and silver was deposited to 150 nm to prepare a cathode having a 5 × 5 mm square. The film thickness referred to here is a display value of a crystal oscillation type film thickness monitor. The light emission spectrum from this light emitting element was red light emission with a peak wavelength of 618 nm and a light emission efficiency of 4.2 cd / A.
[0052]
[Chemical20]
Figure 0004000893
  Example 2
  Compound [2] was synthesized in the same manner as compound [1] using 1.2 g of 2-benzoyl-3,5-diphenylpyrrole and 0.8 g of 2,4-diphenylpyrrole. 1.4 g of red powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 6.46 (t, 2H), 6.52 (s, 2H), 6.67-6.88 (m, 11H), 7.43 (m, 6H), 7.90 (d, 4H) Composition formula C39H27N2F2B was as follows. The values in parentheses are theoretical values.
C: 82.3% (81.8%)
H: 4.8% (4.7%)
N: 4.9% (4.9%)
F: 6.6% (6.6%)
B: 1.9% (2.0%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 572. From the above, it was confirmed that the red powder as the product was the compound [2]. Furthermore, the compound [2] exhibited the following photophysical properties.
Absorption spectrum: λmax 556 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 600 nm (solvent: dichloromethane).
[0053]
  Subsequently, a light emitting device was produced in the same manner as in Example 1 except that the compound [2] was used as the dopant material. The light emission spectrum from this light emitting element was high-luminous vermilion light emission with a peak wavelength of 608 nm and a light emission efficiency of 2.6 cd / A.
[0054]
  Example 3
  Compound [3] Synthesis Method 2- (2-Methylbenzoyl) -3,5-bis (4-n-hexylphenyl) pyrrole 0.4 g, 2,4-bis (4-n-hexylphenyl) pyrrole The compound was synthesized in the same manner as Compound [1] using 25 g. 0.1 g of reddish purple powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 0.88 (t, 12H), 1.29-1.67 (m, 32H), 2.39 (t, 4H), 2.63 (t, 4H), 3.51 (s, 3H), 6.00 (d, 2H) , 6.51 (s, 2H), 6.63-6.73 (m, 10H), 7.23 (d, 4H), 7.81 (d, 4H)64H77N2F2B was as follows. The values in parentheses are theoretical values.
C: 83.3% (83.3%)
H: 8.4% (8.4%)
N: 3.1% (3.0%)
F: 3.2% (4.1%)
B: 1.2% (1.2%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 922. From the above, it was confirmed that the reddish purple powder as the product was the compound [3]. Furthermore, the compound [3] exhibited the following photophysical properties.
Absorption spectrum: λmax 568 nm (solvent: dichloromethane)
Fluorescence spectrum: λ max 613 nm (solvent: dichloromethane).
[0055]
  Subsequently, a light emitting device was produced in the same manner as in Example 1 except that the compound [3] was used as the dopant material. The light emission spectrum of this light emitting element was red light emission with a peak wavelength of 618 nm and a light emission efficiency of 4.0 cd / A.
[0056]
  Example 4
  Synthesis Method of Compound [4] 0.5 g of 2- (4-phenylbenzoyl) -3,5-bis (4-n-hexylphenyl) pyrrole, 2,4-bis (4-n-hexylphenyl) pyrrole The compound was synthesized in the same manner as Compound [1] using 25 g. 0.18 g of reddish purple powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 0.84 (t, 12H), 1.07-1.65 (m, 32H), 2.25 (t, 4H), 2.64 (t, 4H), 6.53 (s, 2H), 6.61-6.69 (m, 11H), 6.88 (d, 2H), 7.23 (d, 4H), 7.24-7.37 (m, 5H), 7.83 (d, 4H)69H79N2F2B was as follows. The values in parentheses are theoretical values.
C: 84.3% (84.1%)
H: 8.1% (8.0%)
N: 2.9% (2.8%)
F: 3.0% (3.9%)
B: 1.2% (1.2%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 984. From the above, it was confirmed that the reddish purple powder as the product was the compound [4]. Furthermore, the compound [4] exhibited the following photophysical properties.
Absorption spectrum: λmax 569 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 615 nm (solvent: dichloromethane).
[0057]
  Next, a light emitting device was produced in the same manner as in Example 1 except that the compound [4] was used as the dopant material. The light emission spectrum from this light emitting element was red light emission with a peak wavelength of 618 nm and a light emission efficiency of 3.8 cd / A.
[0058]
  Example 5
  Synthesis Method of Compound [5] 0.45 g of 2- (4-methoxybenzoyl) -3,5-bis (4-n-hexylphenyl) pyrrole, 2,4-bis (4-n-hexylphenyl) pyrrole The compound was synthesized in the same manner as Compound [1] using 25 g. 0.15 g of reddish purple powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 0.91 (t, 12H), 1.28-1.67 (m, 32H), 2.00 (S, 3H), 2.38 (t, 4H), 2.63 (t, 4H), 6.21 (d, 1H) , 6.43 (s, 2H), 6.46 (d, 2H), 6.63 (m, 8H), 6.80 (d, 1H), 7.25 (d, 4H), 7.82 (d, 4H) Formula C64H77N2OF2B was as follows. The values in parentheses are theoretical values.
C: 82.1% (81.9%)
H: 8.3% (8.2%)
N: 3.1% (3.0%)
O: 1.8% (1.7%)
F: 3.0% (4.0%)
B: 1.2% (1.2%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 938. From the above, it was confirmed that the reddish purple powder as the product was the compound [5]. Further, Compound [5] exhibited the following photophysical properties.
Absorption spectrum: λmax 566 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 611 nm (solvent: dichloromethane).
[0059]
  Then, a light emitting device was produced in the same manner as in Example 1 except that the compound [5] was used as the dopant material. The light emission spectrum of this light emitting element was red light emission having a peak wavelength of 615 nm and a light emission efficiency of 4.0 cd / A.
[0060]
  Example 6
  Synthesis Method of Compound [6] 0.4 g of 2- (4-cyanobenzoyl) -3,5-bis (4-n-hexylphenyl) pyrrole, 2,4-bis (4-n-hexylphenyl) pyrrole The compound was synthesized in the same manner as Compound [1] using 25 g. 0.3 g of reddish brown powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 0.91 (t, 12H), 1.33-1.65 (m, 32H), 2.44 (t, 4H), 2.64 (t, 4H), 6.52 (s, 2H), 6.59 (d, 2H) , 6.70-6.75 (m, 8H), 6.93 (d, 2H), 7.25 (d, 4H), 7.83 (d, 4H)64H74NThreeF2B was as follows. The values in parentheses are theoretical values.
C: 82.6% (82.3%)
H: 7.9% (7.9%)
N: 4.6% (4.5%)
F: 3.3% (4.1%)
B: 1.2% (1.2%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 933. From the above, it was confirmed that the reddish brown powder as the product was the compound [6]. Furthermore, compound [6] exhibited the following photophysical properties.
Absorption spectrum: λmax 576 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 626 nm (solvent: dichloromethane).
[0061]
  Example 7
  Compound [7] Synthesis Method 2- (1-Naphthoyl) -3,5-bis (4-n-hexylphenyl) pyrrole 0.5 g, 2,4-bis (4-n-hexylphenyl) pyrrole 0.25 g Was synthesized in the same manner as compound [1]. 0.2 g of purple powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 0.93 (t, 12H), 1.25-1.65 (m, 32H), 2.21 (t, 4H), 2.64 (t, 4H), 6.27 (m, 8H), 6.40 (s, 2H) , 6.64 (t, 1H), 7.00 (dd, 2H), 7.24 (d, 4H), 7.24-7.34 (m, 3H), 7.80-7.87 (m, 5H)67H77N2F2B was as follows. The values in parentheses are theoretical values.
C: 84.3% (83.9%)
H: 8.1% (8.0%)
N: 2.9% (2.9%)
F: 3.1% (4.0%)
B: 1.1% (1.2%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 958. From the above, it was confirmed that the purple powder as the product was a compound [7]. Furthermore, the compound [7] exhibited the following photophysical properties.
Absorption spectrum: λmax 571 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 616 nm (solvent: dichloromethane).
[0062]
  Subsequently, a light emitting device was produced in the same manner as in Example 1 except that the compound [7] was used as the dopant material. The light emission spectrum of this light emitting element was red light emission having a peak wavelength of 619 nm and a light emission efficiency of 4.2 cd / A.
[0063]
  Example 8
  Synthesis method of compound [8] Using 0.4 g of 2-benzoyl-3,5-bis (4-methoxyphenyl) pyrrole and 0.25 g of 2,4-bis (4-methoxyphenyl) pyrrole, It synthesized similarly. 0.2 g of blue-violet powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 3.67 (s, 3H), 3.86 (s, 3H), 6.38 (d, 2H), 6.47 (s, 2H), 6.54 (t, 2H), 6.64-6.75 (m, 5H) , 6.85 (d, 2H), 6.96 (d, 4H), 7.89 (d, 4H)43H35N2OFourF2B was as follows. The values in parentheses are theoretical values.
C: 75.0% (74.6%)
H: 5.2% (5.1%)
N: 4.2% (4.0%)
O: 9.3% (9.2%)
F: 4.4% (5.5%)
B: 1.6% (1.6%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 692. From the above, it was confirmed that the product, the blue-violet powder, was the compound [8]. Furthermore, the compound [8] exhibited the following photophysical properties.
Absorption spectrum: λmax 584 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 632 nm (solvent: dichloromethane).
[0064]
  Next, a light emitting device was produced in the same manner as in Example 1 except that the compound [8] was used as the dopant material. The light emission spectrum from this light emitting element was red light emission having a peak wavelength of 620 nm and a light emission efficiency of 3.8 cd / A.
[0065]
  Example 9
  Synthesis method of compound [9] Using 0.35 g of 2-benzoyl-3,5-bis (4-n-amyloxyphenyl) pyrrole and 0.25 g of 2,4-bis (4-n-amyloxyphenyl) pyrrole This was synthesized in the same manner as Compound [1]. 0.1 g of blue-violet powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm): 0.94 (t, 12H), 1.38-1.41 (m, 16H), 1.68-1.83 (m, 8H), 3.80 (t, 4H), 4.00 (t, 4H), 6.36 (d, 2H), 6.46 (s, 2H), 6.53 (t, 2H), 6.62-6.73 (m, 5H), 6.85 (d, 2H), 6.94 (d, 4H), 7.87 (d, 4H) and elemental analysis The result is the composition formula C59H67N2OFourF2B was as follows. The values in parentheses are theoretical values.
C: 77.5% (77.3%)
H: 7.5% (7.5%)
N: 3.2% (3.1%)
O: 7.1% (7.0%)
F: 3.1% (4.1%)
B: 1.2% (1.2%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 916. From the above, it was confirmed that the product, the blue-violet powder, was a compound [9]. Furthermore, the compound [9] exhibited the following photophysical properties.
Absorption spectrum: λmax 587 nm (solvent: dichloromethane)
Fluorescence spectrum: λ max 636 nm (solvent: dichloromethane).
[0066]
  Example 10
  Synthesis method of compound [10] Using 0.6 g of 2- (1-naphthoyl) -3,5-bis (4-methylphenyl) pyrrole and 0.25 g of 2,4-bis (4-methylphenyl) pyrrole, Synthesized in the same manner as in [1]. 0.55 g of purple powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 2.00 (s, 6H), 2.40 (s, 6H), 6.26 (m, 8H), 6.39 (s, 2H), 6.65 (t, 1H), 7.00 (d, 1H), 7.12 (d, 1H), 7.24 (d, 4H), 7.24-7.33 (m, 3H), 7.77-7.86 (m, 5H)47H37N2F2B was as follows. The values in parentheses are theoretical values.
C: 83.5% (83.2%)
H: 5.6% (5.5%)
N: 4.3% (4.1%)
F: 4.8% (5.6%)
B: 1.5% (1.6%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 678. From the above, it was confirmed that the purple powder as the product was a compound [10]. Furthermore, compound [10] exhibited the following photophysical properties.
Absorption spectrum: λmax 575 nm (solvent: dichloromethane)
Fluorescence spectrum: λ max 613 nm (solvent: dichloromethane).
[0067]
  Next, a light emitting device was produced in the same manner as in Example 1 except that the compound [10] was used as the dopant material. The light emission spectrum from this light emitting element was red light with a peak wavelength of 641 nm and a light emission efficiency of 2.7 cd / A.
[0068]
  Example 11
  Synthesis method of compound [11] 2-benzoyl-3,5-bis (4- (2,4-dimethylphenyl) phenyl) pyrrole 0.35 g, 2,4-bis (4- (2,4-dimethylphenyl) Synthesis was performed in the same manner as Compound [1] using 0.25 g of phenyl) pyrrole. 0.15 g of a purple powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 2.18 (s, 6H), 2.32 (s, 6H), 2.36 (ss, 12H), 6.67 (s, 2H), 6.81 (d, 8H), 6.94-7.07 (m, 11H) , 7.11 (d, 2H), 7.43 (d, 4H), 8.01 (d, 4H)71H59N2F2B was as follows. The values in parentheses are theoretical values.
C: 86.4% (86.2%)
H: 6.0% (6.0%)
N: 2.9% (2.8%)
F: 3.0% (3.9%)
B: 1.2% (1.1%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 988. From the above, it was confirmed that the purple powder as the product was the compound [11]. Furthermore, Compound [11] exhibited the following photophysical properties.
Absorption spectrum: λmax 576 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 626 nm (solvent: dichloromethane).
[0069]
  Example 12
  Compound [12] Synthesis Method 2- (1-Naphthoyl) -3,5-bis (4-methylphenyl) pyrrole 0.4 g, 2,4-bis (4-methoxyphenyl) pyrrole 0.25 g Synthesized in the same manner as in [1]. 0.1 g of purple powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 1.97 (s, 3H), 2.40 (s, 3H), 3.54 (s, 3H), 3.86 (s, 3H), 5.99 (d, 2H), 6.25 (s, 4H), 6.30 -6.39 (m, 8H), 6.69 (t, 1H), 6.97 (d, 3H), 7.14 (d, 1H), 7.26 (d, 2H), 7.26-7.37 (m, 3H), 7.78-7.95 (m , 5H) The elemental analysis results are shown in the composition formula C47H37N2O2F2B was as follows. The values in parentheses are theoretical values.
C: 79.6% (79.4%)
H: 5.1% (5.2%)
N: 4.0% (3.9%)
O: 4.6% (4.5%)
F: 4.6% (5.4%)
B: 1.6% (1.6%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 710. From the above, it was confirmed that the purple powder as the product was the compound [12]. Furthermore, Compound [12] exhibited the following photophysical properties.
Absorption spectrum: λmax 577 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 624 nm (solvent: dichloromethane).
[0070]
  Subsequently, a light emitting device was produced in the same manner as in Example 1 except that the compound [12] was used as the dopant material. The light emission spectrum from this light emitting element was red light emission with a peak wavelength of 628 nm and a light emission efficiency of 2.9 cd / A.
[0071]
  Example 13
  Synthesis method of compound [53] Using 0.4 g of 2-benzoyl-3,5-bis (4-n-butylphenyl) pyrrole and 0.25 g of 2,4-bis (4-n-butylphenyl) pyrrole, Synthesized in the same manner as in [1]. 0.27 g of red powder was obtained. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 1.97 (s, 3H), 2.40 (s, 3H), 3.54 (s, 3H), 3.86 (s, 3H), 5.99 (d, 2H), 6.25 (s, 4H), 6.30 -6.39 (m, 8H), 6.69 (t, 1H), 6.97 (d, 3H), 7.14 (d, 1H), 7.26 (d, 2H), 7.26-7.37 (m, 3H), 7.78-7.95 (m , 5H) The elemental analysis results are shown in the composition formula C55H59N2F2B was as follows. The values in parentheses are theoretical values.
C: 83.1% (82.9%)
H: 7.5% (7.4%)
N: 3.6% (3.5%)
F: 4.0% (4.8%)
B: 1.3% (1.4%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 796. From the above, it was confirmed that the red powder as the product was the compound [53]. Furthermore, Compound [53] exhibited the following photophysical properties.
Absorption spectrum: λmax 569 nm (solvent: dichloromethane)
Fluorescence spectrum: λmax 611 nm (solvent: dichloromethane).
[0072]
  Next, a light emitting device was produced in the same manner as in Example 1 except that the compound [53] was used as the dopant material. The light emission spectrum of this light emitting element was red light emission with a peak wavelength of 617 nm and a light emission efficiency of 5.0 cd / A.
[0073]
  Example 14
  Method of synthesizing compound [59] 0.5 g of compound [10] was dissolved in 30 ml of anhydrous tetrahydrofuran, and 1.88 ml of phenylmagnesium bromide (1.0 mol / L: tetrahydrofuran) was added dropwise at 20 ° C, and at 60 ° C. The reaction was performed for 9 hours. After cooling to room temperature, 50 ml of water was added, extracted with dichloromethane, concentrated, and purified by column chromatography using silica gel to obtain 0.32 g of a red purple powder. Of the obtained powder1The result of H-NMR analysis was as follows.
1H-NMR (CDClThree(D = ppm)): 1.97 (s, 3H), 2.40 (s, 3H), 3.54 (s, 3H), 3.86 (s, 3H), 5.99 (d, 2H), 6.25 (s, 4H), 6.30 -6.39 (m, 8H), 6.69 (t, 1H), 6.97 (d, 3H), 7.14 (d, 1H), 7.26 (d, 2H), 7.26-7.37 (m, 3H), 7.78-7.95 (m , 5H) The elemental analysis results are shown in the composition formula C59H47N2B was as follows. The values in parentheses are theoretical values.
C: 89.3% (89.2%)
H: 6.0% (5.9%)
N: 3.5% (3.5%)
B: 1.2% (1.4%)
From the mass spectrum, the main molecular ion peak of the target product was m / Z = 794. From the above, it was confirmed that the reddish purple powder as the product was the compound [59]. Furthermore, Compound [59] exhibited the following photophysical properties.
Absorption spectrum: λmax 568 nm (solvent: dichloromethane)
Fluorescence spectrum: λ max 613 nm (solvent: dichloromethane).
[0074]
  Next, a light emitting device was produced in the same manner as in Example 1 except that the compound [59] was used as the dopant material. The light emission spectrum from this light emitting element was red light with a peak wavelength of 616 nm and a light emission efficiency of 3.8 cd / A.
[0075]
  Example 15
  A light emitting device was produced in the same manner as in Example 1 except that 1,4-diketo-2,5-dimethyl-3,6-bis (1-phenanthryl) pyrrolo [3,4-c] pyrrole was used as the host material. Produced. The light emission spectrum from this light emitting element was red light with a peak wavelength of 615 nm and a light emission efficiency of 4.7 cd / A.
[0076]
  Example 16
  A light emitting device was produced in the same manner as in Example 1 except that 1,4-diketo-2,5-dimethyl-3,6-bis (1-naphthyl) pyrrolo [3,4-c] pyrrole was used as the host material. Produced. The light emission spectrum of this light emitting element was red light emission with a peak wavelength of 615 nm and a light emission efficiency of 5.1 cd / A.
[0077]
  Example 17
  A light emitting device was produced in the same manner as in Example 1 except that 1,4-diketo-2,5-dimethyl-3,6-bis (1-phenanthryl) pyrrolo [3,4-c] pyrrole was used as the host material. Produced. The light emission spectrum from this light emitting element was red light with a peak wavelength of 615 nm and a light emission efficiency of 4.3 cd / A.
[0078]
  Example 18
  Implemented except that 1,4-diketo-2,5-dimethyl-3,6-bis (4- (4-methylphenyl) naphthyl-1-yl) pyrrolo [3,4-c] pyrrole was used as the host material A light emitting device was fabricated in exactly the same manner as in Example 1. The light emission spectrum from this light emitting element was red light emission with a peak wavelength of 616 nm and a light emission efficiency of 4.2 cd / A.
[0079]
  Example 19
  The process up to vapor deposition of the hole transport material was carried out in the same manner as in Example 1, and then compound [53] was laminated to a thickness of 50 nm. Next, lithium was deposited to 0.5 nm and silver was deposited to 150 nm to prepare a cathode having a 5 × 5 mm square. The light emission spectrum from this light emitting element was red light emission with a peak wavelength of 622 nm and a light emission efficiency of 2.5 cd / A.
[0080]
  Comparative Example 1
  A light emitting device was produced in the same manner as in Example 1 except that DPT1 shown below was used as the dopant material. The light emission spectrum from this light emitting element was vermilion light emission with a peak wavelength of 609 nm and a light emission efficiency of 1.6 cd / A.
[0081]
[Chemical21]
Figure 0004000893
  Comparative Example 2
  A light emitting device was fabricated in the same manner as in Example 1 except that DPT2 shown below was used as the dopant material. In the emission spectrum from this light-emitting element, red light emission having a peak wavelength of 628 nm was obtained, but the light emission efficiency was 1.1 cd / A.
[0082]
[Chemical22]
Figure 0004000893
[0083]
【The invention's effect】
  The present invention can provide a highly fluorescent pyromethene metal complex that can be used in a light-emitting element or the like. Further, by using the pyromethene metal complex of the present invention, it is possible to provide a light-emitting element with high use efficiency of electric energy, high luminance and high color purity.

Claims (6)

一般式(2)で示されることを特徴とするピロメテン金属錯体。
Figure 0004000893
(R〜Rは同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカプト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基の中から選ばれる。RとRがともにフッ素である。Ar〜Ar10はアリール基を表す。(なお、ピロメテン金属錯体は2個のピロメテン基が連結基を介して結合しているものを除く))
A pyromethene metal complex represented by the general formula (2):
Figure 0004000893
(R 3 to R 4 may be the same or different, and are hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether. Group, arylthioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group R 5 and R 6 are both fluorine, Ar 6 to Ar 10 represent an aryl group (in the pyromethene metal complex, two pyromethene groups are bonded via a linking group). Excluding things))
一般式(2)のAr 〜Ar のうち少なくとも1つが炭素数4以上のアルキル基で置換されていることを特徴とする請求項1記載のピロメテン金属錯体。2. The pyromethene metal complex according to claim 1, wherein at least one of Ar 6 to Ar 9 in the general formula (2) is substituted with an alkyl group having 4 or more carbon atoms. 請求項1記載のピロメテン金属錯体(ただし、下記式(6)で表されるピロメテン金属錯体を除く)を用いたことを特徴とする発光素子材料。
Figure 0004000893
A light emitting device material using the pyromethene metal complex according to claim 1 (excluding the pyromethene metal complex represented by the following formula (6)) .
Figure 0004000893
陽極と陰極の間に発光物質が存在し、電気エネルギーにより発光する素子であって、該素子が請求項3記載の発光素子材料を含むことを特徴とする発光素子。A light-emitting element comprising a light-emitting element material according to claim 3, wherein a light-emitting substance is present between an anode and a cathode and emits light by electric energy. 前記発光素子材料がドーパント材料であることを特徴とする請求項4記載の発光素子。The light emitting device according to claim 4, wherein the light emitting device material is a dopant material. マトリクスおよび/またはセグメント方式によって表示するディスプレイであることを特徴とする請求項4記載の発光素子。5. The light emitting device according to claim 4, wherein the light emitting device is a display that displays in a matrix and / or segment system.
JP2002117229A 2001-04-25 2002-04-19 Pyromethene metal complex, light emitting device material and light emitting device using the same Expired - Lifetime JP4000893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117229A JP4000893B2 (en) 2001-04-25 2002-04-19 Pyromethene metal complex, light emitting device material and light emitting device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-127311 2001-04-25
JP2001127311 2001-04-25
JP2002117229A JP4000893B2 (en) 2001-04-25 2002-04-19 Pyromethene metal complex, light emitting device material and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2003012676A JP2003012676A (en) 2003-01-15
JP4000893B2 true JP4000893B2 (en) 2007-10-31

Family

ID=26614164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117229A Expired - Lifetime JP4000893B2 (en) 2001-04-25 2002-04-19 Pyromethene metal complex, light emitting device material and light emitting device using the same

Country Status (1)

Country Link
JP (1) JP4000893B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126637A (en) 2009-02-27 2011-11-23 이데미쓰 고산 가부시키가이샤 Pyrromethene-boron complex compounds and organic electro-luminescent elements using same
US9799836B2 (en) 2014-02-28 2017-10-24 Seiko Epson Corporation Light emitting element, light emitting device, authentication device, and electronic device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710268B2 (en) * 2003-07-23 2011-06-29 東レ株式会社 Pyromethene compound, light emitting device material and light emitting device using the same
FR2882056B1 (en) * 2005-02-15 2007-06-01 Centre Nat Rech Scient UNSATURATED BOROCARBON DIPYRROMETHENES-BORE
JP2006306752A (en) * 2005-04-27 2006-11-09 Kanagawa Acad Of Sci & Technol Chemiluminescent compound and marker comprising the same
US8183560B2 (en) 2006-10-16 2012-05-22 Toray Industries, Inc. Light-emitting device
WO2009057567A1 (en) 2007-11-02 2009-05-07 Toray Industries, Inc. Luminescent-element material and luminescent element
KR102517591B1 (en) 2014-10-07 2023-04-03 이데미쓰 고산 가부시키가이샤 Organic electroluminescence device and electronic device
KR101756785B1 (en) * 2015-03-10 2017-07-12 한국화학연구원 Preparation method of four-coordinate organic boron compounds
JP7400472B2 (en) 2018-08-27 2023-12-19 東レ株式会社 Pyrromethene boron complex, light emitting device using the same, display device, lighting device, color conversion composition, color conversion film, color conversion substrate, light source unit, and display
KR102443865B1 (en) * 2018-10-15 2022-09-16 주식회사 엘지화학 Compound, color conversion composition and color conversion film comprising the same, backlight unit comprising the same, display device comprising the same, and method of manufacturing color conversion film
US20220102637A1 (en) 2019-03-11 2022-03-31 Toray Industries, Inc. Pyrromethene metal complex, pyrromethene compound, light-emitting element material, light-emitting element, display device, and illumination device
TW202116785A (en) 2019-10-28 2021-05-01 日商東麗股份有限公司 Light-emitting element material containing pyrromethene boron complex, light-emitting element, display device, and illumination device
JPWO2021149510A1 (en) 2020-01-24 2021-07-29

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126637A (en) 2009-02-27 2011-11-23 이데미쓰 고산 가부시키가이샤 Pyrromethene-boron complex compounds and organic electro-luminescent elements using same
US8778510B2 (en) 2009-02-27 2014-07-15 Idemitsu Kosan Co., Ltd. Pyrromethene-boron complex compounds and organic electroluminescent elements using same
US9799836B2 (en) 2014-02-28 2017-10-24 Seiko Epson Corporation Light emitting element, light emitting device, authentication device, and electronic device

Also Published As

Publication number Publication date
JP2003012676A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
KR100856981B1 (en) Pyrromethene Metal Complex and Light Emitting Device Composition and Light Emitting Devices Using the Same
KR100843819B1 (en) Anthracene derivatives and organic electroluminescent devices made by using the same
EP1748045B1 (en) Light-emitting device material and light-emitting device
KR102006506B1 (en) Organic electroluminescence element and compound used therein
JP5250516B2 (en) A novel blue light emitter for use in organic electroluminescent devices
EP2028249B1 (en) Material for light-emitting device, and light-emitting device
JP4941471B2 (en) Light emitting device material and light emitting device
EP2733761A1 (en) Delayed-fluorescence material and organic electroluminescence element using same
JP2002063988A (en) Light emitting element
JP4052010B2 (en) Light emitting device material and light emitting device using the same
JP4000893B2 (en) Pyromethene metal complex, light emitting device material and light emitting device using the same
JP2005082702A (en) Material for organic electroluminescent device and organic electroluminescent device using the same
JP4432313B2 (en) Tetraphenylmethane derivative and light emitting device including the same
JP2007077185A (en) Light-emitting device material using pyrene compound and light-emitting device
KR20080112398A (en) Material for organic electroluminescence element, and organic electroluminescence element
JP4710268B2 (en) Pyromethene compound, light emitting device material and light emitting device using the same
JP5017884B2 (en) Light emitting device material and light emitting device
JP4613411B2 (en) Light emitting element
JP2005154534A (en) Light emitting device material and light emitting device using the same
JP4524901B2 (en) Light emitting element
JP4682503B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
JP4061969B2 (en) Light emitting element
JP2000208273A (en) Light emitting element
JP2002050478A (en) Light emitting element
JP2002208487A (en) Light emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4000893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

EXPY Cancellation because of completion of term