JP4000581B2 - 画像符号化装置および方法 - Google Patents

画像符号化装置および方法 Download PDF

Info

Publication number
JP4000581B2
JP4000581B2 JP26872897A JP26872897A JP4000581B2 JP 4000581 B2 JP4000581 B2 JP 4000581B2 JP 26872897 A JP26872897 A JP 26872897A JP 26872897 A JP26872897 A JP 26872897A JP 4000581 B2 JP4000581 B2 JP 4000581B2
Authority
JP
Japan
Prior art keywords
encoding
circuit
coding
target
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26872897A
Other languages
English (en)
Other versions
JPH11112999A (ja
Inventor
卓也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26872897A priority Critical patent/JP4000581B2/ja
Publication of JPH11112999A publication Critical patent/JPH11112999A/ja
Application granted granted Critical
Publication of JP4000581B2 publication Critical patent/JP4000581B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、画像データを圧縮符号化する画像符号化装置および方法に関する。
【0002】
【従来の技術】
送信側で画像データを圧縮して送信すると共に、受信側では圧縮された画像データを伸張する通信システムや、画像データを圧縮して記録すると共に、再生時には圧縮された画像データを伸張して出力する圧縮画像記録再生システム等において、画像データの圧縮の方法としては、例えばMPEG(Moving Picture Experts Group)規格で採用されている双方向予測符号化方式がある。この双方向予測符号化方式では、双方向予測を用いることで符号化効率を向上させている。双方向予測符号化方式では、フレーム内符号化(以下、イントラ(intra)符号化ともいう)とフレーム間符号化(以下、インタ(inter)符号化ともいう)という2つのタイプの符号化が行われる。フレーム間符号化は、更に、フレーム間順方向予測符号化とフレーム間双方向予測符号化とに分けられる。ここで、フレーム内符号化は、例えば、入力された画像データを、所定の単位毎にマクロブロック化し、マクロブロック毎にDCT(離散コサイン変換)のような周波数変換を用いてエネルギコンパクションによる圧縮を行うようになっている。一方、フレーム間符号化においては、同様に入力された画像データをマクロブロック化し、マクロブロック毎に以前に符号化した画像からの動きベクトルを検出し、この動きベクトルを用いて動き補償を行って、現画像と以前に符号化した画像との差分を用いた予測符号化がなされる。なお、MPEG規格では、この差分に対してDCTを行なって符号化をしている。
【0003】
このように、双方向予測符号化方式では、フレーム内符号化、フレーム間順方向予測符号化および双方向予測符号化の3つのタイプの符号化が行われ、各符号化タイプによる画像は、それぞれIピクチャ(intra coded picture )、Pピクチャ(predictive coded picture)およびBピクチャ(bidirectionally predictive coded picture)と呼ばれる。ただし、PピクチャおよびBピクチャでは、マクロブロック毎に、フレーム内符号化を行うかフレーム間符号化を行うかを選択できるようになっている。一方、Iピクチャは、全てフレーム内符号化による符号化処理がなされる。
【0004】
上記のようなフレーム内符号化とフレーム間符号化とを比較すると、一般に、フレーム間符号化の方が、フレーム内符号化よりも符号化の効率がよいことが多い。しかし、必ずしも全てのマクロブロックをフレーム間符号化するのがよいというわけではない。例えば、画像撮影手段をパンニング(panning)させて得られた画像においては、以前に得られた画像では見えなかった部分が現画像に存在するようになる。このような場合には、フレーム間符号化において利用される動き補償がうまくいかず、現画像と以前の画像との差分が大きくなるため、フレーム間符号化処理を施すよりも、フレーム内符号化処理を施す方が望ましい。
【0005】
従って、従来から、入力された画像に基づいて、フレーム間符号化を行うか、フレーム内符号化を行うかをマクロブロック毎に判定し、この判定結果に応じた符号化方式で符号化処理を行うという手法が採られている。このように、いずれの符号化方式を選択するのかをマクロブロック毎に判定することを、一般に「イントラ/インタ判定」という。
【0006】
次に、図4を参照して、上記イントラ/インタ判定を行いながら画像の圧縮符号化を行う従来の画像符号化装置の一例について説明する。この図に示したように、画像符号化装置としてのビデオエンコーダ110は、圧縮符号化をする際の目標となる符号化レート(単位時間当たりの符号量)を示す目標符号化レートデータS13を出力するビデオエンコーダ制御用コンピュータ120に接続されている。また、ビデオエンコーダ110は、入力画像信号S11を入力し、符号化する順番に従ってピクチャ(Iピクチャ,Pピクチャ,Bピクチャ)の順番を並べ替える画像並べ替え回路121と、この画像並べ替え回路121の出力データを入力し、フレーム構造かフィールド構造かを判別し、判別結果に応じた走査変換および16×16画素のマクロブロック化を行う走査変換・マクロブロック化回路122と、この走査変換・マクロブロック化回路122の出力データと予測画像データとの差分をとる減算回路131と、この減算回路131の出力データに対して、DCTブロック単位でDCTを行い、DCT係数を出力するDCT回路132と、このDCT回路132の出力データを所定の量子化ステップ(量子化のための割り算の係数)に基づいて量子化する量子化回路133と、この量子化回路133の出力データを可変長符号化する可変長符号化回路134と、この可変長符号化回路134の出力データを一旦保持し、ビットストリームからなる圧縮画像データS15として出力するバッファメモリ135とを備えている。また、バッファメモリ135は、可変長符号化回路134の発生ビット量を示す発生ビット量データS12を出力するようになっている。
【0007】
ビデオエンコーダ110は、更に、走査変換・マクロブロック化回路122の出力データに基づいて動きベクトルを検出する動き検出回路140と、量子化回路133の出力データを逆量子化する逆量子化回路136と、この逆量子化回路136の出力データに対して逆DCTを行う逆DCT回路137と、この逆DCT回路137の出力データと予測画像データとを加算して出力する加算回路138と、この加算回路138の出力データを保持し、動き検出回路140から送られる動きベクトルに応じて動き補償を行って予測画像データを減算回路131および加算回路138に出力する動き補償回路139とを備えている。
【0008】
ビデオエンコーダ110は、更に、ビデオエンコーダ制御用コンピュータ120からの目標符号化レートデータS13に基づいて、発生符号量(発生ビット量)が目標符号量となるように量子化回路133における量子化ステップを決定し、量子化回路133に与える符号量制御部141を備えている。
【0009】
ビデオエンコーダ110は、更に、圧縮符号化を行う際にフレーム内符号化とフレーム間符号化のいずれの符号化方式を選択するのかをマクロブロック毎に判定し、この判定に基づく切り換え信号S14を出力する判定回路142と、この判定回路142からの切り換え信号S14に基づいて、符号化方式の切り換えを行う切り換え部143とを備えている。
【0010】
判定回路142は、走査変換・マクロブロック化回路122から出力された現画像に対応する出力データ(以下、現信号ともいう)o(i,j)と、動き補償回路139から出力された、以前に符号化した画像に対応する出力データs(i,j)とに基づいて、上記した「イントラ/インタ判定」を行い、切り換え部143に切り換え信号S14を出力するようになっている。
【0011】
切り換え部143は、動き補償回路139の出力データが入力される入力端143aと、データとして“0”が入力される入力端143bと、減算回路131の一方の入力端に接続された出力端143cとを有している。この切り換え部143は、判定回路142からの切り換え信号S14がフレーム内符号化(イントラ符号化)を選択すべきとの判定に基づく信号である場合には、出力端143cを入力端143bに接続し、減算回路131にデータ“0”を入力させるようになっている。一方、切り換え信号S14がフレーム間符号化(インタ符号化)を選択すべきとの判定に基づく信号である場合には、切り換え部143は、出力端143cを入力端143aに接続し、減算回路131に動き補償回路139の出力データを入力させるようになっている。
【0012】
次に、判定回路142において行われる従来の「イントラ/インタ判定」の具体的手法について説明する。従来の「イントラ/インタ判定」は、例えば、次の判定式(1)に基づいて行われる。
【0013】
Σi,j {o(i,j)−o′}2 −Σi,j {o(i,j)−s(i,j)}2 ……(1)
【0014】
判定回路142は、上記判定式(1)が正であれば、フレーム間符号化すべきであると判定し、負であれば、フレーム内符号化すべきであると判定する。なお、式(1)において、Σi,j は、マクロブロック内の全ての画素値についての総和を意味する。また、o′は、現信号o(i,j)のマクロブロック内における画素値の平均を示しており、次の式(2)で与えられるものである。なお、この式(2)において、Nは、マクロブロック内の画素の要素数である。
【0015】
o′=(1/N)・Σi,j o(i,j) ……(2)
【0016】
図5は、上記判定式(1)を利用して「イントラ/インタ判定」を行うための判定回路142の詳細な構成を示す回路図である。この図に示したように、判定回路142は、入力された現信号o(i,j)を自乗して出力する乗算回路201と、この乗算回路201からの出力をマクロブロック単位で累算して出力する累算回路202と、現信号o(i,j)をマクロブロック単位で累算して出力する累算回路203と、この累算回路203からの出力をマクロブロック内の要素数Nで除算して出力する除算回路204と、この除算回路204からの出力を自乗して出力する乗算回路205と、累算回路202の出力値から乗算回路205の出力値を減算して出力する減算回路206とを備えている。
【0017】
また、判定回路142は、現信号o(i,j)から、以前に符号化した画像に対応する出力データs(i,j)を減算する減算回路207と、この減算回路207の出力値を自乗して出力する乗算回路208と、この乗算回路208からの出力値を累算する累算回路209と、この累算回路209からの出力値と減算回路206からの出力値とを比較し、その比較結果に応じた切り換え信号S14を出力する比較回路210とを備えている。
【0018】
累算回路202,203,209は、それぞれ、累算回路202,203,209に対する入力信号が入力される加算回路202a,203a,209aと、この加算回路202a,203a,209aの出力信号が入力され、出力信号を累算回路202,203,209の出力信号として出力するレジスタ202b,203b,209bとを有している。加算回路202a,203a,209aは、累算回路202,203,209に対して入力された信号とレジスタ202b,203b,209bの出力信号とを加算した信号をレジスタ202b,203b,209bに出力するようになっている。また、レジスタ202b,203b,209bは、加算回路202a,203a,209aの出力値を一画素分の時間だけ保持して出力することにより、累算回路202,203,209の入力信号を累積して出力するようになっている。
【0019】
上記のように構成される判定回路142では、乗算回路201により、現信号o(i,j)が自乗されて、信号{o(i,j)}2 が求められる。続いて、加算回路202aとレジスタ202bからなる累算回路202により、信号{o(i,j)}2 のマクロブロック単位での総和Σi,j {o(i,j)}2 が求められる。
【0020】
また、加算回路203aとレジスタ203bからなる累算回路203により、現信号o(i,j)のマクロブロック単位での総和Σi,jo(i,j)が求められる。続いて、除算回路204により、現信号o(i,j)の総和Σi,j o(i,j)がマクロブロック内の要素数Nで除算され、平均値(1/N)・Σi,j o(i,j)が求められる。続いて、乗算回路205により平均値(1/N)・Σi,j o(i,j)が自乗された信号{(1/N)・Σi,j o(i,j)}2 が求められる。そして、減算回路206により、累算回路202で求められた総和Σi,j {o(i,j)}2 から、乗算回路205で求められた信号{(1/N)・Σi,j o(i,j)}2 が減算され、分散値Σi,j {o(i,j)−o′}2 が得られる。なお、減算回路206において分散値Σi,j {o(i,j)−o′}2 を求める際には、以下の式(3)による数学的変形を利用している。
【0021】
Σi,j {o(i,j)−o′}2 =Σi,j {o(i,j)}2 −{(1/N)・Σi,j o(i,j)}2 ……(3)
【0022】
一方、減算回路207によって、現信号o(i,j)から、以前に符号化した画像に対応する出力データs(i,j)を引いた差分{o(i,j)−s(i,j)}が求められる。続いて、積算回路208により、差分{o(i,j)−s(i,j)}を自乗した信号{o(i,j)−s(i,j)}2 が求められる。そして、加算回路209aおよびレジスタ209bからなる累算回路209により、自乗された差分信号{o(i,j)−s(i,j)}2 のマクロブロック単位での差分自乗総和Σi,j {o(i,j)−s(i,j)}2 が求められる。
【0023】
最後に、比較回路210により、減算回路206で得られた分散値Σi,j {o(i,j)−o′}2 と、累算回路209で求められた差分自乗総和Σi,j {o(i,j)−s(i,j)}2 とを比較することにより、「イントラ/インタ判定」が行なわれ、切り換え信号S14が出力される。
【0024】
【発明が解決しようとする課題】
ところで、実際の画像の圧縮技術では、その応用例に応じて画像データの符号化(伝送)レートが異なっている。例えば、デジタルテレビジョンに用いられるデジタル放送システムにおいては、番組内容がスポーツのように画像の動きが速いものであると、符号化レートが相対的に大きめに設定されるのに対し、天気予報などの画像の動きの少ない番組では、符号化レートが小さめに設定される。従来では、このように符号化レートが異なる場合でも、「イントラ/インタ判定」は、符号化レートを考慮せずに行っているのだが、その場合、以下で述べるような問題が生ずる。
【0025】
まず、図6を参照して、符号化の際の量子化ステップと、符号化による発生符号量との関係について考察する。この図において、フレーム内符号化における量子化ステップと発生符号量との関係は、符号161で示され、フレーム間符号化における量子化ステップと発生符号量との関係は、符号162で示されている。
【0026】
この図に示されているように、量子化ステップが粗い(大きい)場合には、フレーム内符号化に比べてフレーム間符号化による発生符号量が格段に少なく、効率よく符号化がなされることが分かる。これは、フレーム間符号化の場合、符号化の際に参照とされる画像データ間の差分の振幅が小さく、ほとんどの画像データ間の差分がゼロになるためと考えられる。
【0027】
一方、量子化ステップが細かい(小さい)場合には、フレーム間符号化による発生符号量は、フレーム内符号化による発生符号量に比べて、それほど差が無く、効率よく符号化がなされるとはいえなくなってくる。これは、フレーム間符号化の差分の振幅が、細かい量子化ではゼロにならないことと、DCTが現信号に対してはエネルギーコンパクションが優れているのに、差分についてはそれほど優れていないことによるためと考えられる。
【0028】
このように、量子化ステップが細かい場合には、フレーム間符号化よりもフレーム内符号化による符号化処理の方が優れている場合がある。しかしながら、従来では、例えば、前述したデジタルテレビジョンにおけるスポーツ番組のように、符号化レートが相対的に大きめに設定され、量子化ステップが小さくなる場合においても、フレーム間符号化が採用される場合があり、この場合には、フレーム間符号化によるメリットよりも、デメリットが目立つようになるという問題点があった。例えば、フレーム間符号化の場合、以前に符号化した画像に差分を加算することにより現画像を得るため、差分に対する符号化データ量が充分でない場合には、再生時における画像にギクシャクした動き(ジャーキネス)が目立ってしまうという問題点があった。この問題は、符号化レー卜に関わらず「イントラ/インタ判定」を常に固定の方法で行なっていることに起因するためと考えられる。
【0029】
本発明はかかる問題点に鑑みてなされたもので、その目的は、入力画像データを、所定の単位毎に、フレーム内符号化で符号化するかフレーム間符号化で符号化するかを選択可能とすると共に、再生時において良好な画質を得ることを可能とした画像符号化装置および方法を提供することにある。
【0030】
【課題を解決するための手段】
本発明の画像符号化装置は、入力された画像データを、マクロブロック毎に、フレーム内符号化とフレーム間符号化のいずれか一方の符号化方式を選択して圧縮符号化可能符号化手段と、この符号化手段において圧縮符号化をする際の目標となる目標符号化レートに基づいて、符号化手段における発生符号量が目標符号量となるように符号化手段における量子化ステップを決定する符号量制御手段と、画像データをいずれの符号化方式を選択して圧縮符号化すべきかを、画像データと目標符号化レートとに基づいて画像データのマクロブロック毎に判定し、符号化手段に対して、判定結果に応じた符号化方式を選択させる判定手段とを備え、この判定手段が、目標符号化レートが小さいほどフレーム間符号化を選択すべきと判定する割合が大きくなり、目標符号化レートが大きいほどフレーム内符号化を選択すべきと判定する割合が大きくなるように判定を行うようにしたものである。
【0031】
また、本発明の画像符号化方法は、入力された画像データを、マクロブロック毎に、フレーム内符号化とフレーム間符号化のいずれか一方の符号化方式を選択して圧縮符号化可能とすると共に、圧縮符号化をする際の目標となる目標符号化レートに基づいて、発生符号量が目標符号量となるように圧縮符号化の際の量子化ステップを決定する画像符号化方法において、画像データをいずれの符号化方式を選択して圧縮符号化すべきかを、画像データと目標符号化レートとに基づいて画像データのマクロブロック毎に判定する判定手順と、この判定結果に応じた符号化方式を選択して、入力された画像データを圧縮符号化する符号化手順とを含み、上記判定手順において、目標符号化レートが小さいほどフレーム間符号化を選択すべきと判定する割合が大きくなり、目標符号化レートが大きいほどフレーム内符号化を選択すべきと判定する割合が大きくなるように判定を行うようにしたものである。
【0032】
本発明の画像符号化装置および方法では、入力された画像データをいずれの符号化方式を選択して圧縮符号化すべきかが、画像データと、圧縮符号化をする際の目標となる目標符号化レートとに基づいて、画像データのマクロブロック毎に判定される。具体的には、目標符号化レートが小さいほど、フレーム間符号化を選択すべきと判定する割合が大きくなり、目標符号化レートが大きいほど、フレーム内符号化を選択すべきと判定する割合が大きくなるように判定がなされる。そしてこの判定結果に応じた符号化方式が選択されて、画像データが圧縮符号化される。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
【0034】
図1は、本発明の一実施の形態に係る画像符号化装置としてのビデオエンコーダの構成を示すブロック図である。この図に示したように、画像符号化装置としてのビデオエンコーダ11は、圧縮符号化をする際の目標となる目標符号化レートRを示す目標符号化レートデータS3 を出力するビデオエンコーダ制御用コンピュータ12に接続されている。ビデオエンコーダ11は、入力画像信号S1 を入力し、符号化する順番に従ってピクチャ(Iピクチャ,Pピクチャ,Bピクチャ)の順番を並べ替える画像並べ替え回路21と、この画像並べ替え回路21の出力データを入力し、フレーム構造かフィールド構造かを判別し、判別結果に応じた走査変換および16×16画素のマクロブロック化を行う走査変換・マクロブロック化回路22と、この走査変換・マクロブロック化回路22の出力データと予測画像データとの差分をとる減算回路31と、この減算回路31の出力データに対して、DCTブロック単位でDCTを行い、DCT係数を出力するDCT回路32と、このDCT回路32の出力データを所定の量子化ステップ(量子化のための割り算の係数)に基づいて量子化する量子化回路33と、この量子化回路33の出力データを可変長符号化する可変長符号化回路34と、この可変長符号化回路34の出力データを一旦保持し、ビットストリームからなる圧縮画像データS5 として出力するバッファメモリ35とを備えている。また、バッファメモリ35は、可変長符号化回路34の発生ビット量を示す発生ビット量データS2 を出力するようになっている。
【0035】
ビデオエンコーダ11は、更に、走査変換・マクロブロック化回路22の出力データに基づいて動きベクトルを検出する動き検出回路40と、量子化回路33の出力データを逆量子化する逆量子化回路36と、この逆量子化回路36の出力データに対して逆DCTを行う逆DCT回路37と、この逆DCT回路37の出力データと予測画像データとを加算して出力する加算回路38と、この加算回路38の出力データを保持し、動き検出回路40から送られる動きベクトルに応じて動き補償を行って予測画像データを減算回路31および加算回路38に出力する動き補償回路39とを備えている。
【0036】
ビデオエンコーダ11は、更に、ビデオエンコーダ制御用コンピュータ12からの目標符号化レートデータS3 に基づいて、発生符号量(発生ビット量)が目標符号量となるように量子化回路33における量子化ステップを決定し、量子化回路33に与える符号量制御部41を備えている。
【0037】
ビデオエンコーダ11は、更に、圧縮符号化を行う際にフレーム内符号化とフレーム間符号化のいずれの符号化方式を選択するのかをマクロブロック毎に判定し、この判定に基づく切り換え信号S4 を出力する判定回路42と、この判定回路42からの切り換え信号S4 に基づいて、符号化方式の切り換えを行う切り換え部43とを備えている。ここで、判定回路42が、本発明における判定手段に対応する。
【0038】
ビデオエンコーダ11に接続されたビデオエンコーダ制御用コンピュータ12は、例えば、ビデオエンコーダ11を統計多重を用いたデジタル放送システムに利用した場合においては、バッファメモリ35から出力される圧縮画像データS5 の伝送レートがプログラム(番組データ)に応じた伝送レートとなるように、圧縮符号化をする際の目標となる目標符号化レートRを決定し、目標符号化レートデータS3 を出力するようになっている。なお、「統計多重」とは、所定の伝送路に対して、より多くのプログラムを流すために用いられる手法であり、各プログラムの伝送レートを動的に変化させることにより、より多くのプログラムを伝送することを可能とするものである。この統計多重では、例えば、伝送レートを減らしても画質の劣化が目立たないプログラムについては、伝送レートを減らすことにより、より多くのプログラムの伝送を可能としている。
【0039】
判定回路42は、走査変換・マクロブロック化回路22から出力された現画像に対応する出力データ(現信号)o(i,j),動き補償回路39から出力された、以前に符号化した画像に対応する出力データs(i,j),および圧縮符号化をする際の目標とされる目標符号化レートRに基づいて、「イントラ/インタ判定」を行い、切り換え部43に切り換え信号S4 を出力するようになっている。
【0040】
切り換え部43は、動き補償回路39の出力データが入力される入力端43aと、データとして“0”が入力される入力端43bと、減算回路31の一方の入力端に接続された出力端43cとを有している。この切り換え部43は、判定回路42からの切り換え信号S4 がフレーム内符号化(イントラ符号化)を選択すべきとの判定に基づく信号である場合には、出力端43cを入力端43bに接続し、減算回路31にデータ“0”を入力させるようになっている。一方、切り換え信号S4 がフレーム間符号化(インタ符号化)を選択すべきとの判定に基づく信号である場合には、切り換え部43は、出力端43cを入力端43aに接続し、減算回路31に動き補償回路39の出力データを入力させるようになっている。
【0041】
次に、本実施の形態において判定回路42で行われる「イントラ/インタ判定」のより具体的な手法について説明する。本実施の形態における「イントラ/インタ判定」は、例えば、次の判定式(4)に基づいて行われる。本実施の形態では、この判定式(4)により、目標となる目標符号化レートRを考慮して、「イントラ/インタ判定」の方法を変化させることにより、良好な画質を実現しようとするものである。
【0042】
Σi,j {o(i,j)−o′}2 −f(R)・Σi,j {o(i,j)−s(i,j)}2 ……(4)
【0043】
判定回路42は、上記判定式(4)が正であれば、フレーム間符号化を選択すべきであると判定し、負であれば、フレーム内符号化を選択すべきであると判定する。なお、式(4)において、Σi,j は、マクロブロック内の全ての画素値についての総和を意味する。また、o′は、現信号o(i,j)のマクロブロック内における画素値の平均を示しており、前述の式(2)で与えられるものである。
【0044】
また、式(4)において、f(R)は、目標符号化レートRの関数であり、目標とされる目標符号化レートRが小さいほど、フレーム間符号化を選択すべきと判定する割合が大きくなり、目標符号化レートRが大きいほど、フレーム内符号化を選択すべきと判定する割合が大きくなるように判定を行うために設定される関数である。この関数f(R)としては、例えば、以下の式(5)の関数が考えられる。なお、関数f(R)は、以下の式(5)に限定されるものではなく、上記設定条件を満足するような関数であれば、他の関数式によるものであってもかまわない。
【0045】
f(R)=(a・R+b)/(R+a・b) ……(5)
【0046】
この式(5)において、a,bは、所定の定数であり、例えば、a=4,b=3という値が設定される。図2は、a=4,b=3とし、目標符号化レートRの単位をMbps(Mega bits per second)とした場合における、目標符号化レートRと関数f(R)との関係を示した関係図である。この図に示したように、a=4,b=3とした場合には、関数f(R)は、目標符号化レートRが3Mbpsのときに関数値が1となり、且つ目標符号化レートRが大きくなるに従い増加するような関数となる。従って、判定回路42が判定を行う場合には、目標符号化レートRが小さいほど、判定式(4)が正になる割合が大きくなり、フレーム間符号化を選択すべきと判定する割合が大きくなる。一方、目標符号化レートRが大きいほど、判定式(4)が負になる割合が大きくなり、フレーム内符号化を選択すべきと判定する割合が大きくなる。
【0047】
図3は、上記判定式(4)を利用して「イントラ/インタ判定」を行うための判定回路42の詳細な構成を示す回路図である。この図に示したように、判定回路42は、入力された現信号o(i,j)を自乗して出力する乗算回路51と、この乗算回路51からの出力をマクロブロック単位で累算して出力する累算回路52と、現信号o(i,j)をマクロブロック単位で累算して出力する累算回路53と、この累算回路54からの出力をマクロブロック内の要素数Nで除算して出力する除算回路54と、この除算回路54からの出力を自乗して出力する乗算回路55と、累算回路52の出力値から乗算回路55の出力値を減算して出力する減算回路56とを備えている。
【0048】
また、判定回路42は、現信号o(i,j)から、以前に符号化した画像に対応する出力データs(i,j)を減算する減算回路57と、この減算回路57の出力値を自乗して出力する乗算回路58と、この乗算回路58からの出力値を累算する累算回路59と、入力された目標符号化レートRを関数f(R)の値に変換して出力する変換回路60と、この変換回路60から出力された関数f(R)と、累算回路59からの出力値とを乗算して出力する乗算回路61と、この乗算回路61からの出力と減算回路56からの出力値とを比較し、その比較結果に応じた切り換え信号S4 を出力する比較回路62とを備えている。変換回路60は、例えば、上記した式(5)に基づいて作成された目標符号化レートRに対応した関数値を出力するための変換用テーブルまたは目標符号化レートRを関数f(R)の値に変換するための変換式を記録したROM(リード・オンリ・メモリ)を有して構成される。
【0049】
累算回路52,53,59は、それぞれ、累算回路52,53,59に対する入力信号が入力される加算回路52a,53a,59aと、この加算回路52a,53a,59aの出力信号が入力され、出力信号を累算回路52,53,59の出力信号として出力するレジスタ52b,53b,59bとを有している。加算回路52a,53a,59aは、累算回路52,53,59に対して入力された信号とレジスタ52b,53b,59bの出力信号とを加算した信号をレジスタ52b,53b,59bに出力するようになっている。また、レジスタ52b,53b,59bは、加算回路52a,53a,59aの出力値を一画素分の時間だけ保持して出力することにより、累算回路52,53,59の入力信号を累積して出力するようになっている。
【0050】
上記のように構成される判定回路42では、乗算回路51により、現信号o(i,j)が自乗されて、信号{o(i,j)}2 が求められる。続いて、加算回路52aとレジスタ52bからなる累算回路52により、信号{o(i,j)}2 のマクロブロック単位での総和Σi,j {o(i,j)}2 が求められる。
【0051】
また、加算回路53aとレジスタ53bからなる累算回路53により、現信号o(i,j)のマクロブロック単位での総和Σi,j o(i,j)が求められる。続いて、除算回路54により、現信号o(i,j)の総和Σi,j o(i,j)がマクロブロック内の要素数Nで除算され、平均値(1/N)・Σi,j o(i,j)が求められる。続いて、乗算回路55により平均値(1/N)・Σi,j o(i,j)が自乗された信号{(1/N)・Σi,j o(i,j)}2 が求められる。そして、減算回路56により、累算回路52で求められた総和Σi,j {o(i,j)}2 から、乗算回路55で求められた信号{(1/N)・Σi,j o(i,j)}2 が減算され、分散値Σi,j {o(i,j)−o′}2 が得られる。なお、減算回路56ににおいて分散値Σi,j {o(i,j)−o′}2 を求める際には、前述の式(3)による数学的変形を利用している。
【0052】
一方、減算回路57によって、現信号o(i,j)から、以前に符号化した画像に対応する出力データs(i,j)を引いた差分{o(i,j)−s(i,j)}が求められる。続いて、積算回路58により、差分{o(i,j)−s(i,j)}を自乗した信号{o(i,j)−s(i,j)}2が求められる。そして、加算回路59aおよびレジスタ59bからなる累算回路59により、自乗された差分信号{o(i,j)−s(i,j)}2 のマクロブロック単位での差分自乗総和Σi,j {o(i,j)−s(i,j)}2 が求められる。
【0053】
また、変換回路60において、入力された目標符号化レートRに対応した関数値f(R)が求められる。次に、乗算回路61により、関数値f(R)と、累算回路59からの出力値である差分自乗総和Σi,j {o(i,j)−s(i,j)}2 とが乗算された値f(R)・Σi,j o{o(i,j)−s(i,j)}2 が求められる。
【0054】
最後に、比較回路62により、減算回路56で得られた分散値Σi,j {o(i,j)−o′}2 と、乗算回路61で求められた値f(R)・Σi,j o{o(i,j)−s(i,j)}2 とを比較することにより、「イントラ/インタ判定」が行なわれ、切り換え信号S4 が出力される。
【0055】
次に、図1に示した本実施の形態に係る画像符号化装置の主要な動作について説明する。なお、以下の説明は、本実施の形態に係る画像符号化方法の説明を兼ねている。ビデオエンコーダ11では、まず、画像並べ替え回路21によって、入力画像信号S1 に対して、符号化する順番に従ってピクチャ(Iピクチャ,Pピクチャ,Bピクチャ)の順番を並べ替え、次に、走査変換・マクロブロック化回路22によって、フレーム構造かフィールド構造かを判別し、判別結果に応じた走査変換およびマクロブロック化を行い、減算回路31に送る。また、走査変換・マクロブロック化回路22の出力データは、動き検出回路40および判定回路42にも送られる。また、動き検出回路40は、動きベクトルを検出して動き補償回路39に送る。
【0056】
そして、Iピクチャ、PピクチャおよびBピクチャのそれぞれに対応した符号化処理が行われる。
【0057】
Iピクチャの場合には、フレーム内符号化による符号化処理が行われる。すなわち、減算回路31において予測画像データとの差分をとることなく、走査変換・マクロブロック化回路22の出力データをそのままDCT回路32に入力してDCTを行い、量子化回路33によってDCT係数を量子化し、可変長符号化回路34によって量子化回路33の出力データを可変長符号化し、バッファメモリ35によって可変長符号化回路34の出力データを一旦保持し、ビットストリームからなる圧縮画像データS5 として出力する。また、逆量子化回路36によって量子化回路33の出力データを逆量子化し、逆DCT回路37によって逆量子化回路36の出力データに対して逆DCTを行い、逆DCT回路37の出力画像データを加算回路38を介して動き補償回路39に入力して保持させる。
【0058】
PピクチャおよびBピクチャの場合には、判定回路42によって、マクロブロック毎に、フレーム内符号化とフレーム間符号化のいずれの方式により符号化を行うべきかを判定し、この判定結果に基づいて、マクロブロック単位で、フレーム内符号化とフレーム間符号化のどちらか一方の符号化方式を選択して、符号化処理が行われる。判定回路42は、走査変換・マクロブロック化回路22から出力された現画像に対応する出力データ(現信号)o(i,j),動き補償回路39から出力された、以前に符号化した画像に対応する出力データs(i,j),および圧縮符号化をする際の目標とされる目標符号化レートRに基づいて、「イントラ/インタ判定」を行い、切り換え部43に切り換え信号S4 を出力する。切り換え部43は、判定回路42からの切り換え信号S4 がフレーム内符号化(イントラ符号化)を選択すべきとの判定に基づく信号である場合には、出力端43cを入力端43bに接続し、減算回路31にデータ“0”を入力させる。一方、切り換え信号S4 がフレーム間符号化(インタ符号化)を選択すべきとの判定に基づく信号である場合には、切り換え部43は、出力端43cを入力端43aに接続し、減算回路31に動き補償回路39の出力データを入力させる。
【0059】
これにより、判定回路42によって、フレーム内符号化を選択すべきと判定されたマクロブロックについては、PピクチャおよびBピクチャ共に、上記したIピクチャの場合と同様のフレーム内符号化を利用した圧縮符号化処理が行われる。また、判定回路42によって、フレーム間符号化を選択すべきと判定されたマクロブロックについては、Pピクチャでは、フレーム間順方向予測符号化を利用した圧縮符号化処理が行われ、Bピクチャでは、フレーム間双方向予測符号化を利用した圧縮符号化処理が行われる。
【0060】
Pピクチャにおいてフレーム間順方向予測符号化を利用した圧縮符号化処理が行われるマクロブロックについては、動き補償回路39によって、保持している過去のIピクチャまたはPピクチャに対応する画像データと動き検出回路40からの動きベクトルとに基づいて予測画像データを生成し、予測画像データを減算回路31および加算回路38に出力する。また、減算回路31によって、走査変換・マクロブロック化回路22の出力データと動き補償回路39からの予測画像データとの差分をとり、DCT回路32によってDCTを行い、量子化回路33によってDCT係数を量子化し、可変長符号化回路34によって量子化回路33の出力データを可変長符号化し、バッファメモリ35によって可変長符号化回路34の出力データを一旦保持し圧縮画像データS5 として出力する。また、逆量子化回路36によって量子化回路33の出力データを逆量子化し、逆DCT回路37によって逆量子化回路36の出力データに対して逆DCTを行い、加算回路38によって逆DCT回路37の出力データと予測画像データとを加算し、動き補償回路39に入力して保持させる。
【0061】
また、Bピクチャにおいてフレーム間双方向予測符号化を利用した圧縮符号化処理が行われるマクロブロックについては、動き補償回路39によって、保持している過去および未来のIピクチャまたはPピクチャに対応する2つの画像データと動き検出回路40からの2つの動きベクトルとに基づいて予測画像データを生成し、予測画像データを減算回路31および加算回路38に出力する。また、減算回路31によって、走査変換・マクロブロック化回路22の出力データと動き補償回路39からの予測画像データとの差分をとり、DCT回路32によってDCTを行い、量子化回路33によってDCT係数を量子化し、可変長符号化回路34によって量子化回路33の出力データを可変長符号化し、バッファメモリ35によって可変長符号化回路34の出力データを一旦保持し圧縮画像データS5 として出力する。なお、Bピクチャは動き補償回路39に保持させない。
【0062】
以上説明したように本実施の形態に係る画像符号化装置としてのビデオエンコーダ11では、判定回路42によって、入力された画像データと目標符号化レートRとに基づいて、マクロブロック毎に、フレーム内符号化とフレーム間符号化のいずれの方式で符号化を行うべきかを判定し、この判定結果に基づいて、切り換え部43により、フレーム内符号化とフレーム間符号化のどちらか一方を選択して、符号化処理を行う。より具体的には、判定回路42は、走査変換・マクロブロック化回路22から出力された現画像に対応する出力データo(i,j)と動き補償回路39から出力された、以前に符号化した画像に対応する出力データs(i,j)とを変数とする所定の判定式(4)により判定を行う。この判定式(4)は、目標符号化レートRが小さいほど、フレーム間符号化を選択すべきと判定する割合が大きくなり、目標符号化レートRが大きいほど、フレーム内符号化を選択すべきと判定する割合が大きくなるように、目標符号化レートRに応じて内容が変更される。これにより、入力画像データを、所定の単位毎にフレーム内符号化で符号化するかフレーム間符号化で符号化するかが選択可能となると共に、再生時において良好な画質を得ることが可能となる。具体的には、目標符号化レートRが小さく、量子化ステップが大きくなる場合には、判定式(4)が正になる割合が大きくなり、フレーム間符号化を選択すべきと判定する割合が大きくなって、より効率よく符号化することが可能となる。逆に、目標符号化レートRが大きく、量子化ステップが小さくなる場合には、判定式(4)が負になる割合が大きくなり、フレーム内符号化を選択すべきと判定する割合が大きくなって、符号化の効率をほとんど変えることなく、フレーム間符号化によるジャーキネス等の弊害を防止して良好な画質を得ることが可能になる。
【0063】
なお、本発明は、上記実施の形態に限定されず、種々の変形実施が可能である。例えば、上記実施の形態では、判定回路42で行う「イントラ/インタ判定」として、平均自乗総和Σi,j {o(i,j)−o′}2 と差分自乗総和を利用した値f(R)・Σi,j {o(i,j)−s(i,j)}2 との比較による判定法を使用したが、別の判定法を使用しても構わない。また、この判定法は、判定式(4)とは異なる別の判定式を利用するようにしてもかまわない。
【0064】
更に、上記実施の形態では、目標符号化レートRから求められた関数f(R)を差分自乗総和Σi,j {o(i,j)−s(i,j)}2 に乗ずることによって判定を変化させるようにしたが、例えば、目標符号化レートRを変数とする別の関数の値をオフセット成分として用いるなど別の手法であっても構わない。
【0065】
更に、上記実施の形態では、判定回路42内の変換回路60(図3)として、ROMを使用し、目標符号化レートRに対応する関数値f(R)を求めるようにしていたが、ROMでなく、RAM(ランダム・アクセス・メモリ)を使用して、関数値f(R)を求めるための変換テーブルや変換式を、例えば、装置の初期設定の段階で任意に変更できるようにしてもよい。こうすることで、入力される画像データおよび目標符号化レートRに応じて、関数f(R)を柔軟に変更させることが可能となる。
【0066】
また、本発明は、上記実施の形態のように目標符号化レートRを動的に変化させるような場合に限らず、例えば、目標符号化レートRをビデオエンコーダ11の接続先のトランスポンダ(中継器)の性能や送信する信号の数等に基づいて決める場合のように、目標符号化レートRが、あらかじめ決められた一定の値であるような場合にも適用可能である。なお、この場合には、ビデオエンコーダ制御用コンピュータ12において、例えば、バッファメモリ35から出力される圧縮画像データS5 の伝送レートが、ビデオエンコーダ11の接続先のトランスポンダ(中継器)の性能や送信する信号の数等に応じた伝送レートとなるように、圧縮符号化をする際の目標となる目標符号化レートRが決定され、目標符号化レートデータS3 が出力される。
【0067】
また、本発明は、いわゆる2パスエンコードを利用するような画像符号化装置においても適用可能である。ここで、2パスエンコードとは、例えば、DVD(Digital Video Disk)等の蓄積メディアに対して記録するデータを編集、作成するためのオーサリング装置等において用いられる技術である。このようなオーサリング装置における2パスエンコードでは、リアルタイム性が要求されないので、一旦、映像信号を固定の量子化ステップで符号化することによって各ピクチャ毎の符号化難易度を測定し、その結果に基づいて、可変ビットレートで再度符号化するようになっている。
【0068】
例えば、上記実施の形態で示したビデオエンコーダ11において、2パスエンコードを用いる場合には、まず、1回目の符号化(1パス目)で、入力画像信号S1 を固定の量子化ステップで符号化して、発生ビット量を示す発生ビット量データS2 を、ビデオエンコーダ制御用コンピュータ12に送り、ビデオエンコーダ制御用コンピュータ12によって、発生ビット量または発生ビット量より求めた各ピクチャ毎の符号化難易度に基づいて目標符号量を決定する。次に、2回目の符号化(2パス目)では、ビデオエンコーダ制御用コンピュータ12は、目標符号化レートRを示す目標符号化レートデータS3 をビデオエンコーダ11に与え、ビデオエンコーダ11は、この目標符号化レートデータデータS3 と、過去の発生ビット量やそれによるVBV(Video Buffering Verifier)バッファの占有量等に基づいて、可変ビットレートで、入力画像信号S1 を符号化し、ビットストリームからなる圧縮画像データS5 として出力する。また、ビデオエンコーダ11は、2回目の符号化では、上記実施の形態で説明したのと同様に、判定回路42によって、マクロブロック毎に、フレーム内符号化とフレーム間符号化のいずれの方式で符号化を行うべきかを判定し、この判定結果に基づいて、切り換え部43により、フレーム内符号化とフレーム間符号化のどちらか一方を選択して、符号化処理を行う。
【0069】
【発明の効果】
以上説明したように、請求項1ないし3記載の画像符号化装置または、請求項4記載の画像符号化方法によれば、画像データをいずれの符号化方式を選択して圧縮符号化すべきかを、画像データと、圧縮符号化をする際の目標となる目標符号化レートとに基づいて、所定のマクロブロック毎に判定し、この判定結果に応じた符号化方式を選択して、入力された画像データを圧縮符号化するようにしたので、入力画像データを、マクロブロック毎にフレーム内符号化で符号化するかフレーム間符号化で符号化するかを選択可能とすると共に、再生時において良好な画質を得ることが可能となるという効果を奏する。
また、目標符号化レートが小さいほど、フレーム間符号化を選択すべきと判定する割合が大きくなり、目標符号化レートが大きいほど、フレーム内符号化を選択すべきと判定する割合が大きくなるように判定を行うようにしたので、目標符号化レートが小さく、量子化ステップが大きくなる場合には、フレーム間符号化を選択すべきと判定する割合が大きくなって、より効率よく符号化することが可能となる。また、目標符号化レートが大きく、量子化ステップが小さくなる場合には、フレーム内符号化を選択すべきと判定する割合が大きくなって、符号化の効率をほとんど変えることなく、フレーム間符号化によるジャーキネス等の弊害を防止して良好な画質を得ることが可能になる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る画像符号化装置としてのビデオエンコーダの構成を示すブロック図である。
【図2】図1に示したビデオエンコーダにおける判定回路において利用される関数の値と目標符号化レートとの関係を説明するための関係図である。
【図3】図1に示したビデオエンコーダにおける判定回路の詳細な構成を示す回路図である。
【図4】従来の画像符号化装置の一例としてのビデオエンコーダの構成を示すブロック図である。
【図5】図4に示す従来のビデオエンコーダで用いられる判定回路の構成を示す回路図である。
【図6】フレーム内符号化とフレーム間符号化のそれぞれについての量子化ステップと発生符号量との関係を説明するための関係図である。
【符号の説明】
11…ビデオエンコーダ、12…ビデオエンコーダ制御用コンピュータ、21…画像並べ替え回路、22…走査変換・マクロブロック化回路、31…減算回路、32…DCT回路、33…量子化回路、34…可変長符号化回路、35…バッファメモリ、36…逆量子化回路、37…逆DCT回路、38…加算回路、39…動き補償回路、40…動き検出回路、41…符号量制御部、42…判定回路、43…切り換え部、60…変換回路。

Claims (4)

  1. 入力された画像データを、マクロブロック毎に、フレーム内符号化とフレーム間符号化のいずれか一方の符号化方式を選択して圧縮符号化可能符号化手段と、
    前記符号化手段において圧縮符号化をする際の目標となる目標符号化レートに基づいて、前記符号化手段における発生符号量が目標符号量となるように前記符号化手段における量子化ステップを決定し、符号化手段へ供給する符号量制御手段と、
    前記画像データをいずれの符号化方式を選択して圧縮符号化すべきかを、前記画像データと前記目標符号化レートとに基づいて前記画像データのマクロブロック毎に判定し、前記符号化手段に対して、判定結果に応じた符号化方式を選択させる判定手段と
    を備え
    前記判定手段は、前記目標符号化レートが小さいほど、フレーム間符号化を選択すべきと判定する割合が大きくなり、前記目標符号化レートが大きいほど、フレーム内符号化を選択すべきと判定する割合が大きくなるように判定を行う
    ことを特徴とする画像符号化装置。
  2. 前記判定手段は、以下の判定式に基づき、この判定式が正であれば、フレーム間符号化を選択すべきと判定し、この判定式が負であれば、フレーム内符号化を選択すべきと判定する
    ことを特徴とする請求項1記載の画像符号化装置。
    Σ i,j {o(i,j)−o′} 2 −f(R)・Σ i,j {o(i,j)−s(i,j)} 2
    但し、Σ i,j は、マクロブロック内の全ての画素値についての総和を意味し、o(i,j)は、現画像に対応する画像データを示し、o′は、o(i,j)のマクロブロック内における画素値の平均を示し、s(i,j)は、以前に符号化した画像に対応する画像データを示し、f(R)は、目標符号化レートRの関数であり、目標符号化レートRが小さいほど、フレーム間符号化を選択すべきと判定する割合が大きくなり、目標符号化レートRが大きいほど、フレーム内符号化を選択すべきと判定する割合が大きくなるように判定を行うために設定される関数を示す。
  3. 入力される画像データおよび前記目標符号化レートに応じて、関数f(R)を変更可能なように構成されている
    ことを特徴とする請求項2記載の画像符号化装置。
  4. 入力された画像データを、マクロブロック毎に、フレーム内符号化とフレーム間符号化のいずれか一方の符号化方式を選択して圧縮符号化可能とすると共に、圧縮符号化をする際の目標となる目標符号化レートに基づいて、発生符号量が目標符号量となるように圧縮符号化の際の量子化ステップを決定する画像符号化方法において、
    前記画像データをいずれの符号化方式を選択して圧縮符号化すべきかを、前記画像データと前記目標符号化レートとに基づいて前記画像データのマクロブロック毎に判定する判定手順と、
    この判定結果に応じた符号化方式を選択して、入力された画像データを圧縮符号化する符号化手順と
    を含み、
    前記判定手順において、前記目標符号化レートが小さいほど、フレーム間符号化を選択すべきと判定する割合が大きくなり、前記目標符号化レートが大きいほど、フレーム内符号化を選択すべきと判定する割合が大きくなるように判定を行う
    ことを特徴とする画像符号化方法。
JP26872897A 1997-10-01 1997-10-01 画像符号化装置および方法 Expired - Fee Related JP4000581B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26872897A JP4000581B2 (ja) 1997-10-01 1997-10-01 画像符号化装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26872897A JP4000581B2 (ja) 1997-10-01 1997-10-01 画像符号化装置および方法

Publications (2)

Publication Number Publication Date
JPH11112999A JPH11112999A (ja) 1999-04-23
JP4000581B2 true JP4000581B2 (ja) 2007-10-31

Family

ID=17462532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26872897A Expired - Fee Related JP4000581B2 (ja) 1997-10-01 1997-10-01 画像符号化装置および方法

Country Status (1)

Country Link
JP (1) JP4000581B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151391A (ja) 2003-11-19 2005-06-09 Toshiba Corp 動画像符号化方法、動画像符号化装置およびプログラム

Also Published As

Publication number Publication date
JPH11112999A (ja) 1999-04-23

Similar Documents

Publication Publication Date Title
KR100289852B1 (ko) 화상 부호화 방법, 화상 부호화 장치 및 화상 기록 매체
KR100599017B1 (ko) 영상 데이터 압축 장치 및 그 방법
KR100391027B1 (ko) 비디오정보를예측부호화하는방법및장치
US6628713B1 (en) Method and device for data encoding and method for data transmission
KR101096827B1 (ko) 각기 다수의 매크로블록을 포함하는 예측 및 비예측 화상을이용하여 화상 시퀀스를 인코딩하는 방법 및 장치
JP5640979B2 (ja) 動画像符号化装置、動画像符号化方法および動画像符号化プログラム
JP3911035B2 (ja) 動画像符号化方法及び動画像符号化装置
JP4114210B2 (ja) 映像データ圧縮装置およびその方法
JP4224778B2 (ja) ストリーム変換装置および方法、符号化装置および方法、記録媒体、並びに、プログラム
JP5708490B2 (ja) 動画像符号化装置、動画像符号化方法および動画像符号化プログラム
JPH0998427A (ja) 動画像符号化装置
JP3599942B2 (ja) 動画像符号化方法、及び動画像符号化装置
JP4421734B2 (ja) 符号化データ変換方法,及びデータ記録媒体
KR100571685B1 (ko) 영상 데이터 부호화 장치와 방법 및 영상 데이터 전송 방법
JP4032446B2 (ja) 映像データ圧縮装置およびその方法
JP4000581B2 (ja) 画像符号化装置および方法
JP3738511B2 (ja) 動画像符号化方式
JP2001045490A (ja) 動画像信号の符号化装置及び符号化方法
JP2005072995A (ja) レート変換装置
JPH0775095A (ja) レート制御回路
JP3188081B2 (ja) 画像符号化方法および画像符号化装置
JP4100067B2 (ja) 画像情報変換方法及び画像情報変換装置
KR0152024B1 (ko) 로우 딜레이 코딩 방식의 부호화 및 복호화 장치
JP4211023B2 (ja) 動画像処理方法及び動画像処理装置
JP3770466B2 (ja) 画像符号化レート変換装置及び画像符号化レート変換方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees