JP4000647B2 - Extruded shape joining method - Google Patents

Extruded shape joining method Download PDF

Info

Publication number
JP4000647B2
JP4000647B2 JP00001798A JP1798A JP4000647B2 JP 4000647 B2 JP4000647 B2 JP 4000647B2 JP 00001798 A JP00001798 A JP 00001798A JP 1798 A JP1798 A JP 1798A JP 4000647 B2 JP4000647 B2 JP 4000647B2
Authority
JP
Japan
Prior art keywords
extruded
hollow
semi
joining
hollow part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00001798A
Other languages
Japanese (ja)
Other versions
JPH11192564A (en
Inventor
博通 佐野
久司 掘
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP00001798A priority Critical patent/JP4000647B2/en
Publication of JPH11192564A publication Critical patent/JPH11192564A/en
Application granted granted Critical
Publication of JP4000647B2 publication Critical patent/JP4000647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • B23K20/126Workpiece support, i.e. backing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/045Hollow panels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、中空部又は半中空部を有するアルミニウム合金(以下、アルミと称する)製の押出形材の接合方法に関する。
【0002】
【従来の技術】
アルミの押出形材は、断面形状を自由に設計できるため、その押出(長手)方向に沿う側面には互いに嵌合可能な形状部分を予め一体に成形し、複数の形材の側面同士を容易に連結することができる。しかし、押出形材の長手方向に沿って複数の形材の端面同士を連結するには、その断面形状における工夫が生かせない。
このため、複数の押出形材を、それらの端面同士において接合するには、別途に溶接や、ボルト・ナット、或いはネジ等を用いることが必要であった。
【0003】
例えば、図6(A)に示すように、中空部84を有する一対の押出形材80の長手方向の各端面86を当接させ、該端面86における各形材80の各上壁81と各下壁82とに跨って開先87をそれぞれ形成し、MIG溶接等を施し溶接ビードWによって接合することが行われている。
また、図6(B)に示すように、一対の押出形材90における中空部93の長手方向の各端面94間に跨って、中空部93と略相似形断面の結合材95を嵌装する。そして、各形材90の端面94を当接させ、各上壁91の上方から複数のボルト97を結合材95とその中空部96を経て、下壁92の下方まで貫通させ、その雄ネジにナット98を締結することも行われている。
更に、図6(C)に示すように、上記と同様に結合材95を端面94間に跨って嵌装した一対の押出形材90に対し、その上壁91と下壁92からそれぞれ複数の皿ネジ99を結合材95の中空部96まで螺入して接合することも行われる。
【0004】
【発明が解決すべき課題】
しかし、前記図6(A)の溶接による接合の場合、溶接ビードWと形材80の端面86付近は高い強度を有するが、これに隣接する部分には溶接熱による熱影響部88が形成される。この熱影響部88は、他の部分に比べて強度が低くなる。
また、溶接ビードWが突出するため、この頂部分を研削することも必要となり、且つ作業者の技量によってビードW自体もバラつくという問題があった。
更に、図6(B)のボルト97とナット98の締結による場合は、多くのボルト孔を正確に穿設することを必要とする。且つ、ボルト97・ナット98が各形材90の表面から突出し、部品数や加工・接合工数が増えるという問題があった。
【0005】
そして、図6(C)の皿ネジ99による場合、形材90の表面は平坦になるが、ネジ孔の穿設、皿揉み部の成形、及び雌ネジ(タップ)切りという事前の作業を必要とし、且つ形材90同士の接合強度も不十分であった。
本発明は、以上の従来の技術における諸問題を解決して、事前の加工工数を最小限とし、ボルト等を用いず、且つ溶接による熱影響部を形成し難く、しかも平坦で安定した強度の接合面を形成する、押出形材の接合方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明は、押出形材を中空部又は半中空部を有するものとし、これらに跨って嵌装される補強材にて仮接合し、且つ押出形材同士の端面間および側面に沿って摩擦攪拌溶接を施すことに着想して成されたものである。
即ち、本発明の押出形材の接合方法は、中空部又は半中空部を有する複数のアルミニウム合金製の押出形材同士の接合方法に関し、各押出形材における端面同士および幅方向に隣接する押出形材における側面同士を当接させ、長手方向に隣接する各押出形材における上記端面付近の中空部間又は半中空部間に跨って、この中空部又は半中空部と略相似形の断面を有する補強材を嵌装し、上記押出形材同士の上記端面間に沿って、上記補強材に達する長さの摩擦ピンと表面抑え部とを有する工具により摩擦攪拌溶接を施し、更に、幅方向に隣接する上記押出形材同士の長手方向に沿う側面間に沿って、上記摩擦攪拌溶接を連続して施すことにより、上記押出形材同士の端面間および側面間を接合すると共に、端面間においては上記補強材をも併せて接合する、ことを特徴とする。
【0007】
これによれば、補強材を嵌装するのみの仮接合状態で、長手方向に隣接する各押出形材の端面に沿って摩擦攪拌溶接が容易に行えるので、事前の加工や部品類を不要とする。また、上記溶接はアルミ合金を固相状態で攪拌し凝固させると共に、結合材が冷し金としても機能するため、従来の溶接における熱影響部が形成されにくくなる。更に、前記端面間では、上記溶接により形成させる溶着線の深さ(溶着部)が補強材内にまで及ぶことにより、一対の押出形材と補強材の3者を同時に溶着でき、高い強度を接合面に沿って形成することができる。
しかも、幅方向に隣接する押出形材同士の長手方向に沿う側面間にも上記溶接が施されるため、長手および幅方向に沿って配置された多数の押出形材における長手方向の端面が、千鳥状、階段状、または市松模様のパターンに配列されても、これらの各端面と共に長手方向に沿う側面間も連続して摩擦攪拌溶接することができる。加えて、接合面に沿って平坦な溶着線となるため、後加工も殆んど不要となる。
【0008】
尚、上記押出形材の端面とは、係る押出形材の押出し方向と直角又は任意の角度で交差する端面を指す。また、本明細書において、押出形材の長手方向とはその押出方向と平行な方向を、幅方向とはその押出方向に直交する方向を指称する
更に、摩擦攪拌溶接(フリクション・スター・ウェルディング)の具体的な説明は追って行うが、その原理については例えば特表平9−508073号公報を参照されたい
【0009】
また、前記補強材が、前記中空部又は半中空部と略相似形の中空又は半中空断面であると共に、その中空部又は半中空部内にウェブ又はリブを有する、押出形材の接合方法(請求項2)も含まれる
これによれば、補強材自体の剛性を高められ、上記摩擦攪拌溶接の際における押圧力に耐え得ると共に、形材の端面間と共に補強材をも併せて接合した場合には、該接合後における接合部全体の強度を一層高く安定したものとできる
【0010】
尚、補強材は、アルミの押出形材又は曲げ加工材を用いるのが望ましいが、これに限らず型鋼や鋼板、或いは銅板の曲げ加工材を用いることも可能である。
【0011】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1は、本発明の前提となる参考形態に関し、図1(A)に示すように、左右に隣接する一対の押出形材2,2の端面4に沿って、摩擦攪拌溶接による溶着線8にて接合した構造1と、これに用いる補強材5を示す。
各押出形材2は、アルミ製で偏平な矩形断面を有し、ウェブ3aを挟んで一対の中空部3を図示で前後方向に形成している。また、補強材5は、各中空部3と相似形の断面を有し、矩形の中空部6を形成する。且つ、補強材5もアルミ製の押出形材からなる。尚、上記各アルミには、例えばアルミニウム合金JIS;A6063−T5又はT6が適用される。
【0012】
各押出形材2は、その長手方向と直角の端面4同士が当接するように対向し、図1(B)に示すように、両者の各中空部3,3間に跨って補強材5がそれぞれ左右に半分ずつ嵌装されている。そして、図1(C)に示すように、各形材2の上壁2aの端面4に沿って上記溶接線8の溶着部9が、上壁2aの厚さ相当分まで進入して一対の形材2同士を接合している。
尚、摩擦攪拌溶接の条件によっては、図1(D)に示すように、溶接線8の溶着部9を補強材5における上壁7の内部にまで進入させることもできる。この接合構造1′によれば、補強材5は一対の形材2を仮接合するだけでなく、溶接中はそのバックアップ材として機能すると共に、上記溶接後においても各形材2と強固に接合させることができる。
【0013】
前記参考形態の摩擦攪拌溶接について、図2により説明する。図2(A)及び(a)に示すように、予め各形材2内に跨って補強材5を嵌装し、互いに当接する端面4,4上に、工具10をセットする。この工具10は、工具鋼からなり、回転円筒体12と、その底面であって緩く湾曲して凹んだ表面抑え部14の中心から同軸にて垂下する摩擦ピン16とからなる。この摩擦ピン16の周面には、図示しないネジ状の小さな摩擦攪拌翼が形成されている。
そして、図示のように上記円筒体12と摩擦ピン16の中心軸を、各形材2の端面4,4間に沿ってやや斜めにした状態で、図示しないモータにより工具10を回転させると共に、端面4,4間に向けて下降させる。上記工具10の回転速度は、1000〜10000rpmの範囲内で適宜選択される。尚、形材2同士は予め互いに長手方向に移動しないように拘束され、その上壁2aの厚さは1.5ミリで、補強材5の上壁7の厚さは5ミリである。
【0014】
次いで、図2(B)及び(b)に示すように、工具10を各形材2に対し垂直方向に押圧し、上記表面抑え部14全体が上壁2aの表面に達するまで摩擦ピン16を押し込む。この状態で、工具10をその傾斜した向きと反対方向の図2(b)で左方に移動させる。この送り速度は、0.2〜2メートル/分の範囲内で適宜選択される。
この工具10の回転と移動に伴って、端面4付近の各上壁2aを形成するアルミは上記摩擦ピン16により加熱され可塑化されると共に、端面4間を挟んで左右の形材2,2間において水平及び垂直方向に流動化される。また、流動化されたアルミは、上記抑え部14により垂直方向(表面方向)の流動に対し一定の圧力を与えられると共に、接合部の表面付近から外部に飛散することを阻止される。
【0015】
そして、図2(C)に示すように、工具10が通過した後において、流動化されたアルミは流動化状態から固化して前記溶着部9となる。該溶着部9の表面は、表面抑え部14により、その直径の幅相当分が僅かに凹むが、端面4,4間に沿って連続し、且つ表面が平らな前記溶着線8となる。尚、溶着部9内には、上記抑え部14の存在により空気の巻き込みが生じないので、空孔が形成されない。また、補強材5は冷し金としても機能するので、溶着線8の付近に広い幅の熱影響部が形成されるのを抑制する作用も有する。
この接合方法によれば、拘束された形材2,2の端面4間を高速度で摩擦攪拌溶接するのみで、両形材2を溶着部9により強固に且つ密封性を以って接合できる。しかも、従来のようにその付近に熱影響部を形成しにくいので、高く安定した接合品質を提供できる。また、溶着線8の表面は平坦であるため、研削等の後処理工程を殆んど要しない。且つ、事前の作業も各形材2間に補強材5を嵌装し、且つ両形材2を拘束するだけで済む。
【0016】
尚、前記摩擦ピン16の軸方向の長さを補強材5に達するようにすることで、図1(D)に示したように、溶着部9の深さを補強材5の上壁7内にまで進入させることもできる。この場合、形材2の中空部3,3に挟まれたウェブ3aの直上では、補強材5が存在しないが、該ウェブ3aが位置するので連続した摩擦攪拌溶接が行える。また、摩擦ピン16の長さを、上壁2aの板厚より0.1〜0.3mm短くすると、丁度上壁2aの板厚全体に渉り溶着して接合することができる。
前記工具10における摩擦ピン16を挿入、回転し、これを表面抑え部14と共に所定の位置に保持するには、形材2の材質や工具10の各部分の寸法によるが、数10kgf〜1000kgf程度の押圧力を工具10に対し下向きに加える必要がある。しかし、補強材5を前記のように用いることで、この押圧力に耐えて形材2の変形を防ぎ、正確で支障のない接合作業を行うことができる。
尚、図1において形材2の側壁2b及び下壁2cに対しても、端面4間に沿って摩擦攪拌溶接を施すこともでき、高い強度と密封性を有する接合部にし得る。
【0017】
以下に示す形態においては、摩擦ピン16の直径は4mm、抑え部14の直径は10mmとした工具10を用いた。
図3は、異なる参考形態の接合方法と得られる接合構造に関する。尚、以下において前記形態と共通する部分等には同じか同様の符号を用いるものとする。
図3(A)は、押出形材22とこれに用いる補強材30,34の断面を示す。押出形材22は、偏平な矩形断面を有し、且つ一対の中空部24を形成している。また、図示で左右の幅方向の側面には、互いに嵌合し合う先広凸条26と底広凹溝28を長手方向に沿って一体に有する。また、補強材30は、各中空部24と相似形の外形断面を有するアルミ製の押出形材で、一対の中空部32と1つのウェブ33を形成する。他方の補強材34も同じ外形断面を有し、3組のやや小さな中空部36と2つのウェブ37を形成している。
【0018】
先ず、図3(B)に示すように、2つの押出形材22をその先広凸条26と底広凹溝28を嵌合させて幅方向に接続する。次に、図示で奥行き方向となる長手方向の端部の中空部24内に、補強材30,34を半分ずつ嵌装させる。更に、各押出形材22の長手方向の端部に、別途に幅方向に互いに接続した一対の押出形材22を対向させ、それらの各中空部24内に上記補強材30,34の突出する半分をそれぞれ嵌装させる。この状態で、2対の形材22を長手方向に対して拘束し、各形材22の上壁23の端面間に沿って、前記摩擦攪拌溶接を施す。その結果、図示のように、上壁23の端面間に沿って溶着部9とその表面が平坦な溶着線8が連続して形成された接合構造20を得ることができる。
この接合方法と接合構造20は、前記構造1と同様の利点を有すると共に、複数の形材22をその長手及び幅方向に自由に接合でき、所望の広さの床や壁等を強固且つ体裁良く形成できる。尚、幅方向に接続された一対の形材22の嵌合部(26,28)には補強材30が位置していないが、各形材22における前記凸条26や凹溝28を形成する縦壁が位置しているので、補強材30がある位置と同様に連続した溶着線8を形成できる。また、補強材30,34は、上記溶接時の工具10の押圧力に応じて何れか一方が適宜選択して使用される。
【0019】
図3(C)は、異なる押出形材42とこれに用いる補強材50等の断面を示す。押出形材42は平坦な上壁43の下側に一対の半中空部44を有し、幅方向の中央に略逆T形のリブ45と両端に対称に略L形のリブ46を一体に有する。各リブ46の外側面には互いに嵌合し合う先広凸条47と底広凹溝48が長手方向に沿って一体に形成されている。また、補強材50はアルミ製の押出形材からなり、上記半中空部44と略相似形の断面を有し、上壁51とその下側の幅方向の中央に略逆T形の長いリブ53と両端に短い一対のリブ52を有する。補強材55も同様の断面を有し、上壁56とその下側の中央に長いリブ58と両端に短い一対のリブ57を有する。更に、補強材60は上壁61を含む矩形断面を有し、左右一対の中空部62と1つのウェブ63を内設し、且つ幅方向の両端の下隅に段部64を形成している。加えて、補強材65は、上壁66の下側の両端に一対のクランク形のリブ67を対称に有し、中央に短いリブ68を垂下させている。
【0020】
先ず、図3(D)に示すように、2つの押出形材42をその先広凸条47と底広凹溝48を嵌合させて幅方向に接続する。次に、図示で奥行き方向となる長手方向の端部の各半中空部44内に、補強材50,55,60,65を半分ずつ嵌装させる。更に、各押出形材42の長手方向の端部に、別途に幅方向に互いに接続した一対の押出形材42を対向させ、それらの各半中空部44内に上記補強材50等の突出する半分をそれぞれ嵌装させる。尚、補強材50,55では、その長いリブ53,58が形材42の下端と同レベルになり、補強材60の下壁61aが形材42の下端と同レベルになる。また、補強材65の左右のリブ67は、形材42の各リブ45,46に抱持される。尚、中央の小さなリブ68は増強用である。
【0021】
この状態で、2対の形材42をそれらの長手方向に対して拘束し、各形材42の上壁43の長手方向と交差する端面間に沿って、前記摩擦攪拌溶接を施す。その結果、図示のように、上壁43の端面間に沿って溶着部9とその平坦な溶着線8が形成された接合構造40を得ることができる。
この接合方法と接合構造40は、前記構造20と同様の効果を有すると共に、形材42や補強材50,55,65を半中空形材としたので、使用するアルミ材料を節約でき、構成される例えば床や壁体を全体として軽量化することもできる。
尚、各補強材50,55,60,65は個別に押出形材42に嵌装できるので、実際には上記のように併用することは要しない。
【0022】
図4は、前記押出形材2を用いた別の接合方法と得られる接合構造に関する。
図4(A)は、複数の形材2を図示で左右の長手方向に対し互いに幅(垂直)方向の寸法が半分ずつずれて接合する参考形態を示す平面図である。
この場合、図示で左右に互いに連通する中空部3,3間に前記補強材5を嵌装しても良い。また、図示で下方に示すように一対の補強材5にてスリット5bを設けて結合したユニット補強材5aを形成し、右側の形材2のウェブ3aをその端面4から所要長さ切除して、左右の形材2間に嵌装しても良い。図4(a)は、上記各形材2の上壁2aをその端面4間に沿って、前記摩擦攪拌溶接を施し、その溶着線8(9)を形成した接合構造を示す。
【0023】
図4(B),(b)は、本発明による実施の形態に関する
図4(B)に示すように、複数の押出形材2′を互いに長手方向に千鳥状にずらして接合する状態とする。尚、各形材2′は前記ウェブ3aがなく1つの幅広い中空部3を内設している。図示で左右の長手方向に沿って各端面4を当接させた各形材2′間に跨って前記補強材34と同様な複数のウェブを有する中空の補強材5cを嵌装する。各補強材5cは図示のように、千鳥状に配置される。
図4(b)に示すように、上記各形材2′の上壁2aをその端面4間に沿って、前記摩擦攪拌溶接を施し、且つ、図示で垂直方向に隣接する各形材2′の側壁(側面)2b間にも上記溶接を連続して施す。この結果、各々の溶着線8を凹凸状に形成した接合構造が得られる
【0024】
更に、摩擦攪拌溶接される端面4は、図4(C)に示す参考形態のように、左右の長手方向に沿う各形材2′の端面4aが傾斜している接合構造においても、各中空部3内に嵌装する補強材5cを上記傾斜に応じてずらすことにより、斜めの摩擦攪拌溶接(8)を容易に施すこともできる。
或いは、図4(D)に示す参考形態のように、左右の長手方向に沿う各形材2′の直角な端面4と傾斜する端面4aが連続して混在する接合構造にても、各中空部3内に嵌装する補強材5cを各端面4,4aの位置に応じて所定の範囲内に配置することにより、各端面4,4aに沿って摩擦攪拌溶接(8)を容易に施すこともできる。
【0025】
図5は、更に別異の参考形態の接合方法と得られる接合構造に関する。
図5(A)に示す押出形材70は、緩く湾曲した上壁71と、一対のウェブ73と、大小の中空部72,74を一体にした蒲鉾状断面を有する。形材70同士をその長手方向に沿って接合する場合、図5(B)に示すように、各中空部72,74と外形が相似形で断面略コ形状の大小の補強材75,77を各中空部72,74間に跨って嵌装させる。補強材75の中央には増強用のリブ78が垂下している。
そして、長手方向に沿った各形材70の上壁71の端面間に、図示で左端側から前記工具10を接近させ、その摩擦ピン16を回転しつつ進入させる。同時に工具10を上壁71の湾曲面に沿って所定の角度に維持しつつ、図中の矢印のように右端側に移動させる。これにより、緩く湾曲した上壁71の端面間においても摩擦攪拌溶接を施せ、その溶着部9を含む溶着線8により、形材70同士を長手方向に接合することができる。
【0026】
また、図5(C)に示すように、正六角形の断面を呈する中空形材78にも適用することができる。この形材78同士をその長手方向に沿って接合する場合、図5(D)に示すように、その中空部78aと断面が相似形で厚肉の押出形材からなる補強材79を、各中空部78a間に跨って嵌装する。そして、互いに当接する各形材78の端面間における少なくとも平行な2辺において、前記工具10を用いる摩擦攪拌溶接8(9)を施すことにより、形材78同士を長手方向に沿って接合することができる。尚、上記溶接を形材78の端面間の6辺全てに施すと、高い強度と優れた密封性を有する接合構造にすることができる。
【0027】
本発明は以上に説明した各形態に限定されるものではない。
例えば、本発明に用いる押出形材には、中空部又は半中空部の一方或いは双方を形成し、且つ断面の外形に直線の辺や緩く湾曲した辺があれば、前記形態以外の正多角形、変形多角形、又は異形の断面を有する形材も含まれる。
また、補強材も上記押出形材の中空部又は半中空部内に緊密に嵌装可能で、且つその端面間に沿う前記上壁等を有すれば、上記中空部等と正確な相似形断面のものでなくても良い。従って、押出形材に限らず、同様の材質の板材を曲げやプレス加工したり、或いは同様の素材を冷間鍛造や精密鋳造によって成形することも可能である。更に、接合される押出形材と別のアルミ材料を使用したり、各種の鋼材やステンレス鋼、或いは銅材やチタン材を適用することも可能である。且つ、前記溶接後において、その溶着部が補強材に達しない場合には、補強材を各形材の中空部内から抜き出すこともできる。
尚、長手方向の寸法が短い押出形材を接合する場合には、その形材の中空部又は半中空部を貫通してその両端から突出する補強材を用いることもできる。
【0028】
【発明の効果】
以上において説明した本発明の接合方法によれば、長手方向に整列され且つ拘束された押出形材の各端面間を高速度で摩擦攪拌溶接するのみで、両形材を溶着線(部)により強固に接合することができる。しかも、従来のようにその付近に広い範囲の熱影響部を形成しにくいので、高く安定した接合構造を提供できる。また、溶着部の表面の溶着線は平坦であるため、研削等の後処理工程を殆ど要しない。且つ、事前の作業も各形材間に補強材を嵌装し、且つ両形材を拘束するだけで済むので作業工数も少なくできる。更に、直線状の端面間に限ぎらず、千鳥状、ジグザグ状等の各種の接合部に容易に適用することができる。
また、請求項の発明によれば、補強材自体を薄肉化して強度を高めると共に、摩擦攪拌溶接に伴う押圧力や溶接後の外力にも抵抗することができる。
【図面の簡単な説明】
【図1】(A)は本発明の前提となる参考形態の接合構造の一形態とこれに用いる結合材の斜視図、(B)は(A)中のB−B断面図、(C)は(B)中の一点鎖線部分Cの拡大図、(D)は異なる形態の(C)と同様な拡大断面図。
【図2】(A)〜(C)と(a),(b)は図1の接合構造を得るための参考形態の接合方法の各工程を示す概略図。
【図3】(A)と(C)は異なる参考形態の押出形材と補強材の断面図、(B)と(D)はこれらを用いた接合構造を示す断面図。
【図4】(A),(a),(C),(D)は別の参考形態の接合方法の準備状態などを示す部分平面図、(B),(b)は本発明による実施の形態を示す接合前および接合後の状態を示す部分平面図。
【図5】(A)と(C)は別異の参考形態の押出形材の断面図、(B)と(D)はこれらを用いた接合構造を示す断面図。
【図6】(A)〜(C)は従来の接合構造を示す部分側面図又は断面図。
【符号の説明】
2,2′………………………押出形材
3………………………………中空部
4………………………………端面
5,5c………………………補強材
6………………………………中空部(補強材の中空部)
10……………………………工具
14……………………………表面抑え部
16……………………………摩擦ピン
33,37,63………………ウェブ
44……………………………半中空部
53,58,68……………リブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for joining extruded profiles made of an aluminum alloy (hereinafter referred to as aluminum) having a hollow portion or a semi-hollow portion.
[0002]
[Prior art]
Since the extruded shape of aluminum can be freely designed in cross-sectional shape, the shape parts that can be fitted to each other are formed in advance on the side surfaces along the extrusion (longitudinal) direction, and the side surfaces of multiple shapes can be easily formed. Can be linked to. However, in order to connect the end faces of a plurality of profiles along the longitudinal direction of the extruded profile, the device in the cross-sectional shape cannot be utilized.
For this reason, in order to join a plurality of extruded shapes at their end faces, it is necessary to use welding, bolts / nuts, screws or the like separately.
[0003]
For example, as shown in FIG. 6 (A), each end face 86 in the longitudinal direction of a pair of extruded profiles 80 having a hollow portion 84 is brought into contact with each other, and each upper wall 81 of each profile 80 on each end face 86 and each Grooves 87 are formed across the lower wall 82, and MIG welding or the like is performed to join them with the weld beads W.
Further, as shown in FIG. 6B, a bonding material 95 having a cross section substantially similar to the hollow portion 93 is fitted across the end surfaces 94 in the longitudinal direction of the hollow portion 93 in the pair of extruded shape members 90. . Then, the end faces 94 of the respective profiles 90 are brought into contact with each other, and a plurality of bolts 97 are passed from above the respective upper walls 91 through the coupling material 95 and its hollow portion 96 to the lower portion of the lower wall 92, The nut 98 is also fastened.
Further, as shown in FIG. 6 (C), a plurality of extruded profiles 90 in which a binding material 95 is fitted between the end faces 94 in the same manner as described above, respectively, from a plurality of upper walls 91 and lower walls 92. The countersunk screw 99 is screwed into the hollow portion 96 of the binding material 95 and joined.
[0004]
[Problems to be Solved by the Invention]
However, in the case of the joining by welding shown in FIG. 6A, the weld bead W and the vicinity of the end face 86 of the profile 80 have high strength, but a heat-affected zone 88 due to welding heat is formed in the adjacent portion. The The heat-affected zone 88 has a lower strength than other portions.
Further, since the weld bead W protrudes, it is necessary to grind the top portion, and the bead W itself varies depending on the skill of the operator.
Furthermore, in the case of fastening the bolt 97 and the nut 98 in FIG. 6B, it is necessary to accurately drill many bolt holes. In addition, the bolt 97 and the nut 98 protrude from the surface of each shape member 90, and there is a problem that the number of parts and the number of processing / joining steps increase.
[0005]
6 (C), the surface of the profile 90 is flat, but prior work such as drilling a screw hole, forming a countersunk portion, and cutting a female screw (tap) is required. In addition, the bonding strength between the shape members 90 was insufficient.
The present invention solves the above-described problems in the prior art, minimizes the number of prior processing steps, does not use bolts and the like, does not easily form a heat-affected zone by welding, and has a flat and stable strength. It is an object of the present invention to provide a method for joining extruded profiles that forms a joining surface.
[0006]
[Means for Solving the Problems]
In the present invention, the extruded shape member has a hollow portion or a semi-hollow portion, and is temporarily joined with a reinforcing material fitted over these, and friction stir along the end surfaces and the side surfaces of the extruded shape members. Inspired by welding.
That is, the extruded shape joining method of the present invention relates to a method for joining extruded shapes made of a plurality of aluminum alloys having a hollow portion or a semi-hollow portion. Cross sections between the hollow portions or the semi-hollow portions across the hollow portions or between the semi-hollow portions in the vicinity of the end surfaces of the extruded shapes adjacent to each other in the longitudinal direction are brought into contact with each other. It fitted a reinforcing member having, along between the end surface between the extruded profile, performing friction stir welding by the tool and a friction pin and the surface restraining portion of the length reaching the reinforcement, furthermore, in the width direction along between the sides along the longitudinal direction between the adjacent the extruded profile, by performing in succession the friction stir welding, the joining between the end surfaces and between the side surface between the extruded profile, in between the end faces In addition to the above reinforcing material Joined Te, characterized in that.
[0007]
According to this, friction stir welding can be easily performed along the end face of each extruded profile adjacent in the longitudinal direction in a temporarily joined state in which only the reinforcing material is fitted, so that prior processing and parts are unnecessary. To do. In addition, the above-mentioned welding stirs and solidifies the aluminum alloy in a solid state, and the bonding material functions as a cooling metal, so that a heat-affected zone in conventional welding is hardly formed. Furthermore, between the end faces, the depth of the weld line formed by the welding (welded portion) extends into the reinforcing material, so that the three members of the extruded shape member and the reinforcing material can be welded simultaneously, and high strength is achieved. It can be formed along the joint surface.
Moreover, since the welding is also performed between the side surfaces along the longitudinal direction of the extruded shapes adjacent to each other in the width direction, the end faces in the longitudinal direction of the numerous extruded shapes arranged along the length and the width direction are Even when arranged in a staggered, stepped, or checkered pattern, friction stir welding can also be performed continuously between the side surfaces along the longitudinal direction together with each of these end surfaces. In addition, since the weld line is flat along the joint surface, almost no post-processing is required.
[0008]
In addition, the end surface of the extruded profile refers to an end surface that intersects the extrusion direction of the extruded profile at a right angle or an arbitrary angle. In the present specification, the longitudinal direction of the extruded shape member refers to a direction parallel to the extrusion direction, and the width direction refers to a direction orthogonal to the extrusion direction .
Further, specific description of friction stir welding (friction star welding) will be made later. For the principle, refer to, for example, Japanese Patent Publication No. 9-508073 .
[0009]
Further, the reinforcing material has a hollow or semi-hollow section substantially similar to the hollow part or semi-hollow part, and has a web or a rib in the hollow part or semi-hollow part. Item 2) is also included .
According to this, the rigidity of the reinforcing material itself can be increased, and can withstand the pressing force at the time of the friction stir welding, and when the reinforcing material is joined together between the end faces of the profile, The strength of the entire joint can be made higher and more stable .
[0010]
The reinforcing material is preferably an extruded aluminum material or a bending material, but is not limited to this, and a bending material such as a die steel, a steel plate, or a copper plate can also be used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 relates to a reference form as a premise of the present invention, and as shown in FIG. 1 (A) , a welding wire 8 by friction stir welding along the end surfaces 4 of a pair of extruded shapes 2 and 2 adjacent to the left and right. 1 shows a structure 1 joined together and a reinforcing material 5 used therefor.
Each extruded shape member 2 is made of aluminum and has a flat rectangular cross section, and a pair of hollow portions 3 are formed in the front-rear direction in the drawing with the web 3a interposed therebetween. The reinforcing member 5 has a cross section similar to each hollow portion 3 and forms a rectangular hollow portion 6. The reinforcing material 5 is also made of an extruded shape made of aluminum. For example, aluminum alloy JIS; A6063-T5 or T6 is applied to each aluminum.
[0012]
Each extruded shape member 2 is opposed so that the end faces 4 perpendicular to the longitudinal direction come into contact with each other, and as shown in FIG. Each half is fitted to the left and right. Then, as shown in FIG. 1C, the welded portion 9 of the weld line 8 enters the portion corresponding to the thickness of the upper wall 2a along the end face 4 of the upper wall 2a of each profile 2 The shape members 2 are joined together.
Depending on the friction stir welding conditions, as shown in FIG. 1 (D), the welded portion 9 of the welding wire 8 can be advanced into the upper wall 7 of the reinforcing member 5. According to this joining structure 1 ', the reinforcing member 5 not only temporarily joins the pair of profiles 2 but also functions as a backup material during welding, and firmly joins each profile 2 even after the welding. Can be made.
[0013]
The friction stir welding of the reference embodiment will be described with reference to FIG. As shown in FIGS. 2 (A) and 2 (a), the reinforcing material 5 is fitted in advance in each shape member 2, and the tool 10 is set on the end surfaces 4 and 4 that are in contact with each other. The tool 10 is made of tool steel, and includes a rotating cylindrical body 12 and a friction pin 16 that hangs coaxially from the center of the surface restraining portion 14 that is gently curved and recessed at the bottom surface thereof. On the peripheral surface of the friction pin 16, a small screw-shaped friction stirrer blade (not shown) is formed.
And while rotating the tool 10 with the motor which is not shown in figure in the state which made the central axis of the said cylindrical body 12 and the friction pin 16 a little slanted between the end surfaces 4 and 4 of each profile 2, Lower toward the end faces 4 and 4. The rotation speed of the tool 10 is appropriately selected within a range of 1000 to 10000 rpm. In addition, the shape members 2 are previously restrained so as not to move in the longitudinal direction, the thickness of the upper wall 2a is 1.5 mm, and the thickness of the upper wall 7 of the reinforcing member 5 is 5 mm.
[0014]
Next, as shown in FIGS. 2 (B) and 2 (b), the tool 10 is pressed against each profile 2 in the vertical direction, and the friction pin 16 is moved until the entire surface restraining portion 14 reaches the surface of the upper wall 2a. Push in. In this state, the tool 10 is moved to the left in FIG. 2B in the direction opposite to the inclined direction. This feed rate is appropriately selected within the range of 0.2 to 2 meters / minute.
As the tool 10 rotates and moves, the aluminum forming the upper walls 2a near the end face 4 is heated and plasticized by the friction pins 16, and the left and right profile members 2, 2 are sandwiched between the end faces 4. Fluidized in the horizontal and vertical directions. Further, the fluidized aluminum is given a constant pressure against the flow in the vertical direction (surface direction) by the restraining portion 14 and is prevented from scattering outside from the vicinity of the surface of the joint portion.
[0015]
Then, as shown in FIG. 2C, after the tool 10 passes, the fluidized aluminum is solidified from the fluidized state and becomes the welded portion 9. The surface of the welded portion 9 becomes the weld wire 8 which is continuous along the end faces 4 and 4 and has a flat surface, although the portion corresponding to the width of the diameter is slightly recessed by the surface restraining portion 14. In addition, in the welding part 9, since the entrainment of air does not arise by presence of the said suppression part 14, a void | hole is not formed. Further, since the reinforcing material 5 also functions as a cooling metal, it has an action of suppressing the formation of a heat affected zone having a wide width in the vicinity of the welding wire 8.
According to this joining method, both the shape members 2 can be joined firmly and hermetically by the welded portion 9 only by friction stir welding between the end faces 4 of the constrained shapes 2 and 2 at a high speed. . Moreover, since it is difficult to form the heat affected zone in the vicinity thereof as in the prior art, it is possible to provide high and stable bonding quality. Moreover, since the surface of the welding wire 8 is flat, a post-processing step such as grinding is hardly required. In addition, the prior work can be performed only by fitting the reinforcing material 5 between the respective shape members 2 and restraining both the shape members 2.
[0016]
By making the length of the friction pin 16 in the axial direction reach the reinforcing member 5, as shown in FIG. 1 (D), the depth of the welded portion 9 is set in the upper wall 7 of the reinforcing member 5. It can also be made to approach. In this case, the reinforcing material 5 does not exist immediately above the web 3a sandwiched between the hollow portions 3 and 3 of the profile 2, but since the web 3a is located, continuous friction stir welding can be performed. Further, if the length of the friction pin 16 is 0.1 to 0.3 mm shorter than the plate thickness of the upper wall 2a, it can be just welded and joined to the entire plate thickness of the upper wall 2a.
Depending on the material of the profile 2 and the dimensions of each part of the tool 10, the friction pin 16 in the tool 10 is inserted and rotated and held together with the surface restraining portion 14. Must be applied downward with respect to the tool 10. However, by using the reinforcing member 5 as described above, it is possible to withstand this pressing force and prevent the shape member 2 from being deformed, and perform an accurate and trouble-free joining operation.
In FIG. 1, the side wall 2b and the lower wall 2c of the profile 2 can also be subjected to friction stir welding along the end faces 4 to provide a joint having high strength and sealability.
[0017]
In the embodiment shown below, the tool 10 was used in which the friction pin 16 had a diameter of 4 mm and the holding portion 14 had a diameter of 10 mm.
FIG. 3 relates to a joining method of different reference forms and a joining structure obtained. In the following description, the same or similar reference numerals are used for parts that are common to the above-described embodiments.
FIG. 3A shows a cross section of the extruded shape member 22 and the reinforcing members 30 and 34 used therefor. The extruded shape member 22 has a flat rectangular cross section and forms a pair of hollow portions 24. In addition, on the side surfaces in the left and right width direction in the figure, a wide protruding ridge 26 and a wide bottom concave groove 28 that fit together are integrally provided along the longitudinal direction. Further, the reinforcing member 30 is an extruded shape member made of aluminum having an outer cross section similar to each hollow portion 24, and forms a pair of hollow portions 32 and one web 33. The other reinforcing member 34 also has the same outer cross section, and forms three sets of slightly small hollow portions 36 and two webs 37.
[0018]
First, as shown in FIG. 3 (B), the two extruded shape members 22 are connected in the width direction by fitting the wide ridge 26 and the wide bottom groove 28. Next, the reinforcing members 30 and 34 are half-fitted into the hollow portion 24 at the end in the longitudinal direction, which is the depth direction in the figure. Further, a pair of extruded profiles 22 separately connected to each other in the width direction is opposed to the longitudinal ends of the extruded profiles 22, and the reinforcing members 30 and 34 protrude into the hollow portions 24. Each half is fitted. In this state, the two pairs of profiles 22 are constrained with respect to the longitudinal direction, and the friction stir welding is performed between the end faces of the upper wall 23 of each profile 22. As a result, as shown in the drawing, it is possible to obtain the joint structure 20 in which the weld portion 9 and the weld line 8 having a flat surface are continuously formed between the end faces of the upper wall 23.
The joining method and the joining structure 20 have the same advantages as the structure 1 described above, and can freely join a plurality of profiles 22 in the longitudinal direction and the width direction, and can firmly and smoothly form a floor or wall having a desired width. Can be formed. Although the reinforcing member 30 is not located at the fitting portions (26, 28) of the pair of shape members 22 connected in the width direction, the ridge 26 and the groove 28 are formed in each shape member 22. Since the vertical wall is located, the continuous welding wire 8 can be formed similarly to the position where the reinforcing material 30 is located. Further, either one of the reinforcing members 30 and 34 is appropriately selected and used according to the pressing force of the tool 10 at the time of welding.
[0019]
FIG. 3C shows a cross section of a different extruded shape member 42 and a reinforcing member 50 and the like used therefor. The extruded shape member 42 has a pair of semi-hollow portions 44 below the flat upper wall 43, and a substantially inverted T-shaped rib 45 at the center in the width direction and a substantially L-shaped rib 46 symmetrically at both ends. Have. On the outer surface of each rib 46, a wide protruding ridge 47 and a wide concave groove 48 that fit together are integrally formed along the longitudinal direction. The reinforcing member 50 is made of an aluminum extruded shape, has a cross section substantially similar to that of the semi-hollow portion 44, and has a substantially inverted T-shaped long rib at the center in the width direction of the upper wall 51 and the lower side thereof. 53 and a pair of short ribs 52 at both ends. The reinforcing member 55 has a similar cross section, and has an upper wall 56, a long rib 58 at the lower center, and a pair of short ribs 57 at both ends. Further, the reinforcing member 60 has a rectangular cross section including the upper wall 61, and includes a pair of left and right hollow portions 62 and one web 63, and a step portion 64 is formed at the lower corners of both ends in the width direction. In addition, the reinforcing member 65 has a pair of crank-shaped ribs 67 symmetrically at both lower ends of the upper wall 66, and a short rib 68 is suspended in the center.
[0020]
First, as shown in FIG. 3 (D), two extruded shape members 42 are connected in the width direction by fitting their wide ridges 47 and bottom wide grooves 48. Next, the reinforcing members 50, 55, 60, and 65 are half-fitted into each half-hollow portion 44 at the end portion in the longitudinal direction, which is the depth direction in the drawing. Further, a pair of extruded shapes 42 that are separately connected to each other in the width direction are opposed to end portions in the longitudinal direction of the respective extruded shapes 42, and the reinforcing material 50 and the like protrude into the respective semi-hollow portions 44. Each half is fitted. In the reinforcing members 50 and 55, the long ribs 53 and 58 are at the same level as the lower end of the shape member 42, and the lower wall 61 a of the reinforcing member 60 is at the same level as the lower end of the shape member 42. Further, the left and right ribs 67 of the reinforcing member 65 are held by the ribs 45 and 46 of the shape member 42. The small rib 68 at the center is for reinforcement.
[0021]
In this state, the two pairs of profiles 42 are constrained with respect to their longitudinal directions, and the friction stir welding is performed along the end surfaces intersecting the longitudinal direction of the upper wall 43 of each profile 42. As a result, as shown in the drawing, it is possible to obtain the joint structure 40 in which the welded portion 9 and the flat weld line 8 are formed between the end faces of the upper wall 43.
The joining method and the joining structure 40 have the same effects as the structure 20 described above, and the shape member 42 and the reinforcing members 50, 55, 65 are semi-hollow shapes, so that the aluminum material to be used can be saved and configured. For example, the floor and wall can be lightened as a whole.
In addition, since each reinforcing material 50, 55, 60, 65 can be individually fitted to the extruded shape member 42, it is not necessary to use them together as described above.
[0022]
FIG. 4 relates to another joining method using the extruded profile 2 and a joining structure obtained.
FIG. 4A is a plan view showing a reference form in which a plurality of shape members 2 are joined to each other with the width (perpendicular) direction dimension shifted from each other by half with respect to the left and right longitudinal directions.
In this case, the reinforcing member 5 may be fitted between the hollow portions 3 and 3 that communicate with each other in the drawing. Further, as shown in the lower part of the figure, a unit reinforcing member 5a is formed by providing a slit 5b with a pair of reinforcing members 5 to form a unit reinforcing member 5a, and the web 3a of the right shape member 2 is cut from the end face 4 to a required length. Alternatively, it may be fitted between the left and right shape members 2. FIG. 4A shows a joint structure in which the friction stir welding is performed on the upper wall 2a of each shape member 2 along the end face 4 to form the weld line 8 (9).
[0023]
4B and 4B relate to an embodiment according to the present invention .
As shown in FIG. 4 (B), it shall be the state of bonding by shifting a plurality of extruded shape members 2 'in the longitudinal direction in a staggered manner to each other. Each shape 2 'does not have the web 3a, and has one wide hollow portion 3. In the drawing, a hollow reinforcing material 5c having a plurality of webs similar to the reinforcing material 34 is fitted between the shape members 2 'in which the end faces 4 are brought into contact with each other along the left and right longitudinal directions. As shown in the figure, the reinforcing members 5c are arranged in a staggered manner.
As shown in FIG. 4 (b) , the friction stir welding is performed on the upper wall 2a of each of the profiles 2 'along the end face 4, and the profiles 2' adjacent in the vertical direction in the drawing. also between the sidewall (side surface) 2b to facilities continuously the welding. As a result , a joining structure in which each welding wire 8 is formed in an uneven shape is obtained .
[0024]
Further, the end face 4 to be friction stir welded is also hollow in the joining structure in which the end face 4a of each shape 2 'along the left and right longitudinal directions is inclined as in the reference embodiment shown in FIG. By displacing the reinforcing member 5c fitted in the portion 3 according to the inclination, the oblique friction stir welding (8) can be easily performed.
Alternatively, as shown in the reference form shown in FIG. 4D, each hollow space can be formed even in a joint structure in which the right end face 4 and the inclined end face 4a of each shape 2 'along the left and right longitudinal directions are continuously mixed. Friction stir welding (8) is easily performed along each end surface 4, 4a by arranging the reinforcing member 5c fitted in the portion 3 within a predetermined range according to the position of each end surface 4, 4a. You can also.
[0025]
FIG. 5 relates to a joining method of still another reference form and a joining structure obtained.
An extruded shape member 70 shown in FIG. 5A has a bowl-shaped cross section in which a loosely curved upper wall 71, a pair of webs 73, and large and small hollow portions 72 and 74 are integrated. When joining the shape members 70 along the longitudinal direction, as shown in FIG. 5 (B), large and small reinforcing members 75 and 77 having a similar outer shape to the hollow portions 72 and 74 and having a substantially U-shaped cross section are provided. It fits between each hollow part 72,74. A reinforcing rib 78 hangs down from the center of the reinforcing member 75.
Then, the tool 10 is approached from the left end side in the figure between the end surfaces of the upper walls 71 of the respective profiles 70 along the longitudinal direction, and the friction pin 16 is rotated and entered. At the same time, while maintaining the tool 10 at a predetermined angle along the curved surface of the upper wall 71, the tool 10 is moved to the right end side as indicated by an arrow in the figure. Thereby, friction stir welding can be performed also between the end surfaces of the gently curved upper wall 71, and the shape members 70 can be joined in the longitudinal direction by the welding wire 8 including the welding portion 9.
[0026]
Further , as shown in FIG. 5C , the present invention can also be applied to a hollow shape member 78 having a regular hexagonal cross section. When joining the shape members 78 along the longitudinal direction, as shown in FIG. 5 (D), each of the reinforcing members 79 made of an extruded shape member having a cross section similar to the hollow portion 78a and a thick wall, Fit between the hollow portions 78a. Then, the shape members 78 are joined along the longitudinal direction by performing friction stir welding 8 (9) using the tool 10 on at least two parallel sides between the end faces of the shape members 78 that are in contact with each other. Can do. In addition, if the said welding is performed to all six sides between the end surfaces of the profile 78, it can be set as the junction structure which has high intensity | strength and the outstanding sealing performance.
[0027]
The present invention is not limited to the embodiments described above.
For example, the extruded profile used in the present invention forms one or both of a hollow part or a semi-hollow part, and if the outer shape of the cross section has a straight side or a loosely curved side, a regular polygon other than the above form Also included are profiles having modified polygonal or irregular cross-sections.
Further, if the reinforcing material can be tightly fitted in the hollow part or semi-hollow part of the extruded shape member and has the upper wall or the like extending between the end faces, the cross-section of the accurate shape of the hollow part etc. It doesn't have to be a thing. Therefore, it is possible to bend or press a plate material of the same material as well as the extruded shape, or to form the same material by cold forging or precision casting. Furthermore, it is also possible to use an aluminum material different from the extruded profile to be joined, or to apply various steel materials, stainless steel, copper material, or titanium material. And after the said welding, when the welding part does not reach a reinforcing material, a reinforcing material can also be extracted from the inside of the hollow part of each shape member.
In addition, when joining the extruded profile with a short dimension of a longitudinal direction, the reinforcing material which penetrates the hollow part or semi-hollow part of the profile and protrudes from the both ends can also be used.
[0028]
【The invention's effect】
According to the joining method of the present invention described above, both shapes are joined by welding wire (parts) only by friction stir welding at high speed between the end faces of the extruded shapes that are aligned and restrained in the longitudinal direction. It can be firmly joined. Moreover, since it is difficult to form a heat affected zone in a wide range in the vicinity thereof as in the prior art, a highly stable joining structure can be provided. Further, since the welding line on the surface of the welded portion is flat, a post-processing step such as grinding is hardly required. In addition, since it is only necessary to insert a reinforcing material between the shapes and restrain both shapes in advance, the number of work steps can be reduced . Further, the Kirigirazu between straight end faces, staggered, can be easily applied to various joints of the zig-zag shape or the like.
According to the invention of Motomeko 2, it is possible to to increase the strength of the reinforcing material itself thinned, also the resistance to the pressing force and the external force after welding due to friction stir welding.
[Brief description of the drawings]
FIG. 1A is a perspective view of one embodiment of a joining structure according to a reference embodiment as a premise of the present invention and a binding material used therefor, FIG. 1B is a cross-sectional view along BB in FIG. (D) is an enlarged sectional view similar to (C) in a different form.
FIGS. 2A to 2C are schematic views showing respective steps of a joining method of a reference form for obtaining the joining structure of FIG. 1; FIGS.
FIGS. 3A and 3C are cross-sectional views of an extruded shape member and a reinforcing material of different reference forms, and FIGS. 3B and 3D are cross-sectional views showing a joint structure using them.
[4] (A), (a), (C), (D) is a partial plan view showing a like readiness of the joining method of another reference embodiment, (B), (b) is preferred according to the invention The partial top view which shows the state before joining after joining which shows a form .
FIGS. 5A and 5C are cross-sectional views of extruded shapes of different reference forms, and FIGS. 5B and 5D are cross-sectional views showing a joining structure using them. FIGS.
6A to 6C are partial side views or cross-sectional views showing a conventional joining structure.
[Explanation of symbols]
2, 2 '..................... Extruded profile 3 ……………………………… Hollow part 4 ……………………………… End face 5, 5c …… ………………… Reinforcement 6 ……………………………… Hollow (Reinforcement hollow)
10 …………………………… Tool 14 …………………………… Surface restraint 16 ……………………………… Friction pins 33,37,63 ……… ……… Web 44 ……………………………… Semi-hollow part 53, 58, 68 …………… Rib

Claims (2)

中空部又は半中空部を有する複数のアルミニウム合金製の押出形材同士の接合方法に関し、各押出形材における端面同士および幅方向に隣接する押出形材における側面同士を当接させ、
長手方向に隣接する各押出形材における上記端面付近の中空部間又は半中空部間に跨って、この中空部又は半中空部と略相似形の断面を有する補強材を嵌装し、
上記押出形材同士の上記端面間に沿って、上記補強材に達する長さの摩擦ピンと表面抑え部とを有する工具により摩擦攪拌溶接を施し、
更に、幅方向に隣接する上記押出形材同士の長手方向に沿う側面間に沿って、上記摩擦攪拌溶接を連続して施すことにより
上記押出形材同士の端面間および側面間を接合すると共に、端面間においては上記補強材をも併せて接合する、
ことを特徴とする押出形材の接合方法。
Regarding the joining method between a plurality of extruded shapes made of aluminum alloy having a hollow portion or a semi-hollow portion, the end surfaces in each extruded shape member and the side surfaces in the extruded shape material adjacent in the width direction are brought into contact with each other,
Stretching a reinforcing material having a cross section substantially similar to this hollow part or semi-hollow part across the hollow part or between the semi-hollow parts in the vicinity of the end face in each extruded profile adjacent in the longitudinal direction,
Along between the end surface between the extruded profile, performing friction stir welding by the tool and a friction pin and the surface restraining portion of the length reaching the reinforcement,
Furthermore, by continuously applying the friction stir welding along the side surfaces along the longitudinal direction of the extruded shapes adjacent to each other in the width direction ,
With joining between the end surfaces and between the side surface between the extruded profile are joined together also the reinforcing material between the end faces,
A method for joining extruded profiles characterized by the above.
前記補強材が、前記押出形材の中空部又は半中空部と略相似形の中空又は半中空断面であると共に、その中空部又は半中空部内にウェブ又はリブを有する、
ことを特徴とする請求項1に記載の押出形材の接合方法。
The reinforcing member has a hollow or semi-hollow section substantially similar to the hollow part or semi-hollow part of the extruded profile, and has a web or a rib in the hollow part or semi-hollow part.
The method for joining extruded profiles according to claim 1.
JP00001798A 1998-01-05 1998-01-05 Extruded shape joining method Expired - Fee Related JP4000647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00001798A JP4000647B2 (en) 1998-01-05 1998-01-05 Extruded shape joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00001798A JP4000647B2 (en) 1998-01-05 1998-01-05 Extruded shape joining method

Publications (2)

Publication Number Publication Date
JPH11192564A JPH11192564A (en) 1999-07-21
JP4000647B2 true JP4000647B2 (en) 2007-10-31

Family

ID=11462660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00001798A Expired - Fee Related JP4000647B2 (en) 1998-01-05 1998-01-05 Extruded shape joining method

Country Status (1)

Country Link
JP (1) JP4000647B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025094A (en) * 2001-07-09 2003-01-28 Nippon Light Metal Co Ltd Structure for joining extruded-shape and product of frame assembly, using the same
DE10222430A1 (en) * 2002-05-21 2003-12-11 Siemens Ag Friction stir welding of components, especially hollow chamber profiles
JP4686289B2 (en) * 2004-07-29 2011-05-25 昭和電工株式会社 Friction stir welding method for hollow workpieces
JP5970692B2 (en) * 2012-03-06 2016-08-17 日本軽金属株式会社 Method for joining members, method for manufacturing freight transport vehicle, and method for manufacturing freight transport container
CN113770654B (en) * 2020-05-14 2023-06-02 中国兵器工业第五九研究所 Welding method of multi-blade member
CN113523537A (en) * 2021-08-04 2021-10-22 重庆新铝时代科技股份有限公司 Battery case flow channel partition welding process based on harmonica-shaped section bar

Also Published As

Publication number Publication date
JPH11192564A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JP3307330B2 (en) Friction stir welding method and joining structure for thick workpieces
US6045027A (en) Friction stir welding interlocking joint design and method
KR100614144B1 (en) Apparatus and method for friction stir welding utilizing a grooved pin
JP3459210B2 (en) Friction stir welding method
US7455211B2 (en) Multi-pass friction stir welding
EP1123770B1 (en) Friction stir joining method and structural body
US7601432B2 (en) Friction stir welding method and group of shape members for friction stir welding
US20030042293A1 (en) Friction stir welding method and panel structure for friction stir welding
JP2003320465A (en) Taper friction agitation welding tool
KR19990014053A (en) Structure and friction stir welding method
JP4000647B2 (en) Extruded shape joining method
JP3329281B2 (en) Aluminum or aluminum alloy sheet joining method
JP2002263863A (en) Friction/agitation joining tool
JP4407113B2 (en) Joining method
JPH1128583A (en) Method for joining of work by friction stirring joining
JP2000317652A (en) Friction-stir-welding method and structure body therefor
JP2000337327A (en) Improved blind rivet
JP2000237881A (en) Production of panel structural body and panel structural body
JP3449403B2 (en) Probe for penetration friction stir welding
JP2001162383A (en) Friction-stir-welding method
JP2004223587A (en) Joint structure of hollow extruded shape
JP2002331370A (en) Joining method for aluminum or aluminum alloy plate material
JP3891653B2 (en) Intersection fitting joint structure between members
JP2004141946A (en) Double skin panel manufactured by traction swirling joining and method for manufacturing broad panel using the panel
JP2001205457A (en) Friction stir joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees