JP3998586B2 - Torsional damper and manufacturing method thereof - Google Patents

Torsional damper and manufacturing method thereof Download PDF

Info

Publication number
JP3998586B2
JP3998586B2 JP2003030496A JP2003030496A JP3998586B2 JP 3998586 B2 JP3998586 B2 JP 3998586B2 JP 2003030496 A JP2003030496 A JP 2003030496A JP 2003030496 A JP2003030496 A JP 2003030496A JP 3998586 B2 JP3998586 B2 JP 3998586B2
Authority
JP
Japan
Prior art keywords
damper
inertia
diameter
ring
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003030496A
Other languages
Japanese (ja)
Other versions
JP2004239384A (en
Inventor
秀樹 大高
正規 峯尾
憲治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2003030496A priority Critical patent/JP3998586B2/en
Publication of JP2004239384A publication Critical patent/JP2004239384A/en
Application granted granted Critical
Publication of JP3998586B2 publication Critical patent/JP3998586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、クランクシャフトの端部等に設けられ、そのクランクシャフト等のねじり振動を低減して、エンジンの振動及び騒音を低減するトーショナルダンパ及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、エンジンの振動及び騒音を低減するためにクランクシャフト等にトーショナルダンパを取付けることが知られている。このトーショナルダンパは、図5に示すように、円板状のダンパ本体1と、そのダンパ本体1の両面にダンパ本体1と同軸にかつそのダンパ本体1を挟むように固着された第1及び第2環状弾性部材2,3と、ダンパ本体1の周縁部と間隔をあけてダンパ本体1を挟むように第1及び第2環状弾性部材2,3にそれぞれ固着された第1及び第2慣性リング4,6と、ダンパ本体1の周縁部と所定の間隔をあけて第1慣性リング4の周縁部と第2慣性リング6の周縁部とを連結する連結リング7とを備え、第1及び第2環状弾性部材2,3と第1及び第2慣性リング4,6と連結リング7により囲まれるダンパ本体1の周縁部における空間にはシリコーンオイル8が充填される(例えば、特許文献1参照。)。そしてクランクシャフト等にダンパ本体1が取付けられ、第1及び第2慣性リング4,6とダンパ本体1との間に生じるシリコーンオイル8の剪断応力によりクランクシャフト等のねじり振動を緩衝するようになっている。
【0003】
図6に示すように、従来のトーショナルダンパにおける第1及び第2環状弾性部材2,3は金型9を用いて作られる。この金型9はシリコーンオイル8が充填される空間を確保するために割型構造とされ、固定型9aと移動型9bの他にスライド型9cとを備える。第1及び第2慣性リング4,6はダンパ本体1の周縁部と間隔をあけるようにダンパ本体1とともにこの金型9に装着され、その金型9に合成ゴムを充填し加硫させる。この金型9を用いて合成ゴムを充填加硫させることにより第1及び第2環状弾性部材2,3は成型され、この第1及び第2環状弾性部材2,3を介して第1及び第2慣性リング4,6はダンパ本体1に固着される。図5に戻って、連結リング7は別部材とされ、第1及び第2慣性リング4,6に後から嵌入される。そして、第1及び第2環状弾性部材2,3が熱により破壊されることを防止するために、連結リング7はレーザ溶接により第1及び第2慣性リング4,6に溶着される。
【0004】
【特許文献1】
実開平4−50746号公報
【0005】
【発明が解決しようとする課題】
しかし、レーザ溶接をするためには所定の設備を必要としそのコストが比較的高いことから、レーザ溶接により連結リング7を第1及び第2慣性リング4,6に溶着する従来のトーショナルダンパは、その単価が押し上げられる不具合があった。特に従来のトーショナルダンパにおける第1及び第2慣性リング4,6の外径はダンパ本体1の外径より小さく形成されていることから、連結リング7自体も2分割され、第1慣性リング4の周縁部に溶着された第1連結リング7aと第2慣性リング6の周縁部に溶着された第2連結リング7bとを更にレーザ溶接することによりダンパ本体1の周縁部と所定の間隔をあけて第1慣性リング4の周縁部と第2慣性リング6の周縁部とを連結している。このため、部品点数が増加するとともに溶接工数も更に増加して、トーショナルダンパの単価が著しく押し上げられる問題点があった。
本発明の目的は、比較的低いコストであってかつ信頼性の高いトーショナルダンパ及びその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、円板状のダンパ本体11と、ダンパ本体11の両面にダンパ本体11と同軸にかつダンパ本体11を挟むように固着された第1及び第2環状弾性部材12,13と、ダンパ本体11の周縁部と間隔をあけてダンパ本体11を挟むように第1及び第2環状弾性部材12,13にそれぞれ固着された第1及び第2慣性リング14,16と、ダンパ本体11の周縁部と間隔をあけて第1慣性リング14の周縁部と第2慣性リング16の周縁部とを連結する連結リング17とを備えたトーショナルダンパの改良である。
その特徴ある構成は、第1慣性リング14の外径及び第2慣性リング16の外径がダンパ本体11の外径よりそれぞれ大きく形成され、連結リング17の内周面全体に第1及び第2慣性リング14,16の互いに相対向する周縁部の間に挿入可能な凸条17aが形成され、第1及び第2慣性リング14,16の各外周面と連結リング17の内周面との間に第1及び第2環状くさび部材18,20が第1及び第2慣性リング14,16により凸条17aを挟持するようにそれぞれ圧入されたところにある。
【0007】
請求項5に係る発明は、更に図3に示すように、円板状のダンパ本体11と外径がダンパ本体11の外径より大きく形成された第1及び第2慣性リング14,16とを第1及び第2慣性リング14,16がダンパ本体11の周縁部と間隔をあけてダンパ本体11を挟むように金型21に装着する工程と、金型21に合成ゴムを充填加硫させてそれぞれ大径部12a,13aを第1及び第2慣性リング14,16の各内周面に接着しかつ大径部12a,13aより小径に形成された小径部12b,13bをダンパ本体11の両面に接着するように第1及び第2環状弾性部材12,13を成型する工程と、ダンパ本体11の両面に環状弾性部材12,13を介して取付けられた第1及び第2慣性リング14,16の互いに相対向する周縁部の間に挿入可能な凸条17aが内周面に形成されかつダンパ本体11の周縁部と所定の隙間をあけて覆う連結リング17を第1及び第2慣性リング14,16に嵌入する工程と、第1及び第2慣性リング14,16の各外周面と連結リング17の内周面との間に環状くさび部材18をそれぞれ圧入して第1及び第2慣性リング14,16により凸条17aを挟持させる工程とを含むトーショナルダンパの製造方法である。
【0008】
この請求項1に係るトーショナルダンパ及び請求項5に係るトーショナルダンパの製造方法では、第1慣性リング14の外径及び第2慣性リング16の外径をダンパ本体11の外径よりそれぞれ大きく形成したので、単一の連結リング17を用いることができ、2分割された連結リングを用いていた従来に比較して部品点数を減少させることができる。そして、第1及び第2慣性リング14,16の各外周面と連結リング17の内周面との間に第1及び第2環状くさび部材18,20を圧入して固定するので、レーザ溶接により固定する従来に比較してそれらを固定するコストを低下させることができ、比較的コストの低いトーショナルダンパを得ることができる。
一方、第1及び第2環状くさび部材18,20を圧入した状態で第1及び第2慣性リング14,16が凸条17aを挟持するので、シリコーンオイルを充填するための所定の空間を確保することができ、トーショナルダンパが必要とする信頼性を確保することができる。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、第1及び第2環状弾性部材12,13はそれぞれ大径部12a,13aが第1及び第2慣性リング14,16の各内周面に接着され、大径部12a,13aより小径に形成された小径部12b,13bがダンパ本体11の両面に接着されたトーショナルダンパである。
この請求項2に係るトーショナルダンパでは、第1及び第2環状弾性部材12,13が大径部12a,13aと小径部12b,13bを有することにより、それらの弾性変形量を拡大することができ、連結リング17を第1及び第2慣性リング14,16に嵌入する作業を容易にする。
【0010】
請求項3に係る発明は、請求項1又は2に係る発明であって、連結リング17に対向する第1及び第2慣性リング14,16の幅方向内側部に大径外周面14a,16aが、幅方向外側部に大径外周面14a,16aより小径の小径外周面14b,16bがそれぞれ形成され、小径外周面14b,16bから大径外周面14a,16aにかけて傾斜外周面14c,16cが形成され、傾斜外周面14c,16cに対向する連結リング17の全内周面に第1及び第2凹溝17b,17cが形成され、第1及び第2慣性リングの小径外周面14b,16bと連結リング17の内周面との間に圧入された第1及び第2環状くさび部材18,20の圧入先端が傾斜外周面14c,16cに沿って広がって第1及び第2凹溝17b,17cに進入するように構成されたトーショナルダンパである。
この請求項3に係るトーショナルダンパでは、圧入されて広がった環状くさび部材18の圧入先端が第1及び第2凹溝17b,17cに進入することにより、連結リング17から第1及び第2慣性リング14,16が離脱することを有効に防止することができ、シリコーンオイルが充填される空間の変化を防止してその信頼性を向上させることができる。
【0011】
請求項4に係る発明は、請求項3に係る発明であって、第1及び第2慣性リング14,16が連結リング17により連結された状態で、第1及び第2慣性リングの各小径外周面14b,16bと小径外周面14b,16bに対向する連結リング17の内周面との間に第1及び第2環状くさび部材18,20の厚さに相当する隙間が形成されるトーショナルダンパである。
この請求項4に係るトーショナルダンパでは、小径外周面14b,16bと連結リング17の内周面との間の隙間が第1及び第2環状くさび部材18,20の厚さに相当するので、その隙間から第1及び第2環状くさび部材18,20を圧入することができ、その圧入作業を比較的容易にすることができる。
【0012】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1及び図2に示すように、本発明のトーショナルダンパ10は、円板状のダンパ本体11と、そのダンパ本体11の両面にダンパ本体11と同軸にかつダンパ本体11を挟むように固着された第1及び第2環状弾性部材12,13と、ダンパ本体11の周縁部と間隔をあけてダンパ本体11を挟むように第1及び第2環状弾性部材12,13にそれぞれ固着された第1及び第2慣性リング14,16と、ダンパ本体11の周縁部と所定の間隔をあけて第1慣性リング14の周縁部と第2慣性リング16の周縁部とを連結する連結リング17とを備える。
【0013】
ダンパ本体11は鋼板を打ち抜くことにより作られた円板であり、中央部分に図示しないクランクシャフトに取付けるための取付孔11aが形成される。第1及び第2慣性リング14,16は、ダンパ本体11より厚い鋼板を打ち抜くことにより又は切断することにより作られた同形同大のリング状の板材であり、第1及び第2慣性リング14,16の各外周面は段階的に外径が異なるように成形されて大径外周面14a,16aと小径外周面14b,16bとがそれぞれ形成される。大径外周面14a,16aと小径外周面14b,16bにおける段差は後述する環状くさび部材18の板厚と略等しくなるように形成され、大径外周面14a,16aと小径外周面14b,16bの間にはそれらを緩やかに連続させる傾斜外周面14c,16cが形成される。そして、第1慣性リング14の外径及び第2慣性リング16の外径を形成す大径外周面14a,16aはダンパ本体11の外径よりもそれぞれ大きく形成される。
【0014】
図3に示すように、第1及び第2環状弾性部材12,13は金型21を用いて作られる。この金型21は固定型21aと移動型21bとスライド型21cとを備える。円板状のダンパ本体11と第1及び第2慣性リング14,16とが金型21に装着されるけれども、第1及び第2慣性リング14,16はダンパ本体11の周縁部と間隔をあけてダンパ本体11を挟むように金型21に装着される。この際に第1及び第2慣性リング14,16の各外周面における大径外周面14a,16aをダンパ本体11側に位置させるように第1及び第2慣性リング14,16が金型21に装着される。金型21の合成ゴム等が充填される空間は、第1及び第2慣性リング14,16に連通する部分が大径に形成され、ダンパ本体11に連通する部分が小径になるように形成される。
【0015】
固定型21aには金型21の合成ゴム等が充填される空間に連通する充填孔21dが設けられ、この充填孔21dから合成ゴムを充填させる。ダンパ本体11には、充填される合成ゴム等が通過する連通孔11dが形成される。充填孔21dから固定型21aの充填空間に充填された合成ゴム等はこの連通孔11dを介して移動型21bの充填空間にまで流入し、その後加硫することにより第1及び第2環状弾性部材12,13が成型される。この金型21を用いて成型された第1及び第2環状弾性部材12,13を介して第1及び第2慣性リング14,16はダンパ本体11に同軸に固着される。図1及び図2に戻って、金型21の空間に合成ゴム等を充填して加硫させることにより成型された第1及び第2環状弾性部材12,13は、それぞれ大径部12a,13aが第1及び第2慣性リング14,16の各内周面に接着され、その大径部12a,13aより小径に形成された小径部12b,13bがダンパ本体11の両面に接着される。
【0016】
連結リング17は鋳物又は切削により作られ、第1及び第2慣性リング14,16と所定のはめあい関係を有するようにその内径が決定される。この連結リング17の内周面全体には第1及び第2慣性リング14,16の互いに相対向する周縁部の間に挿入可能な凸条17aが形成される。第1及び第2慣性リング14,16がこの連結リング17により連結された状態で、第1及び第2慣性リングの傾斜外周面14c、16cに対向する凸条17aの両側の連結リング17の内周面両側部全周には、第1及び第2凹溝17b,17cが形成される。この連結リング17は、第1及び第2環状弾性部材12,13を介してダンパ本体11に同軸に固着された第1及び第2慣性リング14,16に後から嵌入され、第1及び第2慣性リング14,16が連結リング17により連結された状態で、第1及び第2慣性リングの各小径外周面14b,16bとこの小径外周面14b,16bに対向する連結リング17の内周面との間には、後述する第1及び第2環状くさび部材18,20の厚さに相当する隙間が形成される。
【0017】
連結リング17を嵌入させる際、連結リング17の内周面に凸条17aが形成されていることから、第1及び第2慣性リング14,16のいずれか一方がこの凸条17aにより形成される内径部分を通過させる必要がある。図4に示すように、この通過させる手段としては連結リング17を楕円状に変形させ、第1又は第2慣性リング14,16がその楕円の長径方向を通過するように斜めに挿入することにより、第1及び第2慣性リング14,16のいずれか一方を連結リング17を通過させる。このように通過させると、通過する第1及び第2慣性リング14,16のいずれか一方と他方の慣性リングとの相対的な位置関係は多少変化するけれども、第1及び第2慣性リング14,16を連結する第1及び第2環状弾性部材12,13は、それぞれ大径部12a,13aと小径部12b,13bを有するので、比較的大きな変形量が確保される。
【0018】
図1及び図2に戻って、第1及び第2慣性リング14,16の各外周面と連結リング17の内周面との間に第1及び第2環状くさび部材18,20を圧入する。各環状くさび部材18,20は、第1及び第2慣性リング14,16の厚さに相当する幅を有する鋼帯からなるリング状部材であり、その圧入は第1及び第2慣性リング14,16により凸条17aを挟持させた状態で行われる。そして、環状くさび部材18,20は第1及び第2慣性リング14,16の小径外周面14b,16bと連結リング17の内周面との間に生じる隙間に側方から図1の矢印で示すように圧入される。このように圧入された各環状くさび部材18,20の圧入先端は、第1及び第2慣性リング14,16の小径外周面14b,16bから傾斜外周面14c,16cに案内されて連結リング17の凹溝17b,17cに進入し、完全に圧入された状態で各環状くさび部材18,20の圧入先端は広がるように変形する。このように第1及び第2慣性リング14,16の各外周面と連結リング17の内周面との間に第1及び第2環状くさび部材18,20を圧入して凸条17aを挟持する第1慣性リング14の周縁部と第2慣性リング16の周縁部とを連結する。
【0019】
その後、第1及び第2環状弾性部材12,13と第1及び第2慣性リング14,16と連結リング17により囲まれるダンパ本体11の周縁部における空間にはシリコーンオイル19が充填され、トーショナルダンパ10が完成される。
【0020】
このように構成されたトーショナルダンパ10では、第1慣性リング14の外径及び第2慣性リング16の外径をダンパ本体11の外径よりそれぞれ大きく形成したので、単一の連結リング17を用いることができ、2分割された連結リングを用いていた従来に比較して部品点数を減少させることができる。そして、第1及び第2慣性リング14,16の各外周面と連結リング17の内周面との間に環状くさび部材18,20を圧入して固定するので、レーザ溶接により固定する従来に比較してそれらを固定するコストを低下させることができ、比較的コストの低いトーショナルダンパを得ることができる。
【0021】
また、環状くさび部材18,20を圧入した状態で第1及び第2慣性リング14,16が凸条17aを挟持するので、シリコーンオイルを充填するための所定の空間を確保することができる。特にこの実施の形態では、圧入された環状くさび部材18,20の圧入先端を広がるように変形させて凹溝17b,17cに進入させるので、その広がった環状くさび部材18,20の圧入先端により、連結リング17から第1及び第2慣性リング14,16が離脱することを有効に防止することができる。この結果、シリコーンオイルが充填される空間の変化を防止してその信頼性を向上させることができる。
【0022】
【発明の効果】
以上述べたように、本発明によれば、第1慣性リングの外径及び第2慣性リングの外径をダンパ本体の外径よりそれぞれ大きく形成したので、単一の連結リングを用いることにより部品点数を減少させることができる。そして、第1及び第2慣性リングの各外周面と連結リングの内周面との間に環状くさび部材を圧入して固定するので、従来に比較してそれらを固定するコストを低下させることができ、比較的コストの低いトーショナルダンパを得ることができる。
【0023】
また、環状くさび部材を圧入した状態で第1及び第2慣性リングにより凸条を挟持させるので、シリコーンオイルを充填するための所定の空間を確保することができ、圧入された環状くさび部材の圧入先端を広がるように変形させて凹溝に進入させれば、その広がった圧入先端により、連結リングから第1及び第2慣性リングが離脱することを有効に防止することができる。この結果、シリコーンオイルが充填される空間の変化を防止してその信頼性を向上させることができる。
【0024】
一方、連結リングを第1及び第2慣性リングに嵌入させる際に第1及び第2慣性リングは相対的に移動させる必要があるけれども、第1及び第2環状弾性部材に大径部と小径部を形成すれば、それらの弾性変形量を拡大することができ、連結リングを第1及び第2慣性リングに嵌入する作業を容易にすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態におけるトーショナルダンパを示す断面図。
【図2】そのダンパの構造を示す分解斜視図。
【図3】その環状弾性部材を成型する金型の断面構成図。
【図4】その連結リングを変形させて慣性リングを挿通させる状態を示す斜視図。
【図5】従来のトーショナルダンパを示す図1に対応する断面図。
【図6】従来の環状弾性部材を成型する金型の断面構成図。
【符号の説明】
10 トーショナルダンパ
11 ダンパ本体
12 第1環状弾性部材
12a 大径部
12b 小径部
13 第2環状弾性部材
13a 大径部
13b 小径部
14 第1慣性リング
14a 大径外周面
14b 小径外周面
14c 傾斜外周面
16 第2慣性リング
16a 大径外周面
16b 小径外周面
16c 傾斜外周面
17 連結リング
17a 凸条
17b 第1凹溝
17c 第2凹溝
18,20 環状くさび部材
21 金型
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a torsional damper that is provided at an end of a crankshaft and the like and reduces torsional vibration of the crankshaft and the like, thereby reducing engine vibration and noise, and a method for manufacturing the torsional damper.
[0002]
[Prior art]
Conventionally, it is known to attach a torsional damper to a crankshaft or the like in order to reduce engine vibration and noise. As shown in FIG. 5, the torsional damper includes a disk-shaped damper main body 1, first and second members fixed to both surfaces of the damper main body 1 coaxially with the damper main body 1 and sandwiching the damper main body 1. First and second inertias fixed to the first and second annular elastic members 2 and 3 so as to sandwich the damper main body 1 with the second annular elastic members 2 and 3 and the periphery of the damper main body 1 spaced apart from each other. Rings 4 and 6, and a connecting ring 7 that connects the peripheral edge of the first inertia ring 4 and the peripheral edge of the second inertia ring 6 with a predetermined distance from the peripheral edge of the damper body 1, Silicone oil 8 is filled in the space at the periphery of the damper body 1 surrounded by the second annular elastic members 2, 3, the first and second inertia rings 4, 6 and the connecting ring 7 (see, for example, Patent Document 1). .) The damper body 1 is attached to the crankshaft or the like, and the torsional vibration of the crankshaft or the like is buffered by the shearing stress of the silicone oil 8 generated between the first and second inertia rings 4 and 6 and the damper body 1. ing.
[0003]
As shown in FIG. 6, the first and second annular elastic members 2 and 3 in the conventional torsional damper are made using a mold 9. The mold 9 has a split mold structure in order to secure a space filled with the silicone oil 8, and includes a slide mold 9c in addition to the fixed mold 9a and the movable mold 9b. The first and second inertia rings 4 and 6 are mounted on the mold 9 together with the damper main body 1 so as to be spaced from the peripheral edge of the damper main body 1, and the mold 9 is filled with synthetic rubber and vulcanized. The first and second annular elastic members 2 and 3 are molded by filling and vulcanizing synthetic rubber using the mold 9, and the first and second annular elastic members 2 and 3 are used to form the first and second annular elastic members 2 and 3. The two inertia rings 4 and 6 are fixed to the damper main body 1. Returning to FIG. 5, the connecting ring 7 is a separate member and is fitted into the first and second inertia rings 4 and 6 later. In order to prevent the first and second annular elastic members 2 and 3 from being destroyed by heat, the connection ring 7 is welded to the first and second inertia rings 4 and 6 by laser welding.
[0004]
[Patent Document 1]
Japanese Utility Model Publication No. 4-50746
[Problems to be solved by the invention]
However, since a predetermined facility is required for laser welding and its cost is relatively high, a conventional torsional damper that welds the connecting ring 7 to the first and second inertia rings 4 and 6 by laser welding is used. There was a problem that the unit price was pushed up. In particular, since the outer diameters of the first and second inertia rings 4 and 6 in the conventional torsional damper are smaller than the outer diameter of the damper body 1, the connecting ring 7 itself is also divided into two parts, and the first inertia ring 4. The first connecting ring 7a welded to the peripheral edge of the second inertia ring 6 and the second connecting ring 7b welded to the peripheral edge of the second inertia ring 6 are further laser-welded to form a predetermined distance from the peripheral edge of the damper body 1. The peripheral edge of the first inertia ring 4 and the peripheral edge of the second inertia ring 6 are connected. For this reason, there has been a problem that the number of parts increases and the number of welding processes also increases, which significantly increases the unit price of the torsional damper.
An object of the present invention is to provide a torsional damper having a relatively low cost and high reliability and a method for manufacturing the torsional damper.
[0006]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 includes a disk-shaped damper main body 11, and first and second damper bodies 11 fixed to both surfaces of the damper main body 11 coaxially with the damper main body 11 and sandwiching the damper main body 11. First and second inertias fixed to the first and second annular elastic members 12 and 13 so as to sandwich the damper main body 11 with a gap between the second annular elastic members 12 and 13 and the periphery of the damper main body 11, respectively. An improvement of the torsional damper provided with the rings 14 and 16 and a connecting ring 17 for connecting the peripheral edge of the first inertia ring 14 and the peripheral edge of the second inertia ring 16 with a gap from the peripheral edge of the damper main body 11. It is.
The characteristic configuration is that the outer diameter of the first inertia ring 14 and the outer diameter of the second inertia ring 16 are formed larger than the outer diameter of the damper main body 11, respectively, Protrusions 17 a that can be inserted between the peripheral edges of the inertia rings 14, 16 facing each other are formed, and between the outer peripheral surfaces of the first and second inertia rings 14, 16 and the inner peripheral surface of the connection ring 17. The first and second annular wedge members 18 and 20 are pressed into the first and second inertia rings 14 and 16 so as to sandwich the protrusion 17a.
[0007]
Further, as shown in FIG. 3, the invention according to claim 5 includes a disk-shaped damper main body 11 and first and second inertia rings 14 and 16 having an outer diameter larger than the outer diameter of the damper main body 11. A step of attaching the first and second inertia rings 14 and 16 to the mold 21 so as to sandwich the damper body 11 with a gap from the periphery of the damper body 11, and filling and vulcanizing the mold 21 with synthetic rubber. The large-diameter portions 12a and 13a are bonded to the inner peripheral surfaces of the first and second inertia rings 14 and 16, respectively, and the small-diameter portions 12b and 13b formed to be smaller in diameter than the large-diameter portions 12a and 13a are both surfaces of the damper main body 11. Forming the first and second annular elastic members 12 and 13 so as to adhere to each other, and the first and second inertia rings 14 and 16 attached to both surfaces of the damper main body 11 via the annular elastic members 12 and 13. Between the peripheral edges of each other A step of fitting a connecting ring 17 formed on the inner peripheral surface of the projecting ridge 17a and covering the peripheral edge of the damper main body 11 with a predetermined gap into the first and second inertia rings 14, 16; The annular wedge members 18 are press-fitted between the outer peripheral surfaces of the second inertia rings 14 and 16 and the inner peripheral surface of the connecting ring 17 so that the first and second inertia rings 14 and 16 hold the protrusion 17a. A torsional damper manufacturing method including a process.
[0008]
In the torsional damper according to the first aspect and the torsional damper manufacturing method according to the fifth aspect, the outer diameter of the first inertia ring 14 and the outer diameter of the second inertia ring 16 are larger than the outer diameter of the damper main body 11. Since it formed, the single connection ring 17 can be used and a number of parts can be reduced compared with the former which used the connection ring divided into two. Since the first and second annular wedge members 18 and 20 are press-fitted and fixed between the outer peripheral surfaces of the first and second inertia rings 14 and 16 and the inner peripheral surface of the connecting ring 17, laser welding is used. The cost for fixing them can be reduced as compared to the conventional fixing method, and a torsional damper having a relatively low cost can be obtained.
On the other hand, since the first and second inertia rings 14 and 16 sandwich the protrusion 17a with the first and second annular wedge members 18 and 20 being press-fitted, a predetermined space for filling the silicone oil is secured. The reliability required by the torsional damper can be ensured.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the first and second annular elastic members 12, 13 have the large diameter portions 12a, 13a respectively of the first and second inertia rings 14, 16 respectively. A torsional damper in which small-diameter portions 12b and 13b bonded to the inner peripheral surface and having a smaller diameter than the large-diameter portions 12a and 13a are bonded to both surfaces of the damper body 11.
In the torsional damper according to the second aspect, the first and second annular elastic members 12, 13 have the large diameter portions 12a, 13a and the small diameter portions 12b, 13b, so that their elastic deformation amount can be increased. This facilitates the operation of fitting the connecting ring 17 into the first and second inertia rings 14 and 16.
[0010]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the large-diameter outer peripheral surfaces 14a, 16a are provided on the inner side in the width direction of the first and second inertia rings 14, 16 facing the connecting ring 17. Small outer peripheral surfaces 14b, 16b having a smaller diameter than the large outer peripheral surfaces 14a, 16a are formed on the outer side in the width direction, and inclined outer peripheral surfaces 14c, 16c are formed from the small outer peripheral surfaces 14b, 16b to the large outer peripheral surfaces 14a, 16a. The first and second concave grooves 17b and 17c are formed on the entire inner peripheral surface of the connecting ring 17 facing the inclined outer peripheral surfaces 14c and 16c, and are connected to the small-diameter outer peripheral surfaces 14b and 16b of the first and second inertia rings. The press-fitting tips of the first and second annular wedge members 18 and 20 that are press-fitted between the inner peripheral surface of the ring 17 spread along the inclined outer peripheral surfaces 14c and 16c to the first and second concave grooves 17b and 17c. I will enter A torsional damper that is configured.
In the torsional damper according to the third aspect, the first and second inertias of the annular wedge member 18, which has been press-fitted and expanded, enter the first and second concave grooves 17 b, 17 c from the coupling ring 17. It is possible to effectively prevent the rings 14 and 16 from being detached, and it is possible to prevent a change in the space filled with the silicone oil and improve its reliability.
[0011]
The invention according to claim 4 is the invention according to claim 3, wherein the first and second inertia rings 14 and 16 are connected by the connection ring 17, and each of the first and second inertia rings has a small-diameter outer periphery. A torsional damper in which a gap corresponding to the thickness of the first and second annular wedge members 18, 20 is formed between the surfaces 14b, 16b and the inner peripheral surface of the connecting ring 17 facing the small-diameter outer peripheral surfaces 14b, 16b. It is.
In the torsional damper according to claim 4, the gap between the small-diameter outer peripheral surfaces 14 b and 16 b and the inner peripheral surface of the connecting ring 17 corresponds to the thickness of the first and second annular wedge members 18 and 20. The first and second annular wedge members 18 and 20 can be press-fitted from the gap, and the press-fitting operation can be made relatively easy.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, a torsional damper 10 according to the present invention is fixed to a disc-shaped damper body 11 and to both surfaces of the damper body 11 so as to be coaxial with the damper body 11 and sandwich the damper body 11. The first and second annular elastic members 12 and 13 and the first annular elastic members 12 and 13 fixed to the first and second annular elastic members 12 and 13 so as to sandwich the damper body 11 with a gap from the periphery of the damper body 11. The first and second inertia rings 14, 16, and a connecting ring 17 that connects the peripheral edge of the first inertia ring 14 and the peripheral edge of the second inertia ring 16 with a predetermined distance from the peripheral edge of the damper body 11. Prepare.
[0013]
The damper main body 11 is a disc made by punching a steel plate, and an attachment hole 11a for attachment to a crankshaft (not shown) is formed in the central portion. The first and second inertia rings 14, 16 are ring-shaped plates of the same shape and the same size made by punching or cutting a steel plate thicker than the damper main body 11, and the first and second inertia rings 14, 16. , 16 are formed so as to have different outer diameters stepwise to form large-diameter outer peripheral surfaces 14a, 16a and small-diameter outer peripheral surfaces 14b, 16b, respectively. The steps on the large-diameter outer peripheral surfaces 14a and 16a and the small-diameter outer peripheral surfaces 14b and 16b are formed so as to be substantially equal to the plate thickness of an annular wedge member 18 described later, and the large-diameter outer peripheral surfaces 14a and 16a and the small-diameter outer peripheral surfaces 14b and 16b Inclined outer peripheral surfaces 14c and 16c are formed between them to allow them to continue gently. The large-diameter outer peripheral surfaces 14 a and 16 a that form the outer diameter of the first inertia ring 14 and the outer diameter of the second inertia ring 16 are formed larger than the outer diameter of the damper main body 11.
[0014]
As shown in FIG. 3, the first and second annular elastic members 12, 13 are made using a mold 21. The mold 21 includes a fixed mold 21a, a movable mold 21b, and a slide mold 21c. Although the disk-shaped damper main body 11 and the first and second inertia rings 14 and 16 are attached to the mold 21, the first and second inertia rings 14 and 16 are spaced from the peripheral edge of the damper main body 11. Are mounted on the mold 21 so as to sandwich the damper body 11 therebetween. At this time, the first and second inertia rings 14, 16 are placed on the mold 21 so that the large-diameter outer peripheral surfaces 14 a, 16 a on the outer peripheral surfaces of the first and second inertia rings 14, 16 are positioned on the damper body 11 side. Installed. The space filled with the synthetic rubber or the like of the mold 21 is formed such that a portion communicating with the first and second inertia rings 14 and 16 has a large diameter and a portion communicating with the damper main body 11 has a small diameter. The
[0015]
The fixed mold 21a is provided with a filling hole 21d communicating with a space filled with the synthetic rubber or the like of the mold 21, and the synthetic rubber is filled through the filling hole 21d. The damper main body 11 is formed with a communication hole 11d through which a synthetic rubber or the like to be filled passes. Synthetic rubber or the like filled in the filling space of the stationary mold 21a from the filling hole 21d flows into the filling space of the movable mold 21b through the communication hole 11d, and then vulcanized to thereby form the first and second annular elastic members. 12 and 13 are molded. The first and second inertia rings 14 and 16 are coaxially fixed to the damper main body 11 via the first and second annular elastic members 12 and 13 molded using the mold 21. 1 and 2, the first and second annular elastic members 12 and 13 formed by filling the space of the mold 21 with synthetic rubber or the like and vulcanizing the large diameter portions 12a and 13a, respectively. Are bonded to the inner peripheral surfaces of the first and second inertia rings 14 and 16, and the small diameter portions 12 b and 13 b formed smaller in diameter than the large diameter portions 12 a and 13 a are bonded to both surfaces of the damper main body 11.
[0016]
The connecting ring 17 is made by casting or cutting, and its inner diameter is determined so as to have a predetermined fitting relationship with the first and second inertia rings 14 and 16. On the entire inner peripheral surface of the connecting ring 17, a protrusion 17 a is formed that can be inserted between the peripheral edges of the first and second inertia rings 14, 16 facing each other. In the state where the first and second inertia rings 14 and 16 are connected by the connection ring 17, the inside of the connection rings 17 on both sides of the ridge 17 a facing the inclined outer peripheral surfaces 14 c and 16 c of the first and second inertia rings. First and second concave grooves 17b and 17c are formed on the entire circumference of both sides of the circumferential surface. The connecting ring 17 is fitted into the first and second inertia rings 14 and 16 that are coaxially fixed to the damper body 11 via the first and second annular elastic members 12 and 13 from the rear, and the first and second In a state where the inertia rings 14 and 16 are connected by the connection ring 17, the small-diameter outer peripheral surfaces 14b and 16b of the first and second inertia rings and the inner peripheral surface of the connection ring 17 facing the small-diameter outer peripheral surfaces 14b and 16b A gap corresponding to the thickness of the first and second annular wedge members 18 and 20 described later is formed between them.
[0017]
When the connecting ring 17 is fitted, the protruding line 17a is formed on the inner peripheral surface of the connecting ring 17, so that one of the first and second inertia rings 14 and 16 is formed by the protruding line 17a. It is necessary to pass through the inner diameter part. As shown in FIG. 4, as the means for passing, the connecting ring 17 is deformed into an ellipse, and the first or second inertia ring 14, 16 is inserted obliquely so as to pass the major axis direction of the ellipse. One of the first and second inertia rings 14 and 16 is passed through the connecting ring 17. When passing in this way, the relative positional relationship between one of the first and second inertia rings 14 and 16 passing through and the other inertia ring slightly changes, but the first and second inertia rings 14 and 16 Since the first and second annular elastic members 12 and 13 connecting 16 have large diameter portions 12a and 13a and small diameter portions 12b and 13b, respectively, a relatively large deformation amount is ensured.
[0018]
Returning to FIGS. 1 and 2, the first and second annular wedge members 18, 20 are press-fitted between the outer peripheral surfaces of the first and second inertia rings 14, 16 and the inner peripheral surface of the connecting ring 17. Each annular wedge member 18, 20 is a ring-shaped member made of a steel strip having a width corresponding to the thickness of the first and second inertia rings 14, 16, and the press-fitting is performed for the first and second inertia rings 14, 16 is performed in a state in which the ridges 17 a are sandwiched by 16. The annular wedge members 18 and 20 are indicated by arrows in FIG. 1 from the side in the gaps formed between the small-diameter outer peripheral surfaces 14b and 16b of the first and second inertia rings 14 and 16 and the inner peripheral surface of the connecting ring 17. Press-fit. The press-fitting tips of the annular wedge members 18 and 20 thus press-fitted are guided from the small-diameter outer peripheral surfaces 14b and 16b of the first and second inertia rings 14 and 16 to the inclined outer peripheral surfaces 14c and 16c, respectively. In the state of entering the concave grooves 17b and 17c and being completely press-fitted, the press-fitting tips of the respective annular wedge members 18 and 20 are deformed so as to spread. In this way, the first and second annular wedge members 18 and 20 are press-fitted between the outer peripheral surfaces of the first and second inertia rings 14 and 16 and the inner peripheral surface of the connecting ring 17, thereby sandwiching the ridge 17 a. The peripheral edge of the first inertia ring 14 and the peripheral edge of the second inertia ring 16 are connected.
[0019]
Thereafter, the space around the periphery of the damper main body 11 surrounded by the first and second annular elastic members 12 and 13, the first and second inertia rings 14 and 16, and the connecting ring 17 is filled with silicone oil 19. The damper 10 is completed.
[0020]
In the torsional damper 10 configured as described above, the outer diameter of the first inertia ring 14 and the outer diameter of the second inertia ring 16 are formed larger than the outer diameter of the damper body 11, respectively. It can be used, and the number of parts can be reduced as compared with the conventional case where the connecting ring divided into two parts is used. And since the annular wedge members 18 and 20 are press-fitted and fixed between the outer peripheral surfaces of the first and second inertia rings 14 and 16 and the inner peripheral surface of the connecting ring 17, it is compared with the conventional case of fixing by laser welding. Thus, the cost for fixing them can be reduced, and a torsional damper having a relatively low cost can be obtained.
[0021]
In addition, since the first and second inertia rings 14 and 16 sandwich the protrusion 17a in a state where the annular wedge members 18 and 20 are press-fitted, a predetermined space for filling silicone oil can be secured. Particularly in this embodiment, since the press-fitting front ends of the press-fitted annular wedge members 18 and 20 are deformed so as to expand and enter the concave grooves 17b and 17c, the press-fitting front ends of the wide annular wedge members 18 and 20 It is possible to effectively prevent the first and second inertia rings 14 and 16 from being detached from the connection ring 17. As a result, the change of the space filled with the silicone oil can be prevented and the reliability thereof can be improved.
[0022]
【The invention's effect】
As described above, according to the present invention, the outer diameter of the first inertia ring and the outer diameter of the second inertia ring are formed larger than the outer diameter of the damper body. The score can be reduced. And since the annular wedge member is press-fitted and fixed between the outer peripheral surfaces of the first and second inertia rings and the inner peripheral surface of the connecting ring, the cost of fixing them can be reduced as compared with the prior art. And a torsional damper having a relatively low cost can be obtained.
[0023]
In addition, since the first and second inertia rings hold the ridges while the annular wedge member is press-fitted, a predetermined space for filling the silicone oil can be secured, and the annular wedge member that has been press-fitted is press-fitted. If the tip is deformed so as to expand and enter the concave groove, the expanded press-fit tip can effectively prevent the first and second inertia rings from being detached from the connection ring. As a result, the change of the space filled with the silicone oil can be prevented and the reliability thereof can be improved.
[0024]
On the other hand, when the coupling ring is fitted into the first and second inertia rings, the first and second inertia rings need to be moved relatively, but the first and second annular elastic members have a large diameter portion and a small diameter portion. If these are formed, the amount of elastic deformation thereof can be increased, and the operation of fitting the connecting ring into the first and second inertia rings can be facilitated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a torsional damper according to an embodiment of the present invention.
FIG. 2 is an exploded perspective view showing the structure of the damper.
FIG. 3 is a cross-sectional configuration diagram of a mold for molding the annular elastic member.
FIG. 4 is a perspective view showing a state in which the inertia ring is inserted by deforming the connecting ring.
FIG. 5 is a cross-sectional view corresponding to FIG. 1 showing a conventional torsional damper.
FIG. 6 is a cross-sectional configuration diagram of a mold for molding a conventional annular elastic member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Torsional damper 11 Damper main body 12 1st cyclic | annular elastic member 12a Large diameter part 12b Small diameter part 13 2nd cyclic | annular elastic member 13a Large diameter part 13b Small diameter part 14 1st inertia ring 14a Large diameter outer peripheral surface 14b Small diameter outer peripheral surface 14c Inclined outer periphery Surface 16 Second inertia ring 16a Large-diameter outer peripheral surface 16b Small-diameter outer peripheral surface 16c Inclined outer peripheral surface 17 Connecting ring 17a Projection 17b First concave groove 17c Second concave groove 18, 20 Annular wedge member 21 Mold

Claims (5)

円板状のダンパ本体(11)と、前記ダンパ本体(11)の両面に前記ダンパ本体(11)と同軸にかつ前記ダンパ本体(11)を挟むように固着された第1及び第2環状弾性部材(12,13)と、前記ダンパ本体(11)の周縁部と間隔をあけて前記ダンパ本体(11)を挟むように前記第1及び第2環状弾性部材(12,13)にそれぞれ固着された第1及び第2慣性リング(14,16)と、前記ダンパ本体(11)の周縁部と間隔をあけて前記第1慣性リング(14)の周縁部と前記第2慣性リング(16)の周縁部とを連結する連結リング(17)とを備えたトーショナルダンパにおいて、
前記第1慣性リング(14)の外径及び前記第2慣性リング(16)の外径が前記ダンパ本体(11)の外径よりそれぞれ大きく形成され、
前記連結リング(17)の内周面全体に前記第1及び第2慣性リング(14,16)の互いに相対向する周縁部の間に挿入可能な凸条(17a)が形成され、
前記第1及び第2慣性リング(14,16)の各外周面と前記連結リング(17)の内周面との間に第1及び第2環状くさび部材(18,20)が前記第1及び第2慣性リング(14,16)により前記凸条(17a)を挟持するようにそれぞれ圧入された
ことを特徴とするトーショナルダンパ。
A disk-shaped damper body (11), and first and second annular elastic members fixed to both surfaces of the damper body (11) so as to be coaxial with the damper body (11) and sandwich the damper body (11) The member (12, 13) is fixed to the first and second annular elastic members (12, 13) so as to sandwich the damper body (11) with a gap from the periphery of the damper body (11). The first and second inertia rings (14, 16) and the periphery of the damper main body (11) are spaced apart from the periphery of the first inertia ring (14) and the second inertia ring (16). In the torsional damper provided with the connecting ring (17) for connecting the peripheral part,
The outer diameter of the first inertia ring (14) and the outer diameter of the second inertia ring (16) are respectively larger than the outer diameter of the damper body (11);
On the entire inner peripheral surface of the connecting ring (17), a protrusion (17a) is formed that can be inserted between peripheral edges of the first and second inertia rings (14, 16) facing each other.
First and second annular wedge members (18, 20) are provided between the outer peripheral surfaces of the first and second inertia rings (14, 16) and the inner peripheral surface of the connecting ring (17). A torsional damper, wherein the torsional damper is press-fitted so as to sandwich the protrusion (17a) by the second inertia ring (14, 16).
第1及び第2環状弾性部材(12,13)はそれぞれ大径部(12a,13a)が第1及び第2慣性リング(14,16)の各内周面に接着され、前記大径部(12a,13a)より小径に形成された小径部(12b,13b)がダンパ本体(11)の両面に接着された請求項1記載のトーショナルダンパ。The first and second annular elastic members (12, 13) have large-diameter portions (12a, 13a) bonded to the inner peripheral surfaces of the first and second inertia rings (14, 16), respectively. The torsional damper according to claim 1, wherein small diameter portions (12b, 13b) formed to have a smaller diameter than 12a, 13a) are bonded to both surfaces of the damper main body (11). 連結リング(17)に対向する第1及び第2慣性リング(14,16)の幅方向内側部に大径外周面(14a,16a)が、幅方向外側部に前記大径外周面(14a,16a)より小径の小径外周面(14b,16b)がそれぞれ形成され、前記小径外周面(14b,16b)から前記大径外周面(14a,16a)にかけて傾斜外周面(14c,16c)が形成され、前記傾斜外周面(14c,16c)に対向する前記連結リング(17)の全内周面に第1及び第2凹溝(17b,17c)が形成され、前記第1及び第2慣性リングの小径外周面(14b,16b)と前記連結リング(17)の内周面との間に圧入された第1及び第2環状くさび部材(18,20)の圧入先端が前記傾斜外周面(14c,16c)に沿って広がって前記第1及び第2凹溝(17b,17c)に進入するように構成された請求項1又は2記載のトーショナルダンパ。A large-diameter outer peripheral surface (14a, 16a) is formed on the inner side in the width direction of the first and second inertia rings (14, 16) facing the coupling ring (17), and the outer peripheral surface (14a, 16a) smaller diameter outer peripheral surfaces (14b, 16b) are formed, and inclined outer peripheral surfaces (14c, 16c) are formed from the smaller diameter outer peripheral surfaces (14b, 16b) to the larger diameter outer peripheral surfaces (14a, 16a). First and second concave grooves (17b, 17c) are formed on the entire inner peripheral surface of the connecting ring (17) facing the inclined outer peripheral surfaces (14c, 16c), and the first and second inertia rings The press-fitting tips of the first and second annular wedge members (18, 20) press-fitted between the small-diameter outer peripheral surface (14b, 16b) and the inner peripheral surface of the connecting ring (17) are the inclined outer peripheral surface (14c, The torsional damper according to claim 1 or 2, wherein the torsional damper extends along 16c) and enters the first and second concave grooves (17b, 17c). 第1及び第2慣性リング(14,16)が連結リング(17)により連結された状態で、前記第1及び第2慣性リングの各小径外周面(14b,16b)と前記小径外周面(14b,16b)に対向する前記連結リング(17)の内周面との間に第1及び第2環状くさび部材(18,20)の厚さに相当する隙間が形成される請求項3記載のトーショナルダンパ。In a state where the first and second inertia rings (14, 16) are connected by the connection ring (17), the small-diameter outer peripheral surfaces (14b, 16b) and the small-diameter outer peripheral surfaces (14b) of the first and second inertia rings. 16b), a gap corresponding to the thickness of the first and second annular wedge members (18, 20) is formed between the inner peripheral surface of the connecting ring (17) and the connecting ring (17). National damper. 円板状のダンパ本体(11)と外径が前記ダンパ本体(11)の外径より大きく形成された第1及び第2慣性リング(14,16)とを前記第1及び第2慣性リング(14,16)が前記ダンパ本体(11)の周縁部と間隔をあけて前記ダンパ本体(11)を挟むように金型(21)に装着する工程と、
前記金型(21)に合成ゴムを充填加硫させてそれぞれ大径部(12a,13a)を第1及び第2慣性リング(14,16)の各内周面に接着しかつ前記大径部(12a,13a)より小径に形成された小径部(12b,13b)をダンパ本体(11)の両面に接着するように第1及び第2環状弾性部材(12,13)を成型する工程と、
前記ダンパ本体(11)の両面に前記環状弾性部材(12,13)を介して取付けられた第1及び第2慣性リング(14,16)の互いに相対向する周縁部の間に挿入可能な凸条(17a)が内周面に形成されかつ前記ダンパ本体(11)の周縁部と所定の隙間をあけて覆う連結リング(17)を前記第1及び第2慣性リング(14,16)に嵌入する工程と、
前記第1及び第2慣性リング(14,16)の各外周面と前記連結リング(17)の内周面との間に環状くさび部材(18)をそれぞれ圧入して前記第1及び第2慣性リング(14,16)により前記凸条(17a)を挟持させる工程と
を含むトーショナルダンパの製造方法。
A disk-shaped damper body (11) and first and second inertia rings (14, 16) having an outer diameter larger than the outer diameter of the damper body (11) are connected to the first and second inertia rings ( 14, 16) is attached to the mold (21) so as to sandwich the damper body (11) with a gap from the periphery of the damper body (11);
The mold (21) is filled and vulcanized with synthetic rubber, and the large-diameter portions (12a, 13a) are bonded to the inner peripheral surfaces of the first and second inertia rings (14, 16), respectively. Molding the first and second annular elastic members (12, 13) so that the small diameter portions (12b, 13b) formed smaller than (12a, 13a) are bonded to both surfaces of the damper body (11);
Protrusions that can be inserted between the mutually opposing peripheral edges of the first and second inertia rings (14, 16) attached to both surfaces of the damper body (11) via the annular elastic members (12, 13). A connecting ring (17) having a strip (17a) formed on the inner peripheral surface and covering the periphery of the damper main body (11) with a predetermined gap is inserted into the first and second inertia rings (14, 16). And a process of
An annular wedge member (18) is press-fitted between the outer peripheral surfaces of the first and second inertia rings (14, 16) and the inner peripheral surface of the connecting ring (17), respectively. A method of manufacturing a torsional damper, including a step of sandwiching the protrusion (17a) by a ring (14, 16).
JP2003030496A 2003-02-07 2003-02-07 Torsional damper and manufacturing method thereof Expired - Fee Related JP3998586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030496A JP3998586B2 (en) 2003-02-07 2003-02-07 Torsional damper and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030496A JP3998586B2 (en) 2003-02-07 2003-02-07 Torsional damper and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004239384A JP2004239384A (en) 2004-08-26
JP3998586B2 true JP3998586B2 (en) 2007-10-31

Family

ID=32957371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030496A Expired - Fee Related JP3998586B2 (en) 2003-02-07 2003-02-07 Torsional damper and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3998586B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057582A (en) * 2006-08-29 2008-03-13 Bridgestone Corp Torsional damper
KR102078919B1 (en) * 2018-07-02 2020-02-19 한국후꼬꾸 주식회사 Damper pulley and Combining device of trigger plate for thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130150U (en) * 1982-02-27 1983-09-02 冨士自動車興業株式会社 damper
JPS58200831A (en) * 1982-05-14 1983-11-22 Hideo Aoki Manufacture of damper for preventing twisting vibration
JPH0232908Y2 (en) * 1985-03-05 1990-09-05
US4746240A (en) * 1987-04-01 1988-05-24 General Motors Corporation Self crimping connection for inner and outer members and method of assembling the same
JPH0721940Y2 (en) * 1989-12-25 1995-05-17 株式会社フコク Torsional damper
JPH0450746U (en) * 1990-09-04 1992-04-28
JPH08285013A (en) * 1995-04-14 1996-11-01 Nok Megurasutikku Kk Damper
JPH10103409A (en) * 1996-09-27 1998-04-21 Nok Megurasutikku Kk Torsional damper
JP3706513B2 (en) * 1999-12-09 2005-10-12 冨士自動車興業株式会社 Method of manufacturing torsional vibration damper for internal combustion engine
JP2002188690A (en) * 2000-12-22 2002-07-05 Hino Motors Ltd Torsional damper for engine

Also Published As

Publication number Publication date
JP2004239384A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP4881781B2 (en) Torque rod manufacturing method
JP3772792B2 (en) Anti-vibration bush
JP4260528B2 (en) Torsional damper pulley
JP3998586B2 (en) Torsional damper and manufacturing method thereof
JPH09125948A (en) Method for assembling exhaust-system piping of engine and its assembled structure
JP6061981B2 (en) Clamping device
JP2003247595A (en) Dynamic damper and propeller shaft
JP6621191B1 (en) Gasket flange and pipe connection method
JP3393078B2 (en) Liquid filled type vibration damping device and method of manufacturing the same
JP6169450B2 (en) Torsional damper
JP2009068640A (en) Bearing with resin pulley
JP3897610B2 (en) Dynamic damper manufacturing method
US20020022527A1 (en) Coupling for coupling two shafts
JP2013224729A (en) Vibration damper
JPH1026183A (en) Manufacture of dynamic damper
JP4665546B2 (en) Steering bush and manufacturing method thereof
JPH0972380A (en) Damper and manufacture thereof
JP2005180394A (en) Method of manufacturing silencer for vehicle
JPH034844Y2 (en)
JP2000104775A (en) Manufacturing method for vibration isolating bush
JPH07280013A (en) Vibration isolating bushing
JP2000351301A (en) Wheel for motor vehicle
JP2606673Y2 (en) Temporary fixing structure for metal members
JPH08233033A (en) Torsional damper
JP3001674U (en) Rubber bush with stopper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees